
EFFICIENCY ENHANCEMENTS FOR PRACTICAL
TECHNIQUES FOR SEARCHES ON ENCRYPTED

DATA

Pitigala Arachchillage Pansilu Madhura Bhashana Pitigalaarachchi
(179342K)

Degree of Master of Science

Department of Computer Science and Engineering
University of Moratuwa

Sri Lanka

February 2020

EFFICIENCY ENHANCEMENTS FOR PRACTICAL
TECHNIQUES FOR SEARCHES ON ENCRYPTED

DATA

Pitigala Arachchillage Pansilu Madhura Bhashana Pitigalaarachchi
(179342K)

Thesis submitted in partial fulfilment of the requirements for the degree
Master of Science in Computer Science

Department of Computer Science and Engineering
University of Moratuwa

Sri Lanka

February 2020

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without ac-

knowledgement any material previously submitted for degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it

does not contain any material previously published or written by another per-son ex-

cept where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works

................................

Pansilu Pitigalaarachchi Date

I certify that the declaration above by the candidate is true to the best of my knowledge

and he has carried out research for the Masters thesis under my supervision.

................................

Dr. Chandana D. Gamage Date

i

ACKNOWLEDGMENTS

I would like to offer my sincere gratitude for my supervisor, Dr Chandana Gamage for

his valuable inputs and support towards managing this research along with my personal

and professional commitments. Without his continuous help and feedback this thesis

would not have been a success. Also I would like to thank him for his guidance and

directions in progressing with this research as well as the entire master’s programme.

My sincere thanks goes to Dr. Shantha Fernando and the rest of the staff of the de-

partment of Computer Science and Engineering for the knowledge and support given

to me in this master’s programme.

I would like to express my sincere appreciation for my wife, parents and family for

their continuous support for my work, studies and specially this research. Finally I like

to thank all my friends and colleagues who have supported me in this endeavor.

ii

ABSTRACT

Information security has become one of the major focus areas for any organization.

More often, organizations see the need of outsourcing their data storages in meeting

the operational and security objectives. This gives rise to a new problem of privacy

protection of the data stored with a third party. As a solution the data is encrypted

before storing with a third party data service provider. Thus when the users need to

process the data, the safer option is to download the data into a secure user machine

and perform the operations on the decrypted data. This creates an additional overhead

of having to download a large amount of data and decrypt them even to perform a

simple calculation on the data stored in the encrypted form. Therefore the possibility

of secure data processing at the remote third party storage has become an interesting

problem to solve. In order to preserve the privacy the data cannot be allowed to be

decrypted at the third party storage. One form of the solution is to facilitate computa-

tions on the data stored in encrypted form. The users can make requests from the data

service provider and if the service provider can perform operations on the encrypted

data itself and provide the answer the above mentioned overhead can be avoided. This

brings the focus of this research on to the studying of computing on encrypted data

with specific focus on searchable encryption. As pert of the research, the current lit-

erature of computing on encrypted data is studied to identify a suitable searchable

encryption scheme for practical use. Followed by the literature study, an existing sym-

metric searchable encryption scheme is selected for a detailed study. Here a complete

implementation of the scheme is proposed and the test results are analyzed. Based on

the results, a keyword extraction mechanism is proposed to improve the performance

of the scheme. Finally significant performance improvements, 89.83% reduction in

extra space usage due to searchable encryption and 92.11% improvement in single key

word search time has been achieved. In addition to that, use cases in capital markets

are studied to understand the possibilities of practical use and challenges.

iii

TABLE OF CONTENTS

1 Introduction 1
1.1 Computing on Encrypted data . 1

1.2 Research Objectives . 2

2 Encryption, Searchable and Homomorphic Encryp-

tion 4
2.1 Data Encryption, Symmetric and Asymmetric key Encryption 4

2.1.1 Data Encryption . 4

2.1.2 Symmetric key Encryption 5

2.1.3 Asymmetric Key Encryption 6

2.1.4 Security Requirements . 6

2.2 Background of Searchable Encryption(SE) 7

2.3 Searchable Encription . 9

2.3.1 SSE - Symmetric Searchable Encryption 9

2.3.2 System models for Symmetric Searchable Encryption 10

2.3.3 PEKS - Public Key encryption with keyword search 15

2.3.4 System models for Public key Encryption with Keyword Search 15

2.3.5 Applications . 17

2.4 Homomorphic Encryption . 18

2.4.1 Preliminaries . 18

2.4.2 Homomorphic Re-Encryption 19

2.4.3 Public key schemes for Homomorphic Re-Encryption 19

iv

2.4.4 Homomorphic properties . 20

2.4.5 System models for Homomorphic Encryption 22

3 Implementation and Results 29
3.1 Introduction . 29

3.2 System model . 29

3.3 Implementation . 31

3.4 Evaluation and Results . 32

3.4.1 Data Set . 32

3.4.2 Encryption . 33

3.4.3 Search . 36

3.5 Analysis . 37

4 Keyword Separation, Proposed Scheme and Results 39
4.1 Refined Scheme . 39

4.1.1 System Model . 39

4.1.2 Keyword Separation . 40

4.2 Results . 41

4.2.1 Pre-processing . 41

4.2.2 Encryption . 42

4.2.3 Search . 42

4.3 Security Analysis . 43

4.4 Future Directions . 45

5 Example Use Cases 46
5.1 Introduction . 46

5.2 System Models for Capital Markets and Post Trade Processing 47

5.2.1 Stakeholders . 47

5.2.2 Models . 48

5.3 Operations on encrypted cloud stored data for capital market operations 50

v

5.4 Cloud based reporting for capital market operations 52

5.5 Challenges . 53

6 Conclusion 55

vi

LIST OF FIGURES

2-1 Basic protocol proposed by Song, Wagner and Perrig [24] 11

2-2 Final protocol proposed by Song, Wagner and Perrig [24] 13

2-3 System model proposed by Ding, Yang and Deng [35] 22

3-1 Implementation specifics for the scheme proposed by Song, Wagner

and Perig [24] . 30

3-2 A representation of the submodules in the implementation 32

3-3 Time taken for searchable encryption 34

3-4 Percentage size increase due to searchable encryption 34

3-5 Average plaintext word length . 35

3-6 Average search time vs number of keywords in file 36

3-7 Variation of average English word length over the years as presented

by Bochkarev, Shevlyakova and Solovyev [42] 37

4-1 Percentage reduction in number of keywords due to pre-processing . . 41

4-2 A comparison of search time under two approaches 43

5-1 System Model I for encrypted clouds 48

5-2 System Model II for encrypted clouds 49

vii

LIST OF TABLES

3.1 Distribution of plaintext file sizes . 33

4.1 Refined scheme with keyword separation 39

4.2 Probability of a collision in 𝐿𝑖 . 44

viii

Chapter 1

Introduction

1.1 Computing on Encrypted data

With the growing trend of providing many of the IT services through cloud based

computing technology, it is necessary to re-look at the traditional model of providing

information security. This need arises as storing of user data and user computations

will now take place in remote servers which are not under the full control of owners of

data. Therefore information security and secure processing of data are major require-

ments in current context. Computing on encrypted data is a computational challenge.

Based on the recent research it is evident that this is a possibility and there is much

to explore in this topic. This research is an effort to add more clarity for the area of

computing on encrypted data.

With the growing needs of information management, many organizations face the chal-

lenge of effectively storing their data in a confidential manner. Some large organiza-

tions maintain their own internal data storages and their data is managed internally and

are not exposed to external parties. But due to global expansions in organizations, high

initial capital requirements of in-house storages, globally distributed user base and

high maintenance expenditures, many organizations outsource their data storages in to

commercial data service providers. With the recent boost in cloud computing, cloud

storages have an increasing demand. Being able to access the data in the cloud from

anywhere, data processing platforms and services provided by cloud service providers

and low expenditure have made the cloud storages more popular.

1

When the data is stored with a third party, data is stored in encrypted form. Even

though the confidentiality is ensured by proper encryption, it does not solve all under-

lying problems associated with external data storages such as cloud. One such problem

is secure data extraction from the cloud. When the data is encrypted and stored at a

cloud service provider, the users have a need of extracting only the required data for

processing. The straightforward option is requesting the full data set from the storage

and downloading in to a secure local machine where the data can be decrypted. Then

the user is able to query and filter out the data under interest. The two major problems

associated with this is having to download a large amount of data and having to de-

crypt them prior to the start of data processing. When a data requester requests for a

specific set of data, the data service provider faces the challenge of performing search

operations on encrypted data to facilitate the specific query from the user. Therefore

performing search operations on data in encrypted form is one of the biggest challenges

faced by the industry. The second requirement is to securely process the extracted data

at the cloud it self to facilitate data processing requirements of users.

1.2 Research Objectives

In this context, one major challenge of computing on encrypted data is selecting suit-

able cryptographic protocols for encryption. These encryption algorithms must be se-

lected in a way that efficient search operations and secure computations on encrypted

data can be facilitated. Therefore there is a need for secure schemes that facilitate

search operations on the data in encrypted form and computing on search results. Also

it is important to evaluate possible implementations to identify the suitability of such

schemes for practical use. Therefore this research aims to explore the domain of com-

puting on encrypted data to achieve the following research objectives.

∙ Understanding the current topics of searching and processing on encrypted data.

∙ Studying and proposing an efficient implementation of a selected secure com-

puting scheme.

2

∙ Studying the practical usability and proposing suitable efficiency enhancements.

∙ Identifying and studying practical industrial applications of the selected scheme.

3

Chapter 2

Encryption, Searchable and Homomorphic Encryption

Under this section, the related work and the background information pertaining to

computing on encrypted data are discussed in detail.

2.1 Data Encryption, Symmetric and Asymmetric key

Encryption

2.1.1 Data Encryption

Confidentiality is one of the key security objectives in any application scenario. When

data is stored with a commercial data service provider, the confidentiality is ensured

by encryption. In encryption the sensitive data is encoded in a way that only the autho-

rized parties can access the data if they possess the secret key. With the advancements

of modern encryption over the past century two main branches, symmetric key and

asymmetric key encryption have been evolved to be used in existing commercial ap-

plications. Currently, based on the application various cryptographic protocols are

being employed in commercial environments.

Symmetric key encryption is one of the major branches of cryptography. This is

a class of operations where a single key is used for both encryption and decryption

of data. i.e. The plain text is encrypted using a secret key and the same is used to

decrypt the cipher text back in to plain text. In order to maintain the secrecy the secret

4

key must be kept a secret by parties involved with encryption and decryption. The

other challenge is to generate a secret key and share it among the sender and receiver

of the encrypted communication. With the ever growing security requirements in se-

cret communication, new variants of symmetric key encryption have been proposed

by scientists to suit the needs of the industry. Eg: The replacement of DES by AES-

Advanced Encryption Scheme [1].

Asymmetric Key Encryption differs from the symmetric key encryption as there are

two keys involved with the operation. This operation requires a public and a private

key pair. Public key is known by everyone and the private key is a secret only known

by the message receiving end. The sender has to encrypt the plain text with the public

key and receiver can decrypt the cipher text using the secret key. This scheme does not

require any pre agreement between the sending and receiving parties. This facilitates

many to one secret communications as the public key can be used by anyone to encrypt

a message and sent to the receiver where only this particular receiver is aware of the

secret key in the public-private key pair.

2.1.2 Symmetric key Encryption

Symmetric key encryption has been widely used and it is being studied in different

operating modes. The symmetric key encryption uses the same key for both encryption

and decryption. As per the literature [2] the process is represented as follows.

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 : 𝑐 = 𝐸(𝑘,𝑚) (2.1)

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 : 𝑚 = 𝐷(𝑘, 𝑐) (2.2)

where ‘m’ and ‘c’ refers to plain text and cipher text respectively.

The Encryption and Decryption algorithms E and D are publicly known and the secret

key‘k’ needs to be available. The major challenge in symmetric key cryptography

is to agree upon a common secret key by the two parties who need to have a secret

communication. To achieve key exchange, various methods of public key cryptography

5

have been studied. More recently novel methods such as quantum key distribution [3]

has also been studied.

2.1.3 Asymmetric Key Encryption

In 1976 Diffie and Hellman [4] proposed the concepts of asymmetric key cryptog-

raphy commonly known as Public key cryptography [5]. This scheme proposed an

unconventional method for key distribution, one of the fundamentals in modern cryp-

tography which is now commonly known as Diffie- Hellman Key Exchange. Later on

some significant contributions have been made to the field of public key cryptography.

In 1978 Rivest et al. [6] proposed a public key scheme, which is widely known as

RSA algorithm and in 1985 El Gamal scheme [7] was proposed based on the discrete

logarithm problem, which is another form of the Diffie-Hellman problem.

2.1.4 Security Requirements

The popular problem in encryption is that one party has to secretly communicate with

another party without letting an adversary extract significant information about the

secret message. Encryption has been proposed as a solution for this fundamental prob-

lem. Therefore the security of encryption is widely discussed [8]–[11]. The security

of a scheme depends on the algorithm as well as the usage of the scheme. Security of

a symmetric key encryption is affected by how the secret key is generated, the length

of the secret key, lifetime of a secret key and key distribution etc. When it comes

to asymmetric key encryption, the security varies based on the size of the parameters

in the scheme, key generation and management of public and private keys etc. Ad-

ditionally the security behind the mathematical assumptions and various steps in the

cryptographic algorithms are analyzed in detail under the literature on security require-

ments.

6

2.2 Background of Searchable Encryption(SE)

Searchable encryption [12]–[15] allows the users to encrypt secret data and store in a

remote cloud server while allowing them to perform search operations on encrypted

data. In order to facilitate this, special variants of encryption have to be carried out

before the data is stored. Currently searchable encryption is being evolved under

two main branches [16] known as SSE-Symmetric Searchable Encryption and PKES-

Public Key Encryption With Keyword Search. In parallel to these, various forms of

secure indexing [17] methods are also being developed to perform searches on en-

crypted data.

Searchable Symmetric Encryption [16], [18] is a form of Symmetric Key encryp-

tion which allows a user to encrypt data using a secret key while providing trapdoors

to perform search operations on symmetrically encrypted data. Therefore searchable

symmetric key encryption requires new variants of symmetric key encryption. The

trapdoors are being used by the data service provider to search on the encrypted data

when a data query is received with a specific keyword from a data requester. Handing

variable size keywords and time complexity of the search operations are among the

major challenges in this scheme.

Public key encryption facilitates anyone having the public key to encrypt the secret

data using the public key. This scheme [19], [20] facilitates the server to use a special

key provided by the data requester to perform a search operation on the encrypted

data. However the server is unable to do so without the special key provided by the

data requesters. The fundamental requirement of this special key provided by the data

requester is that it must not be the secret key used for the public key encryption, but is

derived by the data requester considering the keyword and the scheme specifics.

As widely discussed by Boneh et al [21] in 2004, the searchable encryption has

also been studied under two main storage settings, private and public databases.

Private databases: A single user who is constrained by storage capacity may wish

7

to encrypt the secret data and store in a remote server. When required the secret key is

used to derive retrieval parameters to be sent to the remote server. Work on this branch

is discussed under searchable symmetric encryption.

Public databases: A remote public database holds data and multiple users may wish to

search and retrieve some data without revealing what has been retrieved to the database.

This is widely studied under private information retrieval (PIR).

As per the literature PIR has been first introduced in the published work of Chor et

al [22]. Two main objectives of PIR are to facilitate the remote access of information

stored in organized databases and facilitating private database access. In private access

the users are able to retrieve information from the remote server without revealing the

identity of the items being queried. One major problem of such a scheme is that the

users need to know the physical address of the item being retrieved. One of the so-

lutions is having a database which provides information from the applicable physical

address corresponding to a keyword provided by the user. Similar studies [23] have

been carried out to enhance the PIR afterwards. As analyzed in literature [24], [25],

generally PIR demands strong information theoretic security bounds which makes it

harder to propose practical PIR schemes. That means PIR facilitates searching on

encrypted data with increased security and increased security comes with far less effi-

ciency.

However if the data is not public, but provided by multiple sources a different mecha-

nism is required to facilitate querying by the private user. Public key encryption based

systems are proposed to facilitate private key based searches on public key encrypted

data provided by many users.

Prior to the studies on private information retrieval, secure multi party computation

based approaches have been evaluated [26], [27] to achieve secret computation objec-

tives. The major objective of secure multiparty computation is to derive the value of a

8

public function with the use of private data held by several untrusted parties. As stated

in literature [24] the major problem of multiparty computation is that it requires a high

overhead.

Secure Indexes is another form of searchable encryption. Indexes are generally used

to order and organize lists. In the case of encrypted documents, secure indexes can be

used to order the documents in a searchable manner. In year 2004, Goh has formally

defined the the properties of a secure index as follows.

1. Secure index is a data structure.

2. It allows a person who queries with a ‘Trapdoor’ for a word ‘x’ to test if the

index contains ‘x’.

3. The index reveals no information about its contents without valid trapdoors.

4. Trapdoors can only be generated with a secret key.

5. It provides semantic security against an Adaptive Chosen Keyword Attack.

i.e. If a document ‘D’" contains ‘n’ words, Suppose an adversary already knows

m words and needs to gain information on the rest of the set S:‘n-m’ words,

Even if the adversary has the access to the other index document pairs, and can

adaptively obtain trapdoors for words except those in S, He can never deduce

any information about any word in the set S from D’s index.

2.3 Searchable Encription

2.3.1 SSE - Symmetric Searchable Encryption

Bennet et al [21] has been extensively studied censorship resistant publishing systems

which has different approaches of secure content sharing. In this work they have stud-

ied some practical systems and models in detail. One such systems uses the hash of

the content as the key. Another uses a distributed file sharing system which first breaks

the original file into eight blocks. For the reconstruction any four of the eight pieces

9

is sufficient. In this scheme each blocks are hashed to generate a unique identity tag

which can be used to retrieve the blocks. They have also studied more generalized ap-

proaches like splitting a file into n shares and using any k out of n shares to reconstruct

the entire document.

In year 2000 Song et al [24] has presented their studies on practical techniques for

searches on encrypted data. The general setting studied here is a scenario where a

bandwidth constrained user storing documents on an untrusted server. They claim to

have proposed an efficient secret key based method. In this method, if a user needs

to retrieve all the documents containing a particular keyword the user has to provide a

piece of information derived based on the keyword to the server.

Later Golle et al [26] has proposed an enhancement for this method by proposing a

secure conjunctive keyword search over encrypted data. They claim their method to be

provably secure and having a moderate storage cost.

2.3.2 System models for Symmetric Searchable Encryption

Introduction to the scheme

Over the time various models have been proposed and discussed in literature. The

Symmetric Searchable Encryption model proposed by Song, Wagner and Perrig [24]

is as follows. This discussion covers basic definitions applicable for the above scheme,

a basic model and an enhanced model proposed by addressing some security issues in

the basic scheme.

Definitions

Pseudorandom Generator G

The pseudorandom generator uses a stream cipher and generates a sequence of pseudo-

random bit streams 𝑆1, 𝑆2,, 𝑆𝑙 based on a secret seed value. Each 𝑆𝑖 is n-m bits long.

Pseudorandom Function F

The pseudorandom function takes a key 𝑘𝑖 as an input and, maps a n-m bit long bit

10

string in to a m bit string.

Pseudorandom Permutation

The pseudorandom permutation is a block cipher operating in the Electronic Code

Book(ECB) mode. It computes the cipher text 𝑋𝑖 as

𝑋𝑖 = 𝐸𝑘′′(𝑊𝑖) (2.3)

where 𝑘′′ and 𝑊𝑖 are the secret key and plain text respectively.

The Basic Scheme

Documents and Keywords

Any document D is considered to have a sequence of words 𝑊1,𝑊2, ...,𝑊𝑙 and the

maximum word length is considered as n bits.

Building Blocks

Figure 2-1: Basic protocol proposed by Song, Wagner and Perrig [24]

Encryption

Step1: A sequence of pseudorandom streams 𝑆1, 𝑆2, ..., 𝑆𝑙 are geenerated. Each pseu-

dorandom value is n-m bits long.

Step2: In order to encrypt the word 𝑊𝑖 in position i, 𝑇𝑖 is calculated as

𝑇𝑖 = ⟨𝑆𝑖, 𝐹𝑘𝑖(𝑆𝑖)⟩ (2.4)

11

Each 𝑇𝑖 value is n bits long.

Step3: Cipher text 𝐶𝑖 is calculated as

𝐶𝑖 = 𝑊𝑖 ⊕ 𝑇𝑖 (2.5)

The value k is secret and only known by the party performing the encryption. It is pos-

sible to select 𝑘𝑖 as 𝑘𝑖 = 𝑘 for all i or select a different k for each word in the sequence.

Therefore the pseudorandom stream 𝑇1.𝑇2, ..., 𝑇𝑖..., 𝑇𝑙 can only be generated by the

encrypting party. In order to decrypt the document the secret 𝑘𝑖 has to be known. It is

also correct to say that the scheme is secure if the Pseudorandom Function F and the

Pseudorandom Generator G are secure.

Search Operation

If the encrypting party, Data Requester wants to search for the word W, following steps

to be executed.

Step1: Data Requester has to provide the word 𝑊 and 𝑘𝑖 corresponding to to each

location i where the word W may occur.

Step2: Search party has to compute the value 𝐶𝑖 ⊕𝑊 .

Step3: Verify if 𝐶𝑖⊕𝑊 is in the form ⟨𝑠, 𝐹𝑘𝑖(𝑠)⟩ where s is the first n-m bits of 𝐶𝑖⊕𝑊 .

Issues to be addressed

In this basic scheme the Data Requester has to reveal all 𝑘𝑖 when requesting for a

search over the entire document. If not the Data Requester needs to have knowledge

on the exact locations where the word W may appear. To address above issues, a novel

scheme with new properties has been proposed by Song, Wagner and Perrig [24].

12

An Enhanced Scheme

Building Blocks

Figure 2-2: Final protocol proposed by Song, Wagner and Perrig [24]

Encryption

Step1: Pre-encrypt each word W. Let the pre-encrypted output be

𝑋𝑖 = 𝐸𝑘′′(𝑊𝑖). (2.6)

After the pre-encryption the initial words 𝑊1,𝑊2, ...,𝑊𝑙 are converted in to a new

sequence of pre-encrypted words 𝑋1, 𝑋2, ..., 𝑋𝑙.

Step2: Split the pre-encrypted word in to two parts as

𝑋𝑖 = ⟨𝐿𝑖, 𝑅𝑖⟩ (2.7)

where 𝐿𝑖 denotes the first n-m bits and 𝑅𝑖 denoted the last m bits of 𝑋𝑖.

Step3: Compute 𝑘𝑖 as

𝑘𝑖 = 𝑓𝑘′(𝐿𝑖) (2.8)

13

Step4: Compute 𝑇𝑖 value as

𝑇𝑖 = ⟨𝑆𝑖, 𝐹𝑘𝑖(𝑆𝑖)⟩ (2.9)

Step5: Ciphertext 𝐶𝑖 is calculated as

𝐶𝑖 = 𝑋𝑖 ⊕ 𝑇𝑖 (2.10)

Search Operation

If the encrypting party, Data Requester wants to search for the word W, following steps

to be executed.

Step1: Data Requester has to pre-encrypt the word W using the symmetric encryption

algorithm

𝑋 = 𝐸𝑘′′(𝑊) (2.11)

Step2: Compute

𝑘 = 𝑓𝑘′(𝐿) (2.12)

Step3: Send ⟨𝑋, 𝑘⟩ to the data service provider.

Step4: DSP computes the value of 𝐶𝑖 ⊕𝑋

Step5: Verify if 𝐶𝑖⊕𝑋 is in the form ⟨𝑠, 𝐹𝑘(𝑠)⟩ where s is the first n-m bits of 𝐶𝑖⊕𝑋 .

Controlled searching

To address the problem of having to reveal 𝑘𝑖 applicable for each position of words,

the authors have proposed a 𝑘𝑖 value derived based on the word being encrypted. Thus

the data requester does not need to know the corresponding 𝑘𝑖 applicable for every

position of the word being searched may appear.

Hidden Searches

The pre encryption of plaintext will support for hidden queries. Since the data re-

quester does not have to reveal the actual plaintext word being searched, the data ser-

vice provider is not able to learn additional information on the data being searched.

14

Also the symmetric pre encryption operates in the ECB mode. Therefore the cipher

text created by pre-encryption will not depend on the position i in the document where

the word is found, It will only be dependent on the plaintext word W.

2.3.3 PEKS - Public Key encryption with keyword search

As per literature the first method on PEKS has been proposed by Boneh et al [19].

They have extensively discussed possible use cases of a public key encryption based

keyword searching system.

Scenario1:

A sender encrypts an email with the receiver’s public key. An email gateway wants to

check if the email contains a specific keyword(Eg: the word "Urgent") and route the

email accordingly. The method proposed by Boneh et al enables the sender to provide

a key to the gateway which enables the gateway to test whether the specific word is a

keyword in the email.

Scenario2:

An email server or a fileserver stores various files publicly encrypted by various users.

Boneh et al also suggests a method for the secret key holder to query for files carrying

a specific keyword by sending the server a key to be used for the search operation.

2.3.4 System models for Public key Encryption with Keyword Search

Introduction to the scheme

The symmetric key encryption model proposed by Boneh, Crescenzo, OStrovsky and

Persiano is as follows. They have studied models to perform searches over public key

encrypted data.

Definitions

KeyGen(s)

The algrithm takes a securiy parameter s and generates a public and private key pair

15

𝐴𝑝𝑢𝑏, 𝐴𝑝𝑟𝑖𝑣

PEKS(𝐴𝑝𝑢𝑏,𝑊)

The algorithm takes the public key and a keyword to produce a searchable encryption

of W.

Trapdoor(𝐴𝑝𝑟𝑖𝑣,𝑊)

The trapdoor algorithm takes the private key and a keyword to generate a trapdoor 𝑇𝑊

for the search operation.

Text(𝐴𝑝𝑢𝑏, 𝑆, 𝑇𝑊)

Test algorithm tests if W = W’ for a searchable encryption S and a trapdoor 𝑇𝑤 where

S and 𝑇𝑤 are defined as follows.

𝑆 = 𝑃𝐸𝐾𝑆(𝐴𝑝𝑢𝑏,𝑊
′) (2.13)

𝑇𝑊 = 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝐴𝑝𝑟𝑖𝑣,𝑊) (2.14)

Scheme and Operation

Encryption

The scheme is proposed to perform searches over public key encrypted messages. The

key gen algorithm generates the public and private key pair. The party encrypting the

message uses the public key to encrypt the message and the keywords accordingly.

When E denotes the encryption, a typical message will be in the form of

[𝐸𝐴𝑝𝑢𝑏
[𝑚𝑠𝑔], 𝑃𝐸𝐾𝑆(𝐴𝑝𝑢𝑏,𝑊1), ..., 𝑃𝐸𝐾𝑆(𝐴𝑝𝑢𝑏,𝑊𝑘)]

Search

The party requesting for the search generates a trapdoor using the private key and

that is used by the searching party to scan the messages for specific keywords. The

data requester has to generate separate trapdoors for each keyword being requested to

16

be searched.

2.3.5 Applications

Applications of SSS

One of the major applications proposed for the Searchable Symmetric Encryption is

to be used by commercial data service providers. This allows data service providers

to provide services for different individual users. Each storage scarce user is able to

encrypt their files using their own key and outsource the storage for a secure data ser-

vice provider. The search operation can be instructed by the user who possesses the

symmetric key. Therefore this type of an encryption only facilitates search operation

for the party holding the secret key.

Applications of PEKS

One of the major applications of a publicly encrypted scheme is that the data may

originate from any party holding the public key. Therefore this presents promising ap-

plications on data directed towards a single entity, but originated by different sources.

One such use is an email server. The recipient may receive emails encrypted by the

public key and the server may entertain searches based on the trapdoors derived based

on the secret key. It can also be applied for any gateway processing encrypted mes-

sages originated by multiple sources. An email gateway may sort messages coming

towards a specific individual based on specific keywords. The intended recipient hold-

ing the secret key may provide the gateway with trapdoors to perform searches without

compromising the security.

17

2.4 Homomorphic Encryption

2.4.1 Preliminaries

Homomorphic encryption is a specific form of encryption which allows operations to

be carried on the cipher text. If such a system is employed the two main problems

discussed above can be solved. i.e. data processing can be carried out at the remote

storage itself.

The homomorphic Encryption can be formally represented as follows. Let m𝑎, m𝑏

be plain text messages and c𝑎, c𝑏 be the corresponding cipher texts. Suppose some

encryption scheme(Enc) encrypts the plain text messages as follows.

𝐸𝑛𝑐⟨𝑚𝑎,𝑚𝑏⟩ ⇒ ⟨𝑐𝑎, 𝑐𝑏⟩ (2.15)

The scheme is said to be homomorphic over some operation ⊗ if there exist an opera-

tion ⊙ s.t. ,

𝐸𝑛𝑐[𝑚𝑎 ⊗𝑚𝑏] = ⟨𝑐𝑎 ⊙ 𝑐𝑏⟩ (2.16)

When homomorphic encryption is employed the data service provider can perform op-

erations on the cipher text without decrypting the data. This preserves the confidential-

ity of data. Also this approach does not require a large amount of data to be decrypted

after downloading in to a secure client machine. Once the data service provider sends

the processed output in the encrypted from, the user can simply decrypt the output to

obtain the expected result.

The elegance of this scheme is that the decrypted answer matches the results when

the same operation is performed on plain text. Rivest and Adleman laid the conceptual

foundations [28] for privacy homomorphisms in 1978 which drew a significant atten-

tion towards the concepts of homomorphic encryption. Well known asymmetric key

cryptographic algorithms such as RSA and ElGamal exhibits homomorphic properties

for certain mathematical operations. The Fully-Homomorphic encryption theoretically

allows any function to be evaluated on encrypted data. For years this was an open

18

problem until in 2009 Gentry’s scheme [29], [30] laid the theoretical foundations for

a novel approach on fully homomorphic encryption which allows the computations of

arbitrary functions on encrypted data. However this method is not practically achiev-

able due to the rapid increase of cipher text size and computation time with the security

level. Later there have been contributions [31]–[34] for the domain of fully homomor-

phic encryption, some based on Gentry’s scheme but these attempts have not brought

the fully homomorphic encryption in to a truly practical level.

2.4.2 Homomorphic Re-Encryption

Even though the homomorphic encryption is capable of supporting computations on

encrypted data it is a single user system, which has been identified as one of the ma-

jor limitations of homomorphic encryption. i.e. only the holder of the secret key can

access the results of computations on encrypted data. This causes a lot of practical

problems when the data is collected and stored in the encrypted form without targeting

a specific data user. Recently Ding et al. [35] proposed a novel scheme which can

extend the single user system in to a multi user system. Suppose there is a data ser-

vice provider (DSP) who stores the encrypted data and an access control server (ACS)

facilitating data retrieval for data requesters (DR). Data is encrypted with a public key

applicable for both the DSP and ACS and stored with the DSP. Once a data request is

received, DSP processes the encrypted data in a way only the ACS can recover the re-

sult. At ACS the result is processed again to deliver the intended output for authorized

data requesters. This way the ACS and DSP collaborates to re-encrypt the encrypted

data stored at DSP to facilitate distinct data requesters (multiple users).

2.4.3 Public key schemes for Homomorphic Re-Encryption

The security of a given public key scheme has been a contributing factor for the pop-

ularity of the public crypto systems proposed after the Diffie-Hellman scheme. As

discussed in the literature [36], it has been identified that the asymmetric key cryptog-

raphy has employed two major classes of trapdoor techniques. The first is based on the

RSA problem and the second is based on Diffie-Hellman problem. As pointed out by

19

Paillier [36] in 1999, a third class of a trapdoor technique has been evolved based on the

high degree residuosity classes and then Paillier proposed a new trapdoor mechanism

based on composite residuosity classes. Later Cramer and Shoup [37] proposed an

enhanced public key system based on the decision composite residuosity assumption

of Paillier’s cryptosystem and another based on the quadratic residuosity assumption.

Bressen et al. [38] proposed an improved version, inspired by the schemes proposed

by Paillier and Cramer & Shoup.

Bressen et al. discusses an interesting scenario where the head of a group may want

to be able to read any message sent to the members of the group. In order to solve

this problem they propose a novel public-key crypto scheme, which allows for a dou-

ble decryption mechanism based either on the factorization of the modulus, or on the

knowledge of a discrete logarithm. In the second mechanism the knowledge of a dis-

crete logarithm helps to decrypt cipher texts which have been encrypted with a specific

key only. In contrast, the factorization of the modulus helps to decrypt any cipher text

whatever the key is. In the upcoming sections we discuss the public key crypto scheme

proposed by Bressen et al. in detail.

2.4.4 Homomorphic properties

When it comes to the homomorphic properties, various public crypto schemes ex-

hibit hmomorphism over different mathematical operations. Among many discussed

in literature, apart from RSA, ElGamal and Paillier, Goldwasser and Micali [39] and

Naccache and Stern [40] can also be identified as some of the well-known schemes

having homomorphic properties.

Let m1 and m2 be plain text messages.

RSA and ElGamal Schemes

These schemes are homomorphic over multiplication. The product of two cipher texts

provides the encrypted answer for the product of two plain text messages.

20

i.e.

𝐸𝑛𝑐[𝑚1.𝑚2] = 𝐸𝑛𝑐[𝑚1] .𝐸𝑛𝑐[𝑚2] (2.17)

Goldwasser and Micali scheme

This scheme is additively homomorphic over binary numbers.

i.e. for each m𝑖 ∈ {0,1}

𝐸𝑛𝑐[𝑚1 + 𝑚2] = 𝐸𝑛𝑐[𝑚1] .𝐸𝑛𝑐[𝑚2] (2.18)

Paillier Cryptosystem

This schemes is an additively homomorphic scheme.

Let m be some plain text and k be an integer,Then

𝐸𝑛𝑐[𝑚1 + 𝑚2] = 𝐸𝑛𝑐[𝑚1] .𝐸𝑛𝑐[𝑚2] (2.19)

Also this scheme has some additional homomorphic properties such as homomorphism

over scalar multiplication.

For a positive integer n,

(𝐸𝑛𝑐[𝑚])𝑘(𝑚𝑜𝑑 𝑛2) = 𝐸𝑛𝑐[𝑘𝑚] (𝑚𝑜𝑑 𝑛) (2.20)

21

2.4.5 System models for Homomorphic Encryption

Data Service Providers and Access Control Servers

In this discussion we would like to focus on two of the main stakeholders belonging

to this research topic. Data Service Provider (DSP) is an entity capable of storing en-

crypted data and performing operations on the encrypted data. Any user can encrypt

its own data and store them at the DSP. Conceptually an Access Control Server (ACS)

controls the access to the data processing results performed by DSP. Once a Data Re-

quester (DR) makes a processing request, the processing result is not directly provided

to the DR by a DSP. Instead the requests are provided to DR through the ACS. This

allows the DSP to take control of the data processing while ACS handles the access

control for the requests made by multiple eligible data requesters.

Introduction to the scheme

A typical system may consist of a single Data Service Provider (DSP) and a single

Access Control Server (ACS). The system proposed by Ding, Yang and Deng [35]

supports a single DSP and multiple ACSs. The system modes proposed by them is as

follows.

Figure 2-3: System model proposed by Ding, Yang and Deng [35]

The nature and responsibilities of each of the stakeholders has been formally defined

as follows.

22

1. Data Service Provider (DSP) - Served by cloud service provider, which stores

user data and provides some computation service.

2. Access Control Server (ACS) - In-charge of secure data computation with data

access control for its users. There could be multiple ACSs that are operated by

different organizations. Here a user can freely choose an ACS it trusts for service

consumption.

3. Data Requesters (DR) - Consumes the data stored with the DSP. Since the data

stored are in encrypted form, the data processing results obtained through ACSs

are also in the encrypted form.

4. Data Providers (DP) - Mainly collects data and encrypts data and stores them

with the DSP.

Protocol

The protocol used by this system is what has been proposed by Bresson et al. Given

two large primes 𝑝 and 𝑞, let

𝑛 = 𝑝 * 𝑞 (2.21)

When G is the cyclic group of quadratic residues modulo n2. Let ℎ and 𝑔 be two ele-

ments of maximal order in G. If ℎ is computed as 𝑔𝑥 mod 𝑛2 where 𝑥 ∈ 𝑛𝑅 [1,𝜆(n2)] ,

then x is coprime with ord(G) with high probability, and thus h is of maximal order.

Here 𝜆(*) is the Euler function.

Key Generation

The public parameters are n, g and h is derived by randomly choosing a secret value x

∈ [1, ord(G)] as follows.

ℎ = 𝑔𝑥 𝑚𝑜𝑑 𝑛2 (2.22)

Encryption

Given a message m ∈ Z𝑛, random number r is chosen in Z*
𝑛. The encryption is done

23

as follows.

(𝑇, 𝑇 ′) = [ℎ𝑟(1 + 𝑚𝑛), 𝑔𝑟] (𝑚𝑜𝑑 𝑛2) (2.23)

Decryption

When the secret, x is known m can be obtained as follows.

𝑚 = 𝐿(𝑇/(𝑇 ′)𝑥 𝑚𝑜𝑑 𝑛2) (2.24)

𝐿(𝑢) = (𝑢− 1)/𝑛 (2.25)

Working Examples of the existing concepts

Key Generation for small primes

Let 𝑝, 𝑞, 𝑝′, 𝑞′ be primes which satisfy the following properties.

𝑝 = 2𝑝′ + 1 (2.26)

𝑞 = 2𝑞′ + 1 (2.27)

i.e. 𝑝 and 𝑞 are safe primes. Let 𝑝′ = 2, 𝑞′ = 3 and 𝑝 = 5, 𝑞 = 7. Hence 𝑛 = 𝑝*𝑞 = 35

and 𝑛2 = 1225. Select the generator 𝑔 as 891. The DSP and ACS respectively generate

key pairs.

𝑠𝑘𝐷𝑆𝑃 = 𝑎, 𝑝𝑘𝐷𝑆𝑃 = 𝑔𝑎

Let 𝑠𝑘𝐷𝑆𝑃 = 5, Hence 𝑝𝑘𝐷𝑆𝑃 = 8915 mod 1225 = 151

𝑠𝑘𝐴𝐶𝑆 = b, 𝑝𝑘𝐴𝐶𝑆 = g𝑏

Let 𝑠𝑘𝐴𝐶𝑆 = 19, Hence 𝑝𝑘𝐴𝐶𝑆 = 89119 mod 1225 = 611

Then the Diffie-Hellman key

𝑃𝐾 = (𝑝𝑘𝐷𝑆𝑃)𝑠𝑘𝐴𝐶𝑆 = (𝑝𝑘𝐴𝐶𝑆)𝑠𝑘𝐷𝑆𝑃 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑛2 (2.28)

Therefore 𝑃𝐾 = 6115 mod 1225 = 1026

Public system parameters: 𝑔, 𝑛, 𝑃𝐾 = 891, 35, 1026

Encryption with the public key of DSP and ACS

24

In order to facilitate a multi user system the plain text is encrypted using the public key

of the two servers, PK. First a random number r ∈ [1, n/4] is selected and the plain text

m𝑖 is encrypted as follows. For the exse of explanation, the cipher text of m𝑖 is denoted

as [m𝑖].

And,

[𝑚𝑖] = [𝑚𝑖]𝑃𝐾 = (𝑇𝑖, 𝑇
′
𝑖) = [(1 + 𝑚𝑖 * 𝑛) * 𝑃𝐾𝑟, 𝑔𝑟] (𝑚𝑜𝑑 𝑛2) (2.29)

Let r = 7, m𝑖 = 22 and Then,

T𝑖 = (1+22*35)*10267 mod 1225 = 746

𝑇 ′
𝑖 = 8917 mod 1225 = 1206

[𝑚𝑖]𝑃𝐾 = [746, 1206]. The m𝑖 encrypted with PK can only be decrypted under the

cooperation of DSP and ACS.

Decryption Option 1 : Two level decryption with a fully trusted ACS

Partial Decryption at DSP : with SK𝐷𝑆𝑃

Once the cipher text is received by DSP, it is transferred in to another cipher text that

can be decrypted by ACS as follows.

[𝑚𝑖]𝑝𝑘𝐴𝐶𝑆
= (𝑇

(1)
𝑖 , 𝑇

′(1)
𝑖) = (𝑇𝑖, (𝑇

′

𝑖)
𝑠𝑘𝐷𝑆𝑃) (2.30)

Therefore [𝑚𝑖]𝑝𝑘𝐴𝐶𝑆
= [746, 851]

Partial Decryption at ACS : with SK𝐴𝐶𝑆

T𝑖
′(2) = (T𝑖

′(1))𝑠𝑘𝐴𝐶𝑆 = 851,

[𝑚𝑖] = 𝐿(𝑇
(1)
𝑖 /𝑇

′(2)
𝑖 𝑚𝑜𝑑 𝑛2) (2.31)

𝐿(𝑢) = (𝑢− 1)/𝑛 (2.32)

25

Therefore (T𝑖
′(2))−1 (mod 1225) = 226. u = 746*226 mod 1225 = 771. Hence m𝑖 =

(771-1) /35 = 22.

Decryption Option 2 : Somewhat Re-Encryption for a single user

Different from the scheme above this is a new method which aims to transfer the en-

crypted data to the cipher text under the public key of an authorized requester. Let the

private and public key pair of an authorized data requester (DR𝑗) be as follows,

(𝑠𝑘𝑗, 𝑝𝑘𝑗) = (𝑘𝑗, 𝑔
𝑘𝑗 𝑚𝑜𝑑 𝑛2) (2.33)

Based on the above, Let (𝑠𝑘𝑗, 𝑝𝑘𝑗) = [10,751].

First Phase of Re-Encryption by DSP This step ensures that ACS can not decrypt

the cipher text to obtain the plain text, message.

Step1: Select a public computation identifier CID = 117. Compute ℎ1 as,

ℎ1 = 𝐻((𝑝𝑘𝑗)𝑠𝑘
𝐷𝑆𝑃 ||𝐶𝐼𝐷) (2.34)

Then h1 = 125 (mod 1225) (Using CRC32)

Step2: Cipher text is computed as,

[𝑇 , 𝑇
′
] = [𝑇𝑖, (𝑇

′𝑠𝑘𝐷𝑆𝑃
𝑖) * 𝑔ℎ1] (2.35)

[𝑇 , 𝑇
′
] = [746, 51].

Second Phase of Re-Encryption by ACS

Step1: h2 is computed as

ℎ2 = 𝐻((𝑝𝑘𝑗)
𝑠𝑘𝐴𝐶𝑆 ||𝐶𝐼𝐷) (2.36)

26

h2 = 767 (mod 1225) (Using CRC32)

Step2: Cipher text is computed as

[𝑇 , 𝑇
′
] = [𝑇 , (𝑇

′
)𝑠𝑘𝐴𝐶𝑆 * 𝑔ℎ2] (2.37)

[T̄, T̄′] = [746, 281].

Decryption on Re-Encrypted Data by DR

Step1: Based on the CID DR𝑗 computes the hash values as follows.

ℎ
′

1 = 𝐻((𝑝𝑘𝐷𝑆𝑃)𝑠𝑘𝑗||𝐶𝐼𝐷) (2.38)

h1
′ = 125, Hence equal to h1

ℎ2
′ = 𝐻((𝑝𝑘𝐴𝐶𝑆)𝑠𝑘𝑗||𝐶𝐼𝐷) (2.39)

h2
′ = 767, Hence equal to h2

Step2: Compute plain text as,

𝑚𝑖 = 𝐿(𝑇 * 𝑝𝑘ℎ
′
1

𝐴𝐶𝑆 * 𝑔ℎ
′
2/𝑇

′
𝑚𝑜𝑑 𝑛2) (2.40)

(𝑇 ′
)−1(𝑚𝑜𝑑 𝑛2) = 946. 𝑚𝑖 = 𝐿(1051*946 𝑚𝑜𝑑 1225) = (771-1) /35 = 22.

Working examples on Homomorphic Properties

As explained in the above sections, first the key generation algorithm needs to be run

to negotiate respective Diffie- Hellman keys. In this section we assume the presence

of a single ACS and a DSP. Following examples have been prepared based on the key

generation explained above.

1:Addition

This scheme is additively homomorphic. Therefore the product of two cipher text will

27

provide the encrypted result of the product of two plain text messages.

[
𝑁∑︁
𝑖=1

𝑚𝑖] =
𝑁∏︁
𝑖=1

[𝑚𝑖] (2.41)

However there is one condition to be satisfied. i.e. in order to obtain the sum of N

pieces of data, the condition m𝑖 < n/N needs to be satisfied by the plain text messages.

Let m1 = 4 and m2 = 5 , be two plain text messages. Then, [m1]𝑃𝐾 = [1166, 1206] and

[m2]𝑃𝐾 = [326,1206].

Enc[m1 + m2] = [m1]𝑃𝐾* [m2]𝑃𝐾 = ([1166, 1206])*([326, 1206]) = [366,361].

Therefore the answer in the form of cipher text = [366,361].

Partial Decryption at DSP : [366,361𝑆𝐾𝐷𝑆𝑃] = [366,226]

Partial Decryption at ACS : [226𝑆𝐾𝐷𝑆𝑃]−1 (mod1225) = 851.

Hence [m1 + m2] = (366*851 -1)/35(mod1225) = 9 = [4 + 5].

2:Subtraction

To obtain the subtraction result, first the [-m𝑖] needs to be computed at DSP as

[−𝑚𝑖] = [𝑚𝑖]
𝑛−1 (2.42)

The subsequent operation is similar to addition.

Let m1 = 9 and m2 = 5 , be two plain text messages. Then, [m1]𝑃𝐾 = [641, 1206] and

[m2]𝑃𝐾 = [326,1206]. And [-m2] = (326)35−1 (mod 1225) = 151. Therefore the answer

in the form of cipher text = [16,361].

Partial Decryption at DSP : [16,361𝑆𝐾𝐷𝑆𝑃] = [16,226].

Partial Decryption at ACS : [226𝑆𝐾𝐷𝑆𝑃]−1 (mod1225) = 851. Hence [m1 + m2] =

(16*851 -1)/35(mod1225) = 4 = [9 - 5].

28

Chapter 3

Implementation and Results

3.1 Introduction

Considering the literature, the topic of symetric searchable encryption has been se-

lected as the main topic of study. Therefore the symmetric searchable encryption

scheme proposed by Song, Wagner and Perrig [24] was selected for implementation

and performance study to identify the suitability for practical applications. This section

covers the implementation specifics of the symmetric searchable encryption scheme

discussed in section 2.3.2. It covers implementation specifics of the scheme, system

model for a practical implementation, test results and a detailed analysis of the results.

3.2 System model

This section elaborates different building blocks and attributes of the proposed imple-

mentation.

Word Size

The word size determines the size of an encrypted keyword. For the implementation

depicted in figure 3-1, a fixed word length of 128 Bits has been used and padding has

been used when the length of the plaintext word 𝑊𝑖 is less than 16 Bytes. To facilitate

decryption, the last Byte of the padded word has been used to contain the length of the

padding. Suppose a plaintext word "conspiracy" needs to be encrypted and the word is

29

padded with ‘0’ to bring the plaintext word length to the word size of the scheme. The

padded word is represented as ‘conspiracy000005’. For simplicity, it is assumed that

the scheme is used with plaintext words with length < 16 bytes.

Figure 3-1: Implementation specifics for the scheme proposed by Song, Wagner and

Perig [24]

Pseudorandom Permutation

A pseudorandom permutation is used to convert a plaintext word in to a pseudoran-

dom Bit stream of 128 Bits. Advanced encryption scheme (AES) with a 192 Bit key

size was used as the pseudorandom permutation. A padded plaintext keyword is AES

30

encrypted as part of the searchable encryotion. Due to this, the real plaintext keyword

is hidden from the entire operation.

Pseudorandom Function

As depicted in Figure 3-1, this scheme requires two pseudorandom functions and AES

was selected as the candidate for both, but with two different key lengths.

Pseudorandom Generator

ChaCha20 [41] scheme was used as a pseudorandom generator. This generates an out-

put string of 1024 Bits and can be used to encrypt multiple plaintext words.

Operation

Figure 3-1 contains the block diagram of implementation. The three secret keys 𝑘𝑠, 𝑘′

and 𝑘′′ are of lengths 128, 192 and 192 bits respectively. A 64 Bit string is extracted

from the output of ChaCha20 for the purpose of searchable encryption of a given plain-

text word. During encryption, 𝐿𝑖 is padded and encrypted with 𝑘′ to generate 𝑘𝑖 having

a length of 128 Bits. Since 𝑆𝑖 is with 64 Bits, it is padded and encrypted with key 𝑘𝑖

to generate an output of 128 Bits and the first 64 bits are taken as 𝐹𝑘𝑖(𝑆𝑖). Finally as

shown under equation 2.5, the ciphertext 𝐶𝑖 of 128 bits is computed.

3.3 Implementation

An implementation with above specifics was done using ‘C’ language and the final

module consisted of the following sub modules as depicted under figure 3-2. The local

site component contains separate sub modules for encryption, decryption and search

requests. Apart from that there is a septate sub module to manage the local plaintext

file storage. The remote site module contains sub modules for file handling, searching

and ciphertext storage.

The encryption module encrypts plaintext files and places the ciphertext files at the

remote file handler. Remote file handler directs the ciphertext files in to the ciphertxt

31

storage sub module. When a user initiates a search query, the search requesting sub

module at local site prepares the necessary queries based on the cryptographic keys.

When the search query is received by the searching sub module at remote site, search

operations are performed across the ciphertext file storage. Files containing the desired

keywords are extracted by the file handler at the remote site and they are directed to the

decryption sub module at the local site. Finally the decryption sub module decrypts

the files and places at the local storage for the consumption of the user.

Figure 3-2: A representation of the submodules in the implementation

3.4 Evaluation and Results

3.4.1 Data Set

It was decided to choose one language and carry out the evaluations. Therefore English

was selected as the preferred language for the evaluations and all tests were carried out

on real English text files. It was observed that most real life text files are in the range

few KBs to few MBs. For testing purposes, 159 text files were used and they were

32

in the range of 75 KB to 8 MB. The total size of the data was 99.425 MB. Table 3.1

contains the distribution of file sizes. The tests were carried out on an Intel Core i5

2.3GHz CPU with 8 GB memory.

Range No of Sum(File Size)

Files in MBs

0-99 KB 26 2.29

100-199 KB 47 5.99

200-299 KB 9 2.08

300-399 KB 11 3.74

400-499 KB 9 3.89

500-599 KB 12 6.43

600-699 KB 2 1.26

700-799 KB 1 0.76

800-899 KB 3 2.43

900-1023 KB 3 2.28

1-1.99 MB 28 40.79

2-2.99 MB 5 11.63

3-3.99 MB 1 3.29

4-4.99 MB 1 4.13

7-7.99 MB 1 7.91

Table 3.1: Distribution of plaintext file sizes

3.4.2 Encryption

Files were sequentially encrypted and uploaded to the remote site component. Multi-

ple rounds of encryption has been carried out and the average time was recorded. The

different times taken for the encryption of each file is available in figure 3-3. The total

average time taken to encrypt the file set was 74.192 s.

33

Figure 3-3: Time taken for searchable encryption

Figure 3-4: Percentage size increase due to searchable encryption

As per the results total encrypted file size equaled 259.59 MB. Since the encryp-

34

tion increased the file size, the percentage size increase due to encryption was also

measured and recorded. Figure 3-4 shows a graph of percentage size increase due to

encryption against the size of each plaintext file. As per the implementation results a

160.49% increase in the file database size due to symmetric searchable encryption is

observed. Such an increase in the file size will consume additional storage for large

file sets. Therefore it was evident that the size increase due to encryption needs to be

controlled if such a scheme is to be employed in an industrial application.

Figure 3-5: Average plaintext word length

The scheme treats each word as a keyword and encrypts each plaintext word sepa-

rately. The combination of separately encrypted plaintext words produces the cipher-

text file. Actual and real life files contain different characters along with actual words.

This results in a lot of unnecessary keywords captured for searchable encryption under

the generic scheme. Also the plaintext words of the files used for the evaluation are of

different lengths. Please refer the figure containing the distribution of average plaintext

word length per file.

Due to the initial block encryption, padding is inherent to the scheme. Therefore,

the possible option is to attempt on reducing the number of keywords to achieve a

35

lower storage consumption by the ciphertext files.

3.4.3 Search

Figure 3-6: Average search time vs number of keywords in file

Followed by encryption multiple search operations were performed on different key-

words and the average search time has been recorded. Total average time taken for

a keyword search was 2.739 ms. Figure 3-6 shows how the average time taken for a

single keyword search varies against the number of keywords in each file.

36

3.5 Analysis

Since the encryption is not a frequent activity, the 74.192 seconds taken for 99.425

MB is acceptable. However, for a database of 100 GB it can be expected to take 21.22

hours. In an industrial stetting, the time has to be reduced by introducing higher com-

puting power.

Figure 3-7: Variation of average English word length over the years as presented by

Bochkarev, Shevlyakova and Solovyev [42]

Due to the nature of the scheme, it is required for the individual words to be en-

crypted separately for them to be searched later. Since each keyword is block en-

crypted as per the initial steps of the searchable encryption, padding is introduced to

bring each key word to the block encryption length. This introduces an additional

overhead. Studies have been carried out to analyze the English language and its prop-

37

erties such as word lengths, total number of words in the language, use of grammar

words etc. As discussed by Bochkarev et al [42], the average English word length

varies based on different time periods. For instance, it has been between 4.5 to 5 let-

ters per word in the past two decades. Figure 3-7 contains how the average Eglish

word length has varied over the time as presented by Bochkarev et al. The items in

the legend, 𝑐𝑜𝑚𝑚𝑜𝑛, 𝑓𝑖𝑐𝑡𝑖𝑜𝑛,𝐵𝑟𝐸,𝐴𝑚𝐸 indicate the results for the common bases,

fiction bases, British bases and American bases respectively.

Considering the average English word length, it is possible to evaluate the impact

of padding. Since the word length used for the implementation is 16 bytes, the padding

consumes on average 11 to 11.5 letters per encrypted keyword. Therefore theoretically

on average 70 % of each keyword needs to padded for English documents originating

from the last two decades.

With the implementation results we can expect the search time for a single keyword

in a database of 100 GB to be 2.82 seconds. Also the search operation is having a

time complexity of 𝑂[𝑛] where 𝑛 is the number of words in the encrypted document.

Therefore, an effective way of reducing 𝑛 could provide significant gains in search

time.

Based on the implementation of the original scheme, two potential improvements can

be identified as follows which are also to be considered as practical objectives of the

research.

∙ Reducing the size of encrypted files stored in remote server.

∙ Reducing the search time.

It is theoretically possible to use block encryption and achieve a reduced overhead in

encrypted files compared to the original implementation. However to facilitate search

operations, key words must be extracted and separately encrypted under the symmetric

searchable encryption. Since a reduction in the number of keywords will provide direct

gains in search time, there is a need for an efficient pre-processing mechanism for

keyword extraction. Next chapter contains the proposed modified approach with the

aim of achieving the above mentioned practical objectives.

38

Chapter 4

Keyword Separation, Proposed Scheme and Results

4.1 Refined Scheme

4.1.1 System Model

As per the original scheme all words in a file are treated as keywords. The new ap-

proach is to separate the keywords from the original plaintext file. Following refined

scheme is proposed with a mechanism for efficient keyword separation. Table 4.1

contains the specifics of the scheme.

Original [𝑊1,𝑊2, ..,𝑊𝑛]
representation where 𝑊 and 𝑛 denotes a "word" and the

of a file number of words in the file respectively.
New ⟨[𝑛′𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠], [𝐹𝑖𝑙𝑒]⟩

representation where 𝑛′ is the reduced number
of a file of keywords after pre-processing and 𝑛′ << 𝑛.
Cipher ⟨[𝑆𝐸(𝑊1′), 𝑆𝐸(𝑊2′), .., 𝑆𝐸(𝑊𝑛′)] , [𝐵𝐸(𝐹𝑖𝑙𝑒)]⟩
text file Where 𝑆𝐸 and 𝐵𝐸 are symmetric searchable

encryption and block encryption respectively.

Table 4.1: Refined scheme with keyword separation

As per the new representation of a plaintext file, it is expected to extract 𝑛′ number

of keywords from the file where 𝑛′ is significantly smaller than 𝑛, the original number

of keywords in the plaintext file.

The modified scheme uses two encryption schemes. In order to facilitate search

operations, the extracted keywords are encrypted using the Searchable Encryption pro-

39

posed in the original scheme while the data file is separately encrypted using a known

block cipher. This approach has following advantages.

∙ Searching is only required to be performed on the reduced set of keywords which

are encrypted using searchable encryption.

∙ A standard encryption scheme can be used to efficiently encrypt the plaintext

database.

∙ A standard encryption scheme will result in lower space requirement for the

encrypted data.

4.1.2 Keyword Separation

It is possible to derive a keyword extraction mechanism by studying the properties of

the language of the plaintext. Since the research employs a set of English plaintext

files, the properties of English language are considered. It is possible to perform such

studies for any language with the aim of deriving efficient ways of keyworseparationon.

When the nature of English language words is considered, following observations can

be made.

∙ Not all words in a text paragraph are significant to be a key word.

∙ English grammar words such as pronouns, prepositions, conjunctions, determin-

ers, exclamations take a significant portion of an English paragraph.

Eg she, he, that, something, in, on, after, or etc.

∙ There are duplicate words.

∙ There are non-alphabetic characters/words.

Therefore a mechanism with the capability to identify and exclude the insignificant

keywords while extracting the significant keywords is required. With above observa-

tions, it is possible to prepare a list of such insignificant, frequently occurring words

that can be used as a baseline for keyword extraction. As part of the study an example

list of 244 grammar words was prepared. Following steps are proposed for keyword

40

extraction.

Step 1: Word extraction by removing non alphabetic characters and words.

Step 2: Comparison with the "List of grammar words" and Remove grammar words.

Step 3: Remove strings that are single or two characters in length as we treat them to

be insignificant as key words.

Step 4: Remove if string length is greater than or equal to the word size. As proposed

earlier the selected word size is 16 Bytes. Last character of the word is to contain the

pad length.

Step 5: Remove duplicate words.

4.2 Results

4.2.1 Pre-processing

Figure 4-1: Percentage reduction in number of keywords due to pre-processing

Based on the new pre-processing mechanism proposed, all plaintext files at the local

site were pre-processed. Total time taken to pre-process all the files of size 99.425 MB

41

was 9.279 s. Without pre-processing the number of keywords in a file was in the range

of 11,000 to 11.9 million. Due to pre-processing it is reduced in to the range of 1,800

to 61,000 words.

Figure 4-1 shows the reduction in number of keywords per file as a percentage due to

pre-processing. Average reduction in number of keywords due to pre-processing was

93.34%. Therefore, considering an 𝑂(𝑛) time complexity, we anticipate more than

90% improvement in search time due to this reduction.

4.2.2 Encryption

Keywords and text files were separately encrypted and encrypted file sizes and time

taken has been recorded. Encrypted keyword size was 17 MB and block encrypted

file size was 99.42 MB in the total of encrypted file sizes equaling 116.42 MB. The

total time taken for encryption was 27.31 s. Therefore we can anticipate an encryption

time of 7.76 hours for 100 GB and this can be brought to the applicable range of an

industrial application by introducing industrial scale hardware for the processing.

4.2.3 Search

Once the pre-processing is completed, files were sequentially encrypted and made

available for the remote site. Multiple search operations were performed on differ-

ent keywords to understand the effect of the new scheme.

Tests were carried out on an Intel Core i5 2.3GHz CPU with 8 GB memory. As per the

results the average search time taken for a single search operation is 0.216 ms. Figure

4-2 compares the time taken for a single keyword search under the two schemes and

showcases the significant reduction in search time due to modified approach.

42

Figure 4-2: A comparison of search time under two approaches

4.3 Security Analysis

During implementation, it is possible to treat a key word as a fixed length string or a

variable length string. The choice of ciphers are for a fixed length string due to the

security requirements. On average an English word can be represented by few bytes

and a variable length keyword based on the actual word length may lead to shorter

ciphertext, hence susceptible to more collisions and brute force attacks. There are the-

oretical advantages in shorter word lengths such as the ability to use a shorter padding,

generating shorter cipher text etc in achieving higher space efficiencies. It is possible

to justify the choice of fixed word length, 128 Bits with the original ideas proposed as

part of Song et al model and birthday paradox [43]. As part of the implementation of

searchable encryption, a plaintext word is first encrypted using the advanced encryp-

tion scheme. The output is split in to two streams of length 𝑚 and 𝑛−𝑚 respectively

43

and used separately. In such a scheme, the probability that at least one collision hap-

pens after encrypting k words is 𝑘(𝑘−1)/2𝑛−𝑚+1. For thousand keywords the different

collision probabilities are available in table 4.3.

Parameters Probability of a collision in 𝐿𝑖

n = 64, m = 32 1.16 × 10−4

n = 128, m = 64 2.26 × 10−14

n = 128, m = 32 1.16 × 10−4

Table 4.2: Probability of a collision in 𝐿𝑖

For the implementation in this research, 𝑛 = 128 and 𝑚 = 64 have been selected.

The choice of the stream cipher is ChaCha20 for which the security is established [44],

[45] and serves practical implementation requirements.

As depicted in figure 3-1, 𝐹𝑘(𝑆) is derived based on the keyword being encrypted.

Therefore, same keyword in multiple files will result in a different cipher text. How-

ever due to keyword separation, the number of key words is reduced and if the same

keyword is present at multiple files at the same location, could result in same cipher

text. This can be addressed by replacing the nonce used for the stream cipher with

the XOR output of the file name and the nonce being used for the stream cipher. This

additional processing step will not introduce any overhead for search.

When a data requester requests for a keyword search, part of the search trapdoor

contains the search keyword pre-encrypted with the advanced encryption scheme using

the same key, 𝑘′′ used for encryption. Therefore, When the plaintext file is block

encrypted as part of the modified scheme, it is important to use a different cipher or the

same advanced encryption scheme with a different key. If the same cipher and the key

are used, it must not be implemented in electronic code book mode. This is to avoid

potential frequency analysis based attacks on the block encrypted file with the use of

trapdoors provided by data requester.

44

4.4 Future Directions

The research has primarily focused on efficiency enhancements for single keyword

queries which is acceptable for many practical applications. Current research suggests

many theoretical models and schemes for conjunctive keyword searches and range

queries on encrypted data. Addressing practical limitations, proposing efficiency en-

hancements and introducing practical implementation models for such schemes are

interesting problems to solve in future.

As widely discussed in previous chapters, there is a need for secure processing

of search results obtained by searching on ciphertext. Performing computations on

search results while the data is in encrypted for is another challenge. As per the lit-

erature study, the concepts of homomorphic encryption can be used as a solution for

this challenge. Therefore secure implementations and efficiency enhancements on ho-

momorphic encryption models are also remaining problems to be addressed in future

research.

45

Chapter 5

Example Use Cases

5.1 Introduction

Capital markets are comprised of Stock Exchanges, Securities Depositories, Clearing

Houses and industry participants such as Brokers, Banks and Custodians etc. Brokers

are able to submit trade orders. When trades orders are matched and executed in Stock

Exchange, they are cleared through the Clearing House. The Securities Depository

holds securities on behalf of the investors and provides services to industry partici-

pants such as Custodians and Banks. The post trade world is comprised with Clearing

Houses, Securities Depositories and industry participants.

When it comes to post trade services, moving out of the traditional service model and

transforming in to a cloud based service model is an interesting topic. When every-

body is moving towards cloud, companies need a way of differentiating the services

provided and gain the competitive edge. Therefore, finding novel and attractive ways of

redefining the cloud based solutions is a requirement. Most post trade service providers

keep a significant amount of private data of clients such as securities account details,

cash account details, securities balance positions, investor identification numbers etc.

Therefore secure storage of private data is a major problem. The consumers and the

market are particularly concerned about cloud services and questions are already being

raised from the market regarding the security of the data held by service providers.

With the growing needs of information management, many capital market infrastruc-

tures such as Sock Exchanges, Securities Depositories etc face the challenge of ef-

46

fectively storing their data in a confidential manner. Almost all of major institutions

maintain their own internal data storages. Their data is managed internally and is not

directly exposed to external parties. In this context, coming up with a secure data

storage will draw the attention of the market and eventually help service providers in

migrating their services and operations in to Cloud.

5.2 System Models for Capital Markets and Post Trade

Processing

5.2.1 Stakeholders

There are few common stakeholders in a cloud based environment.

Cloud Service Provider (CSP):

An entity capable of storing encrypted data and performing operations on the encrypted

data. This could be a commercial data service provider. A Securities Depository or a

Clearing House can use the services provided by such a service provider by encrypting

its own data and storing them at the CSP.

Access Control Server (ACS):

Conceptually an Access Control Server (ACS) controls the access to the data process-

ing results performed by CSP. In a private cloud setting, the Securities Depository or

the Clearing House may play the role of the ACS for the industry participants such as

Brokers and Banks. It is also possible for this role to be borne by an independent regu-

latory body such as the Central Bank, Securities and Exchange Commission, Monitory

Authority etc.

Data Requester (DR):

Industry participants can makes a processing request to the CSP via ACS. i.e.The pro-

cessing result is not directly provided to the DR by a CSP. Instead the requests are

provided to DR through the ACS. This allows the CSP to take control of the data

processing while ACS handles the access control for the requests made by multiple

eligible data requesters such as industry participants.

47

5.2.2 Models

Model I

Figure 5-1: System Model I for encrypted clouds

The Securities Depository and the Clearing House may act as the Access Control

Server to fulfill the data requests of following nature.

∙ Fulfilling their own data and processing needs. Here the Depository and the

Clearing House acts as a data requester to facilitate in house data needs.

48

∙ Fulfilling data requests coming from industry participants such as brokers and

banks. Here the Depository and the Clearing House provides a service for the

rest of the data requesters.

Model II

Figure 5-2: System Model II for encrypted clouds

49

A regulatory body such as the Exchange Commission, Central Bank or an Inde-

pendent Entity may play the role of the Access Control Server to fulfill the data and

processing needs of Securities Depository or Clearing House. The Securities Depos-

itory or the Clearing House may initiate data requests for themselves or on behalf of

the industry participants connecting to them.

5.3 Operations on encrypted cloud stored data for cap-

ital market operations

If the primary data storage of a Securities Depository is maintained in a Cloud, there

will be complex data processing requirements to facilitate the daily operations of the

depository. One of the simplest form of performing mathematical operations on the

encrypted data in the cloud would be as follows.

Use Case: Dividend(entitlement) Computation as part of corporate actions. During

a dividend computation, each share holder may receive an incentive proportional the

number of shares owned by the share holder.

Step I: Key Data Separation

Suppose each securities balance position is treated as a distinct transaction. Securities

Account Id and Balance can be extracted as key data from each balance position of the

investors. A key data separated transaction in plaintext form can be represented as

< 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑖𝑒𝑠𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝐼𝐷 >< 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 >< 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 >

Step II: Encryption

Since the entitlement computation requires scalar multiplication, the Balance can be

encrypted using an encryption scheme homomorphic over scalar multiplication. The

raw position may be block encrypted.

Eg: ElGamal encryption can be used to encrypt the securities Balance. Suppose the

operator 𝐸 denotes ElGamal encryption and 𝐶 denotes the cipher text, then the en-

50

cryption of extracted balances is represented as follows.

𝐶𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝐸(𝑏𝑎𝑙𝑎𝑛𝑐𝑒) (5.1)

Step III: Dividend Computation

During dividend computation the balance is multiplied by the the entitlement multi-

plier. For the computation to take place at the cloud, the cloud application should be

provided with the encrypted entitlement multiplier. Therefore the entitlement multi-

plier is encrypted by the ElGamal encryption as shown by equation 5.2 and sent to the

cloud and scaler multiplication results are requested from the cloud.

Eg: Suppose the share holders are to receive 2 LKR for each share own by them, then

the entitlement multiplier is 2. The scalar value 2 is ElGamal encrypted and sent to the

cloud.

𝐶𝑒𝑛𝑡𝑖𝑡𝑙𝑒𝑚𝑒𝑛𝑡_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝐸(𝑒𝑛𝑡𝑖𝑡𝑙𝑒𝑚𝑒𝑛𝑡_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟) (5.2)

Cloud server will compute the entitlement for each balance position by computing

the specific homomorphic operation and provide the result in encrypted form. Eg:

In the case of ElGamal encryption, the product of encrypted ’Balance’ and encrypted

’Entitlement Multiplier’ will provide the result of scalar multiplication in encrypted

form as shown in equation 5.3.

𝐶𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = 𝐶𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐶𝑒𝑛𝑡𝑖𝑡𝑙𝑒𝑚𝑒𝑛𝑡𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 (5.3)

The Securities Depository is now able to decrypt the result received from the Cloud

to obtain the dividend for each Securities Account. This facilitates the dividend com-

putation at cloud without the securities balances being disclosed to the cloud server.

Suppose the operator 𝐷 denotes the decryption, then the dividend is obtained as fol-

lows.

𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = 𝐷(𝐶𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑) (5.4)

51

5.4 Cloud based reporting for capital market opera-

tions

It is important to look at the potential data querying use cases with an encrypted cloud.

As a Post Trade service provider, a Securities Depository or a Clearing House may

have to provide a reporting mechanism to aid the operations of the participant users.

The traditional method of report generation is associated with querying from the local

storage to generate a predefined set of reports for participants. For instance,

∙ Monthly Trade Report: Contains all the Trades reported within the month.

∙ Monthly Balance Statement: Contains the balance position updates for the month

One of the simplest form of performing searches on encrypted data for report genera-

tion would be as follows.

Use Case: Monthly trade report generation. Suppose each Trade is treated as a trans-

action containing multiple keywords.

Step I: Keyword Separation

Separates Keywords under interest. Suppose the reports are to be generated for each

participant and Trading Date. Then the Trade Date, Trading Member are to be ex-

tracted as key words.

Eg: Trade Date = 2019-10-02, Trading Member = 202

Step II: Keyword Enrichment

Creates new keywords based on the report criteria. Suppose the report should include

trades from the previous month. Then, the month of trade needs to derived as a new

keyword based on the extracted trade date.

Eg: If Trade Date = 2019-10-02 then Month = ‘October’ is the derived keyword

Step III: Encryption

52

With step I and II, a raw transaction will have two parts.

i.e. 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 :< 𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠 >< 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑒𝑡𝑎𝑖𝑙𝑠 >. Keywords are en-

crypted based on a searchable encryption algorithm. This facilitates search operations

on encrypted transactions. The ’Transaction Details’ are to be encrypted using a stan-

dard symmetric algorithm. This achieves the space efficiency.

Step IV: Search

Suppose in the month of November a trade report is generated for each trading member

for the trades reported in the previous month. The Securities Depository may request

for all trades with keyword ’October’ and the properties of the selected searchable en-

cryption algorithm will facilitate the Cloud Service Provider in performing a keyword

search on the encrypted trades without decrypting the data and provide the query result

in encrypted form. The Securities Depository is able to decrypt the encrypted search

result to obtain all the trades reported in October and group by the Trading Member to

generate the individual reports.

5.5 Challenges

Selection of a Scheme

One of the major challenges of computing on encrypted data is selecting a suitable

cryptographic protocol for encryption. There are no specific guidelines on selecting

different cryptographic schemes for different applications. But what to select for a

capital market environment is something to be identified based on the specific appli-

cation. The selection of a suitable protocol determines what types of homomorphic

properties are available for the application and which operations are possible on top of

the ciphertext.

Cost vs Usability

Since various encryption schemes are homomorphic over different mathematical oper-

ations, an end to end implementation of a complete use case will require the adoption

53

of multiple encryption schemes.

Eg: Higher number of operations on encrypted data will require multiple copies of the

same plaintext to be encrypted using different schemes applicable for each operation.

This leads to overheads in the space usage in cloud.

Complexity

With the involvement of homomorphic and searchable encryption, a cloud based im-

plementation will carry a high complexity. This demands specialized personal for

design and development, specific hardware resources, longer implementation periods

and difficulties in troubleshooting etc.

Performance

Time complexity of the operations is one of the major concerns for capital market tech-

nology solutions. Such implementations with heavy encryption operations and compu-

tations will create performance considerations. The effort required for the performance

optimizations to meet the service level agreements will be significantly higher than a

typical implementation.

Legal Issues

The judicial system in the country will control the use of personal and financial data.

These laws will limit the types of data that can be outsourced in to cloud storages.

However it is possible that the data in encrypted form may have exceptions. It’s true

that when the sensitive data is encrypted, the ciphertext is not readable. Hence when

you outsource such data, technically you are not taking the data out of the country

while they are in the sensitive plaintext form. Therefore it is clear that whether en-

crypted data can be outsourced may be subjected to legal interpretation.

54

Chapter 6

Conclusion

In this research the current state of the topic of computing of encrypted data was

studied. It was identified that the research on computing on encrypted data can be

categorized under two main branches, searchable encryption and homomorphic en-

cryption. Different searchable and homomorphic encryption schemes were studied in

detail. Later the symmetric searchable encryption scheme proposed by Song, Wagner

and Perrig was extensively studied and the scheme was implemented to study the suit-

ability of the scheme for practical use and its performance. Based on the performance

results, the time taken for search operations and the file size increase due to encryption

was identified as major bottlenecks if the scheme to be employed for industrial appli-

cations.

To address these issues a pre-processing mechanism for efficient extraction of signifi-

cant keywords was presented. The key idea is to bring down the number of keywords

in to a practically manageable range. The total time taken for the pre-processing of

a file set of 100 MB took less than 10 seconds which is within practical limits. With

these results, about 170.66 minutes of pre-processing time for a plaintext database of

100 GB can be expected.

In the modified scheme, the block encrypted plain text file component consumes no

extra space. The only extra space usage is due to the separately encrypted keywords.

An increase of 17% in the final encrypted file size was observed and that is due to

the keyword files introduced by the modified scheme. It is also possible to introduce

compression prior to the encryption and further reduce the size of block encrypted file

55

component. Compared to the original scheme which produces an additional 160.17

MB of data due to encryption, this modified scheme only produces additional 17 mBs

due to encryption. This is a 89.83% reduction in extra space usage.

Time taken for a single keyword search has drastically dropped due to the modifica-

tions proposed. As per the results, a 92.11% improvement in search time has been

achieved. For an encrypted remote DB of 100 GB, the anticipated a search time is 222

milliseconds per single keyword search under an Intel Core i5 @2.3GHz CPU and 8

GB memory. However modern data storages have much more processing power and

an actual service provider with industrial scale computing power will achieve far lower

search time than above for a database of 100 GB. Therefore with the above results the

modified scheme can be selected as a practical scheme that is feasible for considerably

larger databases with industrial scale hardware.

In addition to these, a study was also done to evaluate the practical applications of

above techniques in capital markets domain. It was observed that there are challenges

to overcome when the concepts on computing on encrypted data are to be applied for

practical use. Further research is required to address and overcome these challenges in

specific application scenarios. However it can be concluded that the computing on en-

crypted data has a wide array of practical applications and the concepts of searchable

encryption can be implemented for practical use.

56

Bibliography

[1] J. Daemen and V. Rijmen, The design of Rijndael: The wide trail strategy ex-

plained. Springer, 2001.

[2] H. Delfs and H. Knebl, “Symmetric-key encryption”, in Introduction to Cryp-

tography, Springer, 2007, pp. 11–31.

[3] H. Bennett Ch and G. Brassard, “Quantum cryptography: Public key distribution

and coin tossing int”, in Conf. on Computers, Systems and Signal Processing

(Bangalore, India, Dec. 1984), 1984, pp. 175–9.

[4] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE transactions

on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[5] M. E. Hellman, “An overview of public key cryptography”, IEEE Communica-

tions Magazine, vol. 40, no. 5, pp. 42–49, 2002.

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-

natures and public-key cryptosystems”, Communications of the ACM, vol. 21,

no. 2, pp. 120–126, 1978.

[7] T. ElGamal, “A public key cryptosystem and a signature scheme based on dis-

crete logarithms”, IEEE transactions on information theory, vol. 31, no. 4, pp. 469–

472, 1985.

[8] A. K. Lenstra, “Unbelievable security matching aes security using public key

systems”, in International Conference on the Theory and Application of Cryp-

tology and Information Security, Springer, 2001, pp. 67–86.

[9] A. Shamir, “On the security of des”, in Advances in Cryptology, Springer-

Verlag, 1985, pp. 280–281.

57

[10] J. Jonsson and B. S. Kaliski, “On the security of rsa encryption in tls”, in Annual

International Cryptology Conference, Springer, 2002, pp. 127–142.

[11] Y. Tsiounis and M. Yung, “On the security of elgamal based encryption”, in

International Workshop on Public Key Cryptography, Springer, 1998, pp. 117–

134.

[12] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on

remote encrypted data”, in International Conference on Applied Cryptography

and Network Security, Springer, 2005, pp. 442–455.

[13] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted

data”, in Theory of Cryptography Conference, Springer, 2007, pp. 535–554.

[14] L. Wu, B. Chen, K.-K. R. Choo, and D. He, “Efficient and secure searchable

encryption protocol for cloud-based internet of things”, Journal of Parallel and

Distributed Computing, vol. 111, pp. 152–161, 2018.

[15] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-

Lee, G. Neven, P. Paillier, and H. Shi, “Searchable encryption revisited: Consis-

tency properties, relation to anonymous ibe, and extensions”, in Annual Inter-

national Cryptology Conference, Springer, 2005, pp. 205–222.

[16] Y. Wang, J. Wang, and X. Chen, “Secure searchable encryption: A survey”,

Journal of Communications and Information Networks, vol. 1, no. 4, pp. 52–65,

2016.

[17] E.-J. Goh et al., “Secure indexes.”, IACR Cryptology ePrint Archive, vol. 2003,

p. 216, 2003.

[18] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric

encryption: Improved definitions and efficient constructions”, Journal of Com-

puter Security, vol. 19, no. 5, pp. 895–934, 2011.

[19] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key en-

cryption with keyword search”, in International conference on the theory and

applications of cryptographic techniques, Springer, 2004, pp. 506–522.

58

[20] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric

encryption: Improved definitions and efficient constructions”, Journal of Com-

puter Security, vol. 19, no. 5, pp. 895–934, 2011.

[21] K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu, “Efficient sharing of en-

crypted data”, in Australasian Conference on Information Security and Privacy,

Springer, 2002, pp. 107–120.

[22] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-

trieval”, in Foundations of Computer Science, 1995. Proceedings., 36th Annual

Symposium on, IEEE, 1995, pp. 41–50.

[23] C. Cachin, S. Micali, and M. Stadler, “Computationally private information re-

trieval with polylogarithmic communication”, in International Conference on

the Theory and Applications of Cryptographic Techniques, Springer, 1999, pp. 402–

414.

[24] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on

encrypted data”, in Security and Privacy, 2000. S&P 2000. Proceedings. 2000

IEEE Symposium on, IEEE, 2000, pp. 44–55.

[25] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over

encrypted data”, in International Conference on Applied Cryptography and Net-

work Security, Springer, 2004, pp. 31–45.

[26] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure multi-party

computation”, in Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing, ACM, 1996, pp. 639–648.

[27] O. Goldreich, “Secure multi-party computation”, Manuscript. Preliminary ver-

sion, vol. 78, 1998.

[28] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

homomorphisms”, Foundations of secure computation, vol. 4, no. 11, pp. 169–

180, 1978.

59

[29] C. Gentry, “Fully homomorphic encryption using ideal lattices. proceedings of

the 41st annual acm symposium on symposium on theory of computing-stoc’09.

vol. 9”, 2009.

[30] C. Gentry and D. Boneh, A fully homomorphic encryption scheme, 09. Stanford

University Stanford, 2009, vol. 20.

[31] C. Gentry, “Computing arbitrary functions of encrypted data”, Communications

of the ACM, vol. 53, no. 3, pp. 97–105, 2010.

[32] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic

encryption over the integers”, in Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Springer, 2010, pp. 24–43.

[33] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic

encryption over the integers with shorter public keys”, in Annual Cryptology

Conference, Springer, 2011, pp. 487–504.

[34] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic encryp-

tion scheme”, in Annual international conference on the theory and applications

of cryptographic techniques, Springer, 2011, pp. 129–148.

[35] W. Ding, Z. Yan, and R. H. Deng, “Encrypted data processing with homomor-

phic re-encryption”, Information Sciences, vol. 409, pp. 35–55, 2017.

[36] P. Paillier, “Public-key cryptosystems based on composite degree residuosity

classes”, in International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, 1999, pp. 223–238.

[37] R. Cramer and V. Shoup, “Universal hash proofs and a paradigm for adaptive

chosen ciphertext secure public-key encryption”, in International Conference

on the Theory and Applications of Cryptographic Techniques, Springer, 2002,

pp. 45–64.

[38] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key cryptosys-

tem with a double trapdoor decryption mechanism and its applications”, in In-

ternational Conference on the Theory and Application of Cryptology and Infor-

mation Security, Springer, 2003, pp. 37–54.

60

[39] G. Shafi and S. Micali, “Probabilistic encryption”, Journal of computer and

system sciences, vol. 28, no. 2, pp. 270–299, 1984.

[40] D. Naccache and J. Stern, “A new public key cryptosystem based on higher

residues”, in Proceedings of the 5th ACM conference on Computer and commu-

nications security, ACM, 1998, pp. 59–66.

[41] D. J. Bernstein, “Chacha, a variant of salsa20”, in Workshop Record of SASC,

vol. 8, 2008, pp. 3–5.

[42] V. V. Bochkarev, A. V. Shevlyakova, and V. D. Solovyev, “The average word

length dynamics as an indicator of cultural changes in society”, Social Evolution

& History, vol. 14, no. 2, pp. 153–175, 2015.

[43] S. Goldwasser and M. Bellare, “Lecture notes on cryptography”, Summer course

Cryptography and computer security at MIT, vol. 1999, p. 1999, 1996.

[44] G. Procter, “A security analysis of the composition of chacha20 and poly1305.”,

IACR Cryptology ePrint Archive, vol. 2014, p. 613, 2014.

[45] A. Langley and Y. Nir, “Chacha20 and poly1305 for ietf protocols”, 2018.

61

