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ABSTRACT 

The government of Sri Lanka is struggling to make appropriate policy decisions 

regarding paddy cultivation due to absence of accurate and timely data to estimate 

the paddy yield, land usage for paddy cultivation and area affected by various paddy 

diseases. Remote sensing data based machine learning implementations can be 

identified as a potential solution for the above issue, as remote sensing data can be 

used for accurate and timely estimations. However, the traditional remote sensing 

data resources have failed to generate accurate estimates regarding cultivated paddy 

extent estimations. In this study, novel optical remote sensing data resources and a 

hybrid approach are employed to mitigate previously reported issues. Furthermore, a 

multi-temporal approach is used instead of traditional mono-temporal approach by 

leveraging deep neural networks. This study also consists of a comprehensive 

comparison on novel optical remote sensing data resources and the evaluations of the 

capability of using deep neural networks for temporal remote sensing analysis. 

Outcomes of the study shows quite impressive results over 97% of accuracy in terms 

of cultivated paddy area detection using optical remote sensing imagery. Moreover, 

the research was extended to identify cultivated paddy areas using synthetic aperture 

radar (SAR) imagery. It also outputs a promising result over 96% of accuracy in 

terms of detecting cultivated paddy regions. The study then extends to detect Brown 

Planthopper attacks in cultivated paddy fields. 

Brown Planthopper is considered as the most destructive insect in paddy cultivation. 

There are no previous studies for identifying Brown Planthopper attacks using 

satellite remote sensing data under field conditions. In this study, ratio and standard 

difference indices derived from optical imagery are fed into a Support Vector 

Machine model to identify the regions affected by Brown Planthopper attacks. Using 

the results of cultivated paddy fields detection model as a filter, SVM model results 

are improved. The combined approach shows accuracy over 96% for detecting 

Brown Planthopper attacks. 

Keywords: Remote sensing, Synthetic Aperture Radar, Agriculture, Rice, Deep 

Neural Networks, SVM, Brown Planthopper, Paddy Yield, Paddy Extent 
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