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ABSTRACT 

The government of Sri Lanka is struggling to make appropriate policy decisions 

regarding paddy cultivation due to absence of accurate and timely data to estimate 

the paddy yield, land usage for paddy cultivation and area affected by various paddy 

diseases. Remote sensing data based machine learning implementations can be 

identified as a potential solution for the above issue, as remote sensing data can be 

used for accurate and timely estimations. However, the traditional remote sensing 

data resources have failed to generate accurate estimates regarding cultivated paddy 

extent estimations. In this study, novel optical remote sensing data resources and a 

hybrid approach are employed to mitigate previously reported issues. Furthermore, a 

multi-temporal approach is used instead of traditional mono-temporal approach by 

leveraging deep neural networks. This study also consists of a comprehensive 

comparison on novel optical remote sensing data resources and the evaluations of the 

capability of using deep neural networks for temporal remote sensing analysis. 

Outcomes of the study shows quite impressive results over 97% of accuracy in terms 

of cultivated paddy area detection using optical remote sensing imagery. Moreover, 

the research was extended to identify cultivated paddy areas using synthetic aperture 

radar (SAR) imagery. It also outputs a promising result over 96% of accuracy in 

terms of detecting cultivated paddy regions. The study then extends to detect Brown 

Planthopper attacks in cultivated paddy fields. 

Brown Planthopper is considered as the most destructive insect in paddy cultivation. 

There are no previous studies for identifying Brown Planthopper attacks using 

satellite remote sensing data under field conditions. In this study, ratio and standard 

difference indices derived from optical imagery are fed into a Support Vector 

Machine model to identify the regions affected by Brown Planthopper attacks. Using 

the results of cultivated paddy fields detection model as a filter, SVM model results 

are improved. The combined approach shows accuracy over 96% for detecting 

Brown Planthopper attacks. 

Keywords: Remote sensing, Synthetic Aperture Radar, Agriculture, Rice, Deep 

Neural Networks, SVM, Brown Planthopper, Paddy Yield, Paddy Extent 
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1. INTRODUCTION 

Rice is considered as one of the most important cereal grain which is consumed as 

staple food by large portion of the world’s population, particularly in Asian 

countries. Farmers in the countries of Asia pacific region including Sri Lanka is 

accountable for over 90% of the world’s rice production which accounts to more than 

750 million tons [1]. Paddy fields occupy 34% of total agricultural crop land areas in 

Sri Lanka [2]. Moreover, about 1.8 million farming families are engaged in rice 

cultivation in Sri Lanka [2]. Enhancing the productivity of farmers have been 

identified as one of the foremost approaches of eradicating poverty and food security 

but nevertheless, flawed decisions deceived by erroneous information cause the 

productivity to diminish. 

Stakeholders attached to paddy cultivation such as farmers, government, traders, etc. 

require precise and timely quantitative estimations of cultivated paddy extent and 

yield in order to make accurate decisions on various occasions such as planting, 

calculating, buying, importing, exporting, etc.  

On the other hand, rice cultivation is often affected by a variety of diseases and pest 

attacks. Hence, precise estimations regarding pests and disease attacks on paddy 

cultivation is vital for stakeholders to take accurate decisions on various aspects such 

as insurance premium calculation, evolvement of pests and disease management 

systems, etc. Moreover, it’s also important to distinguish damaged paddy regions and 

healthy paddy regions in order to provide more accurate rice production estimations. 

In terms of pests and diseases detection, we mainly focus on detecting Brown 

Planthopper attacks in this study since it is the most devastating pest disease that 

causes paddy yield losses [3]. 

In Sri Lanka, Ministry of Agriculture and Department of Census and Statistics 

produce estimates rice production, cultivated paddy extent and the damages caused 

by pests and diseases attacks [4]. Those existing approaches of getting estimations 

heavily depend on the human involvement. Government of Sri Lanka deploys field 

officers to collect data by monitoring paddy cultivation around the country. Each 

officer sends the estimation of yield, cultivated paddy extent and damaged areas 
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within the assigned region to a central authority to calculate the total productive 

cultivated extent and other analysis purposes. Authorities have been following said 

conventional protocol to estimate rice production and productive paddy extent for 

decades. Inefficiency and inaccuracy of collecting data on the production, cultivated 

paddy extent and damaged areas from disease and pest attacks make paddy 

cultivation related decision making challenging. For instance, field officers rely on 

their intuitions rather than actual observations when measuring the damaged paddy 

areas, since either measuring small patches of pests and disease attacks is laborious 

or farmers are reluctant to share their information on small pest and disease attacks in 

their fields to field officers because no compensation is granted by the government 

for small-scale yield losses. Burden of handling human resources, the expenditures 

on human resources, and the time consumption have been identified as other major 

limitations of the existing approaches. 

1.1 Remote Sensing 

Stakeholders, particularly the government of Sri Lanka is eager to replace the current 

approach of estimating productive paddy extent with an efficient alternative 

mechanism. Researchers have demonstrated the capability of remote sensing data as 

a potential alternative for providing valuable insights about various aspects of 

agriculture [5] [6] [7]. Remote sensing based energy reflectance measures of various 

electromagnetic wavelengths from the earth’s surfaces can be used to assess the 

condition of the plants [8] and distinguish crops from other objects on the surface [9]. 

Remote sensing data can be categorized into two types as follows. 

• Active remote sensing 

• Passive remote sensing 

Active remote sensing data are collected by emitting electromagnetic energy towards 

the earth surface (e.g.: Synthetic Aperture Radar (SAR)) and measuring the energy 

that is reflected back or backscattered from the earth surface and objects on earth 

surface. Passive remote sensing data are collected by measuring natural 

electromagnetic energy that is emitted or reflected by the earth surface and objects.  
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Figure 1.1 Active vs Passive Remote Sensing 

Source: https://grindgis.com/remote-sensing/active-and-passive-remote-sensing 

Compared to active remote sensing data, passive remote sensing data have been 

extensively used in past research studies due to the constraints of active remote 

sensing data such as limited availability, inconsistency, complex data structures, etc. 

[10]. With the launch of Sentinel 1, remote sensing research community now has 

access to SAR imagery at the scale that is needed for successful agricultural 

monitoring applications. On the other hand, there are limitations of using 

conventional passive remote sensing data resources for examining and analyzing 

cloud-prone and scattered agricultural regions, particularly during rainfall onsets. 

Emergence of novel passive remote sensing data resources with high temporal and 

spatial resolution, enables researchers to broaden their research studies into the areas 

where fine-grained information is required. 

1.2 Motivation and Objectives 

1.2.1 Motivation 

From this background, it is clear that rice is the most economically important crop 

that impacts a vast majority of households in Sri Lanka. Decisions made by the 

government based on erroneous information, have been identified as the root cause 

of the recent economic impacts related to paddy cultivation. Consequently, the 

motivation of this study is to inform decision making in terms of productive 

cultivated paddy extent in a given cultivation season. 
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1.2.2 Aim and objectives 

The aim of this research is to develop a methodology for estimating cultivated paddy 

extent and the BPH attack prevalence using remote sensing data and machine 

learning techniques. To achieve the aim, the following objectives are set. 

• Identify remote sensing data which can be used to estimate cultivated paddy 

extent. 

• Identify key relationships between paddy cultivation and remote sensing data. 

• Implement and validate different machine learning models to identify 

cultivated paddy fields. 

• Evaluate machine learning techniques to detect cultivated paddy extent. 

• Identify remote sensing data that can be used to detect BPH attacks. 

• Identify key relationships between BPH attacks and remote sensing data. 

• Implement and validate machine learning model to identify areas affected by 

BPH attacks. 

The study consists of two phases. First phase identifies the cultivated paddy field 

areas. In the first phase, the applicability of both active remote sensing and passive 

remote sensing data are tested in terms of identifying cultivated paddy fields. We use 

PlanetScope satellite constellation as one of the passive remote sensing data resource 

which consists of approximately 120 satellites providing images with 3m spatial 

resolution and one-day temporal resolution [11]. We use Sentinel-2, developed by 

European Space Agency (ESA), as the second passive remote sensing data resource. 

Sentinel-2 provides remote sensing data with 10m of spatial resolution and 5-days of 

temporal resolution [12]. Pixel-based classification models are built to evaluate the 

performances of each passive remote sensing data resource separately as well as the 

hybrid usage of the two remote sensing data resources. Particularly, we show how 

the proposed hybrid approach minimize the constraints of each of the remote sensing 

data resources. Further, the performances of two neural networks: Long Short Term 

Memory Network (LSTM) and Convolution Neural Network (CNN), are compared 

with Support Vector Machine (SVM) model as the baseline in terms of the 

distinguishing of cultivated paddy lands.  
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Sentinel 1 SAR acquisitions are used as the active remote sensing data resources in 

the first phase. The first Sentinel 1 satellite; (1A) and the second Sentinel 1 satellite; 

1B were launched in 2014 and 2016 respectively [13]. It provides radar remote 

sensing data at 10m spatial resolution and 12-day temporal resolution. Pixel-based, 

GLCM variance time series are classified using a convolution neural network to 

identify cultivated paddy fields. Then the capabilities and the limitations of using 

passive and active remote sensing data in terms of identifying cultivated paddy fields 

are discussed thoroughly. 

Further, the areas affected by BPH attacks within the cultivated paddy fields are 

identified in the second phase of the study. PlanetScope remote sensing data are used 

to identify the areas damaged by Brown Planthopper attacks. A Support Vector 

Machine model based on ratio and standard difference indices is developed to 

identify the affected areas by BPH attacks. 

Authorities have defined average rice yield productions per hectare for different 

regions in the country. Hence, Phase 1 and Phase 2 calculations of cultivated paddy 

extent and BPH attacks then can be used to derive the paddy yield estimations in 

future steps.  

Chapter 2 discusses the remote sensing resources and deep learning techniques used 

in the study. Further, it dives into the past research work conducted with regard to 

crop classification and pests and disease detection. Chapter 3 explains two types of 

approaches for estimating cultivated paddy extent. The approach to detect Brown 

Planthopper attack using remote sensing and machine learning techniques is 

discussed in Chapter 4. A comprehensive discussion regarding Agri AI platform and 

the conclusion are included in Chapter 5 and Chapter 6 respectively. 
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2. BACKGROUND AND RELATED WORK 

In this section, we discuss the prior works conducted in the areas of crop land 

classifications and disease detection. We look at applicable technologies and remote 

sensing data resources used, for this study. Further, we discuss the prior studies 

related to our study and what technologies, data resources and methodologies are 

used in previous research work.  

2.1 Vegetation Indices 

Vegetation indices are largely used for agricultural analysis operations such as crop 

land classification, crop yield prediction and crop disease detection etc. [14] [15] 

[16] 

2.1.1 Normalized Difference Vegetation Index 

A substantial number of studies have proven that Normalized Difference Vegetation 

Index (NDVI) has a significant efficacy in classifying crop lands [17] [18]. Leaves 

absorb energy from sunlight in certain wavelengths of electromagnetic spectrum 

while the remaining wavelengths are reflected back. Chlorophyll residing in leaves 

absorb energy from red spectral band in visible light for photosynthesis process 

while cell structure of leaves reflects energy in near-infrared spectral band. NDVI is 

derived by measuring reflectance of red (RED) and near-infrared (NIR) spectral 

bands as shown in the formula 1 below. Values close to zero indicates no healthy 

green leaves and values close to +1 indicates high density of healthy green leaves. 

 𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 (1) 

A vast number of   research   studies   have   exploited   the   potential   of MODIS 

and LANDSAT NDVI data in terms of classifying crop lands in large agricultural 

lands [17] [18] [19] [20] [21] such as US Central Great Plains, Great Lakes Basin, 

etc. They were able to distinguish the land into a variety of crop types with decent 

accuracies using various machine learning algorithms ranging from simple decision 

tree classifiers to deep neural networks. 
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2.1.2 Land Surface Water Index 

During the initial growing period of flooding and transplanting, water level in paddy 

field surface increases substantially compared to other crop lands. This discrete 

characteristic of paddy lands during the initial growing stage can be observed by 

Land Surface Water Index (LSWI) since it is highly responsive to the total amount of 

liquid water in vegetation and its soil surface [22]. Shortwave infrared (SWIR) and 

the near infrared (NIR) wavelengths of electromagnetic spectrum are used to derive 

LSWI as in formula 2. In fact, the index derived using the NIR and SWIR 

wavelengths has different nomenclatures in different research. In few, it was referred 

as Normalized Difference Water Index (NDWI) instead of Land Surface Water Index 

(LSWI) [23] [24]. In this study, it is referred to as LSWI. 

 
𝐿𝑆𝑊𝐼 =  

(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 (2) 

There were previous efforts of combining LSWI with other vegetation index 

parameters in crop land classification tasks [25] [26]. Xiangming Xiao et al. [25] 

developed an algorithm to detect cultivated paddy fields incorporating three types of 

vegetation indices; NDVI, EVI and LSWI. Lv Tingting et al. [26] used LSWI along 

with several other vegetation index parameters to understand cropping patterns, crop 

intensity and crop land mapping. 

2.2 Neural Networks 

In this decade, deep neural networks have gained a wide-spread attention, mainly by 

outperforming other conventional machine learning approaches in a broad area of 

applications, especially in image processing and natural language processing [27]. 

There are two main reasons behind the recent success of deep neural network 

applications: 

• Availability of massive data sets 

• Rapid technological development of hardware.  
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2.2.1 Feed Forward Neural Networks 

Feed-forward Neural Network architectures are the most versatile deep neural 

network types which clearly predominate conventional machine learning algorithms 

[28]. Those architectures are based on strict sequential data propagation without 

forming cycles between nodes. Feed-forward neural network consists of connected 

neurons (Figure 2.1 (a) and Figure 2.1 (b)) which activates its output conforming to 

Formula 3. 

 𝑦 =  𝜎(∑ 𝑊𝑖𝑗𝑥𝑖

𝑖

+ 𝑏) (3) 

 

 
 

 

 

 

Figure 2.1 Architecture of Feed Forward Neural Network. Figure 2.1(a) shows a perceptron. Figure 2.1(b) 

shows a feed forward neural network which consists of multiple layers of perceptrons 

2.2.2 Recurrent Neural Networks 

Feed-forward neural network architectures are capable of learning from individual 

uncorrelated data items, but not favorable to process time-dependent sequence data 

since it requires remembering previously processed data items. In contrast, Recurrent 

Neural Networks solve the issue of sequence handling to a reasonable extent, but not 

perfectly. Edges that connect adjacent time steps form cycles, including cycles of 

length one that are self-connections from a node to itself across time [29].  Formula 4 

and Formula 5 show the necessary computation at each time step in a simple 

recurrent neural network shown in Figure 2.2. 

 𝑎 < 𝑡 > = 𝑔(𝑤𝑎𝑎𝑎 < 𝑡 − 1 >  + 𝑤𝑎𝑥𝑥 < 𝑡 >  +𝑏𝑎) (4) 

 𝑦 < 𝑡 > = 𝑔(𝑤𝑦𝑎𝑎 < 𝑡 >  + 𝑏𝑦) (5) 
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Figure 2.2 Architecture of a simple Recurrent Neural Network 

At time t, a<t> represents the values of the current hidden node while a<t-1> 

represents values of the previous state's hidden node. by and ba are bias parameters 

which allow each node to learn an offset. x<t> denotes the current data point. waa, 

wax and wya are the corresponding weights applied to a<t-1>, x<t> and a<t>. 

Recurrent Neural Networks turn out to be quite effective when we are dealing with 

short-term dependencies. At each time step, the RNN must encode information it has 

received from previous time step and pass the new information through a set of 

feedback connections to next time step. It is very challenging to prevent the 

information degradation over a long time sequence. RNNs are also affected by 

vanishing gradient, preventing back-propagating error correcting information 

through the model, losing the connection to long history as time progress. Hence, 

RNN may fail to grasp long term transitional patterns in paddy cultivation. 

2.2.3 Long Short-Term Memory Network 

LSTM network consist of LSTM cells which maintain a state called cell state (c<t>). 

It enables a way to selectively remember and forget long-term information. The 

information of a particular cell state depends on three aspects:  

• previous cell state (c<t-1>) 

• previous hidden state (a<t-1>) 

• input at current time step (x<t>)  

Three gates; forget gate, input gate and output gate, are derived using the previous 

hidden state (a<t-1>) and current input (x<t>) as shown in the Figure 2.3. Current 
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cell state either remains nearly similar to previous cell state value or gets updated, 

based on the forget and update gate values. Current hidden state value is derived 

based on the value of the output gate and the current cell state (c<t>). Formula 

6,7,8,9,10 and 11 are used to calculate the corresponding values of the LSTM cell. 

 𝑓𝑡 = 𝜎𝑓(𝑊𝑑𝑎𝑡𝑎
𝑓 𝑥𝑡 + 𝑊𝑠𝑡𝑎𝑡𝑒

𝑓 𝑎𝑡−1 + 𝑏𝑓) (6) 

 𝑖𝑡 = 𝜎𝑖(𝑊𝑑𝑎𝑡𝑎
𝑖 𝑥𝑡 + 𝑊𝑠𝑡𝑎𝑡𝑒

𝑖 𝑎𝑡−1 + 𝑏𝑖) (7) 

 ĉ𝑡 = 𝜎ĉ(𝑊𝑑𝑎𝑡𝑎
ĉ 𝑥𝑡 + 𝑊𝑠𝑡𝑎𝑡𝑒

ĉ 𝑎𝑡−1 + 𝑏ĉ) (8) 

 𝑜𝑡 = 𝜎𝑜(𝑊𝑑𝑎𝑡𝑎
𝑜 𝑥𝑡 + 𝑊𝑠𝑡𝑎𝑡𝑒

𝑜 𝑎𝑡−1 + 𝑏𝑜) (9) 

 𝑐𝑡 =  𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡ʘĉ𝑡 (10) 

 𝑎𝑡 =  𝑜𝑡ʘ𝜎𝑎(𝑐𝑡) (11) 

M. Rußwurm et al.  [28] conducted a study using remote sensing data captured by 

Sentinel 2A to emphasize the importance of multi-temporal approaches over mono-

temporal approaches for land cover classification. They have employed long short-

term memory neural network for crop identification purposes. Further, the 

performance was compared with a mono-temporal convolution neural network and 

support vector machine model. An approach based on LSTM has been presented for 

land cover classification in Florida Everglades ecosystem study site. Reported patch 

based multi-image LSTM model outperformed pixel based single image NN 

significantly with over 30% of accuracy improvement. 
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Figure 2.3 Architecture of a LSTM unit cell 

2.2.4 Convolution Neural Networks 

Architecture of 1D CNN is shown in Figure 2.4. Typically, it is a composite of 

multiple convolution, pooling, activation, fully connected layers. The convolution 

layer output a feature map by calculating dot product between an input feature map 

and a set of weights [30]. The feature map is commonly known as filters. In the 

pooling layer, size of the feature map will get reduced to downsize the number of 

parameters and computation in the network. Nonlinear activation functions are 

leveraged in between convolution layers. Relu activation function can be considered 

as the most common activation function used in studies. The fully connected layer 

and Softmax activation layer are stacked at the end of the network to calculate the 

probability scores for each defined class. Neural networks are often over fitted to the 

training data set and perform poorly in test data set due to various reasons such as a 

smaller number of data points in the training data set. There are several 

regularization techniques followed in machine learning paradigm in order to 

overcome the issue of overfitting. Dropout was recently introduced by Srivastava et 

al. as a way of regularization for deep neural networks [31]. Input data are fed 

through the neural network in a feedforward manner while it gets trained using 
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stochastic gradient descent (SGD) extensions such as Adam Optimizer in a manner 

of backpropagation. 

Influences of convolution neural networks are extending boundaries of the remote 

sensing research community, particularly to classify crop lands using high resolution 

remote sensing imagery [32]. Moreover, recent studies have revealed that one 

dimensional CNNs are suitable for various types of time series classification 

applications [33]. However, one dimensional convolution neural networks (1D CNN) 

have been very rarely used for remote sensing time series classification. 

 

Figure 2.4 A simple archtecture of a 1D CNN 

2.2.5 Support Vector Machines 

Support Vector Machine (SVM) model is a supervised machine learning model for 

classification tasks and regression analysis. In SVM approach, data points are 

mapped into a space and divide the space into classes. Then the test data points are 

assigned to the space to determine its class. Even though it was originally designed 

for binary linear classification, it can be also used for non-linear multi class 

classification using a methodology called kernel. 

Support Vector Machine models have been widely used in agricultural crop mapping 

tasks [34] [35]. For instance, Baojuan et al. [36] developed a SVM model which can 

identify nine crop types in a complex agricultural management system using Landsat 
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NDVI datasets with an accuracy of over 86%. A comparison conducted by Yang et 

al. reveals that Support Vector Machine models performs better compared to neural 

networks in crop mapping applications when the dataset is small [37]. Moreover, 

Support Vector Machine has showed promising capabilities to identify various crop 

diseases using hyper spectral analysis [38] [39]. Liu et al.  [39] has demonstrated the 

potential of support vector machine to discriminate two paddy diseases and healthy 

plants using visible and NIR spectral band data. 

2.3 Passive Remote Sensing Data with Low Spatial and Temporal Resolution for 

Crop Land Classification 

Landsat and MODIS remote sensing data are being extensively used in studies 

related to mapping agricultural croplands [17] [18] [19] [20] [21], but these resources 

have key limitations when the accuracy is important. In most cases, one or two, 

250m MODIS satellite image pixels are enough to cover an entire crop land in Sri 

Lanka. Thus, it would be challenging to derive meaningful and accurate insights 

regarding agricultural productivity [40]. Linear mixture models have been introduced 

to resolve issues associated with coarser resolution remote sensing data for crop land 

mapping in areas where mixed cropping agriculture are practiced [41]. 

Despite having comparably high spatial resolution than MODIS satellites, Landsat 

satellites’ low temporal resolution limit their capability of being used as a sole data 

source for agricultural analysis purposes. Cloud contamination further constraint the 

usability of LANDSAT in cloud-prone areas, particularly in wet zones. There were 

significant number of attempts of fusing MODIS and Landsat vegetation data in 

order to mitigate the limitations posed by individual data sources [18] [35] [37]. 

Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [42] was used 

by researchers frequently to fuse Landsat and MODIS data in crop classification 

applications [32] [34]. 

2.4 Passive Remote Sensing Data with High/Medium Spatial and Temporal 

Resolution for Crop Land Classification 

Until recent years, freely available remote sensing data resources were not suitable 

enough to monitor small crop lands in more granular level due to low spatial and 

temporal resolutions [43] [14]. Recently, inexpensive high and medium spatial and 
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temporal imagery have been widely available due to the recent emergence of finer 

technologies and involvement of private institutes that own satellite constellations. 

On the other hand, satellites which offer high spatial resolution, cover a smaller size 

of area footprint per scene. It greatly increases the amount of image processing tasks 

such as geometric registration, radiometric normalization and classification, etc. 

Advances in the field of high performance computing has reduced the burden of said 

image processing tasks. 

With the launch of Sentinel-2, researchers have started to investigate its suitability 

for agricultural applications. Markus Immitzer et al. [44] conducted a study based on 

pre-operational Sentinel-2 data for classifying crop types and tree species in Lower 

Austria. Marshall et al. discussed the capability of intensive field sampling 1-m Terra 

Bella imagery to monitor individual smallholder farms in Kenya [40]. Further, their 

comparison among different remote sensing data resources reveals that explanatory 

power at 10m is approximately only about 75% of what it is at 1m and similarly at 

30m resolution explanatory power falls by approximately 50%. 

2.5 Active Remote Sensing Data for Crop Land Classification 

There are regions in Sri Lanka where a single clear optical remote sensing image 

during monsoon season is unavailable due to heavy cloud contamination. High 

temporal passive remote sensing data can only mitigate the effects of cloud 

contamination to a certain extent. Synthetic Aperture Radar (SAR) imagery allows us 

to monitor crop lands and classify them without the effects of cloud contamination 

[45]. Substantial a number of studies have been conducted by combining SAR 

imagery with optical imagery for crop mapping [45] [46]. In some cases, crop 

classifications based on SAR imagery outperforms crop classifications based on 

optical imagery [46]. Moreover, combined crop classification approaches using SAR 

and optical imagery reported better accuracy compared to crop classification 

approaches based only on optical imagery [45] [46]. Kun Jia et al. [47] reveal that 

crop mapping based on multi-configuration (using multiple SAR datasets) is more 

accurate than classifications based on single SAR image with single configuration. 

They also stated that exploiting texture features of SAR imagery (e.g. contrast, 

correlation, energy) enhances the accuracy of crop mapping [47]. Further, the 
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temporal variations of radar reflectance have been investigated as a way of crop land 

mapping. 

2.6 Paddy Disease Detection 

There are only a few attempts to use remote sensing for paddy disease detection. 

Studies based on satellite remote sensing are even more rare in the area of paddy 

disease detection due to limited access to satellite remote sensing data resources with 

high temporal and spatial resolution until recent years. Most of the research attempts 

related to paddy disease detection, have been relied on ground based sensors or 

airborne remote sensing data resources [48]. When a plant is affected by diseases, 

often its reflection in visible and infrared region deviates from natural reflection due 

to internal tissue structure changes, decline of the chlorophyll content and other 

pigment changes [49]. Hence, various spectral ratio indices, vegetation indices and 

standard difference indices have been proposed to identify crop diseases [42] [50]. 

Many researchers have observed a drastic drop of reflectance in near infrared band 

and red band in plants affected from various stresses including diseases [51]. Since 

the past studies relied on ground sensors and airborne remote sensing data with high 

spatial and temporal resolution, researchers were able to distinguish even the severity 

of the paddy diseases. Instead of using various indices, Z.-Y. Liu et al. used raw 

spectral reflectance (from 400nm to 2400nm) and its variations (e.g. second and 

second derivatives) to detect fungal infections at laboratory conditions [52]. 

Moreover, Z. Yong et al. showed that it is difficult to distinguish two different wheat 

stresses by only analyzing single spectral band [53]. In contrast, it's possible to 

discriminate two different wheat stresses by making use of appropriate vegetation 

indices. But it suggests that using the models that were built to identify plant stresses 

from canopy level observations is challenging to up-scale into the field level due to 

dynamic conditions of agricultural fields [53].  

Only few studies have been conducted to detect Brown Planthopper attacks using 

hyper-spectral reflectance measurements. Chwen-Min et al. has identified the hyper-

spectral characteristics (both single spectral bands and different combinations of 

spectral bands) associated with identifying BPH attacks and severity assessments of 

BPH attacks [54]. Moreover, they added that their study shows a significant 
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capability of using appropriate spectral bands to distinguish BPH attacks and 

Leaffolder attacks. Prasannakumar et al. proposed a multiple linear regression model 

which incorporates field level measurements of hyper-spectral reflectance to identify 

BPH damage level [55]. They suggested to use normalized ratios of band reflectance 

to mitigate the consequences of externalities such as solar angle, soil background and 

crop growth [55]. 
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3. CULTIVATE PADDY EXTENT DETECTION 

In this phase, an estimation for cultivated paddy extent is taken through two 

approaches: i) using Passive Remote sensing data, ii) using Active Remote Sensing 

data. Procedures of those two approaches as well as pros and cons of those are 

discussed in this chapter. 

3.1 Cultivated Paddy Extent Detection using Passive Remote Sensing Data 

In this section, a novel approach for estimating cultivated paddy extent is proposed 

based on two passive remote sensing data resources and deep learning. Further, we 

evaluate the performances of the two remote sensing data resources and LSTM, CNN 

neural networks in terms of detecting cultivated paddy areas.  

3.1.1 Study area 

Three agro-ecological zones can be determined in Sri Lanka namely, Dry zone, 

Intermediate zone and Wet zone. The land is divided into aforesaid agro-ecological 

zones in terms of the heterogeneity of rainfall, soil and vegetation. Regions of the 

island that cover western, south and hill country belongs to Wet Zone. Dry zone 

covers eastern and northern regions, being separated by Intermediate Zone (see 

Figure 3.1). Wet zone receives the highest average annual rainfall of over 2000mm 

whereas in Dry Zone, the annual rainfall is between 800mm and 1200mm [56]. There 

are four monsoon seasons in Sri Lanka: 

• First Inter Monsoon rains 

• South West Monsoon rains 

• Second Inter Monsoon rains 

• North East Monsoon rains 

which bring diverse rainfall regimes resulting high agro-ecological heterogeneity 

even though Sri Lanka only have a small aerial extent. As mentioned previously, 

there are two major paddy cultivation seasons namely: 

• Maha Season 

• Yala Season 
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The most common practice is starting the Maha season with the rainfall onset in 

Mid-September or early October and continuing till late January or early February. In 

general, Yala season starts from mid of March and continues up to early May. Yala 

season is considered as a minor cultivation season as the rainfall during Yala season 

is less than the rainfall in Maha Season. On the other hand, farmers in dry zone 

mainly rely on irrigated cultivation than rain-fed cultivation, as dry zone receives 

considerably low precipitation. However, the farmers in Wet Zone and Intermediate 

Zone are heavily depend on rain-fed cultivation than irrigated cultivation. Size of an 

individual landscape element (paddy field) is below 50 acres on average in Wet 

Zone. In contrast, individual landscape element covers over 60 Acres of aerial extent 

in Dry Zone. 

We picked a set of sample paddy fields covering all three agro-ecological zones to 

conduct our research. Sample paddy fields in Wet Zone are picked from Baddgeama 

(See Figure 3.1) covering 80 acres. Sample paddy fields in Dry Zone are picked from 

Anuradhapura (See Figure 3.1) covering 120 acres. Sample paddy fields in 

Intermediate Zone are situated at Polgahawela covering the extent of 100 acres as 

showed in Figure 3.1. 
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Figure 3.1 Agro-ecological regions and locations of sample paddy fields. Samples are collected from 

Baddegama(Wet zone), Polgahawela(Intermediate zone) and Anuradhapura(Dry zone) 

3.1.2 Study data 

This section of our study uses multi-spectral time series remote sensing data gathered 

from PlanetScope and Sentinel-2. Remote sensing data related to 2017-2018 Maha 

season that was started approximately from Mid-September or early October (varied 

with rainfall onset) are used to derive LSWI and NDVI time series. Obtaining remote 

sensing data which were not affected by cloud contamination is difficult despite the 
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fact that PlanetScope has one day temporal resolution (1-day revisit time). At least 

17 PlanetScope remote sensing scenes are used to obtain time series of each sampled 

pixel. Since PlanetScope only collects reflectance of four spectral bands; Red, Green, 

Blue and Near Infra-red (NIR), it is only possible to derive NDVI time series from 

PlanetScope dataset. Further, acquiring remote sensing data from Sentinel-2 is more 

challenging since it has a longer revisit time of 5 days. Despite having longer revisit 

time, Sentinel-2 captures reflectance of 13 spectral bands. Thus, both NDVI and 

LSWI time series can be derived from Sentinel-2 spectral band data set. At least 9 

Sentinel-2 remote sensing scenes were used to obtain time series of each sampled 

pixel. 

Sampled pixels are labeled corresponding to the ground truth data collected by the 

field officers. Training and test data sets are selected with care in a way that both 

data sets include data points from every agro-ecological zone in Sri Lanka. 

Moreover, training and test data sets are picked from separate paddy fields in order to 

maintain the independence of the data sets. Data are extracted covering ten and 

fifteen paddy fields in each agro-ecological zone from PlanetScope and Sentinel-2 

respectively. 200 non-adjacent pixels in each PlanetScope scene and corresponding 

re-sampled 200 pixels in each Sentinel 2 scene are annotated as cultivated or non-

cultivated from each selected paddy field in order to construct models that use 

PlanetScope data or both PlanetScope and Sentinel-2 data. Another 1000 non-

adjacent, non-cultivated pixels are selected from the non-paddy fields areas in each 

agro-ecological zone. Moreover, 200 non-adjacent, non-re-sampled Sentinel-2 pixels 

are annotated from each paddy field in order to construct machine learning models 

which only use Sentinel-2 data. Further, 1000 of another non-adjacent, non-

cultivated and non-re-sampled pixels are labeled from the areas other than paddy 

fields for those models. Consequently, each of the three classification approaches is 

developed based on 9000 independent data points. Pixels which cover the boundaries 

of paddy fields are not included in the selected data sets. 
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3.1.3 Preprocessing steps 

PlanetScope data products are subjected to several preprocessing steps prior to 

releasing the products for general analytical tasks. There are several analytical ready 

PlanetScope product types that are categorized according to the undergone 

preprocessing steps. Ortho tile product type is used in this research since those 

products have been corrected for geometric, radio-metric, terrain and sensor 

distortion errors. PlanetScope Ortho tile scene consists of four spectral bands and we 

use third (red) and fourth (NIR) spectral bands to derive Normalized Difference 

Vegetation Index (NDVI) (See Equation 1 of page 6). Every PlanetScope remote 

sensing scene is released along with unusable data mask file. It indicates the areas 

that consist of corrupted pixel values due to various reasons (e.g. cloud 

contamination). 

Similarly, we used Level-1C Sentinel-2 data products in this study. We use fourth 

(Red) and eighth (NIR) spectral bands to derive NDVI and eighth (NIR) and eleventh 

(SWIR) spectral bands to calculate LSWI values (See Equation 2 of page 7). Level-

1C data comprises quality indication files which indicate the areas affected by cloud 

contamination. We use those quality files to avoid considering damaged pixel values 

from the analysis. 

Normalized Difference Vegetation Index (NDVI) values are calculated for all the 

pixels in each PlanetScope image. Then we use the unusable data mask file to 

identify and mark damaged pixels in each PlanetScope image. Analysis of some of 

the selected paddy fields is required merging two Ortho tile PlanetScope images 

captured in the same day as the aerial extent of those paddy fields are split into two 

Ortho tile images. Final step of preprocessing is deriving time series for each data 

point (pixel). Pixel values that are marked as damaged (e.g.: affected by cloud 

contamination) are excluded from time series. Continuous time series of selected 

pixels are derived by applying linear interpolation to fill the missing values. We keep 

temporal granularity of the time series as one week as changes of vegetation indices 

within the time period of one week provide sufficient analysis capabilities. Figure 3.2 

shows two PlanetScope NDVI time series demonstrating the time series 
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characteristics of a cultivated paddy pixel (Figure 3.2(a)) and an abandoned paddy 

field pixel (Figure 3.2(b)). Selection procedure of training and test data sets were 

carefully carried out in a way that time series of a selected pixel has a least effect of 

low quality pixel values. 

 

Figure 3.2 PlanetScope NDVI time series graphs 

Similarly, as in PlanetScope preprocessing procedure, merging and cropping steps 

are applied for Sentinel-2 remote sensing data. Both LSWI and NDVI vegetation 

indices are derived from Sentinel-2 spectral bands. Each selected pixel from 

PlanetScope imagery should have a corresponding pixel in Sentinel-2 imagery with 

similar Geo-coordinates. Thus, we converted 10m resolution Sentinel-2 pixels into 

3m resolution pixels by resampling. LSWI time series of each pixel is then derived 

by applying linear interpolation to fill missing values. We picked another set of 

pixels without re-sampling to derive LSWI and NDVI time series from Sentinel-2 

imagery. Every low quality pixel value is eliminated prior to deriving NDVI and 

LSWI time series. Figure 3.3 shows two Sentinel-2 NDVI time series showing the 

NDVI time series characteristics of cultivated paddy pixel and abandoned paddy 

field pixel. Moreover, Figure 3.4 exhibits Sentinel-2 LSWI time series of a cultivated 

paddy field and abandoned paddy field pixel. The complete preprocessing procedure 

is depicted in Figure 3.5. 
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Figure 3.3 Sentinel-2 NDVI time series graphs 

 

Figure 3.4 Sentinel-2 LSWI time series graphs 
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Figure 3.5 PlanetScope and Sentinel 2 data Preprocessing Procedure 
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3.1.4 Data partitioning 

As previously mentioned, we separate the data set into two small data sets as training 

data set and testing data set. Following three aspects are taken into consideration 

when assigning data to small data sets. 

• Equal class distribution between training and testing data sets. 

• Equal data point distribution among data sets in terms of agro-ecological 

zones. 

• Independence of data sets. 

We shuffle entire data set and then randomly assign data points to each data sets 

manually in order to divide data points between data sets conforming to said criteria. 

Training data set consists of 8000 data points and test data set consists of 1000 data 

points. We follow 10 fold cross validation for training and validation process of 

neural networks. Hence, we further divide the selected 8000 training set into 10 

smaller data chunks of 800 data points. Each neural network is run for 10 iteration 

using a different chunk as validation data set in each iteration and remaining 9 

chunks are used for training. This method greatly reduces the possibility of over-

fitting. 

3.1.5 Experiment setup 

In this study, we compare not only the capabilities of two remote sensing resources 

(PlanetScope and Sentinel-2) and their hybrid approach, but also the potential of two 

neural networks (CNN and LSTM) in terms of classifying paddy lands. Results 

presented in following sections are reported by running each neural network model 

on test data set. Keras; [57] an open source neural network library, is used to 

implement all neural networks that are to be mentioned in the following sections. We 

run Keras neural network models on top of Tensorflow; an open source framework 

for machine learning developed by Google [58]. 

3.1.5.1 Paddy land classification using NDVI 

We implemented six types of classification models using NDVI time series data for 

evaluating the potential of PlanetScope and Sentinel-2 data sources. Further, we 
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evaluate LSTM and CNN models using Support Vector Machine algorithm as the 

baseline: 

• LSTM models using PlanetScope data 

• CNN models using PlanetScope data 

• SVM model using PlanetScope data  

• LSTM models using Sentinel-2 data 

• CNN models using Sentinel-2 data 

• SVM model using Sentinel-2 data 

We evaluate Long Short-Term Memory neural networks and Convolution Neural 

Networks with various hyper parameter settings. We analyze LSTM performance 

with different number of layers and different number of LSTM unit cells as showed 

in Table 3.1. On the other hand, Convolution Neural networks are assessed with 

different number of layers and different number of filters as showed in Table 3.1. 

Every Convolution Neural Network architecture that we have discussed here, 

consists of a dropout layer followed by CNN layers accordingly for the sake of 

avoiding over-fitting. In addition to regular dropouts, recurrent dropouts are added 

for LSTM networks. Radial Basis Function (rbf) kernel is applied for Support Vector 

Machine models. Hyper parameters of Support Vector Machines are similar in every 

experiment setup of this study. 

3.1.5.2 Paddy land classification using PlanetScope NDVI and Sentinel-2 LSWI 

We experiment the capability of integrating NDVI and LSWI vegetation indices in 

terms of identifying cultivated paddy pixels. This hybrid approach is tested with 

variety of neural network settings similar to above experimental setup which is used 

to assess the capability of PlanetScope’s NDVI time series data. Compared to 

previous experiment setup, hyper parameter value variations of CNN and LSTM 

models are kept unchanged except the number of LSTM unit cells in a single LSTM 

layer. Results of this experimental setup are reported in Table 3.3. 

3.1.5.3 Paddy land classification using Sentinel-2 NDVI and Sentinel-2 LSWI 

Since Sentinel-2 provides all the spectral bands that are needed to derive both NDVI 

and LSWI indices, we tested Sentinel-2 as the only remote sensing data resource for 
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paddy land classification models. Evaluations are carried out under the similar hyper 

parameter settings used in the previous section.  Table 3.4 reports the performances 

of this experimental setup. 
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3.1.5.4 Paddy land extent estimation 

 The ultimate goal of this phase in the study is to suggest a sophisticated alternative 

methodology for estimating cultivated paddy extent. Hence, we select the best 

machine learning models from each of the above four classification approaches and 

make use of them to identify cultivated paddy lands. Three areas with larger aerial 

extent are selected from the three agro-ecological zones. Time series of all pixel 

which belong to the selected areas are derived by applying required preprocessing 

steps. Subsequently, time series of every pixel is classified by each selected machine 

learning models. Extent of cultivated paddy fields are then estimated by aggregating 

the area covered in each pixel that is classified as a pixel covering cultivated paddy 

areas. Cultivated paddy land extent from ground truth data in selected areas and 

estimated cultivated paddy land extent from each machine learning model are 

reported in the Table 3.5. Moreover, the actual cultivated paddy land extent and the 

estimated cultivated paddy land extent in each region are marked in Figure 3.6, 

Figure 3.7 and Figure 3.8. 

3.1.6 Results 

Table 3.1 shows the accuracy measurements of LSTM and CNN machine learning 

models with different hyper parameter settings along with the SVM model as the 

baseline model in terms of classifying paddy lands based on only PlanetScope NDVI 

data. In this setup SVM baseline algorithm outperforms other neural network models. 

Precision of the SVM model are significantly higher than the precision scores of any 

other machine learning model. In general, accuracies of LSTM models are better 

than CNN models according to the results of this experimental setup. Increasing the 

number of LSTM layers and number of LSTM unit cells in a layer didn't improve the 

accuracy. Even though, increasing the number of filters in a CNN layer and the 

number of CNN layers improve the classification accuracy. Increasing the number of 

filters over 50 leads over-fitting. 

Performances of machine learning models that only employ Sentinel NDVI time 

series data are reported in Table 3.2. Machine learning models implemented based on 

Sentinel-2 NDVI data are more accurate than the models that are implemented based 

PlanetScope NDVI time series data. LSTM neural network which consists of single 
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LSTM layer and 75 LSTM unit cells reports the best results for all accuracy 

measurement scores. All CNN models show low accuracies compared to LSTM 

Models. SVM baseline model outperforms the accuracies of all CNN models, but not 

the aforesaid LSTM model accuracy measurements except the precision. 

Accuracies of LSTM classification models built exploiting both PlanetScope NDVI 

data and Sentinel-2 LSWI data didn't outperform the accuracies of LSTM models 

that are built based on Sentinel-2 NDVI data (see Table 3.3). Accuracies of every 

CNN model is significantly higher compared to CNN models used in previous 

approaches. Maximum accuracy is reported by the CNN model that is included two 

CNN layers and 50 filters in each layer. Moreover, the best accuracy results of CNN 

have only a subtle difference with the best accuracy metric measurements of LSTM 

network. LSTM models with two layers reported better results over the LSTM 

models with one layer. On the other hand, LSTM models that are used in the 

previous two experiments conducted only using NDVI data show a completely 

opposite behavior. The performances of LSTM neural networks that consist of 

LSTM cell units less than 100, show notably lower results of less than 70%. Thus, 

we use 100, 125 and 175 as the number of LSTM cell units in hyper parameter 

settings. Two LSTM models and three CNN models surpass the accuracies of SVM 

model in terms of recall, F1-score and accuracy, but the SVM reports the best 

precision value among all ML models. 

Neural networks implemented based on Sentinel-2 NDVI data and Sentinel-2 LSWI 

time series achieve the highest accuracies among all four experimental setups (see 

Table 3.4). Unlike in the previous experiments, CNN model that comprises with two 

layers and 50 filters in each layer, gained the highest scores nearly 98 percent for all 

accuracy measurements. However, LSTM model with two LSTM layers and 150 

LSTM cell units achieve an accuracy which is very closed to the accuracy of 

aforesaid CNN model. 

Overall, the neural network models implemented based on Sentinel-2 time series data 

outperforms the neural network models implemented based on PlanetScope time 

series datasets and combined time series datasets of PlanetScope and Sentinel-2. As 
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shown in Figure 3.2 and Figure 3.3, NDVI time series derived from PlanetScope are 

more complex than the time series derived from Sentinel-2 since the number of 

PlanetScope images used to derive PlanetScope NDVI time series is higher than the 

number of Sentinel-2 images used to create Sentinel-2 NDVI time series. As a result, 

it is challenging to achieve higher results by training machine learning models 

incorporating PlanetScope NDVI time series data with the similar hyper parameter 

settings used for the machine learning models implemented on Sentinel-2 NDVI 

data. Accuracies of LSTM neural networks are better compared to both 1D CNN 

model and SVM baseline model in most cases proving the potential of LSTM models 

for remote sensing time series analysis. Nevertheless, the capabilities 1D CNN in 

terms of time series classification have not been gained much attention in previous 

remote sensing research works, 1D-CNN models also show promising results with 

minor differences compared to LSTM models. Another significant observation is that 

the precision of SVM models in every experimental setup is nearly equal to the 

precisions of neural network models in which the results are the best in the respective 

experimental setup. 

As showed in Figure 3.6, Figure 3.7 and Figure 3.8, variations of cultivated paddy 

extent estimation accuracies diverge from the variations of paddy classification 

accuracies. Even though the best accuracy of paddy land classification is reported by 

the model that used Sentinel-2 NDVI and Sentinel-2 LSWI time series. In contrast, 

the results of using only Sentinel-2 time series are poor in terms of estimating 

cultivated paddy extent. Models that employ only Sentinel-2 data fail to identify 

boundaries of paddy fields accurately. Pixels that cover the boundaries of paddy 

fields often represent a mixture of land types as the resolution of Sentinel-2 imagery 

is 10m. As mentioned above, we avoided picking boundary pixels for training ML 

models as it adds noises to the data set. But Sentinel-2 based estimations are affected 

by those noisy pixels in the test scene which do not represent paddy fields purely. It 

results in increase the number of false positives while the inability of classifying 

boundary pixels increases the number of false negatives. Consequently, balancing the 

effect of false positives and false negatives, the closest quantitative total cultivated 

paddy extent estimation is given by the model that used Sentinel-2 NDVI and 
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Sentinel-2 LSWI data. In contrast, model based on PlanetScope NDVI data and 

Sentinel-2 LSWI data, output approximately accurate paddy extent with a least 

impact from false positive and false negative pixels. 
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3.2 Cultivated paddy extent detection using active remote sensing data 

As mentioned earlier, there are limitations of using traditional passive remote sensing 

data resources to examine and analyze cloud-prone agricultural areas, particularly 

during rainfall onsets. For instance, during the early phase of 2018-2019 Maha 

Season, most of the PlanetScope scenes that cover Matara District are hugely 

affected by cloud contamination. Thus, deriving proper time series including early 

growing season is not viable for those areas. Active remote sensing has been proved 

to be useful in above circumstances since radar beams penetrate through clouds. 

Thus, we implement a machine learning model which can be used to estimate 

cultivated paddy extent, by making use of Sentinel-1 Synthetic Aperture Radar 

(SAR) data. Then we discuss the accuracy measurements reported by the model and 

the potential of SAR imagery for estimating cultivated paddy extent in cloud-prone 

areas. 

3.2.1 Study area 

As previously mentioned, three agro-climate zones can be identified in Sri Lanka. Sri 

Lanka is further divided into small agricultural divisions by Ministry of Agriculture 

in order to enable monitoring the cultivation and guiding farmers in more granular 

level. Ministry of Agriculture assigns agricultural instructors to engage in those tasks 

in each of aforesaid small agricultural divisions. As previously explained, cloud-free 

scenes are rare in Matara district which is located at Wet Zone. Hence, the sample 

ground data about cultivated paddy fields are collected from Thihagoda and 

Kamburupitiya areas in Matara district (See Figure 3.9) covering 210 acres with the 

assistance of agricultural instructors. 

3.2.2 Study data 

The dataset used in this experiment consists of 5000 data points. The dataset 

represents the pixels that cover cultivate paddy fields, non-paddy fields regions and 

abandoned paddy fields. Sample data points are picked in a way that the adjacent 

pixels in a image don't get included in the data set in order to attenuate the effect of 

overfitting, by avoiding repeating the indistinguishable time series behaviors within 

the data set. Pixels that cover boundaries of the paddy fields are not included in the 
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data set in order to avoid representing mixed time series characteristics (Those pixels 

cover paddy field areas as well as non-paddy field areas). 

 

Figure 3.9 Agro-ecological regions and locations of sample paddy fields. Samples are collected from Thihagoda 

and Kamburupitiya areas in Matara District (outlined in white) 

As previously stated, this experiment relies on Sentinel-1 Synthetic Aperture Radar 

data in order to mitigate the effect of cloud covers in Matara district. Sentinel-1 SAR 

imagery is obtained from Copernicus Open Access Hub of European Space Agency. 

Sentinel 1 satellites operate in four modes: Wide Swath (EW), Interferometric Wide 
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Swath (IW), Extra Wave (WV) and Stripmap (SM). We utilize data collected by 

Interferometric Wide Swath (IW) mode with dual polarization (VV+VH) scheme. 

Spatial resolution and temporal resolution of Sentinel-1 SAR imagery are 10m and 

12 days respectively. Hence, time series characteristics between 10th of September 

2018 and 15th of March 2019 is derived by using 10 SAR scenes. 

3.2.3 Preprocessing steps 

Sentinel-1 data are available in 3 categories according to level of processing: 

• Level 0  

• Level 1  

• Level 2  

We use Level-1 GRD product type for the experiment. Level-1 products are 

undergone various processing steps such as single look complex focusing and 

doppler centroid estimation etc. in order to convert Level 0 raw rata into usable data 

in various applications. Moreover, Speckles, a frequent issue with SAR imagery, are 

reduced in GRD products at the cost of reduced spatial resolution. 

After obtaining Level 1 GRD products, a series of preprocessing steps is applied to 

every SAR image as shown in Figure 4.10. SNAP (Sentinel Application Platform) 

software is used to perform the preprocessing steps on SAR imagery. Firstly, orbit 

files are applied to enhance the geocoding accuracies of images [59]. The next step, 

Calibartion is essential to normalize the values of images, so that the images can be 

used for comparisons among time series. Third preprocessing step is applied to 

eliminate speckle noises in SAR images. Speckles inherently exist in SAR images 

due to interference among waves such as phase differences of waves, reflected from 

earth surface [60] [61]. The fourth step; terrain correction is required for SAR images 

since terrain variations (elevated and sloping terrains) affect accurate modeling of 

SAR scenes. Those terrain variations result geometric and brightness distortions in 

the scene [62]. In the subset step, we can define an area of interest to crop from each 

SAR scene. Feature extraction step is one of the most important preprocessing steps 

in any classification task. Texture analysis plays a vital role in feature extraction step 

of image classification applications. Gray level co-occurrence matrix (GLCM) can be 
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used to derive second order statistical texture features [63]. GLCM reflects the 

distributions of intensities comparing two pixels in an image located with a defined 

angle and a distance. Value of the element positioned at (i, j) in GLCM can be 

defined as the frequency of occurring two pixels, one of which the pixel gray-scale 

value is i, and the other gray-scale pixel value is j, and the angle and the distance of 

those two pixels theta and d (to indicate whether the two pixels located horizontally, 

vertically or diagonally) respectively [63]. Each of the element value of GLCM are 

calculated by applying the equation 12. 

 
𝑃(𝑖,𝑗) =

𝑃(𝑖,𝑗,𝑑,𝜃)

∑ ∑ 𝑃(𝑖,𝑗,𝑑,𝜃)𝑗=1𝑖=1
 

(12) 
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Statistical information about textures of the image can further analyze based on the 

derived GLCM. 14 kinds of textural features are introduced by Haralick et al. that 

can be obtained from GLCM (e.g.: entropy, correlation and contrast) [64]. In our 

experiment, we note that, 'sum variance' feature indicates a significant difference 

between the time series characteristics of cultivated paddy field areas and abandoned 

or non-paddy field areas. The equations for calculating the sum variance are showed 

in the equation 13 and equation 14 below. GLCM value band and all the spectral 

bands from the source image are merged into a single file in 'Band Merge' step. 

Then, the sample pixel set is selected for the study. GLCM sum variance values are 

then obtained for the selected pixels set. GLCM variance pixel values of 14 SAR 

images are put together and linearly interpolated to derive time series for each 

selected pixel in the final step of preprocessing procedure. Time series characteristics 

of a pixel that covers cultivated paddy field are shown in graph (a) in Figure 3.11. In 

contrast, graph (b) in Figure 3.11 shows time series characteristics of a pixel that 

covers non-cultivate paddy field. 

 

𝑓(1) =  − ∑ 𝑝(𝑥+𝑦)(𝑖)log {𝑝(𝑥+𝑦)(𝑖)}

2𝑁𝑔

𝑖=2

 (13) 

 

𝑆𝑢𝑚 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  − ∑(𝑖 − 𝑓(1))
2

𝑝(𝑥+𝑦)(𝑖)

2𝑁𝑔

𝑖=2

 (14) 

 

 

 

 

 

 

 

 

Figure 3.11 GLCM Time Series graphs. Figure 3.11 (a) shows a GLCM Variance Time Series for a cultivated 

paddy pixel. Figure 3.11 (b) shows a GLCM Variance Time Series for a non-paddy field pixel 
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3.2.4 Experiment setup 

After completing preprocessing steps, we train a Convolution Neural Network with 

k-fold cross validation where k is 10 because the dataset is not large enough to divide 

into two datasets as training and testing. Since the entire dataset only consists of 

5000 datapoints, the model is trained with 4500 datapoints and validated with 500 

datapoints in each iteration. 1-dimension convolution neural network is used for the 

time series classification. The neural network model comprises with two convolution 

layers. Hyper parameter settings for the CNN layers are as follows: 

• Number of filters: 20 

• Kernel Size: 3 

Maxpooling and Relu activation function layers are placed in between the 

convolution layers. The CNN model used in this experiment setup are implemented 

on Tensorflow platform using Keras library. We run the implemented CNN model on 

an unseen test dataset consists of pixels that belong to an entire sub-region in Matara 

District, in order to measure the potential of the model in terms of identifying 

cultivated paddy fields as shown in Figure 3.12. 

3.2.5 Results 

The best Convolution Neural network setup that is developed to identify cultivated 

paddy fields, shows accuracy of 96.20% with 90.88% of precision and 83.45% of 

recall. Paddy cultivation in Sri Lanka take places in small scattered paddy fields 

compared to larger continuous paddy fields in larger countries such as China. 

Utilizing Sentinel-1 SAR imagery for identifying cultivated paddy fields results low 

accuracy performances in the context of Sri Lanka. It hinders the ability to detect 

extremely small paddy fields which results subtle decrease in the recall (See Figure 

3.12). 
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Figure 3.12 Performance of CNN in terms of Cultivated Land Detection. Correctly identified cultivated paddy 

regions are colored in white. False positive pixels are colored in yellow. False negative regions are outlined in 

red. 
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4. BROWN PLANTHOPPER ATTACKS DETECTION 

In terms of pests and diseases detection, we mainly focus on detecting Brown 

Planthopper attacks in this study since it is the most devastating pest disease that 

causes yield losses [3]. Brown Planthopper (Nilaparvata lugens) has been recognized 

as one of the most catastrophic pest diseases in paddy cultivation around the world. 

The creature is a small brownish, sap-sucking insect that can fly over a large 

territory. The risk of escalating attacks at a blistering pace through a large region is 

high due to its ability of flying. The damages of BPH can be only visible when the 

plants suffer from hopperburn [65] in which the signs are similar to senescence [66]. 

But even low population of Brown Planthoppers can endanger the production by 

reducing tillering, crop vigor and increasing the percentage of unfilled grains [65].  

It affects yield loses directly by feeding and indirectly by transmitting virus diseases 

and grassy stunt [67]. Approximately, 5% to 10% of rice production is lost annually 

due to BPH attacks in Sri Lanka [3]. Most of the farmers in Sri Lanka use resistive 

rice variants and pesticides to minimize the damage of Brown Planthoppers on paddy 

cultivation [68]. Nonetheless, severe BPH outbreaks are being reported in Asian 

countries including Sri Lanka in every year [69].  

 
Figure 4.1 Brown Planthopper 

Source:http://www.knowledgebank.irri.org/training/fact-sheets/pest- 

management/insects/item/planthopper 
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Figure 4.2 Brown Planthoppers feed by sucking the juice in Paddy Plants 

We propose a novel approach for detecting brown planthopper attacks using 

PlanetScope data. We test the suitability of variety of indices derived leveraging the 

four spectral bands, for detecting BPH attacks. Then, we feed most suitable index 

parameters to a Support Vector Machine to detect BPH attacks in pixel level. 

4.1 Study Area 

Matara district that belongs to Wet Zone has been identified as one the highly 

threatened area by Brown Planthopper (BPH) attacks. Hence, the sample ground data 

regarding the areas affected by Brown Planthoppers are collected from 

Kamburupitiya and Thihagoda areas in Matara district with the aid of agricultural 

instructors (See Figure 4.9 above). 

Figure 4.3 An area with hopperburn outlined in red 
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4.2 Study Data 

The ground data is collected regarding the Brown Planthopper attacks occurred 

during 2018-2019 Maha Season. BPH attacks prevail as small scattered patches over 

the paddy fields. Therefore, only limited number of data points are available for this 

study of BPH attacks. We were able to pick 1000 data points for this experiment. 

Sample data points are chosen in a way that the nearby pixels in an image don't get 

included in the data set in order to minimize the effect of overfitting by avoid 

repeating the similar time series characteristics within the data set. Moreover, pixels 

that represents boundaries of BPH patches are not included in the data set in order to 

avoid representing mixed behavior of both healthy paddy plants and infested paddy 

plants. 

We obtain 12 PlanetScope remote sensing scenes that were captured between 12th of 

December 2018 to 3rd of February 2019. Spatial resolution and temporal resolution of 

PlanetScope imagery are 3m and one day respectively. PlanetScope offers variety of 

product types according to the preprocessing steps that they have applied on and 

suitability for analytical applications. PlanetScope Analytic Ortho tile products are 

exploited in this experiment since those images are well-preprocessed for allowing 

researchers to use those products in analytical applications. Ortho tile product 

consists of four spectral bands:  

• Blue (455-515) nm 

• Red (590-670) nm 

• Green (500-590nm) 

• Near Infrared (780-860) nm 

4.3 Preprocessing Steps 

Changes of paddy plants due to BPH attacks, can’t be observed in SAR imagery 

since those changes do not affect the backscattering of radar beams. Hence, it is 

required to employ a passive remote sensing (optical) data resource to identify the 

changes in leaf structure due to Brown Planthopper attacks. PlanetScope remote 

sensing data resource is used as the passive remote sensing data resource in this 

experiment. Before releasing the PlanetScope Ortho tile products to general 
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analytical tasks, those data products go through a preprocessing pipeline as described 

earlier. Thus, every PlanetScope ortho tile product includes a file that indicates 

unusable pixel for analytic purposes due to cloud contamination and various other 

noises.  

After acquiring PlanetScope imagery, every image is undergone through a 

preprocessing pipeline before passing it into analysis process (See Figure 4.1). First, 

we derive ratio indices and standard difference indices from the PlanetScope multi-

spectral band file. Next, the data of four spectral bands; Red, Green, Blue and NIR 

are saved into separate from the files. Then we mark unusable pixels in all saved 

image files using the unusable data mask file in order to avoid considering low 

quality pixel values in the following analysis tasks. Each Ortho tiles image only 

covers 25 km by 25 km of small aerial footprint, so that to analyze some of the paddy 

fields, it is essential to merge several scenes (mostly two scenes) captured on same. 

Sample pixels are chosen and derived ratio indices, standard difference indices and 

spectral band time series for each of the selected pixels. Missing values in the time 

series of those raw spectral bands and indices are filled using linear interpolation. 

Unusable pixel values are eliminated to avoid representing false values in time series. 

As PlanetScope images are severely interfered by cloud contamination during early 

paddy growing season and Brown Planthopper attacks usually take place on 

December due to the favorable climate conditions, derived time series are limited to 

the latter half of the paddy cultivation cycle. Sample time series characteristics of the 

four spectral bands are showed in the Figure 4.2 while the sample time series 

characteristics of ratio indices are showed in the Figure 4.3. Figure 4.4 represents the 

sample time series characteristics of standard difference indices. The Ratio indices 

for a given day (d) between December 15th to Feb 15th are derived by applying the 

equation 15, 16 and 17 showed below. 

 (𝑅𝐼𝐺𝑟𝑒𝑒𝑛,𝑝))𝑑 =  
(𝐵𝐺𝑟𝑒𝑒𝑛)𝑑

(𝐵𝑝)𝑑
 where p = Blue, Red, NIR (15) 

 (𝑅𝐼𝐵𝑙𝑢𝑒,𝑝))𝑑 =  
(𝐵𝐵𝑙𝑢𝑒)𝑑

(𝐵𝑝)𝑑
 where p = Red, NIR (16) 
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(𝑅𝐼𝑁𝐼𝑅,𝑅𝑒𝑑))𝑑 =  

(𝐵𝑁𝐼𝑅)𝑑

(𝐵𝑅𝑒𝑑)𝑑
 

(17) 

Standard difference indices for a given day (d) are calculated as equation 18, 19 and 

20 showed below: 

 (𝑆𝐷𝐼𝐺𝑟𝑒𝑒𝑛,𝑝)𝑑 =  
(𝐵𝐺𝑟𝑒𝑒𝑛)𝑑− (𝐵𝑝)𝑑

(𝐵𝐺𝑟𝑒𝑒𝑛)𝑑+ (𝐵𝑝)𝑑
  where p = Blue, Red, NIR (18) 

 (𝑆𝐷𝐼𝐵𝑙𝑢𝑒,𝑝)𝑑 =  
(𝐵𝐵𝑙𝑢𝑒)𝑑− (𝐵𝑝)𝑑

(𝐵𝐵𝑙𝑢𝑒)𝑑+ (𝐵𝑝)𝑑
  where p = Red, NIR (19) 

 (𝑆𝐷𝐼𝑁𝐼𝑅,𝑅𝑒𝑑)𝑑 =  
(𝐵𝑁𝐼𝑅)𝑑− (𝐵𝑅𝑒𝑑)𝑑

(𝐵𝑁𝐼𝑅)𝑑+ (𝐵𝑅𝑒𝑑)𝑑
   (20) 

SDI (NIR, Red) is also known as Normalized Difference Index (NDVI) that is often 

used in remote sensing research studies. Moreover, red, green, blue and NIR raw 

spectral bands are also taken into consideration for implementing the machine 

learning model. Then we subjected the derived indices and raw spectral bands to a 

linear correlation analysis in order to identify the most correlated spectral bands, 

ration indices and standard difference indices with Brown Planthopper. Parameters 

which show correlations greater than 0.7 are selected as inputs to the SVM model 

(See Table 5.1).  
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Table 4.1 Index attributes with correlations greater than 0.7 

Index Selected Index Index Selected Days 

RI (Blue, Red) - SDI (Blue, Red) 31-36 

RI (Blue, NIR) 39-47 SDI (Blue, NIR) 30-35 

RI (Green, Blue) - SDI (Green, Blue) - 

RI (Green, Red) 32-36 SDI (Green, Red) 31-36 

RI (Green, NIR) 39-48 SDI (Green, NIR) 39-48 

RI (NIR, red) 40-47 SDI (NIR, Red) 38-48 

 

 

4.4 Experiment Setup 

Only few PlanetScope pixels are often sufficient to cover a single Brown 

Planthopper patch. Therefore, the dataset only consists of 1000 datapoints. Thus, in 

the experiment, we used a Support Vector Machine model instead of Con. According 

to the correlation analysis done in the preprocessing procedure, 62 ration index and 

standard difference index parameters are selected to feed as inputs to the SVM 

model. 

Hyper parameters of the Support Vector Machine are as follows: 

• Gamma: 0.01 

• Kernel: Radial Basis Function Kernel (RBF) 

In general, 5% of paddy field areas are annually affected from Brown Planthopper 

attacks in Matara district. As in previous experiment setups, 10-fold cross validation 

is followed in order to split the dataset into training and testing dataset to mitigate the 

effect of the size of the dataset. 

The main objective of this phase of the study is providing efficient and more precise 

alternative methodology for the government to detect the infested areas by BPH 

attacks. Hence, the implemented model is tested with an unseen test dataset covering 

a small area in Kamburupitiya region. Firstly, the non-cultivated paddy fields are 

filtered out by using the CNN model built using the Sentinel-1 SAR imagery. Then, 

Selected Days of RI (Blue, Nir) is mentioned as 39-47. It indicates that RI (Green, NIR) attribute of 

39th day to 47th day has correlations greater than 0.7. 
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only the pixels that are identified as cultivated paddy areas are fed into the Support 

Vector Machine model for the classification. Alternatively, another test is carried out 

by feeding all the pixels in the selected area to SVM model without filtering the non-

cultivated paddy fields pixels. Results of those two tests are depicted in the Figure 

4.5 and Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Identified damaged regions by the SVM model. Area covering true positive results is outlined in red. 

False positive results are colored in yellow. False negative results are colored in blue. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Results of the SVM mdel after filtering out non-cultivated areas using the results of cultivated paddy 

fields dectection model. 
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4.5 Results 

Time series characteristic of raw spectral band reflectance, ratio indices and standard 

indices are showed in the Figure 4.2, 4.3 and 4.4 respectively. Adult Brown 

Planthoppers feed on rice plant by sucking the juice from the base of the rice plant. 

Feeding Brown Planthoppers shrink pigment content of leaves such as Chlorophyll 

and Carotenoid that are responsible for photosynthesis process in healthy plants [70]. 

This feeding process results alterations in reflectance of visible spectral regions. 

Photosynthetically active pigments absorb energy from red and blue spectral bands 

and reflect energy in green wavelengths [71]. After the rice plants get matured, 

growth of yellowish pinnacle may surpass the reflectance of green leaves of the rice 

plants. Thus, in contrast to N. R. Prasannakumar et al. discussed in one of his study 

[72], a higher reflectance of green spectral band in healthy plants may not be 

observed during the matured stage of paddy plants, from the view angle of satellites.  

But it is worth noting that the deviation of the reflectance behaviors between the 

infested and healthy paddy regions is very subtle in green band.  Higher difference of 

the reflectance between infested and uninfested paddy areas can be observed in blue 

and red spectral bands compared to green band. The reflectance of near infrared 

spectral band is weak in infested plants. It is caused by decreasing the photosynthesis 

process due to the decay of the cell structure and low pigment concentration. Due to 

the severity of the infection, reflectance of raw spectral bands, values of standard 

difference and ration indices of infected plants drastically diverge from the values of 

corresponding parameters in healthy plants. We only fed parameters that have 

population correlation over 0.7 for Support Vector Machine model as inputs. The 

population correlation coefficients between the raw reflectance and BPH attacks are 

not significant enough in any day of the season. Red band on day 29 reports the 

highest correlation of 0.67. 0.60 on day 44 and 0.57 on day 23 are the highest 

correlation values corresponding to blue and green spectral bands. NIR band shows a 

negative coefficient and its highest correlation magnitude is 0.6 on day 43. 

On the other hand, ratio indices and standard difference indices show more distinct 

discrimination between uninfested and infested paddy regions compared to raw 

spectral reflectance parameters. Substantial improvements of correlation coefficients 
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can be observed in standard difference indices and ratio difference indices except 

SDI (Green, Blue) and RI (Green, Blue). SDI (NIR, Red) is also known as the 

Normalized Vegetation Index (NDVI). It shows the highest negative correlation 

coefficient of -0.82. The reason for a such high correlation may be that NDVI is a 

good indicator of photosynthesis activities [73]. Further, a higher correlation 

coefficient can be observed in SDI (Blue, Red) and SDI (NIR, Red) compared to 

analogous ratio indices. The correlation values of standard difference indices during 

the period of study do not show any substantial enhancement or decline over 

corresponding ratio indices. RI (Green, NIR) reports the highest positive correlation 

coefficient of 0.81 among standard difference and ratio indices. 

Support Vector Machine with above hyper parameter settings, reports 75.81% of 

accuracy, 94.28% of recall and 61.11% of precision. The slight drop of the recall is 

due to the mixed representation of the pixels that cover both paddy areas and non-

paddy areas such as roads. As shown in Figure 4.5, the trained SVM model output 

some healthy paddy field areas and non-paddy field areas as damaged paddy fields 

resulting a significant drop of precision. Several reasons may affect to the low 

precision of the SVM model. Even though most of the parcels in a paddy field are 

harvested on a same date or a near dates, some parcels in a paddy field are harvested 

very early by farmers due to various reason. One of the main reasons behind such 

early harvesting is preventing the further prevalence of BPH attack into healthy 

paddy plants. Straws left in paddy field after harvesting, result similar spectral 

reflectance behavior as the paddy plants affected by BPH attacks. 
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5. AGRI AI PLATFORM 

One of our objectives of this study is integrating our proposed systems with existing 

decision making procedure. Agri AI web platform is developed in order to fulfill that 

objective (See Figure 5.2). Agri AI system offers following functionalities for users: 

• User can view the cultivated paddy fields in a map and the cultivated paddy 

extent estimation during a specific cultivation season and year. 

• User can get estimations and view the cultivated paddy extent in a map for a 

specific area of the country. There are two ways of selecting specific area. 

o Uploading shape file specifying the area 

o Draw boundaries of the region in the map. (See Figure 5.3) 

• User can get district wise cultivated paddy extent estimations and view 

cultivated paddy extent in a map. 

• User view the damaged paddy field areas by BPH attacks in a map and the 

damaged paddy extent estimation during a specific cultivation season and 

year. 

• User can get estimations and view the damaged paddy extent by BPH attacks 

in a map for a specific area of the country. There are two ways of selecting 

specific area. 

o Uploading shape file specifying the area 

o Draw boundaries of the region in the map 

• User can get district wise cultivated paddy extent estimations and view 

cultivated paddy extent in a map. 

Overall architecture of the Agri AI system is depicted in the Figure 5.1. Angular 6 

JavaScript framework which was developed by Google, used for frontend 

development of the web application while the backend was implemented using Flask 

Python framework. MySQL is used as the database tool for the project. Geo spatial 

data manipulations are conducted using GDAL Python library. 

The machine learning model for estimating the cultivated paddy extent is developed 

using Sentinel-1 SAR imagery in order to overcome the issue of cloud 

contamination. The trained models are saved so that, it can be used to detect 
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cultivated paddy areas for upcoming seasons without retraining machine learning 

models again. Classified areas are then saved in the disk as GeoTiff files. When a 

user requests estimation, boundaries of the selected region or the selected district 

name are sent to backend along with season details. Corresponding classified image 

is cropped using GDAL framework and calculated the cultivated paddy field extent 

or BPH attack prevalence. Finally, the estimations and the cropped image are sent to 

the frontend as the response. 

 

Figure 5.1 Agro AI Architecture 
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Figure 5.2 Agri AI Web Interface 

 

Figure 5.3 User can draw a region in the map to get cultivated extent. Cultivated paddy regions are highlighted 

in white. Estimation for cultivated extent is displayed on the top. 
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6. CONCLUSION 

Both LSTM and 1D-CNN models can be used for classification tasks where it is 

necessary to take temporal characteristics into consideration. 1D-CNN can be 

considered as a good candidate for time series classifications even though LSTM is 

the state of the art neural network for time series classification tasks. If only the 

paddy pixel without mixed characteristics are used for training machine learning 

models, Sentinel-2 will report good paddy pixel classification accuracy despite the 

fact that resolution and revisit time are less than PlanetScope imagery. PlanetScope 

data can be suggested as a perfect optical remote sensing data resources for paddy 

land classification as well as paddy extent estimation in conditions where the cloud 

contamination is moderate or less. Most of the past studies only employed NDVI 

data for land classification applications. Results in this experiment shows a notable 

improvement of paddy land classification accuracies by incorporating LSWI data 

along with NDVI data. Even though the weather conditions of the three agro-

ecological regions vary heavily, same machine learning models can be used without 

any change in any agro-ecological zone. It will greatly reduce the development time 

and the computation cost.  

Heavy cloud contamination impacts the accuracies of the machine learning models 

that use passive remote sensing data, even though those models show a considerable 

robustness for mild and low cloud contaminations. In regions where heavy cloud 

contamination hits the accuracy of the paddy land classification, SAR imagery can be 

considered as a better alternative for classification tasks. Second experiment of the 

study shows promising results for cultivated paddy land mapping using SAR imagery 

time series. The suggested approach does not get affected by cloud contamination, so 

that it can be applied in anywhere without constraining on the weather conditions; 

particularly for the cloud-prone areas such as Wet Zone in Sri Lanka. Synthetic 

Aperture Radar imagery may be a better substitute for passive remote sensing data 

resources in crop mapping applications particularly in cloud-prone areas. Although 

SAR imagery are robust for cloud contamination, detecting very small paddy fields is 

nevertheless challenging for the approaches that use SAR imagery. 
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There was no significant study to measure the applicability of satellite based remote 

sensing resources to detect Brown Planthopper attacks. There were only few studies 

available to measure the severity level of BPH attacks based on statistical approaches 

and hyper-spectral remote sensing resources. Most of the previous research works for 

detecting various paddy diseases based on remote sensing were conducted only under 

laboratory conditions. In contrast, this study investigates the applicability of satellite 

based remote sensing for detecting BPH attacks. Overall, this study shows a great 

potential of applying optical remote sensing data with high temporal and moderate 

spatial resolution for BPH attack detection. Standard difference indices and ratio 

indices reports better correlations with BPH attacks over raw spectral reluctance. 

Support Vector Machine model identifies the BPH attacks with considerably better 

accuracy of 89%. But the field conditions such as early harvesting, hinder the 

precision of the model by a little. Precision of Support Vector Machine can be 

improved significantly by using the results of the previous experiment, masking out 

non-cultivated paddy field areas for the cost of slight drop of recall. 

As previously mentioned, seasonal paddy yield is another vital parameter for precise 

decision making especially on exporting and importing decisions. Existing 

approaches of estimating crop yield and have errors and inefficiencies due to human 

involvement. The issues in the current decision making procedures could greatly be 

mitigated by extending this research study for estimating paddy yield. Authorities 

has defined average rice yield productions per hectare for different regions in the 

country. Hence, Phase 1 and Phase 2 calculation regarding the cultivated paddy 

extent and BPH attacks can be used to derive the paddy yield estimations in next 

steps.  

Only four spectral bands are employed in the study to detect BPH attacks. Making 

use of more indices and spectral bands, particularly which indicate the water level 

(e.g.: Normalized Difference Water Index) of plant leaves may enhance the accuracy 

of the results. Furthermore, training the SVM model with a larger dataset will help 

with improving the accuracy. 
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Since the accuracy measures of the outputs of the combined approach of cultivated 

paddy area detection followed by BPH attack detection using SVM, are significantly 

high, proposed methodology can be suggested as a better substitute for traditional 

methodologies which involve human intervention for detecting the damaged areas by 

Brown Planthoppers. Moreover, the suggested combined approach of using SAR 

imagery and optical imagery to detect BPH attacks may have the capability of 

extending to detect other paddy diseases as well. 
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