Vendor Neutral Interface for Network Device Configuration

D. L. Hewage

(179464K)

Faculty of Information Technology University of Moratuwa June 2020

Vendor Neutral Interface for Network Device Configuration

D. L. Hewage

(179464K)

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirement of the Degree of Master of Science in Information Technology

June 2020

Declaration

I declare that this thesis is my own work and this does not incorporate without acknowledgement any material previously published submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Student

D. L Hewage

14/ June/ 2020

Signature of Student

Date

Supervised by

Dr. M. F. M. Firdhous

14/ June/ 2020

Date

Signature of Supervisor

Abstract

Efficient network configuration of heterogeneous network devices from different vendors is a great challenge. Networking personnel have to adopt to different vendor specific CLIs when necessary, where they have to go through a learning curve to get adapted to a new product. Having to go through a learning process makes such personnel think twice before recommending a product of a different vendor, even though it offers more value for money. Even if they recommend a different vendor based product with hesitation, the implementation and troubleshooting of a networking solution with a new vendor based product increases the duration and cost of the project due to addition of training time and cost.

This research aims to introduce a simple vendor-neutral interface and command converter interface as a simple and efficient approach to overcome issues faced by networking personnel when managing heterogeneous network devices by different vendors. It also aims to make networking infrastructures vendor neutral in all aspects by contributing specially to network configuration management area.

Acknowledgement

I would like to convey my special thanks to Dr. M.F.M. Firdhous, Senior Lecturer, Faculty of Information Technology University of Moratuwa for the support, guidance and supervision given to me throughout the project, making it a success. My sincere gratitude to Mr. D.K. Withanage, Mr. C. Wijesiriwardana and Mr. S. Premarathne for their kind advices and support given to me.

I'm grateful to my family for their enormous support given to me at various points in time during the course of this research. Further I'm thankful to all my colleagues in both Msc. IT Batch 11 and work for the support rendered to me.

Finally, I thank all the staff members and Faculty members of Faculty of Information Technology University of Moratuwa.

Table of Contents

Abstract
Acknowledgementii
List of Tables
List of Figuresxi
List of Abbreviationsxii
Chapter 1 1
1.0 Introduction1
1.1 Prolegomena1
1.2 Problem Statement
1.3 Aim and Objectives2
1.3.1 Aim
1.3.2 Objectives
1.4 Research Scope
1.5 Structure of the Thesis
Chapter 2
2.0 Literature Review
2.1 Introduction
2.2 Literature Review
2.3 Problem Definition
2.4 Summary
Chapter 3 10
3.0 Technology Adopted
3.1 Introduction
3.2 Selection of CLI Brands

3.3 CLI Comparison Metric	12
3.4 Paramiko	13
3.5 Netmiko	13
3.6 Python 3	13
3.5 Summary	14
Chapter 4	15
4.0 Analysis and Design	15
4.1 Introduction	15
4.2 Functional Requirements	15
4.3 Non Functional Requirements	15
4.4 User Characteristics	16
4.5 Architectural Design	16
4.6 Use case Diagram	17
4.7 Software Development Life Cycle	17
4.7.1 Software Prototyping	17
4.7.2 Incremental Prototyping	
4.8 Summary	
Chapter 5	19
5.0 Implementation	19
5.1 Introduction	19
5.2 Implementation of Netmiko connection sub-system	19
5.3 Implementation of vendor specific command converter sub-system	21
5.3.1 Transitioning Between Modes	24
5.3.2 Save Configurations	
5.3.3 View Configurations	
5.3.4 SSH Configurations	

5.3.5 Link Layer Discovery Protocol (LLDP) Configurations	36
5.3.6 Port Management	36
5.3.7 VLAN Management	38
5.3.8 VLAN Assignment	39
5.3.9 VLAN Interface IP Address Assignment	43
5.3.10 Default Route Configuration	44
5.3.11 Link Aggregation Control Protocol (LACP) Configurations	44
5.3.12 Multiple Spanning Tree Protocol (MSTP) Configurations	46
5.3.13 Access Control Lists (ACL) Creation	53
5.4 Implementation of Vendor Neutral Command Converter Sub-System	62
5.4.1 Transitioning Between Modes	64
5.4.2 Save Configurations	70
5.4.3 View Configurations	70
5.4.4 SSH Configurations	72
5.4.5 Link Layer Discovery Protocol (LLDP) Configurations	73
5.4.6 Port Management	73
5.4.7 VLAN Management	75
5.4.8 VLAN Assignment	76
5.4.9 VLAN Interface IP Address Assignment	80
5.4.10 Default Route Configuration	80
5.4.11 Link Aggregation Control Protocol (LACP) Configurations	81
5.4.12 Multiple Spanning Tree Protocol (MSTP) Configurations	82
5.4.13 Access Control Lists (ACL) Creation	88
5.6 Summary	99
Chapter 6	100
6.0 Conclusion and Suggestions for Further Works	100

6.1 Conclusion	
6.2 Suggestions for Future Work	
6.3 Limitations	
References	
Appendix A	
Appendix B	
Appendix C	
Appendix D	
Appendix E	
Appendix F	

List of Tables

Table 5.1 Activating Enable Mode or System View 2	24
Table 5.2 Activating Configure Mode or System View 2	24
Table 5.3 Exit or Quit a Mode of operation 2	25
Table 5.4 Switch to Virtual Terminal Interface Configuration 2	25
Table 5.5 Switch to Interface Configuration mode	26
Table 5.6 Switch to Interface Range Configuration mode 2	26
Table 5.7 Switch to VLAN Configuration Mode 2	27
Table 5.8 Switch to VLAN Interface Configuration mode 2	27
Table 5.9 Switch to Link Aggregation Configuration Mode	28
Table 5.10 Switch to MSTP Configuration mode 2	28
Table 5.11 Switch to Standard Numbered ACL Configuration Interface 2	29
Table 5.12 Switch to Standard Named ACL Configuration Interface 2	29
Table 5.13 Switch to Extended Numbered ACL Configuration Interface 3	30
Table 5.14 Switch to Extended Named ACL Configuration Interface 3	30
Table 5.15 Save the Configurations 3	31
Table 5.16 View configuration details 3	31
Table 5.17 SSH Configurations 3	34
Table 5.18 Activate LLDP	36
Table 5.19 Port Management Configurations	37
Table 5.20 Creating and Naming a Data VLAN 3	38
Table 5.21 Creating and Naming a Voice VLAN	39
Table 5.22 Configuration of a Trunk Port	39
Table 5.23 Configuration of an Access Port4	11
Table 5.24 Configuration of a Voice Port4	12
Table 5.25 IP Address Assignment for a VLAN Interface 4	13
Table 5.26 Default Route Configuration4	14
Table 5.27 LACP Configurations 4	14
Table 5.28 MSTP Configurations 4	16
Table 5.29 DLDP Configurations 4	19

Table 5.30 Edge Port Configurations	50
Table 5.31 BPDU Configurations.	51
Table 5.32 Root Guard Configurations	51
Table 5.33 Loop Guard Configurations	.52
Table 5.34 Creation of Standard Numbered ACLs	53
Table 5.35 Creation of Standard named ACLs	54
Table 5.36 Creation of Extended numbered ACLs	56
Table 5.37 Creation of Extended named ACLs	57
Table 5.38 Assignment of Standard numbered ACLs to VLANs	.58
Table 5.39 Assignment of Standard named ACLs to VLANs	59
Table 5.40 Assignment of Extended numbered ACLs to VLANs	59
Table 5.41 Assignment of Extended named ACLs to VLANs	60
Table 5.42 Assignment of Standard numbered ACLs to Ports	60
Table 5.43 Assignment of Standard named ACLs to Ports	61
Table 5.44 Assignment of Extended numbered ACLs to Ports	61
Table 5.45 Assignment of Extended named ACLs to Ports	62
Table 5.46 Activate Enable Mode using Vendor Neutral CLI	64
Table 5.47 Activate Configure Mode using Vendor Neutral CLI	64
Table 5.48 Quit an Operations Mode using Vendor Neutral CLI	64
Table 5.49 Switch to Virtual Terminal Interface Configuration using Vendor Neutral	
CLI	65
Table 5.50 Switch to Interface Configuration Mode using Vendor Neutral CLI	65
Table 5.51 Switch to Interface Range Configuration Mode using Vendor Neutral CLI.	65
Table 5.52 Switch to VLAN Configuration Interface using Vendor Neutral CLI	66
Table 5.53 Switch to VLAN Interface Configuration mode using Vendor Neutral CLI	66
Table 5.54 Switch to Link Aggregation Configuration mode using Vendor Neutral CL	J
	67
Table 5.55 Switch to MSTP Configuration Mode using Vendor Neutral CLI	67
Table 5.56 Switch to Standard numbered ACL Configuration Mode using Vendor	
Neutral CLI	68
Table 5.57 Switch to Standard named ACL Configuration Mode using Vendor Neutral	1
CLI	68

Table 5.58 Switch to Extended numbered ACL Configuration Mode using Vendor	
Neutral CLI	69
Table 5.59 Switch to Extended named ACL Configuration Mode using Vendor Neutr	ral
CLI	69
Table 5.60 Save Configurations using Vendor Neutral CLI	70
Table 5.61 View Configuration Details using Vendor Neutral CLI	70
Table 5.62 SSH Configurations using Vendor Neutral CLI	72
Table 5.63 Activate LLDP using Vendor Neutral CLI	73
Table 5.64 Port Management Configurations using Vendor Neutral CLI	74
Table 5.65 Creation and Naming data VLANs using Vendor Neutral CLI	75
Table 5.66 Creation and Naming of voice VLANs using Vendor Neutral CLI	75
Table 5.67 Assignment of Trunk Ports using Vendor Neutral CLI	76
Table 5.68 Assignment of Access Ports using Vendor Neutral CLI	78
Table 5.69 Assignment of Voice Ports using Vendor Neutral CLI	79
Table 5.70 Address assignment for VLAN interfaces using Vendor Neutral CLI	80
Table 5.71 Default Route Configuration using Vendor Neutral CLI	80
Table 5.72 LACP Configurations using Vendor Neutral CLI	81
Table 5.73 MSTP Configurations using Vendor Neutral CLI	82
Table 5.74 MSTP Configurations using Vendor Neutral CLI	85
Table 5.75 DLDP Configurations using Vendor Neutral CLI	85
Table 5.76 Edge port Configurations using Vendor Neutral CLI	86
Table 5.77 BPDU guard Configurations using Vendor Neutral CLI	86
Table 5.78 Root guard Configurations using Vendor Neutral CLI	87
Table 5.79 Loop guard Configuration using Vendor Neutral CLI	87
Table 5.80 Creation of Standard numbered ACLs using Vendor Neutral CLI	88
Table 5.81 Creation of Standard named ACLs using Vendor Neutral CLI	89
Table 5.82 Creation of Extended numbered ACLs using Vendor Neutral CLI	90
Table 5.83 Creation of Extended named ACLs using Vendor Neutral CLI	92
Table 5.84 Assignment of Standard numbered ACLs to VLANs using Vendor Neutra	ıl
CLI	93
Table 5.85 Assignment of Standard named ACLs to VLANs using Vendor Neutral C	LI
	94

Table 5.86 Assignment of Extended numbered ACLs to VLANs using Vendor Neutral
CLI
Table 5.87 Assignment of Extended named ACLs to VLANs using Vendor Neutral CLI
Table 5.88 Assignment of Standard numbered ACLs to Ports using Vendor Neutral CLI
Table 5.89 Assignment of Standard named ACLs to Ports using Vendor Neutral CLI96
Table 5.90 Assignment of Extended numbered ACLs to Ports using Vendor Neutral CLI
Table 5.91 Assignment of Extended Named ACLs to Ports using Vendor Neutral CLI 97

List of Figures

Figure 2.1 High-level Architecture of the APIs	8
Figure 3.1 Gartner Magic Quadrant for the Wired and Wireless LAN Access	
Infrastructure 2019	10
Figure 3.2 Gartner Magic Quadrant for the Wired and Wireless LAN Access	
Infrastructure 2018	11
Figure 3.3 Gartner Magic Quadrant for the Wired and Wireless LAN Access	
Infrastructure 2017	11
Figure 4.1 Architectural Design	16
Figure 4.2 Use Case Diagram	17

List of Abbreviations

- API Application Programming Interface
- CLI Command Line Interface
- CNRI Corporation for National Research Initiatives
- IANA -- Internet Assigned Number Authority
- IETF -- Internet Engineering Task Force
- NETCONF Network Configuration Protocol
- NETMOD Network Modelling
- YANG Data Modelling Language for the Network Configuration Protocol
- POSIX Portable Operating System Interface
- IEEE -- Institute of Electronic and Electrical Engineers
- SNMP Simple Network Management Protocol
- ISO International Standard Organization
- OSI Open System Interconnection
- LAN Local Area Network
- WLAN Wireless Local Area Network
- SSH Secure Shell
- LLDP Link Layer Discovery Protocol
- LACP Link Aggregation Control Protocol
- MSTP Multiple Spanning Tree Protocol
- VLAN Virtual LAN
- ACL Access Control List
- POC Proof of Concept

Chapter 1

1.0 Introduction

1.1 Prolegomena

Since the initiative to introduce standards in networking that started in 1977, IETF pioneered to introduce a network configuration management protocol by the name SNMP in 1980s. The said protocol's name itself stands for its purpose Simple Network Management Protocol. Though there were certain issues with respect to security in initial release, they were able to address them in later releases as the protocol evolved over time. Even though SNMP was introduced to be used with both monitoring and configuration management, the industry kept on using device specific CLIs for the configuration management purpose. Further they embraced SNMP only as a monitoring protocol.

Network configuration management field suffers from inability to survive in a heterogeneous environment. One approach to solve this is to introduce a brand new protocol that the industry will embrace to be used with both monitoring and configuration purposes. This method would be effective in the long run, when industry accepts it and legacy equipment not having support for new protocol gets replaced with new ones. Another simple but effective approach that would be more productive in contemporary and future deployments of network configuration management, would be to introduce a simple vendor-neutral interface in conjunction with a command converter API. The said interface should be simple, user-friendly and acceptable to be used with any kind of vendor specific networking device. Further the said API should be capable of handling command conversions from a vendor-neutral CLI to vendor specific CLIs.

Introduction of a vendor-neutral interface and command converter API would be very much beneficial to the network configuration since it would be a solution to most of the hardships that networking personnel face when adopting to products manufactured by different manufacturers. Furthermore it would increase efficiency and reduce costs that has to be incurred in network configuration management of heterogeneous environments.

1.2 Problem Statement

Efficient network configuration of heterogeneous network devices from different vendors is a great challenge. This research aims to introduce a simple vendor-neutral interface and command converter API as a simple and efficient approach to overcome issues faced by networking personnel when managing heterogeneous network devices by different vendors. It also aims to make networking infrastructures vendor neutral in all aspects by contributing specially to the network configuration management area.

1.3 Aim and Objectives

1.3.1 Aim

Introduction of a simple vendor-neutral interface and a command converter API for simplified network configuration.

1.3.2 Objectives

- 1. Identification of existing CLIs of major network device vendors.
- 2. Analysis and comparison of different vendor specific CLIs with respect to their syntaxes and features.
- 3. Proposing a simple vendor-neutral interface to replace vendor specific CLIs.
- 4. Development and introduction of a command converter API that is capable of handling command conversions tasks mentioned below;
 - i. Conversion between vendor specific CLIs.
 - ii. Simple vendor-neutral interface to selected vendor specific CLIs.
- 5. Testing the command converter API with respect to configuration of products by selected major vendors.
- 6. Composing a user-friendly manual for vendor-neutral interface and command converter API.

1.4 Research Scope

1.Since the scope of considering all major vendors CLIs would be too large, consideration would only be done for three selected vendors namely, Cisco, HPE and Aruba.

2. During this research only switch CLI syntaxes would be considered.

3. Considering switch CLI syntaxes of selected three vendors, still it could be considered as verbose. Therefore following aspects of CLI would not be considered during this research;

i. IPv6 based configurations.

ii. Security configurations of both IPv6 and IPv4.

iii. Support for propitiatory protocols and features.

iv. Password recovery routines.

v. Monitoring aspects using SNMP.

vi. Quality of service configurations.

4. Since the research targets, proof of concept in terms of utilizing simple vendorneutral interface for network configuration, priority will be given for support of only the key configuration aspects through the proposed CLI and API.

5. Since the development of API would be based on Python it could be considered as a platform independent API, but during deployment if any complications arise with certain OS platforms priority will be given for implementation in Linux based OS platform.

1.5 Structure of the Thesis

The thesis is structured as follows. Chapter 2 consists of literature review, chapter 3 explains the technologies adopted for the research, chapter 4 describes about the analysis and design process of research while chapter 5 demonstrates the implementation process of the research finally the chapter 6 consists of conclusion and future works of the thesis.

Chapter 2

2.0 Literature Review

2.1 Introduction

Chapter 2 review the concepts and techniques used in network configuration management field. Further it discusses the shortcomings in the same. The chapter tries to identify the solutions that can be used to overcome the issues in the discussed areas.

2.2 Literature Review

The networking in the new millennia has come a long way since the International Standard Organization (ISO) identified the urgent need for introduction of standards that would allow for interconnecting systems from different manufacturers, and established a new subcommittee (SC16) for "Open System Interconnection" in 1977 [1].Nowadays almost all networking devices support interoperability to a very high extent using standards and standardized protocols defined by the above mentioned initiatives. Thanks to standardization modern day networks have grown exponentially due to increased interoperability between multi-vendor devices.

Irrespective of the IT infrastructure model used within the organization whether it is cloud computing or local computing based, having a properly managed and well-designed LAN, WLAN infrastructure is very much important for the smooth functioning of its operations. LAN and WLAN infrastructure mainly consists of active networking components like firewalls, layer 3 and layer 2 switches, routers, wireless access points, WLAN controllers and etc. Though most of the above mentioned components support manageability through web based GUI or through a CLI, Network Engineers prefer the use of command line over GUI for configuration management of networking devices due to the reason of CLI being simple and highly efficient.

Active manageable networking components have their own command line syntax depending on the manufacturer. Even though the networking device manufacturers adhere to ISO-OSI standards and standardized protocols, in order to support inter-operability, they maintain their own vendor specific CLIs for configuration of respective

devices. Irrespective of the device model a particular manufacturer's product range have somewhat similar command line syntaxes. When it comes to products from different manufacturers the CLI syntaxes are totally different from one another. Therefore Network Engineers face the challenge of having to get multiple product specific training and certifications to configure and manage products manufactured by different manufacturers. Though the networking products support interoperability, due to the above mentioned reason Network Engineers always prefer to stick to a specific manufacturer's products when it comes to design and implementation of network infrastructure.

Network Engineers being restricted to products manufactured by specific manufacturers increase the implementation costs of network infrastructure, due to the reason of losing the ability to make use of competitive advantage when purchasing products. Furthermore it degrades the quality of network infrastructure due to reduced capability to migrate to new products by other manufacturers having useful state of the art features. Being restricted to vendor specific products and CLI syntaxes increases possibility of using proprietary protocols, further reducing possibility of introducing products manufactured by different manufacturers into the existing infrastructure.

In late 1980s IETF introduced SNMP as a solution to overcome the issue of network monitoring and configuration management not being vendor independent [2]. Initial version of SNMP named SNMPv1 was widely deployed at the time and was superseded by SNMPv2 and the latest version SNMPv3 released in 2002 which addresses security requirements. Though SNMP was developed to implement vendor independent network monitoring and configuration management it is widely being used by the industry for the purpose of fault and performance monitoring. The industry kept on preferring the CLI for configuration management purposes.

In year 2002 during a workshop on Network Management hosted by CNRI, IETF's Architecture Board identified the issue of SNMP not being adopted by the industry for the purpose of network configuration management. Then IETF initiated their work on developing a vendor independent network configuration management protocol by the name NETCONF with the establishment of NETCONF work group [3]. The key reasons

for introduction of a totally new protocol was due to SNMP being good only for monitoring and CLI scripting being problematic, complex and time consuming in terms of utilization in large scale operator based network infrastructures. Later IETF established another work group by the name NETMOD for the development of YANG. In year 2011 IETF introduced NETCONF as a protocol that aids to install, manipulate, and delete the configurations of network devices [4] [5]. In year 2010 IETF introduced YANG as a data modelling language used to model configuration and state data manipulated by the Network Configuration Protocol [6].Since the introduction of NETCONF there has been a rush to embrace the new protocol by major vendors. Among the supporters were Brocade Communications Systems Inc. Cisco Systems Inc., Juniper Networks Inc., Hewlett Packard Enterprise, Ericsson-LG and Nokia Networks, but notably not Alcatel-Lucent [7].

IETF taking the initiative to implement a vendor independent CLI for network configuration management is admirable and very much beneficial to the industry. However there are certain limitations and practical issues pertaining to the utilization of NETCONF and YANG mostly in medium and small scale network infrastructures, namely; legacy network equipment not supporting NETCONF, NETCONF supporting network devices being more expensive, Network Equipment Manufacturers supporting NETCONF and YANG only with the firmware and products targeted for Data-centres and Operators, NETCONF and YANG implementation requiring extensive knowledge on XML, programming languages, scripting languages and System Engineering field, NETCONF and YANG being more suitable for large scale automated deployments and configuration requirements rather than for medium to small scale infrastructure deployments with human intervention. Furthermore it should be understood that migration to NETCONF and YANG supported network infrastructure cannot be achieved by enforcing a flag day for everyone to start using it. This was the same dilemma that IANA faced when introducing IPv6 to replace IPv4.

Rather than introducing a totally new set of protocols like NETCONF and YANG to make network configuration management vendor neutral, a simpler approach could be utilized to overcome the above issue; that is to introduce a simple vendor-neutral interface and a command converter API capable of converting commands between different vendor specific CLIs and between proposed simple vendor-neutral interface and vendor specific CLIs. Introduction of such API would be advantages to the networking industry, since it would facilitate Network Engineers who are restricted to certain vendor platforms to work on other platforms with zero learning curve, further decreasing certification and training costs. It would also improve the competitive advantage when purchasing network devices by reducing tendency to use preferred brand specific specifications. It indirectly aids in reduction of using propitiatory protocols in network infrastructure.

Even-though the application is totally different IEEE's POSIX stands for Portable Operating System Interface, which was introduced to facilitate application portability, application interoperability, data portability, and user portability at the source code level mostly in Unix/Linux platform could be considered as a similar attempt by a consortium of vendors to create a single standard version of UNIX/Linux based applications [8]. POSIX compliance makes it simpler to port applications between OS Platforms, which results in time savings. So developers got acquainted with the fundamentals of this widely used standard when developing applications for UNIX/Linux based OS platforms. Examples of some POSIX-compliant systems are AIX, HP-UX, Solaris, and MacOS (since 10.5 Leopard). On the other hand, Android, FreeBSD, Linux Distributions, OpenBSD and VMWare follow most of the POSIX standard, but they are not certified [9].

Paramiko is a community maintained, python based API that has been developed under GNU Lesser General Public License (LGPL) to facilitate SSH connectivity to other SSH supporting devices [10]. Though this API could be considered as a good platform to develop a command converter API, there are certain known issues with it that makes it incapable of connecting to most of the network product by major vendors like Cisco and HPE.

Netmiko is another community maintained, Python based API build on top of Paramiko, introduced by Kirk Byers. It contains a multi-vendor library to simplify Paramiko SSH connections to network devices [11]. This particular GitHub fork has regularly tested set

of libraries that makes it capable of connecting to network products by major vendors like Cisco, Juniper and HPE. It also has some more experimental libraries with limited testing that support connectivity to other vendor's products as well. Netmiko could be considered as a suitable Platform for development of a command converter API that would facilitate command conversion between different vendor specific CLIs and between proposed simple vendor-neutral interface and vendor specific CLIs. (See Figure 2.1)

Figure 2.1 High-level Architecture of the APIs

Apart from facilitative APIs for SSH connection establishment, currently there aren't similar APIs that are capable of conducting command conversion between different vendor specific CLIs. The only available aid that helps Network Engineers to configure products from different vendors are some CLI Reference Guides having comparisons of multi-vendor CLI syntaxes [12]. Therefore it could be considered that this type of approach to build a simple vendor-neutral CLI and API would be worth the venture.

2.3 Problem Definition

Difficulty in managing multi-vendor network devices, due to the reason of network configuration CLIs being vendor specific has to be overcome either by using a command converter API or through a vendor neutral CLI suitable for all vendor platforms.

2.4 Summary

This chapter comprehensively review the shortcomings and issues in the network configuration management field. It also identifies the positive solutions that can be used to overcome the discussed issue.

Chapter 3

3.0 Technology Adopted

3.1 Introduction

Chapter 3 describes the process of selecting technologies that were used for the implementation of the solutions mentioned in chapter 2. Further it discusses the reasons for selection of the specific technologies that were adopted.

3.2 Selection of CLI Brands

There are hundreds of networking product vendors available in the world. Some of them are famous and being used all around the world and some of them are famous in certain regions. However method of selecting number of brands to be utilized for the project had to be worked out. Therefore Gardner Magic Quadrant for the Wired and Wireless LAN Access Infrastructure for past three years 2017, 2018 and 2019 were taken into consideration. (See figure 3.1, 3.2 and 3.3 given below)

Figure 3.1 Gartner Magic Quadrant for the Wired and Wireless LAN Access Infrastructure 2019

Figure 3.2 Gartner Magic Quadrant for the Wired and Wireless LAN Access Infrastructure 2018

Figure 3.3 Gartner Magic Quadrant for the Wired and Wireless LAN Access Infrastructure 2017

After analysing the Gartner Magic Quadrant it was identified that HPE, Aruba and Cisco had been in the Magic Quadrant for past three consecutive years. Therefore HPE, Aruba and Cisco were selected as candidates for the API development.

3.3 CLI Comparison Metric

After selection of three brands for development of command converter APIs, it was decided that the selected configuration commands have to be compared using a comparison metric to identify the CLI similarities. Therefore following formula was developed and applied to compare the CLI commands.

$$C = \sum A_0 + A_1 + A_2 + A_3 + B_0 + B_1 + B_2$$

C = Comparison Value

A0 = 3 if command is exactly the same else A0 = 0

A1 = similar argument count * 2

A2 = count of synonymous or arguments with minor character differences * 1

A3 = 1 if argument count is same else A3 = 0

B0 = -3 if command is different else B0 = 0

B1 = different argument count * -2

B2 = -1 if argument count is different else B2 = 0

C = -15 if the commands are incomparable

Since the HPE Comware 5 and Comware 7 were very much similar the formula was not applied to compare Comware 5 and 7. Instead of that Cisco and HPE Comware7, Cisco and Aruba, HPE Comware7 and Aruba were compared using the above mentioned formula. When compare the cumulative Comparison value for Aruba and HPE was -460 while comparison value between Aruba and Cisco was -141 and comparison value between Cisco and HPE was -246. Therefore it was understood that all three (3) CLIs are have more dissimilar than being similar. Aruba and HPE turned out to be most dissimilar

while Aruba and Cisco turned out to be similar compared with others. The comparison values mentioned above clearly show the importance of developing a command converter API.

3.4 Paramiko

In order to develop a connection sub-system it was decided to utilize an already available open source ssh client API. Therefore Paramiko turned out to be a perfect candidate since it was supporting both Python 2.7 and 3.4+ implementation of the SSHv2 protocol, providing both client and server functionality. It leverages a Python C extension for low level cryptography (Cryptography). [10] However upon testing Paramiko functions for the development purpose it was identified that there were some connectivity problems in terms of connecting to different models of network devices using Paramiko.

3.5 Netmiko

After unsuccessful attempt to develop the vendor neutral API on top of Paramiko it was identified that there was another library specialized in connecting to Network devices. This Library was built on top of Paramiko Library and supported many networking brands available. Further Investigation of the Netmiko documentation identified that the Netmiko Library already supports successful connectivity to the brands selected for the project [11]. Netmiko support many number of networking brands and successful testing of connectivity to selected networking brands made it the most suitable library to be used to make this project a success. Further Netmiko being able to install on Windows, Linux and OSX Operating System (OS) platforms aided the decision to select Netmiko for the API development.

3.6 Python 3

Since it was already decided to make use of Python based Netmiko library for the development of the connection sub-system, priority was given to a programing language that is compatible with Netmiko library. Further it was identified that even though Netmiko supported both Python 2 and 3, Python 2 was being discontinued with effect from 1st Jan 2020 [13]. Therefore automatically Python 3 turned out to be most suitable

candidate for development. Furthermore Python being a loosely typed language having lots of text manipulation functions made it even more suitable for the purpose developing a CLI based command converter subsystem.

Development of the API was done making use of free community edition of Sublimetext IDE. The prototype testing was done on a Centos 7 based VM having installed with Python 3, Paramiko and Netmiko libraries. Since Centos 7 native installation of python was Python 2, Python 3 had to be installed manually.

3.5 Summary

This chapter presented justifications for selection process of specific technologies that were used to in chapter 5. Namely the Python 3, Paramiko based Netmiko libraries were used for the implementation as per the justifications given here.

Chapter 4

4.0 Analysis and Design

4.1 Introduction

Chapter 4 describe the analysis and design process conducted prior to the implementation process discussed in chapter 5. The chapter describes the functional requirements, Non-functional requirements, and development methodology used in chapter 5.

4.2 Functional Requirements

- 1. API should be capable of connecting to selected set networking devices from selected brands using ssh protocol.
- 2. API should be capable of converting selected set of CLI commands from a particular brand to another brand's CLI commands.
- 3. API should have an ability to show the outputs generated by networking device as a response to the converted command sent to it.
- 4. API should have an ability identify and display error messages if the input command is not supported by the networking device being managed.
- 5. API should support for seamless conversion of different modes or states of configurations between the CLIs of different brands of networking devices.
- 6. API should be capable of gracefully terminating the ssh connection with the networking device being configured.

4.3 Non Functional Requirements

- 1. API should have capable of being scalable to support command conversion to other brands of networking devices
- API should be maintainable in terms of making modifications to commands if a specific vendor makes a modification to an existing command with a new release of firmware. Further it should support adding new commands as required.

3. API should be user-friendly whereas the end user should feel like doing configuration changes to the networking device user is familiar with, though configuration would be done on a different device having a different CLI.

4.4 User Characteristics

- 1. User should be familiar with networking concepts.
- 2. User should have a basic knowledge and familiarity with configuration of networking devices using a specific brands CLI.
- 3. User should have basic computer skills with respect to using a terminal program.

4.5 Architectural Design

Figure 4.1 Architectural Design

4.6 Use case Diagram

Figure 4.2 Use Case Diagram

4.7 Software Development Life Cycle

4.7.1 Software Prototyping

Software prototyping can be considered as a working model of software with some limited functionality. The prototype does not always hold the exact logic used in the actual software application prototyping could also be used to allow the users evaluate developer proposals and try them out before implementation. It also helps to understand the requirements which are user specific and may not have been considered by the developer during product design stage [14].

Since the Software Prototyping tuned out to be the most suitable candidate for the design requirement of vendor neutral and vendor specific API for CLI based network configuration it was decided to make use of the Software Prototyping as the development of the project. Therefore Following stepwise approach was used in the development process;

- 1. Basic Requirement Identification
- 2. Developing the initial Prototype
- 3. Review of the Prototype
- 4. Revise and Enhance the Prototype

There are different types of software prototyping techniques used in the industry namely;

- 1. Throwaway Prototyping
- 2. Evolutionary Prototyping
- 3. Incremental Prototyping
- 4. Extreme Prototyping

After analysing different types of prototyping it was identified that most suitable option for this specific requirement would be Incremental Prototyping.

4.7.2 Incremental Prototyping

Incremental prototyping method was used where multiple functional prototypes were built for the connection sub-system and command converter sub-system. Then the final prototypes were integrated to form a complete API.

4.8 Summary

This chapter presented design process involved prior to the initiation of the implementation stage. It descriptively describes software development lifecycle used in the design process. It also identifies functional and non-functional requirements that were identified documented beforehand.

Chapter 5

5.0 Implementation

5.1 Introduction

Chapter 5 descriptively explains the implementation process of the solutions identified in chapter 1. The chapter consists of 4 stages of development that were done according to the SDLC method identified in Chapter 4. As per the selected SDLC method incremental prototyping, the development process was conducted incrementally by initial development of connection sub-system, command conversion sub-system and finally the combining of the two sub systems. Most importantly this chapter tabulates selected vendor based CLIs in comparison, which aided the design and testing and implementation process directly.

5.2 Implementation of Netmiko connection sub-system

Netmiko API supports ssh connectivity to following brands of networking products with full compatibility Arista EOS, Cisco ASA, Cisco IOS/IOS-XE, Cisco IOS-XR, Cisco NX-OS, Cisco SG300, HP Comware7, HP, ProCurve, Juniper Junos and are being regularly tested [15].

Further the same API supports following brands of networking products Alcatel AOS6/AOS8, Apresia, Systems AEOS, Calix B6, Cisco AireOS (Wireless LAN Controllers), Dell OS9 (Force10), Dell OS10, Dell PowerConnect, Extreme ERS (Avaya), Extreme VSP (Avaya), Extreme VDX (Brocade), Extreme MLX/NetIron (Brocade/Foundry), Huawei, IP Infusion OcNOS, Mellanox, NetApp cDOT, OneAccess, Palo Alto PAN-OS, Pluribus, Ruckus ICX/FastIron, Ubiquiti, EdgeSwitch, Vyatta VyOS with limited testing [15].

Netmiko also supports connectivity with the following brands A10, Accedian, Aruba, Ciena SAOS, Citrix Netscaler, Cisco Telepresence, Check Point GAiA, Coriant, Dell OS6, Dell EMC Isilon, Eltex, Enterasys, Extreme EXOS, Extreme Wing, Extreme SLX (Brocade), F5 TMSH, F5 Linux, Fortinet, MRV Communications OptiSwitch, Nokia/Alcatel SR-OS, QuantaMesh, Rad ETX experimentally [15].

Since the Netmiko API supports the connectivity to HP, Cisco, Aruba and a very large number of networking brands it was selected as the most suitable candidate to be used as a platform to build the required connection sub-system. Therefore during the testing stage of initial prototype to connect with HP, Aruba and Cisco devices it was identified that the netmiko.hp.hp comware in /opt/rh/rhmodule residing did python36/root/usr/lib/python3.6/site-packages/netmiko/hp path not support configuration of HPE switches having the following models numbers namely, HPE 1910, 1920, 1950 but the module supported configuration of HPE 5500 and 5510 successfully. After investigation of above issue it was identified that configuration problem occurred due to certain HPE switches by default only supporting management through the web interface and full range of commands being disabled by default. In order to enable CLI in those switches certain command had to be entered in to the terminal followed by a password specific to the switch model.

Therefore initial prototype of Netmiko based connection sub-system was developed using send_command_timing() method. See Appendix A for code. But it turned out to be partially successful due to the reason of connection sub-system not being able to disable paging in the switch CLI. The problem with not being able to disable paging would be when a show command would require display of multiple pages only the first page would be visible to the end user. This was due to netmiko.hp.hp_comware module not having privileges to disable paging during connection initiation.

In order to overcome above issues, three (3) new modules were developed with slight modifications to original netmiko.hp.hp_comware module. See Appendix B for code. The newly modified modules were placed inside the same path as original module. Further the __init__.py and ssh_dispatcher.py were also modified to support the newly added modules. See Appendix C for code. Newly developed Netmiko based connection subsystem turned out to be successful in terms of connecting and configuring all HPE Comware based switches having both Comware7 and Comware5 firmware.

Though HPE connection and configuration issues were solved by creating new Netmiko modules, similarly it was identified that Netmiko. Aruba module residing in /opt/rh/rh-python36/root/usr/lib/python3.6/site-packages/netmiko/arub path also had problems connecting to specific Aruba switches namely Aruba 2530 switch. After a quite a lot of efforts to correct the problem, it was identified that netmiko.hp.hp_procurve module residing in /opt/rh/rh-python36/root/usr/lib/python3.6/site-packages/netmiko/hp path works successfully in terms of connecting and configuring Aruba switches. The reason for the Netmiko. Aruba module not working was due to the reason of the module being developed for connectivity to Aruba WLAN controller firmware rather than for switch firmware.

However during the development of Netmiko connection sub-system there were no issue in connecting to Cisco IOS based devices using the netmiko.cisco.cisco_ios module residing in /opt/rh/rh-python36/root/usr/lib/python3.6/site-packages/netmiko/cisco path.

The above mentioned modified hp_comware, hp_comware512900, hp_comwarejinhua, hp_comwarefoes, hp_procurve and cisco_ios modules were used to develop initial connection sub-system. The developed sub-system was capable of connecting and configuring selected vendor specific switch brands through vendor specific CLIs using ssh protocol.

5.3 Implementation of vendor specific command converter sub-system

During the process of designing scope of the project it was identified that development of an API to support command conversion for higher number of brands would be infeasible. Therefore it was decided that an API should be designed to only support for three brands. Even with the selection of three brands due to the reason of selected brands having very large number of networking devices ranging from layer 1 to layer 7 in ISO-OSI model, it was decided to provide support for only Switched that operate in Layer 2 and 3. In order to further reduce the scope to comply with the timeline of the project, it was decided that the command conversion should support only IPv4 based most important configuration routines that are frequently used by Network Engineers.
Since the scope of the project specifies that the API development would only consider command conversion for selected IPv4 configurations of three selected brands of switches, the development of command converter sub-system only considered the following configuration routines for the development.

- 1. Transitioning between modes
- 2. Save configurations
- 3. View configurations
- 4. SSH configurations
- 5. Link Layer Discovery Protocol (LLDP) configurations
- 6. Port management
- 7. VLAN management
 - i. Data
 - ii. Voice
- 8. VLAN assignment
 - i. Trunk
 - ii. Access
 - iii. Voice
- 9. VLAN interface IP Address assignment
- 10. Default route configuration
- 11. Link Aggregation Control Protocol (LACP) configurations
- 12. Multiple Spanning Tree Protocol (MSTP) configurations
 - i. MSTP configurations
 - ii. MSTP hardening
- 13. Access Control Lists (ACLs)
 - i. ACL creation
 - a) Standard numbered ACLs
 - b) Standard named ACLs
 - c) Extended numbered ACLs
 - d) Extended named ACLs
 - ii. Routed ACL assignment
 - a) Standard numbered ACLs

- b) Standard named ACLs
- c) Extended numbered ACLs
- d) Extended named ACLs

iii. Port ACL assignment

- a) Standard numbered ACLs
- b) Standard named ACLs
- c) Extended numbered ACLs
- d) Extended named ACLs

Separate command conversion sub-systems were developed to handle conversions between Cisco and other brands, Aruba and other brands, HPE Comware5 and other Brands and HPE Comware7 and other brands. Even though the project scope specifies command converter sub-systems for only three selected brands development process had to consider development of four sub-systems due to HPE having three versions of firmware namely Comware5, Comware7 and Procurve. Procurve which not considered in order to reduce development effort. It was decided that considering the above mentioned sub-systems would be enough for Proof of Concept (PoC).

During development process of above mentioned four (4) subsystems, command sequences of above mentioned thirteen (13) configuration routines were compared in tabular format to identify similarities and most suitable conversion process. Further during development process following tables were used to develop incremental prototypes of command conversion sub-systems for selected brands.

Initial vendor specific command converter subsystem was developed using Python 3 and it was decided that commands that needs conversion to be stored in Lists inside multidimensional Dictionaries. The reason for storage of commands within the script itself was due to the face that there would not be any simultaneous access of commands by end users. The initial prototypes were developed to get the command that needs to be converted, through standard input (stdin) and to provide the converted command as an output to standard output (stdout). See Appendix D for code.

5.3.1 Transitioning Between Modes

As indicated in following table both Aruba and Cisco switches have similar initial modes once logged using ssh (User-Mode). But HPE switches have a different mode having similar capability (User-View).

Brand	Mode	CLI Command
Aruba	User-Mode	enable
HPE Comware5	User-View	system-view
HPE Comware7	User-View	system-view
Cisco	User-Mode	enable

Table 5.1 Activating Enable Mode or System View

Aruba and Cisco have another mode called Privileged-Mode/Enable-Mode having higher level of privileges, HPE has a different mode called System-View again having similar features.

The said modes can be reached using the commands given in the table below. There is a significant difference between Aruba, Cisco and HPE where HPE only has two modes of operation User-View and System-View but Aruba and Cisco have three modes namely User-Mode, Privilege-Mode and Config-Mode.

Table 5.2 Activating Configure Mode or System View		
Mode	CLI Command	

Brand	Mode	CLI Command
Aruba	Privileged-	configure
	Mode	
HPE	System-View	system-view
Comware5		

HPE	System-View	system-view
Comware7		
Cisco	Privileged-	configure terminal
	Mode/	
	Enable-Mode	

In Cisco and Aruba the user can exit a certain mode by using exit command whereas the same can be done in HPE using quit command.

Brand	Mode	CLI Command
Aruba	Any	exit
HPE	Any	quit
Comware5		
HPE	Any	quit
Comware7		
Cisco	Any	exit

Virtual Terminal Configuration Mode

Aruba switches have no support for this mode of operation. Cisco and HPE Comware 5 and Comware7 supports this mode with different numbers of vty connection ranges.

Brand	Mode	CLI Command
Aruba	N. A.	Command not supported
HPE	System-View	user-interface vty 0 15
Comware5		
HPE	System-View	user-interface vty 0 15
Comware7		
Cisco	Config-Mode	line vty 0 15

Table 5.4 Switch to Virtual Terminal Interface Configuration

Interface Configuration Mode

All three brands have support for this mode but they have their own distinct way of representing individual physical ports of the switch.

Brand	Mode	CLI Command
Aruba	Config-Mode	interface 1
HPE	System-View	interface g1/0/1
Comware5		
HPE	System-View	interface g1/0/1
Comware7		
Cisco	Config-Mode	interface g0/1

Table 5.5 Switch to Interface Configuration mode

Interface Range Configuration Mode

Only HPE Comware7 and Cisco brands have support for this quite useful mode of operation where multiple physical ports can be managed simultaneously.

Brand	Mode	CLI Command
Aruba	Config-Mode	Command not supported
HPE Comware5	System-View	Command not supported
HPE Comware7	System-View	interface range $g1/0/1$ to $g1/0/4$
Cisco	Config-Mode	interface range g0/1 - 4

Table 5.6 Switch to Interface Range Configuration mode

VLAN Configuration Mode

All three brands of switches support this mode of operation having the exact same.

Table 5.7 Switch to VLAN Configuration Mode

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 200
HPE	System-View	vlan 200
Comware5		
HPE	System-View	vlan 200
Comware7		
Cisco	Config-Mode	vlan 200

VLAN Interface Configuration Mode

Though HPE and Cisco consist of this mode of operation Aruba has a different mode to do the same configuration.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 300
HPE	System-View	interface Vlan-interface 300
Comware5		
HPE	System-View	interface Vlan-interface 300
Comware7		
Cisco	Config-Mode	interface vlan 300

Table 5.8 Switch to VLAN Interface Configuration mode

Link Aggregation Configuration Mode

Though LACP configuration is supported in Aruba there is no specific mode to do the configuration instead it's done in Config mode. Therefore the following table indicates that command nut supported under Aruba.

Brand	Mode	CLI Command
Aruba	Config-Mode	Command not supported
HPE Comware5	System-View	interface Bridge-Aggregation 1
HPE Comware7	System-View	interface Bridge-Aggregation 1
Cisco	Config-Mode	interface port-channel 1

Table 5.9 Switch to Link Aggregation Configuration Mode

MSTP Region Configuration Mode

Though MSTP configuration is supported in Aruba there is no particular mode to do the configuration instead it's done in Config mode. Therefore following table indicates that command nut supported under Aruba.

Brand	Mode	CLI Command
Aruba	Config-Mode	Command not supported
HPE Comware5	System-View	stp region-configuration
HPE Comware7	System-View	stp region-configuration
Cisco	Config-Mode	spanning-tree mst configuration

Table 5.10 Switch to MSTP Configuration mode

Standard Numbered ACL Configuration Mode

Aruba and Cisco have exact same command for this operation whilst HPE consist of different command having totally different ACL number ranges.

Brand	Mode	CLI Command
Aruba	Config-Mode	ip access-list standard 50
HPE Comware5	System-View	acl number 2500
HPE Comware7	System-View	acl number 2500
Cisco	Config-Mode	ip access-list standard 50

Table 5.11 Switch to Standard Numbered ACL Configuration Interface

Standard Named ACL Configuration Mode

Aruba and Cisco have exact same command for this operation whilst HPE consist of different command having totally different ACL number ranges.

Brand	Mode	CLI Command
Aruba	Config-Mode	ip access-list standard std_acl
HPE	System-View	acl number 2600 name std_acl
Comware5		
HPE	System-View	acl number 2600 name std_acl
Comware7		
Cisco	Config-Mode	ip access-list standard std_acl

Table 5.12 Switch to Standard Named ACL Configuration Interface

Extended Numbered ACL Configuration Mode

Aruba and Cisco have exact same command for this operation whilst HPE consist of different command having totally different ACL number ranges.

Table 5.13 Switch to Extended Numbered ACL	Configuration	Interface
--	---------------	-----------

Brand	Mode	CLI Command
Aruba	Config-Mode	ip access-list extended 150
HPE	System-View	acl number 3500
Comware5		
HPE	System-View	acl number 3500
Comware7		
Cisco	Config-Mode	ip access-list extended 150

Extended Named ACL Configuration Mode

Aruba and Cisco have exact same command for this operation whilst HPE consist of different command having totally different ACL number ranges.

Brand	Mode	CLI Command
Aruba	Config-Mode	ip access-list extended ext_acl
HPE Comware5	System-View	acl number 3600 name ext_acl
HPE Comware7	System-View	acl number 3600 name ext_acl
Cisco	Config-Mode	ip access-list extended ext_acl

Table 5.14 Switch to Extended Named ACL Configuration Interface

5.3.2 Save Configurations

Configuration changes made can be stored in the HPE, Cisco and Aruba switches using distinct commands given below.

Table 5.15	Save the	Configurations
------------	----------	----------------

Brand	Mode	CLI Command
Aruba	Privileged- Mode	save
HPE Comware5	System-View	save force
HPE Comware7	System-View	save force
Cisco	Privileged- Mode	copy run start

5.3.3 View Configurations

Following table represents the commands of selected brands that can be used to view configurations of respective switches.

Aruba	HPE Comware5	HPE Comware7	Cisco	
Privileged-Mode	System-View	System-View	Privileged-Mode	
	View general conf	iguration details		
show flash	dir	dir	show flash	
show version	display version	display version	show version	
show system	display device	display device	show inventory	
information	manuinfo	manuinfo		
show modules	display device verbose	display device	show version	
		verbose		
show run	display current-	display current-	show run	
	configuration	configuration		

Table 5.16 View configuration details

show config	display saved-	display saved-	show start		
	configuration	configuration			
show history	display history	display history	show history		
show logging	display info-center	display info-center	show logging		
show ip route	display ip routing-	display ip routing-	show ip route		
	table	table			
show ip	display ip interface	display ip interface	show ip interface		
	brief	brief	brief		
show tech	display diagnostic-	display diagnostic-	show tech-support		
	information	information			
show system fans	display fan	display fan	show env fan		
show system power-	display power	display power	show env power		
supply					
show system	display enviorenment	display enviorenment	show env		
temperature			temperature		
	View ssh config	uration details			
show telnet	display users	display users	show users		
show ip ssh	Command not	display ssh server	show ip ssh		
	supported	status			
Command not	Command not	display ssh server	show ssh		
supported	supported	session			
show crypto host-	Command not	display public-key	show crypto key		
public-key	supported	local rsa public	mypubkey rsa		
View LLDP details					
show lldp info	display lldp neighbor-	display lldp	show lldp neighbors		
remote-device	information list	neighbor-information			
		list			
1	1				

Command not	display lldp neighbor-	Command not	Command not
supported	information brief	supported	supported
show lldp info	display lldp neighbor-	display lldp	show lldp neighbors
remote-device 1	information interface	neighbor-information	g0/1 detail
	g1/0/1	interface g1/0/1	
	View interfa	ce details	
show interfaces brief	display interface brief	display interface	show interfaces
		brief	status
show interfaces brief	display interface	display interface	show interfaces
1	g1/0/1 brief	g1/0/1 brief	g0/1 status
show interfaces 1	display interface	display interface	show interfaces
	g1/0/1	g1/0/1	g0/1
	View VLA	N details	
show vlans	display vlan	display vlan	show vlan brief
Command not	display vlan all	display vlan all	Command not
supported			supported
show vlans 200	display vlan 200	display vlan 200	Command not
			supported
	View LAC	P details	
show lacp	display link-	display link-	show etherchannel
	aggregation summary	aggregation summary	summary
show lacp peer	display link-	display link-	show interface
	aggregation member-	aggregation member-	etherchannel
	port	port	
	View STP	details	1
show spanning-tree	display stp	display stp	show spanning-tree

show spanning-tree	display stp region-	display stp region-	show spanning-tree			
mst-config	configuration	configuration	mst configuration			
show spanning-tree	display stp instance 0	display stp instance 0	show spanning-tree			
instance ist			mst 0			
show spanning-tree	display stp instance 1	display stp instance 1	show spanning-tree			
instance 1			mst 1			
	View STP hardening details					
show link-keepalive	display dldp	display dldp	show udld g0/1			
show link-keepalive	display dldp statistics	display dldp statistics	Command not			
statistics			supported			
View Command details						
show	display	display	show			

5.3.4 SSH Configurations

Though all three brands support for ssh configuration Aruba configuration routine has limited set of commands having limited set of features. HPE and Cisco has somewhat similar routines having their own distinct commands to do the same set of operations.

Brand	Mode	CLI Command
Aruba	Config-Mode	hostname ArubaSW
	Config-Mode	Command not supported
	Config-Mode	crypto key generate ssh
	Config-Mode	ip ssh
	N. A.	Command not supported
	N. A.	Command not supported
	N. A.	Command not supported

HPE	System-View	sysname Hpe5SW		
Comware5	System-View	domain domain.com		
	System-View	public-key local create rsa		
	System-View	ssh server enable		
	System-View	user-interface vty 0 15		
	VTYS	authentication-mode [none password scheme]		
	VTYS	protocol inbound [all ssh telnet]		
НРЕ	System-View	sysname Hpe7SW		
Comware7	System-View	domain domain.com		
	System-View	public-key local create rsa		
	System-View	ssh server enable		
	System-View	user-interface vty 0 15		
	VTYS	authentication-mode [none password scheme]		
	VTYS	protocol inbound [all ssh telnet]		
Cisco	Config-Mode	hostname CiscoSW		
	Config-Mode	ip domain-name domain.com		
	Config-Mode	crypto key generate		
	Config-Mode	ip ssh version 2		
	Config-Mode	line vty 0 15		
	VTYC	login [local tacacs]		
	VTYC	transport input [all ssh telnet]		

5.3.5 Link Layer Discovery Protocol (LLDP) Configurations

Aruba and Cisco has similar commands to enable LLDP globally while HPE Comware 5 and 7 has the ability to enable LLDP both globally and locally to individual ports. Since the project scope specifies that the proprietary protocols would not be considered the Cisco Discovery Protocol (CDP) commands were not considered.

Brand	Mode	CLI Command	
Aruba	Config-Mode	lldp run	
	N. A.	Command not supported	
	N. A.	Command not supported	
HPE	System-View	lldp enable	
Comware5	System-View	interface g1/0/1	
	IS	lldp enable	
HPE	System-View	lldp global enable	
Comware7	System-View	interface g1/0/1	
	IS	lldp enable	
Cisco	Config-Mode	lldp run	
	N. A.	Command not supported	
	N. A.	Command not supported	

Table 5.18 Activate LLDP

5.3.6 Port Management

Other than the fact that Aruba switches have a single command to configure both duplex and speed there seems to be similar routines between other brands except for slight changes in the syntaxes.

Table 5.19 Port	Management	Configurations
-----------------	------------	----------------

Brand	Mode	CLI Command
Aruba	Config-Mode	interface 1
	IC	name link-to-core
	IC	speed-duplex [10-half 100-half 10-full 100-full 1000-
		full auto]
	IC	speed-duplex [10-half 100-half 10-full 100-full 1000-
		tull auto]
	IC	disable
	IC	enable
HPE	System-View	interface g1/0/1
Comware5	IS	description link-to-core
	IS	duplex [auto full half]
	IS	speed [auto 10 100 1000]
	IS	shutdown
	IS	undo shutdown
HPE	System-View	interface g1/0/1
Comware7	IS	description link-to-core
	IS	duplex [auto full half]
	IS	speed [auto 10 100 1000]
	IS	shutdown
	IS	undo shutdown
Cisco	Config-Mode	interface g0/1
	IC	description link-to-core

IC	duplex [auto full half]
IC	speed [auto 10 100 1000]
IC	shutdown
IC	no shutdown

5.3.7 VLAN Management

Data

VLAN management configuration in terms of creating data vlans seems to be having the exact same syntax with respect to all selected brands.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 800
	VIC	name test
НРЕ	System-View	vlan 800
Comware5	VIS	name test
НРЕ	System-View	vlan 800
Comware7	VIS	name test
Cisco	Config-Mode	vlan 800
	VIC	name test

Table 5.20	Creating	and	Naming	a	Data	VL.	AN
10010 0120	er en me		- Contraction - B		2		

Voice

VLAN management configuration in terms of creating voice vlans seems to be having the exact same syntax with respect to all selected brands except for Aruba.

Table 5.21 Creating and Naming a Voice VLAN

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 500
	VIC	voice
НРЕ	System-View	vlan 500
Comware5	VIS	name voice
HPE	System-View	vlan 500
Comware7	VIS	name voice
Cisco	Config-Mode	vlan 500
	VIC	name voice

5.3.8 VLAN Assignment

Trunks

How trunk ports configured in Aruba switches have a distinct difference from how other brands perform the operation. Therefore conversion of this routine from Aruba commands to other brands turned out to be infeasible.

Table 5.22 Configuration	of a Trunk Port
--------------------------	-----------------

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 200
	VIC	tagged 2
	Config-Mode	vlan 100
	VIC	tagged 2
	Config-Mode	vlan 240
	VIC	tagged 2

HPE	System-View	interface g1/0/2
Comware5	IS	port link-type trunk
	IS	port trunk permit vlan 200 100 240
	System-View	interface g1/0/2
	IS	port link-type trunk
	IS	port trunk permit vlan all
НРЕ	System-View	interface g1/0/2
Comware7	IS	port link-type trunk
	IS	port trunk permit vlan 200 100 240
	System-View	interface g1/0/2
	IS	port link-type trunk
	IS	port trunk permit vlan all
	System-View	interface range $g1/0/1$ to $g1/0/2$
	IRS	port link-type trunk
	IRS	port trunk permit vlan all
Cisco	Config-Mode	interface g0/2
	IC	switchport trunk encapsulation [negotiate isl dot1q]
	IC	switchport trunk allowed vlan 200,100,240
	Config-Mode	interface g0/2
	IC	switchport trunk encapsulation [negotiate isl dot1q]
	IC	switchport trunk allowed vlan all
	Config-Mode	interface range g0/1 - 2

IRC	switchport trunk encapsulation [negotiate isl dot1q]
IRC	switchport trunk allowed vlan all

Access

Again how access ports configured in Aruba switches have a distinct difference from how other brands perform the operation. Therefore conversion of this routine from Aruba commands to other brands turned out to be infeasible.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 400
	VIC	untagged 4
HPE	System-View	interface g1/0/4
Comware5	IS	port link-type access
	IS	port access vlan 400
НРЕ	System-View	interface g1/0/4
Comware7	IS	port link-type access
	IS	port access vlan 400
	System-View	interface range g1/0/4 to g1/0/8
	IRS	port link-type access
	IRS	port access vlan 400
Cisco	Config-Mode	interface g0/4
	IC	switchport mode access
	IC	switchport access vlan 400

Table 5.23 Configuration of an Access Port

	Config-Mode	interface range g0/4 - 8
	IRC	switchport mode access
	IRC	switchport access vlan 400

Voice

Again how hybrid ports configured in Aruba switches have a distinct difference from how other brands perform the operation. Therefore conversion of this routine from Aruba commands to other brands turned out to be infeasible.

Config-Mode	vlan 500
VIC	tagged 10
Config-Mode	vlan 800
VIC	untagged 10
System-View	interface g1/0/10
IS	port link-type hybrid
IS	port hybrid vlan 500 tagged
IS	port hybrid vlan 800 untagged
System-View	interface g1/0/10
IS	port link-type hybrid
IS	port hybrid vlan 500 tagged
IS	port hybrid vlan 800 untagged
System-View	interface range $g1/0/10$ to $g1/0/15$
IRS	port link-type hybrid
	VIC Config-Mode VIC System-View IS IS System-View IS IS IS IS IS IS

Table 5.24 Configuration of a Voice Port

	IRS	port hybrid vlan 500 tagged
	IRS	port hybrid vlan 800 untagged
Cisco	Config-Mode	interface g0/10
	IC	switchport mode access
	IC	switchport voice vlan 500
	IC	switchport access vlan 800
	Config-Mode	interface range g0/10 - 15
	IRC	switchport mode access
	IRC	switchport voice vlan 500
	IRC	switchport access vlan 800

5.3.9 VLAN Interface IP Address Assignment

Assignment of ip addresses to VLAN interfaces can be performed using the exact same commands in all three (3) brands selected.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 100
	VIC	ip address 192.168.1.1 255.255.255.0
НРЕ	System-View	vlan 100
Comware5	VVIS	ip address 192.168.1.1 255.255.255.0
НРЕ	System-View	vlan 100
Comware7	VVIS	ip address 192.168.1.1 255.255.255.0
Cisco	Config-Mode	vlan 100

Table 5.25 IP Address Assignment for a VLAN Interface

5.3.10 Default Route Configuration

VVIC

Assignment of ip addresses to VLAN interfaces can be performed in a similar manner in all three (3) brands selected with only a slight change of syntax in HPE.

Brand	Mode	CLI Command
Aruba	Config-Mode	ip route 0.0.0.0 0.0.0.0 192.168.1.1
HPE Comware5	System-View	ip route-static 0.0.0.0 0.0.0.0 192.168.1.1
HPE Comware7	System-View	ip route-static 0.0.0.0 0.0.0.0 192.168.1.1
Cisco	Config-Mode	ip route 0.0.0.0 0.0.0.0 192.168.1.1

Table 5.26 Default Route Configuration

5.3.11 Link Aggregation Control Protocol (LACP) Configurations

How LACP configured in Aruba switches have a distinct difference from how other brands perform the operation. Therefore conversion of this routine from Aruba commands to other brands turned out to be infeasible. However same operation routine in other brands could be done using set of commands unique to respective brands. Assignment of ports to LACP groups could be performed quite easily in Cisco and HPE Comware 7 since they support for simultaneous configuration of multiple ports.

Table 5.27 LACP Configurations

Brand	Mode	CLI Command
Aruba	Config-Mode	trunk 20-23 trk1 lacp
	Config-Mode	vlan 200 tagged trk1
	Config-Mode	vlan 100 tagged trk1

	Config-Mode	vlan 240 tagged trk1
нре	System-View	interface Bridge-Aggregation 1
Comware5	BAIS	link-aggregation mode [dynamic static]
	BAIS	port link-type trunk
	BAIS	port trunk permit vlan 200 100 240
	System-View	interface g1/0/23
	IS	port link-aggregation group 1
	System-View	interface g1/0/24
	IS	port link-aggregation group 1
HPE	System-View	interface Bridge-Aggregation 1
Comware7	BAIS	link-aggregation mode [dynamic static]
	BAIS	port link-type trunk
	BAIS	port trunk permit vlan 200 100 240
	System-View	interface range g1/0/23 to g1/0/24
	IRS	port link-aggregation group 1
Cisco	Config-Mode	interface port-channel 1
	N.A.	Command not supported
	BAIC	switchport trunk encapsulation [negotiate isl dot1q]
	Config-Mode	interface range g0/23 - 24
	IRC	channel-group 1 mode [active passive on desirable]

5.3.12 Multiple Spanning Tree Protocol (MSTP) Configurations

MSTP Configurations

MSTP configuration was included in this project scope despite availability of other STP protocols like RSTP, PVSTP and RPVSTP due to the reason of almost all features available under said protocols being available in MSTP with reduced hassle in configuration.

MSTP configuration routines of all brands seems to be quite similar except for the syntaxes. However the mode of operation with respect to regional/mst configurations in terms of Aruba could be considered different from other brands.

Brand	Mode	CLI Command
Aruba	Config-Mode	spanning-tree
	N.A.	Command not supported
	Config-Mode	spanning-tree config-name SWMSTP
	Config-Mode	spanning-tree config-revision 1
	Config-Mode	spanning-tree instance 1 vlan 200 100 240
	Config-Mode	spanning-tree instance 2 vlan 500 800
	N.A.	Command not supported
	Config-Mode	spanning-tree priority 1
	Config-Mode	spanning-tree instance 1 priority 2
	Config-Mode	spanning-tree instance 2 priority 3
	Config-Mode	spanning-tree pathcost mstp [8021d 8021t
		proprietary]
	N.A.	Command not supported

Table 5.28 MSTP Configurations

Config-Mode	spanning-tree 20 path-cost 20000
Config-Mode	spanning-tree 20 priority 4
Config-Mode	spanning-tree instance 1 20 path-cost 20000
Config-Mode	spanning-tree instance 1 20 priority 4
System-View	stp enable
System-View	stp region-configuration
STPRIS	region-name SWMSTP
STPRIS	revision-level 1
STPRIS	instance 1 vlan 200 100 240
STPRIS	instance 2 vlan 500 800
STPRIS	active region-configuration
System-View	stp priority 4096
System-View	stp instance 1 priority 8192
System-View	stp instance 2 priority 12288
System-View	stp pathcost-standard [dot1d-1998 dot1t legacy]
System-View	interface g1/0/20
IS	stp cost 20000
IS	stp port priority 16394
IS	stp instance 1 cost 20000
IS	stp instance 1 port priority 16384
System-View	stp enable
System-View	stp region-configuration
STPRIS	region-name SWMSTP
	Config-Mode Config-Mode Config-Mode Config-Mode System-View System-View STPRIS STPRIS STPRIS STPRIS STPRIS STPRIS STPRIS SYPRIS System-View System-View System-View System-View IS System-View System-View System-View System-View System-View System-View System-View System-View

	STPRIS	revision-level 1
	STPRIS	instance 1 vlan 200 100 240
	STPRIS	instance 2 vlan 500 800
	STPRIS	active region-configuration
	System-View	stp priority 4096
	System-View	stp instance 1 priority 8192
	System-View	stp instance 2 priority 12288
	System-View	stp pathcost-standard [dot1d-1998 dot1t legacy]
	System-View	interface g1/0/20
	IS	stp cost 20000
	IS	stp port priority 16394
	IS	stp instance 1 cost 20000
	IS	stp instance 1 port priority 16384
Cisco	Config-Mode	spanning-tree mode mst
	Config-Mode	spanning-tree mst configuration
	STPRIC	name SWMSTP
	STPRIC	revision 1
	STPRIC	instance 1 vlan 200,100,240
	STPRIC	instance 2 vlan 500,800
	N.A.	Command not supported
	Config-Mode	spanning-tree mst 0 priority 4096
	Config-Mode	spanning-tree mst 1 priority 8192
	Config-Mode	spanning-tree mst 2 priority 12288
	Config-Mode	spanning-tree pathcost method [long short]

	IC	interface g0/20
	IC	spanning-tree cost 20000
	IC	spanning-tree port-priority 16394
	IC	spanning-tree mst 1 cost 20000
	IC	spanning-tree mst 1 port-priority 16384

MSTP Hardening

Data Link Discovery Protocol (DLDP)

This hardening option when enabled monitors a link between two switches and blocks the port on both ends of the link if the link fails at any point between the two devices. This option is quite useful for detecting failures in fibre links. Except for syntactic differences, how this option is enabled in switches that belongs to all three brands are similar.

Brand	Mode	CLI Command
Aruba	Config-Mode	interface 1
	IC	link-keepalive
HPE	System-View	interface g1/0/1
Comware5	IS	dldp enable
HPE	System-View	interface g1/0/1
Comware7	IS	dldp enable
Cisco	Config-Mode	interface g0/1
	IC	udld port

Edge-port

This option ones enabled allow for immediate transition from blocking to forwarding, normally enabled on access ports that are not connected to switches. Except for syntactic differences, this option can be enabled in switches that belongs to all three brands in a similar manner. However there is a slight change in mode of doing the configuration in Aruba unlike other switch brands where the configuration would be done in Config-Mode rather than in respective interface configuration mode.

Brand	Mode	CLI Command
Aruba	N.A.	Command not supported
	С	spanning-tree 2 admin-edge-port
HPE	System-View	interface g1/0/2
Comware5	IS	stp edge-port enable
HPE	System-View	interface g1/0/2
Comware7	IS	stp edge-port
Cisco	Config-Mode	interface g0/2
	IC	spanning-tree portfast

Table 5.30 Edge Port Configurations

Bridge Protocol Data Unit (BPDU) Guard

BPDU guard is a security feature designed to protect the active MSTP topology by preventing spoofed BPDU packets from entering the MSTP domain. In a typical implementation, it would be advised to apply BPDU guard to edge ports connected to end devices that do not run MSTP. If BPDU packets are received on a BPDU guard enabled port, this feature would disable that port.

Except for syntactic differences, this option can be enabled in switches that belongs to all three brands in a similar manner. However there is a slight change in mode of doing the

configuration in Aruba unlike other switch brands where the configuration would be done in Config-Mode rather than in respective interface configuration mode.

Brand	Mode	CLI Command
Aruba	N.A.	Command not supported
	С	spanning-tree 3 bpdu-protection
HPE	System-View	interface g1/0/3
Comware5	IS	stp bpdu-protection
HPE	System-View	interface g1/0/3
Comware7	IS	stp bpdu-protection
Cisco	Config-Mode	interface g0/3
	IC	spanning-tree bpduguard enable

Table 5.31 BPDU Configurations

Root Guard

This is normally enabled on the designated ports of root a switch once enabled superior BPDUs received by a port enabled root guard receives are ignored. All other BPDUs are accepted and external devices may belong to the spanning tree as long as they do not claim to be root device. Except for syntactic differences, this option can be enabled in switches that belongs to all three brands in a similar manner. However there is a slight change in mode of doing the configuration in Aruba unlike other switch brands where the configuration would be done in Config-Mode rather than in respective interface configuration mode.

Table	5.32	Root	Guard	Config	urations
				0	

Brand	Mode	CLI Command
Aruba	N.A.	Command not supported
	С	spanning-tree 4 root-guard
	System-View	interface g1/0/4

HPE	IS	stp root-protection
Comware5		
HPE	System-View	interface g1/0/4
Comware7	IS	stp root-protection
Cisco	Config-Mode	interface g0/4
	IC	spanning-tree guard root

Loop Guard

Unidirectional link failures may cause a root port or alternate port to become designated as root if BPDUs are absent. Some software failures may introduce temporary loops in the network. The loop guard feature checks if a root port or an alternate root port receives BPDUs. If the port is receiving BPDUs, the loop guard feature puts the port into an inconsistent state until it starts receiving BPDUs again. Except for syntactic differences, this option can be enabled in switches that belongs to all three brands in a similar manner. However there is a slight change in mode of doing the configuration in Aruba unlike other switch brands where the configuration would be done in Config-Mode rather than in respective interface configuration mode.

Brand	Mode	CLI Command
Aruba	N.A.	Command not supported
	С	loop-protect 5 receiver-action send-disable
HPE	System-View	interface g1/0/5
Comware5	IS	loopback-detection enable
НРЕ	System-View	interface g1/0/5
Comware7	IS	loopback-detection enable vlan all
Cisco	Config-Mode	interface g0/5

Table 5.33 Loop Guard Configurations

5.3.13 Access Control Lists (ACL) Creation

Standard Numbered ACLs

IC

When compared Aruba and Cisco configuration of standard numbered ACLs are exactly same where all ACLs have an implicit deny at the bottom. In HPE configuration of standard numbered ACLs are quite dissimilar to Aruba or Cisco. All ACLs in HPE have an implicit allow at the bottom unlike Cisco and Aruba. Whilst Cisco and Aruba standard numbered ACL numbers range from 1 to 99 HPE ACL numbers range from 2000 to 2999.

Brand	Mode	CLI Command
Aruba	Config-	ip access-list standard 50
	Mode	
	SNACLIC	permit 192.168.1.50 0.0.0.0
	SNACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	SNACLIC	permit ip any any
HPE	System-	acl number 2500
Comware5	View	
	SNACLIS	rule permit source 192.168.1.50 0.0.0.0
	SNACLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination 192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom
HPE	System-	acl number 2500
Comware7	View	
	SNACLIS	rule permit source 192.168.1.50 0.0.0.0

Table 5.34 Creation of Standard Numbered ACLs

	SNACLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination 192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom
Cisco	Config- Mode	ip access-list standard 50
	SNACLIC	permit 192.168.1.50 0.0.0.0
	SNACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	SNACLIC	permit ip any any

Standard Named ACLs

When compared Aruba and Cisco configuration of standard named ACLs are exactly same where all ACLs have an implicit deny at the bottom. In HPE configuration of standard named ACLs are quite dissimilar to Aruba or Cisco. All ACLs in HPE have an implicit allow at the bottom unlike Cisco and Aruba. Whilst Cisco and Aruba standard named ACL numbers range from 1 to 99 HPE ACL numbers range from 2000 to 2999. Further in HPE named ACL creation require ACL number as well unlike Cisco and Aruba.

Table 5.35 Creation of Standard named ACLs

Brand	Mode	CLI Command
Aruba	Config-	ip access-list standard standard_named_acl
	Mode	
	SNAACLIC	permit 192.168.1.50 0.0.0.0
	SNAACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	SNAACLIC	permit ip any any
HPE	System-	acl number 2600 name standard_named_acl
Comware5	View	

	SNAACLIS	rule permit source 192.168.1.50 0.0.0.0
	SNAACLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination
		192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom
HPE	System-	acl number 2600 name standard_named_acl
Comware7	View	
	SNAACLIS	rule permit source 192.168.1.50 0.0.0.0
	SNAACLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination 192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom
Cisco	Config- Mode	ip access-list standard standard_named_acl
	SNAACLIC	permit 192.168.1.50 0.0.0.0
	SNAACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	SNAACLIC	permit ip any any

Extended Numbered ACLs

When compared Aruba and Cisco configuration of extended numbered ACLs are exactly same where all ACLs have an implicit deny at the bottom. In HPE configuration of extended numbered ACLs are quite dissimilar to Aruba or Cisco. All ACLs in HPE have an implicit allow at the bottom unlike Cisco and Aruba. Whilst Cisco and Aruba extended numbered ACL numbers range from 100 to 199 HPE ACL numbers range from 3000 to 3999.

Table 5.36 Creation of Extended numbered ACLs

Brand	Mode	CLI Command
Aruba	Config- Mode	ip access-list extended 150
	ENACLIC	permit 192.168.1.50 0.0.0.0
	ENACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	ENACLIC	permit ip any any
HPE	System-	acl number 3500
Comware5	View	
	ENACLIS	rule permit source 192.168.1.50 0.0.0.0
	ENACLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination 192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom
НРЕ	System-	acl number 3500
Comware7	View	
	ENACLIS	rule permit source 192.168.1.50 0.0.0.0
	ENACLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination 192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom
Cisco	Config-	ip access-list extended 150
	Mode	
	ENACLIC	permit 192.168.1.50 0.0.0.0
	ENACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	ENACLIC	permit ip any any

Extended Named ACLs

When compared Aruba and Cisco configuration of extended named ACLs are exactly same where all ACLs have an implicit deny at the bottom. In HPE configuration of extended named ACLs are quite dissimilar to Aruba or Cisco. All ACLs in HPE have an implicit allow at the bottom unlike Cisco and Aruba. Whilst Cisco and Aruba extended named ACL numbers range from 100 to 199 HPE ACL numbers range from 3000 to 3999. Further in HPE named ACL creation require ACL number as well unlike Cisco and Aruba.

Brand	Mode	CLI Command
Aruba	Config- Mode	ip access-list standard extended_named_acl
	ENAACLIC	permit 192.168.1.50 0.0.0.0
	ENAACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	ENAACLIC	permit ip any any
HPE Comware5	System- View	acl number 3600 name extended_named_acl
	ENAACLIS	rule permit source 192.168.1.50 0.0.0.0
	ENAECLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination 192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom
HPE Comware7	System- View	acl number 3600 name extended_named_acl
	ENAACLIS	rule permit source 192.168.1.50 0.0.0.0
	ENAACLIS	rule deny ip source 192.168.1.0 0.0.0.255 destination 192.168.1.1 0.0.0.0
	N.A.	Command not necessary - implicit allow at the bottom

Table 5.37 Creation of Extended named ACLs
Cisco	Config-	ip access-list standard extended_named_acl
	Mode	
	ENAACLIC	permit 192.168.1.50 0.0.0.0
	ENAACLIC	deny ip 192.168.1.0 0.0.0.255 192.168.1.1 0.0.0.0
	ENAACLIC	permit ip any any

Routed ACL Assignment

Standard Numbered ACLs

Routed ACL assignment is quite similar in all brands except for syntactic differences. However mode of operation of ACL assignment is dissimilar in Aruba.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 200
	VIC	ip access-group 50 [in out]
HPE	System-View	interface Vlan-interface 200
Comware5	VVIS	packet-filter 2500 [inbound outbound]
HPE	System-View	interface Vlan-interface 200
Comware7	VVIS	packet-filter 2500 [inbound outbound]
Cisco	Config-Mode	interface vlan 200
	VVIC	ip access-group 50 [in out]

Table 5.38 Assignment of Standard numbered ACLs to VLANs

Standard Named ACLs

Routed ACL assignment is quite similar in all brands except for syntactic differences. However mode of operation of ACL assignment is dissimilar in Aruba.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 400
	VIC	ip access-group standard_named_acl [in out]
HPE	System-View	interface Vlan-interface 400
Comware5	VVIS	packet-filter 2600 [inbound outbound]
НРЕ	System-View	interface Vlan-interface 400
Comware7	VVIS	packet-filter 2600 [inbound outbound]
Cisco	Config-Mode	interface vlan 400
	VVIC	ip access-group standard_named_acl [in out]

Table 5.39 Assignment of Standard named ACLs to VLANs

Extended Numbered ACLs

Routed ACL assignment is quite similar in all brands except for syntactic differences. However mode of operation of ACL assignment is dissimilar in Aruba.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 200
	VIC	ip access-group 150 [in out]
НРЕ	System-View	interface Vlan-interface 200
Comware5	VVIS	packet-filter 3500 [inbound outbound]
НРЕ	System-View	interface Vlan-interface 200
Comware7	VVIS	packet-filter 3500 [inbound outbound]
Cisco	Config-Mode	interface vlan 200
	VVIC	ip access-group 150 [in out]

Table 5.40 Assignment of Extended numbered ACLs to VLANs

Extended Named ACLs

Routed ACL assignment is quite similar in all brands except for syntactic differences. However mode of operation of ACL assignment is dissimilar in Aruba.

Brand	Mode	CLI Command
Aruba	Config-Mode	vlan 400
	VIC	ip access-group extended_named_acl [in out]
HPE	System-View	interface Vlan-interface 400
Comware5	VVIS	packet-filter 3600 [inbound outbound]
HPE	System-View	interface Vlan-interface 400
Comware7	VVIS	packet-filter 3600 [inbound outbound]
Cisco	Config-Mode	interface vlan 400
	VVIC	ip access-group extended_named_acl [in out]

Table 5.41 Assignment of Extended named ACLs to VLANs

Port ACL Assignment

Standard Numbered ACLs

Port ACL assignment is quite similar in all brands except for syntactic differences.

Brand	Mode	CLI Command
Aruba	Config-Mode	Interface 4
	IC	ip access-group 50 [in out]
HPE	System-View	interface g1/0/4
Comware5	IS	packet-filter 2500 [inbound outbound]
	System-View	interface g1/0/4

Table 5.42 Assignment of Standard numbered ACLs to Ports

HPE	IS	packet-filter 2500 [inbound outbound]
Comware7		
Cisco	Config-Mode	interface g0/4
	IC	ip access-group 50 [in out]

Standard Named ACLs

Port ACL assignment is quite similar in all brands except for syntactic differences.

Brand	Mode	CLI Command
Aruba	Config-Mode	Interface 5
	IC	ip access-group standard_named_acl [in out]
HPE	System-View	interface g1/0/5
Comware5	IS	packet-filter 2600 [inbound outbound]
HPE	System-View	interface g1/0/5
Comware7	IS	packet-filter 2600 [inbound outbound]
Cisco	Config-Mode	interface g0/5
	IC	ip access-group standard_named_acl [in out]

Table 5.43	Assignment	of Standard	named A	ACLs to	Ports
10010 5.151	issignment	or orandura	inunited 1	ICL5 to	1 01 05

Extended Numbered ACLs

Port ACL assignment is quite similar in all brands except for syntactic differences.

Table 5.44 Assignment of Extended numbered ACLs to Ports

Brand	Mode	CLI Command
Aruba	Config-Mode	Interface 6
	IC	ip access-group 150 [in out]

h		
HPE	System-View	interface g1/0/6
Comware5	IS	packet-filter 3500 [inbound outbound]
HPE	System-View	interface g1/0/6
Comware7	IS	packet-filter 3500 [inbound outbound]
Cisco	Config-Mode	interface g0/6
	IC	ip access-group 150 [in out]

Extended Named ACLs

Port ACL assignment is quite similar in all brands except for syntactic differences.

Brand	Mode	CLI Command
Aruba	Config-Mode	Interface 7
	IC	ip access-group extended_named_acl [in out]
HPE	System-View	interface g1/0/7
Comware5	IS	packet-filter 3600 [inbound outbound]
HPE	System-View	interface g1/0/7
Comware7	IS	packet-filter 3600 [inbound outbound]
Cisco	Config-Mode	interface g0/7
	IC	ip access-group extended_named_acl [in out]

Table 5.45 Assignment of Extended named ACLs to Ports

5.4 Implementation of Vendor Neutral Command Converter Sub-System

Development of vendor neutral command converter sub-system was done based on the same set of configuration routines considered in vendor specific command converter subsystem. The design of new vendor neutral CLI that is capable of managing all three selected brands was done based on the guidelines mentioned below. Further the design process was aided by the command comparison tables given under vendor specific command converter sub-system. The vendor neutral CLI design guidelines were designed similar to IEEE Standard for Information Technology - Portable Operating System Interface (POSIX) Revision 1003.1-2017 [16].

Guidelines of vendor neutral CLI design:

- 1. Commands are designed in two formats namely;
 - i. Short format syntax is shorter making it convenient to type.
 - ii. Long format syntax is longer making the command more descriptive of its function.
- 2. Commands having options will be defined as follows;
 - i. Short format single hyphen "-" followed by single character option descriptor followed by option input value.
 - ii. Long format double hyphen "--" followed by option descriptor followed by option input value. All options should be separated by a single space.
- 3. All options and option values should be given separated by single space "".
- 4. Command could be input in either short format or long format. It could also be input as a mix of short and long format.
- 5. All commands and option descriptors should be defined in a case sensitive manner.
- 6. Commands that are exactly or substantially similar within all the selected brands should be designed in a substantially similar syntax.

Guideline No. 6 was introduced to reduce the learning curve of Network Engineers who are already familiar with a certain brands CLI commands.

Initial vendor neutral command converter sub-system was developed using Python 3 and it was decided that commands that needs conversion to be stored in Lists inside multidimensional Dictionaries similar to vendor specific sub-system. The initial prototype was developed to get the vendor neutral command through standard input (stdin) and to convert it to vendor specific command and provide the output to standard output (stdout). See Appendix E for code.

5.4.1 Transitioning Between Modes

The commands in the tables given below were developed with reference to guideline No. 1, 5 and 6

Vendor Neutral	Mode	Command
Short format	User-Mode	en
Example	U	
Long format	User-Mode	enable
Example	U	

Table 5.46 Activate Enable Mode using Vendor Neutral CLI

Table 5.47 Activate Configure Mode using Vendor Neutral CLI

Vendor Neutral	Mode	Command
Short format	Privileged-	config
	Mode	
Example	Р	
Long format	User-Mode	configure
Example	Р	

Table 5.48 Quit an Operations Mode using Vendor Neutral CLI

Vendor Neutral	Mode	Command
Short/long	Any	exit
format		
Example	Any	exit

Virtual Terminal Configuration Mode

Commands given in the table below would work for all other brands except for Aruba due to Aruba OS not supporting this mode.

Vendor Neutral	Mode	Command
Short/long format	Config-Mode	Interface vty [START #] [END #]
Example	С	Interface vty 0 15

Table 5.49 Switch to Virtual Terminal Interface Configuration using Vendor Neutral CLI

Interface Configuration Mode

This command designed to match with the design guidelines mentioned above support for all three brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 1 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 1type g

Table 5.50 Switch to Interface Configuration Mode using Vendor Neutral CLI

Interface Range Configuration Mode

This command designed to match with the design guidelines mentioned above support only for Cisco and HPE Comware 7 due to the fact that other brands and firmware versions not supporting this mode.

Table 5.51 Switch to Interface Range Configuration Mode using Vendor Neutral CLI

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface -r [START ITNERFACE #] [END
		ITNERFACE #] -t $[e f g T]$

Example	С	Interface -r 1 4 -t g
Long format	Config-Mode	Interfacerange [START ITNERFACE #] [END ITNERFACE #]type [e f g T]
Example	С	Interfacerange 1 4type g

VLAN Configuration Mode

This command designed to match with the design guidelines mentioned above support for all three brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	vlan -n [VLAN # <1-4094>]
Example	С	vlan -n 200
Long format	Config-Mode	vlannumber [VLAN # <1-4094>]
Example	С	vlannumber 200

 Table 5.52 Switch to VLAN Configuration Interface using Vendor Neutral CLI

VLAN Interface Configuration Mode

This command designed to match with the design guidelines mentioned above support only for Cisco and HPE. Aruba does not support this mode instead Aruba Switch firmware makes use of VIC mode for the same configuration.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface vlan -n [VLAN # <1-4094>]
Example	С	Interface vlan -n 300
Long format	Config-Mode	Interface vlannumber [VLAN # <1-4094>]
Example	С	Interface vlannumber 300

Link Aggregation Configuration Mode

This command designed to match with the design guidelines mentioned above support for all three brands. However the implementation of link aggregation with respect to Aruba was done with a different approach due to the reason of Aruba implementation of link aggregation being distinctly different from other brands.

Mode	Command	
Config-Mode	Interface aggregation [AGGREGATION#]	
С	Interface aggregation 1	
	Mode Config-Mode C	

Table 5.54 Switch to Link Aggregation Configuration mode using Vendor Neutral CLI

STP Region Configuration Mode

Even though this command designed to match with the design guidelines mentioned above supports for all three brands the mode of operation of this set of commands is different in Aruba.

Table 5.55 Switch to MSTI	Configuration Mode	using Vendor Neutral	CLI
---------------------------	--------------------	----------------------	-----

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface stp -r
Example	С	
Long format	Config-Mode	Interface stpregion-configuration
Example	С	

Standard Numbered ACL Configuration Mode

This command designed to match with the design guidelines mentioned above support for all three brands. But the implementation of the command with respect to HPE had to be done in a different approach, where intermediate inputs would be requested by the end user due to the reason of HPE ACL number ranges being different from Cisco and Aruba brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface acl -s [ACL # <1-99>]
Example	С	Interface acl -s 50
Long format	Config-Mode	Interface aclstandard [ACL # <1-99>]
Example	С	Interface aclstandard 50

Table 5.56 Switch to Standard numbered ACL Configuration Mode using Vendor Neutral CLI

Standard Named ACL Configuration Mode

This command designed to match with the design guidelines mentioned above support for all three brands. The command had to be designed to take the ACL number as an optional input, though it is not required for Aruba and Cisco brands. The reason for the design of the command with unnecessary input option was due to HPE brand specific implementation requiring the ACL number.

Table 5.57 Switch to Standard named ACL Configuration Mode using Vendor Neutral CLI

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface acl -s [ACL # <1-99>] -n [ACL NAME STRING]
Example	С	Interface acl -s 60 -n standard_named_acl
Long format	Config-Mode	Interface aclstandard [ACL # <1-99>]name [ACL NAME STRING]
Example	С	Interface aclstandard 60name standard_named_acl

Extended Numbered ACL Configuration Mode

This command designed to match with the design guidelines mentioned above support for all three brands. But the implementation of the command with respect to HPE had to be done in a different approach, where intermediate inputs would be requested by the end user due to the reason of HPE ACL number ranges being different from Cisco and Aruba brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface acl -e [ACL # <100-199>]
Example	С	Interface acl -e 150
Long format	Config-Mode	Interface aclextended [ACL # <100-199>]
Example	С	Interface aclextended 150

Table 5.58 Switch to Extended numbered ACL Configuration Mode using Vendor Neutral CLI

Extended Named ACL Configuration Mode

This command designed to match with the design guidelines mentioned above support for all three brands. The command had to be designed to take the ACL number as an optional input, though it is not required for Aruba and Cisco brands. The reason for the design of the command with unnecessary input option was due to HPE brand specific implementation requiring the ACL number.

Table 5.59 Switch to	Extended named ACL	Configuration M	Aode using Ven	dor Neutral CLI
		8		

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface acl -e [ACL # <100-199>] -n [ACL NAME
		STRING]
Example	С	Interface acl -e 160 -n extended_named_acl
Long format	Config-Mode	Interface aclextended [ACL # <100-199>]name
		[ACL NAME STRING]
Example	С	Interface aclextended 160name
		extended_named_acl

5.4.2 Save Configurations

Vendor Neutral	Mode	Command
Short/long	Config-Mode	save
format		
Example	С	save

 Table 5.60 Save Configurations using Vendor Neutral CLI

5.4.3 View Configurations

These commands given in the table below were designed to match with the design guidelines mentioned above and supports all three brands.

Table 5.61 View Configuration Details using Ve	endor Neutral CLI
--	-------------------

Vendor Neutral Short format Command	Vendor Neutral Long format Command
Privileged-Mode	Privileged-Mode
View general con	nfiguration details
show -f	showflash
show -v	showversion
show -s	showsysinfo
show -m	showmodules
show -R	showRunning-config
show -S	showStartup-config
show -h	showhistory
show -1	showlogging
show ip -r	show iproute
show -t	showtech-support
show -F	showFan
show -P	showPower

show -T	showTemperature		
View ssh confi	guration details		
show -u	showusers		
show ssh	show ssh		
show ssh -c	show sshcrypto		
View LL	DP details		
show lldp -n	show lldpneighbors		
show lldp -n -I [ITNERFACE #] -t [e f g	show lldpneighborsInterface		
T]	[ITNERFACE #]type [$e f g T$]		
View inter	face details		
show ip -i	show ipinterface-brief		
show -i	showinterface-brief		
show -I [ITNERFACE #] -t [e f g T] -b	showInterface [ITNERFACE #]type [e f g T]brief		
show -I [ITNERFACE #] -t [e f g T]	showInterface [ITNERFACE #]type [e f g T]		
View VL	AN details		
show vlan	show vlan		
show vlan [VLAN # <1-4094>]	show vlan [VLAN # <1-4094>]		
View LA	CP details		
show lacp	show lacp		
show lacp -p	show lacpport		
View STP details			
show stp	show stp		
show stp -r	show stpregion-configuration		
show stp -i [INSTANCE #]	show stpinstance [INSTANCE #]		

View STP hardening details			
show stp -d	show stpdldp		
show stp -D	show stpDldp-statistics		
	View Command details		
show	show		

5.4.4 SSH Configurations

These commands were designed to match with the design guidelines mentioned above support for all three brands. A subset of commands mentioned in the table given below are not supported in Aruba due to limitations in Aruba firmware, but this would not affect the configuration of connectivity to Aruba through ssh.

Table 5.02 SSIT Configurations using vehicle Neutral CL.	Table 5.62 SSH	Configurations	using Vendor	Neutral CLI
--	----------------	----------------	--------------	-------------

Mode	Command
Config-Mode	hostname [HOST NAME]
С	hostname SWITCH
Config-Mode	domain [DOMAIN NAME]
С	domain domain.com
Config-Mode	ssh -c gen
С	
Config-Mode	sshcrypto generate
С	
Config-Mode	ssh en
С	
Config-Mode	ssh enable
	Mode Config-Mode C Config-Mode C Config-Mode C Config-Mode C Config-Mode C Config-Mode

Example	С	
Short/long	Config-Mode	Interface vty [START #] [END #]
format		
Example	С	Interface vty 0 15
Short format	VTYIC	login -m [password AAA]
Example	VTYIC	login -m password
Long format	VTYIC	loginmode [password AAA]
Example	VTYIC	loginmode password
Short format	VTYIC	inbound -p [ssh telnet all]
Example	VTYIC	inbound -p ssh
Long format	VTYIC	inboundprotocol [ssh telnet all]
Example	VTYIC	inboundprotocol ssh

5.4.5 Link Layer Discovery Protocol (LLDP) Configurations

This command was designed to match with the design guidelines mentioned above support for all three brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	lldp en
Example	С	
Long format	Config-Mode	lldp enable
Example	С	

Table 5.63 Activate LLDP using Vendor Neutral CLI

5.4.6 Port Management

These commands were designed to match with the design guidelines mentioned above, support for all three brands. However due to Aruba firmware only having single command

to configure both duplex and speed the conversion to Aruba would require the end user to input an intermediate value.

Vendor Neutral	Mode	Command		
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]		
Example	С	Interface 1 -t g		
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]		
Example	С	Interface 1type g		
Short/long format	IC	description [DESCRIPTION STRING]		
Example	IC	description link-to-core		
Short/long format	IC	duplex [auto full half]		
Example	IC	duplex auto		
Short/long format	IC	speed [10 100 1000 10000 auto]		
Example	IC	speed auto		
Short format	IC	dis		
Example	IC			
Long format	IC	disable		
Example	IC			
Short format	IC	en		
Example	IC			
Long format	IC	enable		
Example	IC			

Table 5.64 Port Management Configurations using Vendor Neutral CLI

5.4.7 VLAN Management

Data

These commands were designed to match with the design guidelines mentioned above, support for all three brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	vlan -n [VLAN #]
Example	С	vlan -n 800
Long format	Config-Mode	vlannumber [VLAN #]
Example	С	vlannumber 800
Short format	VIC	name [DESCRIPTION STRING] -t [voice data]
Example	VIC	name test -t data
Example	VIC	name test
Long format	VIC	name [DESCRIPTION STRING]type [voice data]
Example	VIC	name testtype data
Example	VIC	name test

Table 5.65 Creation and Naming data VLANs using Vendor Neutral CLI

Voice

These commands were designed to match with the design guidelines mentioned above, support for all three brands.

Table 5.66 Creation and Naming of voice VLANs using Vendor Neutral CLI

Vendor Neutral	Mode	Command
Short format	Config-Mode	vlan -n [VLAN #]

Example	С	vlan -n 500
Long format	Config-Mode	vlannumber [VLAN #]
Example	С	vlannumber 500
Short format	VIC	name [DESCRIPTION STRING] -t [voice data]
Example	VIC	name voice -t voice
Long format	VIC	name [DESCRIPTION STRING]type [voice data]
Example	VIC	name voicetype voice

5.4.8 VLAN Assignment

Trunk

These commands were designed to match with the design guidelines mentioned above, support for all three brands. However due to the reason of Aruba not having compatibility for permitting all the VLANs at once intermediate inputs are required by end users when conversion is done to Aruba brand. Further configuration of multiple physical ports at once would only be supported with HPE Comware 7 and Cisco due to other brands and firmware versions not supporting it.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 2 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 2type g

Table 5.67 Assignment of Trunk Ports using Vendor Neutral CLI

Short format	IC	trunk -p -v [VLAN# <1-4094>]				
Example	IC	trunk -p -v 200 100 240				
Long format	IC	trunkpermitvlan [VLAN# <1-4094>]				
Example	IC	trunkpermitvlan 200 100 240				
Short format	IC	trunk -p -v all				
Example	IC					
Long format	IC	trunkpermitvlan all				
Example	IC					
Short format	Config-Mode	Interface -r [START ITNERFACE #] [END ITNERFACE #] -t [e f g T]				
Example	С	Interface -r 1 2 -t g				
Long format	Config-Mode	Interfacerange [START ITNERFACE #] [END ITNERFACE #]type [e f g T]				
Example	С	Interfacerange 1 2type g				
Short format	IC	trunk -p -v all				
Example	IC					
Long format	IC	trunkpermitvlan all				
Example	IC					

Access

These commands were designed to match with the design guidelines mentioned above, support for all three brands. Configuration of multiple physical ports at once would only be supported with HPE Comware 7 and Cisco due to other brands and firmware versions not supporting it.

Table 5.68 Assignment	of Access	Ports using	Vendor	Neutral	CLI
-----------------------	-----------	-------------	--------	---------	-----

Vendor Neutral	Mode	Command		
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]		
Example	С	Interface 4 -t g		
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]		
Example	С	Interface 4type g		
Short format	IC	access -v [VLAN# <1-4094>]		
Example	IC	access -v 400		
Long format	IC	accessvlan [VLAN# <1-4094>]		
Example	IC	accessvlan 400		
Short format	Config-Mode	Interface -r [START ITNERFACE #] [END ITNERFACE #] -t [e f g T]		
Example	С	Interface -r 4 8 -t g		
Long format	Config-Mode	Interfacerange [START ITNERFACE #] [END ITNERFACE #]type [e f g T]		
Example	С	Interfacerange 4 8type g		
Short format	IC	access -v [VLAN# <1-4094>]		
Example	IC	access -v 400		
Long format	IC	accessvlan [VLAN# <1-4094>]		
Example	IC	accessvlan 400		

Voice

These commands were designed to match with the design guidelines mentioned above, support for all three brands. Configuration of multiple physical ports at once would only be supported with HPE Comware 7 and Cisco due to other brands and firmware versions not supporting it.

Table 5.69 Assignment o	Voice Ports using	Vendor Neutral	CLI
-------------------------	-------------------	----------------	-----

Vendor Neutral	Mode	Command	
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]	
Example	С	Interface 10 -t g	
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]	
Example	С	Interface 10type g	
Short format	IC	hybrid tagged -v [VLAN#]	
Example	IC	hybrid tagged -v 500	
Long format	IC	hybrid taggedvlan [VLAN#]	
Example	IC	hybrid taggedvlan 500	
Short format	IC	hybrid untagged -v [VLAN#]	
Example	IC	hybrid untagged -v 800	
Long format	IC	hybrid untaggedvlan [VLAN#]	
Example	IC	hybrid untaggedvlan 800	
Short format	Config-Mode	Interface -r [START ITNERFACE #] [END	
		ITNERFACE #] -t $[e f g T]$	
Example	С	Interface -r 10 15 -t g	
Long format	Config-Mode	Interfacerange [START ITNERFACE #] [END	
		ITNERFACE #]type [$e f g T$]	
Example	С	Interfacerange 10 15type g	
Short format	IC	hybrid tagged -v [VLAN#]	
Example	IC	hybrid tagged -v 500	
Long format	IC	hybrid taggedvlan [VLAN#]	
Example	IC	hybrid taggedvlan 500	
Short format	IC	hybrid untagged -v [VLAN#]	
Example	IC	hybrid untagged -v 800	

Long format	IC	hybrid untaggedvlan [VLAN#]
Example	IC	hybrid untaggedvlan 800

5.4.9 VLAN Interface IP Address Assignment

These commands were designed to match with the design guidelines mentioned above, support for all three brands. Design of this command was done with special consideration to guideline No. 6 given above.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface vlan -n [VLAN # <1-4094>]
Example	С	Interface vlan -n 100
Long format	Config-Mode	Interface vlannumber [VLAN # <1-4094>]
Example	С	Interface vlannumber 100
Short/long	VVIC	ip address [IP ADDRESS] [SUBNET MASK]
Iormat		
Example	VVIC	ip address 192.168.1.1 255.255.255.0

Table 5.70 Address assignment for VLAN interfaces using Vendor Neutral CLI

5.4.10 Default Route Configuration

These commands were designed to match with the design guidelines mentioned above, support for all three brands. Design of this command was done with special consideration to guideline No. 6 given above.

Vendor Neutral	Mode	Command
Short/long	Config-Mode	ip route [SOURCE IP] [WILDCARD MASK]
format		[NEXTHOP IP]
Example	С	ip route 0.0.0.0 0.0.0.0 192.168.1.1

Table 5.71 Default Route Configuration using Vendor Neutral CLI

5.4.11 Link Aggregation Control Protocol (LACP) Configurations

These commands were designed to match with the design guidelines mentioned above, support for all three brands. However implementation specific to Aruba was done in a distinct way due to difference in Aruba configuration routine.

Vendor Neutral	Mode	Command	
Short/long format	Config-Mode	Interface aggregation [AGGREGATION#]	
Example	С	Interface aggregation 1	
Short format	BAIC	trunk -p -v [VLAN # <1-4094>]	
Example	BAIC	trunk -p -v 200 100 240	
Long format	BAIC	trunkpermitvlan [VLAN # <1-4094>]	
Example	BAIC	trunkpermitvlan 200 100 240	
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]	
Example	С	Interface 23 -t g	
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]	
Example	С	Interface 23type g	
Short format	IC	aggregation -n [AGGREGATION#]	
Example	IC	aggregation -n 1	
Long format	IC	aggregationnumber [AGGREGATION#]	
Example	IC	aggregationnumber 1	
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]	
Example	С	Interface 24 -t g	
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]	
Example	С	Interface 24type g	
Short format	IC	aggregation -n [AGGREGATION#]	

Table 5.72 LACP	Configurations	using Vendor	Neutral CLI
Include Contra Entreit	e enngmanene	abiling tentaet	rieman e bi

Example	IC	aggregation -n 1
Long format	IC	aggregationnumber [AGGREGATION#]
Example	IC	aggregationnumber 1
Short format	Config-Mode	Interface -r [START ITNERFACE #] [END
		ITNERFACE #] -t $[e f g T]$
Example	С	Interface -r 23 24 -t g
Long format	Config-Mode	Interfacerange [START ITNERFACE #] [END
		ITNERFACE #]type [e f g T]
Example	С	Interfacerange 23 24type g
Short format	IRC	aggregation -n [AGGREGATION#]
Example	IRC	aggregation -n 1
Long format	IRC	aggregationnumber [AGGREGATION#]
Example	IRC	aggregationnumber 1

5.4.12 Multiple Spanning Tree Protocol (MSTP) Configurations

MSTP Configurations

These commands were designed to match with the design guidelines mentioned above, support for all three brands. However the implementation of conversion had to be implemented in a distinct way due to the reason of Aruba mode of operation in configuring MSTP being different from other brands.

Table 5.73	MSTP	Configurations	using	Vendor	Neutral	CLI
10010 0170	1.1011	Companyone	B		1	~

Vendor Neutral	Mode	Command
Short format	Config-Mode	stp en
Example	С	
Long format	Config-Mode	stp enable
Example	С	

Short format	Config-Mode	Interface stp -r
Example	С	
Long format	Config-Mode	Interface stpregion-configuration
Example	С	
Short format	STPRIC	region -n [NAME STRING]
Example	STPRIC	region -n SWMSTP
Long format	STPRIC	regionname [NAME STRING]
Example	STPRIC	regionname SWMSTP
Short format	STPRIC	region -r [REVISION #]
Example	STPRIC	region -r 1
Long format	STPRIC	regionrevision [REVISION #]
Example	STPRIC	regionrevision 1
Short format	STPRIC	instance [INSTANCE#] -v [VLAN# <1-4094>]
Example	STPRIC	instance 1 -v 200 100 240
Example	STPRIC	instance 2 -v 500 800
Long format	STPRIC	instance [INSTANCE#]vlan [VLAN# <1-4094>]
Example	STPRIC	instance 1vlan 200 100 240
Example	STPRIC	instance 2vlan 500 800
Short format	Config-Mode	stp -p [PRIORITY#]
Example	С	stp -p 4096
Long format	Config-Mode	stppriority [PRIORITY#]
Example	С	stppriority 4096
Short format	Config-Mode	stp -i [INSTANCE#] -p [PRIORITY#]
Example	С	stp -i 1 -p 8192
Example	С	stp -i 2 -p 12288

Long format	Config-Mode	stpinstance [INSTANCE#]priority [PRIORITY#]
Example	С	stpinstance 1priority 8192
Example	С	stpinstance 2priority 12288
Short/long	Config-Mode	stp pathcost [8021d 8021t]
format		
Example	С	stp pathcost 8021t
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 20 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 20type g
Short format	IC	stp -c [COST VALUE]
Example	IC	stp -c 20000
Long format	IC	stpcost [COST VALUE]
Example	IC	stpcost 20000
Short format	IC	stp -p [PRIORITY VALUE]
Example	IC	stp -p 16394
Long format	IC	stppriority [PRIORITY VALUE]
Example	IC	stppriority 16394
Short format	IC	stp -i [INSTANCE #] -c [COST VALUE]
Example	IC	stp -i 1 -c 20000
Long format	IC	stpinstance [INSTANCE #]cost [COST VALUE]
Example	IC	stpinstance 1cost 20000
Short format	IC	stp -i [INSTANCE #] -p [PRIORITY VALUE]
Example	IC	stp -i 1 -p 16384

Long format	IC	stpinstance [INSTANCE #]priority [PRIORITY
		VALUE]
Example	IC	stpinstance 1priority 16384

Table 5.74 MSTP Configurations using Vendor Neutral CLI

MSTP Hardening

Data Link Discovery Protocol (DLDP)

These commands were designed to match with the design guidelines mentioned above, support for all three brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 1 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 1type g
Short format	IC	stp dldp en
Example	IC	-
Long format	IC	stp dldp enable
Example	IC	

Table 5.75	DLDP C	Configurations	using	Vendor	Neutral	CLI
14010 2172		sonngarations	abing	, one of	1	

Edge-port

These commands were designed to match with design guidelines mentioned above, which support all three brands. However implementation in terms of Aruba brand had to be done in a distinct manner due to Aruba configuration mode being different from other brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 2 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 2type g
Short format	IC	stp edge-port en
Example	IC	
Long format	IC	stp edge-port enable
Example	IC	

Table 5.76 Edge port Configurations using Vendor Neutral CLI

Bridge Protocol Data Unit (BPDU) Guard

These commands were designed to match with the design guidelines mentioned above, support for all three brands. However implementation in terms of Aruba brand had to be done in a distinct manner due to Aruba configuration mode being different from other brands.

Table 5.77 BPDU guard Confi	urations using Vendor Neutral CLI
-----------------------------	-----------------------------------

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 3 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 3type g
Short format	IC	stp bpdu-guard en
Example	IC	
Long format	IC	stp bpdu-guard enable
Example	IC	

Root Guard

These commands were designed to match with the design guidelines mentioned above, support all three brands. However implementation in terms of Aruba brand had to be done in a distinct manner due to Aruba configuration mode being different from other brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 4 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 4type g
Short format	IC	stp root-guard en
Example	IC	
Long format	IC	stp root-guard enable
Example	IC	

Table 5 78	Doot guard	Configurations	maina	Van dar Naut	nal CI I
14016 5.70	Root guard	Configurations	using	venuor meuu	

Loop Guard

These commands were designed to match with the design guidelines mentioned above, support all three brands. However implementation in terms of Aruba brand had to be done in a distinct manner due to Aruba configuration mode being different from other brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 5 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 5type g
Short format	IC	stp loop-guard en

Table 5.79 Loop guard Configuration using Vendor Neutral CLI

Example	IC	
Long format	IC	stp loop-guard enable
Example	IC	

5.4.13 Access Control Lists (ACL) Creation

Standard Numbered ACLs

These commands were designed to match with the design guidelines mentioned above, support for all three brands. There seems to be some differences in ACL implementation in HPE compared with Aruba and Cisco, where Aruba and Cisco have an implicit deny at the bottom when HPE has a implicit allow at the bottom.

Mode	Command
Config-Mode	Interface acl -s [ACL # <1-99>]
С	Interface acl -s 50
Config-Mode	Interface aclstandard [ACL # <1-99>]
С	Interface aclstandard 50
SNACLIC	permit -i [IP ADDR] -w [WILDCARD]
SNACLIC	permit -i 192.168.1.50 -w 0.0.0.0
SNACLIC	permitip-address [IP ADDR]wildcard
	[WILDCARD]
SNACLIC	permitip-address 192.168.1.50wildcard 0.0.0.0
SNACLIC	deny src -i [IP ADDR] -w [WILDCARD] dst -i [IP
	ADDR] -w [WILDCARD]
SNACLIC	deny src -i 192.168.1.0 -w 0.0.0.255 dst dst -i
	192.168.1.1 -w 0.0.0.0
	Mode Config-Mode C Config-Mode C SNACLIC SNACLIC SNACLIC SNACLIC SNACLIC SNACLIC

Table 5.80 Creation of Standard numbered ACLs using Vendor Neutral CLI

Long format	SNACLIC	deny sourceip-address [IP ADDR]wildcard [WILDCARD] destinationip-address [IP ADDR] wildcard [WILDCARD]
Example	SNACLIC	deny sourceip-address 192.168.1.0wildcard 0.0.0.255 destinationip-address 192.168.1.1 wildcard 0.0.0.0
Short format	SNACLIC	permit -i any any
Example	SNACLIC	
Long format	SNACLIC	permitip-address any any
Example	SNACLIC	

Standard Named ACLs

These commands were designed to match with the design guidelines mentioned above, support all three brands. There seems to be some differences in ACL implementation in HPE compared with Aruba and Cisco, where Aruba and Cisco have an implicit deny at the bottom when HPE has an implicit allow at the bottom.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface acl -s [ACL # <1-99>] -n [ACL NAME STRING]
Example	С	Interface acl -s 60 -n standard_named_acl
Long format	Config-Mode	Interface aclstandard [ACL # <1-99>]name [ACL NAME STRING]
Example	С	Interface aclstandard 60named standard_named_acl
Short format	SNAACLIC	permit -i [IP ADDR] -w [WILDCARD]
Example	SNAACLIC	permit -i 192.168.1.50 -w 0.0.0.0

Table 5.81 Creation of Standard named ACLs using Vendor Neutral CLI

Long format	SNAACLIC	permitip-address [IP ADDR]wildcard [WILDCARD]
Example	SNAACLIC	permitip-address 192.168.1.50wildcard 0.0.0.0
Short format	SNAACLIC	deny src -i [IP ADDR] -w [WILDCARD] dst -i [IP ADDR] -w [WILDCARD]
Example	SNAACLIC	deny src -i 192.168.1.0 -w 0.0.0.255 dst dst -i 192.168.1.1 -w 0.0.0.0
Long format	SNAACLIC	deny sourceip-address [IP ADDR]wildcard [WILDCARD] destinationip-address [IP ADDR] wildcard [WILDCARD]
Example	SNAACLIC	deny sourceip-address 192.168.1.0wildcard 0.0.0.255 destinationip-address 192.168.1.1 wildcard 0.0.0.0
Short format	SNAACLIC	permit -i any any
Example	SNAACLIC	
Long format	SNAACLIC	permitip-address any any
Example	SNAACLIC	

Extended Numbered ACLs

These commands were designed to match with the design guidelines mentioned above, support all three brands. There seems to be some differences in ACL implementation in HPE compared with Aruba and Cisco, where Aruba and Cisco have an implicit deny at the bottom when HPE has an implicit allow at the bottom.

 Table 5.82 Creation of Extended numbered ACLs using Vendor Neutral CLI

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface acl -e [ACL # <100-`99>]
Example	С	Interface acl -e 150

Long format	Config-Mode	Interface aclextended [ACL # <100-199>]
Example	С	Interface aclextended 150
Short format	ENACLIC	permit -i [IP ADDR] -w [WILDCARD]
Example	ENACLIC	permit -i 192.168.1.50 -w 0.0.0.0
Long format	ENACLIC	permitip-address [IP ADDR]wildcard [WILDCARD]
Example	ENACLIC	permitip-address 192.168.1.50wildcard 0.0.0.0
Short format	ENACLIC	deny src -i [IP ADDR] -w [WILDCARD] dst -i [IP ADDR] -w [WILDCARD]
Example	ENACLIC	deny src -i 192.168.1.0 -w 0.0.0.255 dst dst -i 192.168.1.1 -w 0.0.0.0
Long format	ENACLIC	deny sourceip-address [IP ADDR]wildcard [WILDCARD] destinationip-address [IP ADDR] wildcard [WILDCARD]
Example	ENACLIC	deny sourceip-address 192.168.1.0wildcard 0.0.0.255 destinationip-address 192.168.1.1 wildcard 0.0.0.0
Short format	ENACLIC	permit -i any any
Example	ENACLIC	
Long format	ENACLIC	permitip-address any any
Example	ENACLIC	

Extended Named ACLs

These commands were designed to match with the design guidelines mentioned above, support for all three brands. There seems to be some differences in ACL implementation in HPE compared with Aruba and Cisco, where Aruba and Cisco have an implicit deny at the bottom when HPE has an implicit allow at the bottom.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface acl -e [ACL # <100-199>] -n [ACL NAME STRING]
Example	С	Interface acl -e 160 -n extended_named_acl
Long format	Config-Mode	Interface aclextended [ACL # <100-199>]name [ACL NAME STRING]
Example	С	Interface aclextended 160named extended_named_acl
Short format	ENAACLIC	permit -i [IP ADDR] -w [WILDCARD]
Example	ENAACLIC	permit -i 192.168.1.50 -w 0.0.0.0
Long format	ENAACLIC	permitip-address [IP ADDR]wildcard [WILDCARD]
Example	ENAACLIC	permitip-address 192.168.1.50wildcard 0.0.0.0
Short format	ENAACLIC	deny src -i [IP ADDR] -w [WILDCARD] dst -i [IP ADDR] -w [WILDCARD]
Example	ENAACLIC	deny src -i 192.168.1.0 -w 0.0.0.255 dst dst -i 192.168.1.1 -w 0.0.0.0
Long format	ENAACLIC	deny sourceip-address [IP ADDR]wildcard [WILDCARD] destinationip-address [IP ADDR] wildcard [WILDCARD]
Example	ENAACLIC	deny sourceip-address 192.168.1.0wildcard 0.0.0.255 destinationip-address 192.168.1.1 wildcard 0.0.0.0
Short format	ENAACLIC	permit -i any any
Example	ENAACLIC	

Table 5.83 Creation of Extended named ACLs using Vendor Neutral CLI

Long format	ENAACLIC	permitip-address any any
Example	ENAACLIC	

Routed ACL Assignment

Standard Numbered ACLs

These commands were designed to match with the design guidelines mentioned above, support all three brands. However the mode of operation in which assignment of ACLs are done is different from other brands. Therefore implementation had to be done in a distinct manner for Aruba.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface vlan -n [VLAN # <1-4094>]
Example	С	Interface vlan -n 200
Long format	Config-Mode	Interface vlannumber [VLAN # <1-4094>]
Example	С	Interface vlannumber 200
Short format	VVIC	acl [ACL# <1-99>] -m [inbound outbound]
Example	VVIC	acl 50 -m inbound
Long format	VVIC	acl [ACL# <1-99>]mode [inbound outbound]
Example	VVIC	acl 50mode inbound

Table 5.84 Assignment of Standard numbered ACLs to VLANs using Vendor Neutral CLI

Standard Named ACLs

These commands were designed to match with the design guidelines mentioned above, support all three brands. However the mode of operation in which assignment of ACLs are done is different from other brands. Therefore implementation had to be done in a distinct manner for Aruba.
Table 5.85 Assignment of Standard named ACLs to VLANs using Vendor Neutral CLI		
Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface vlan -n [VLAN # <1-4094>]
Example	С	Interface vlan -n 400
Long format	Config-Mode	Interface vlannumber [VLAN # <1-4094>]
Example	С	Interface vlannumber 400
Short format	IC	acl -n [ACL NAME STRING] -m [inbound outbound]
Example	IC	acl -n standard_named_acl -m inbound
Long format	IC	aclname [ACL NAME STRING]mode [inbound]

outbound]

Extended Numbered ACLs

IC

Example

These commands were designed to match with the design guidelines mentioned above, support all three brands. However the mode of operation in which assignment of ACLs are done is different from other brands. Therefore implementation had to be done in a distinct manner for Aruba.

acl --name standard_named_acl --mode inbound

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface vlan -n [VLAN # <1-4094>]
Example	С	Interface vlan -n 200
Long format	Config-Mode	Interface vlannumber [VLAN # <1-4094>]
Example	С	Interface vlannumber 200
Short format	IC	acl [ACL# <100-199>] -m [inbound outbound]
Example	IC	acl 150 -m inbound

Table 5.86 Assignment of Extended numbered ACLs to VLANs using Vendor Neutral CLI

Long format	IC	acl [ACL# <100-199>]mode [inbound outbound]
Example	IC	acl 150mode inbound

Extended Named ACLs

These commands were designed to match with the design guidelines mentioned above, support all three brands. However the mode of operation in which assignment of ACLs are done is different from other brands. Therefore implementation had to be done in a distinct manner for Aruba.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface vlan -n [VLAN # <1-4094>]
Example	С	Interface vlan -n 400
Long format	Config-Mode	Interface vlannumber [VLAN # <1-4094>]
Example	С	Interface vlannumber 400
Short format	IC	acl -n [ACL NAME STRING] -m [inbound outbound]
Example	IC	acl -n extended_named_acl -m inbound
Long format	IC	aclname [ACL NAME STRING]mode [inbound outbound]
Example	IC	aclname extended_named_aclmode inbound

Table 5.87 Assignment of Extended named ACLs to VLANs using Vendor Neutral CLI

Port ACL Assignment

Standard Numbered ACLs

These commands were designed to match with the design guidelines mentioned above, support all three brands.

Table 5.88 Assignment of Standard numbered ACLs to Ports using vendor Neutral CL1		
Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 4 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 4type g
Short format	IC	acl [ACL# <1-99>] -m [inbound outbound]
Example	IC	acl 50 -m inbound
Long format	IC	acl [ACL# <1-99>]mode [inbound outbound]
Example	IC	acl 50mode inbound

Table 5.88 Assignment of Standard numbered ACLs to Ports using Vendor Neutral CLI

Standard Named ACLs

These commands were designed to match with the design guidelines mentioned above, support all three brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 5 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 5type g
Short format	IC	acl -n [ACL NAME STRING] -m [inbound outbound]
Example	IC	acl -n standard_named_acl -m inbound
Long format	IC	aclname [ACL NAME STRING]mode [inbound outbound]
Example	IC	aclname standard_named_aclmode inbound

Table 5.89 Assignment of Standard named ACLs to Ports using Vendor Neutral CLI

Extended Numbered ACLs

These commands were designed to match with the design guidelines mentioned above, supports all three brands.

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 6 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 6type g
Short format	IC	acl [ACL# <100-199>] -m [inbound outbound]
Example	IC	acl 150 -m inbound
Long format	IC	acl [ACL# <100-199>]mode [inbound outbound]
Example	IC	acl 150mode inbound

Table 5.90 Assignment of Extended numbered ACLs to Ports using Vendor Neutral CLI

Extended Named ACLs

These commands were designed to match with the design guidelines mentioned above, supports all three brands.

Table 5.91 Assignment of Extended Named ACLs to Ports using Vendor Neutral CLI

Vendor Neutral	Mode	Command
Short format	Config-Mode	Interface [ITNERFACE #] -t [e f g T]
Example	С	Interface 7 -t g
Long format	Config-Mode	Interface [ITNERFACE #]type [e f g T]
Example	С	Interface 7type g
Short format	IC	acl -n [ACL NAME STRING] -m [inbound outbound]

Example	IC	acl -n extended_named_acl -m inbound
Long format	IC	aclname [ACL NAME STRING]mode [inbound outbound]
Example	IC	aclname extended_named_aclmode inbound

5.5 Integration of Netmiko Connection Sub-System and Command Converter Sub-Systems

The development of Netmiko connection sub-system, vendor specific command converter sub-system and vendor neutral command converter sub-system were completed using the process of incremental prototyping technique and tested to satisfaction that commands get converted properly.

Then the connection sub-system was combined with the command converter subsystems to create a complete API that is capable of connecting to a switch of selected brand through ssh, get the end user input of through any preferred CLI supported and to convert the input command to the supported CLI of connected switch.

In the combining process of the said sub-systems Netmiko write_channel() function was utilized instead of python print() command where there wouldn't be any outputs generated by the switch as an output to the command given [17]. But in case of the command having an output that needs to be displayed to the end users (e.g. show commands) the Netmiko send_command() function used [17].

Commands used to change the mode of operation of the switch were dealt using different functions specific to brands. Therefore it can be noted that the development process utilized specific Netmiko functions required for each individual task as required. See Appendix E for code.

In addition to above mentioned development techniques a new command named "state" was introduced to all the APIs to show the current mode of operation due to the reason of certain modes of operation being different from one brand to another.

As a key requirement of any software development this prototype was also developed having "man pages" similar to that of Linux, which explains its end users how to make use of the API to do supported configuration routines on network devices. See Appendix F for code.

5.6 Summary

This chapter describe in detail how the implementation process was conducted. It further represents vendor based command comparisons in tabular form. Then it tabulates the newly designed vendor neutral CLI that was developed to support the three selected brands.

Chapter 6

6.0 Conclusion and Suggestions for Further Works

6.1 Conclusion

This study successfully proves the concept of being able to have a unified vendor neutral interface for network configurations management of heterogeneous network devices. Further it provides a feasible solution to make network device configuration vendor neutral until a vendor neutral interface gets adopted by manufacturers. Adoption of such interface would benefit the networking industry immensely by improving the quality, efficiency and cost effectiveness network configuration management.

Though the study was able to prove the concept, it should be noted that expanding similar solution that would facilitate network configuration management of all vendor platforms supporting all standardized features would be a challenging task that would require the hard work and effort of workgroups and willingness of manufacturers.

This study can be considered as Proof of Concept (PoC) and a guidance on how it can be achieved. Further it shows that implementation of such an interface would be beneficial towards the industry in many ways by increasing the efficiency and cost effectiveness of configurations management field.

6.2 Suggestions for Future Work

The said two interfaces both vendor neutral and vendor specific can be enhanced in many ways. One such improvement would be to increase their abilities to do conversions to support all the standard features in both IPv6 and IPv4 domains. Further they could be improved to have an ability to support a broader range of network brands and products ranging from layer 2 to layer 7.

Other than the improvements to increase support, the said Interfaces can be improved to have a GUI based CLI similar to Terminals in Linux/OSX or Command Prompt in Windows. The above mentioned GUI can provide more informative feed back to the user

about the commands being converted and the current state or mode of operation in connected switch.

Furthermore the prototype implemented in this study can be used as a platform to further improve a fully graphical interface that can be used to manage any vendor based device. Such interface could be implemented having a visual appearance similar to the IDE used in visual programing languages like Scratch.

The amount of effort that has to be utilized in order to maintain a similar interface having support for many brands with full featured CLI would a huge task, requiring lot of man hours of skilled and enthusiastic personnel. Therefore the most suitable way for the sustainable continuity of this king of API would be to maintain through an open source cloud based work group having lots of members with experience in many different vendor specific platforms.

6.3 Limitations

The main limitation of the APIs developed in this study would be the support of only three selected brands. Further it's again limited to a selected group of configuration routines supporting only IPv4. There is another limitation that would be common to even future developments of the interface, where proprietary protocols and configurations cannot be supported. There is another minor limitation that would be affective to the same interface, where initial ssh and ip address configurations have to be done using the switch brands native CLI in order to make use of this API.

References

- H. Zimmermann, "OSI Reference Model-The ISO Model of Architecture for Open Systems Interconnection," *IEEE Transactions on Communications*, vol. 28, no. 4, pp. 425 - 432, 1980.
- [2] J, Case; R, Mundy; D, Partain; B, Stewart, "RFC3410 Introduction and Applicability Statements for Internet Standard Management Framework," December 2002. [Online]. Available: https://tools.ietf.org/html/rfc3410. [Accessed 28 March 2019].
- [3] J, Schoenwaelder, "RFC3535 IAB Network Management Workshop," May 2003. [Online]. Available: https://tools.ietf.org/html/rfc3535. [Accessed 28 March 2019].
- [4] R, Enns; M, Bjorklund; J, Schoenwaelder; A, Bierman, "RFC6241 Network Configuration Protocol (NETCONF)," June 2011. [Online]. Available: https://tools.ietf.org/html/rfc6241. [Accessed 28 March 2019].
- [5] S, Chisholm; H, Trevino, "RFC5277 NETCONF Event Notifications," July 2008. [Online]. Available: https://tools.ietf.org/html/rfc5277. [Accessed 28 March 2019].
- [6] M, Bjorklund, "RFC6020 YANG A Data Modeling Language for the Network Configuration Protocol (NETCONF)," October 2010. [Online]. Available: https://tools.ietf.org/html/rfc6020. [Accessed 28 March 2019].
- [7] SNMPcenter, "Why use NETCONF/YANG when you can use SNMP and CLI?," Social Neural Mobile Predictive Center, 25 October 2016. [Online]. Available: https://snmpcenter.com/why-use-netconf/. [Accessed 28 March 2019].
- [8] IEEE, IEEE Guide to POSIX Open System Enviorenment (OSE), New York: The Institute of Electrical and Electronics Engineers, Inc., 1995.
- [9] Z. H, "Posix Standard," Linux Hint LLC, 28 March 2018. [Online]. Available: https://linuxhint.com/posix-standard/. [Accessed 28 March 2019].
- [10] J. Forcier, "Welcome to Paramiko's documentation!," Paramiko, 2018. [Online]. Available: http://docs.paramiko.org/en/2.4/#welcome-to-paramiko-sdocumentation. [Accessed 28 March 2019].
- [11] K. Byers, "Netmiko," Netmiko, 19 March 2019. [Online]. Available: https://github.com/ktbyers/netmiko. [Accessed 28 March 2019].
- [12] Aruba, ArubaOS-Switch, Comware and Cisco IOS CLI Reference Guide, Santa Clara, CA: Hewlett Packard Enterprise Company, 2017.
- [13] Python, "Sunsetting Python 2," python.org, [Online]. Available: https://www.python.org/doc/sunset-python-2/. [Accessed 05 04 2020].
- [14] Tutorialspoint, "SDLC Software Prototype Model Tutorialspoint," tutorialspoint.com, [Online]. Available: https://www.tutorialspoint.com/sdlc/sdlc_software_prototyping.htm. [Accessed 05 04 2020].
- [15] K. Byers, "Netmiko Library," Twin Bridges Technology, 02 01 2019. [Online]. Available: https://pynet.twb-tech.com/blog/automation/netmiko.html. [Accessed 05 04 2020].
- [16] IEEE, "IEEE Standard for Information Technology— Portable Operating System Interface," IEEE, New York, 2018.

- [17] Netmiko, "Module netmiko," [Online]. Available: https://ktbyers.github.io/netmiko/docs/netmiko/index.html. [Accessed 05 04 2020].
- [18] R. Pointer and J. Forcier, "Paramiko," Paramiko, 03 January 2019. [Online]. Available: https://github.com/paramiko/paramiko. [Accessed 28 March 2019].
- [19] W. Odom, Cisco CCNA Routing and Switchning ICND2 200-101, Noida U. P: Dorling Kindersley, 2014.
- [20] K. Byers, "BaseConnection," Netmiko, 2016. [Online]. Available: https://netmiko.readthedocs.io/en/stable/classes/base_connection.html. [Accessed 28 March 2019].
- [21] PythonSoftwareFoundation, "Python 3.7.3 documentation," Python Software Foundation, 28 March 2019. [Online]. Available: https://docs.python.org/3/. [Accessed 28 March 2019].

Appendix A

```
#!/usr/bin/env python
import time
from netmiko import Netmiko
from getpass import getpass
HP 1920 = {
  "ip": "192.168.132.136",
  "username": "admin",
  "password": getpass(),
  "device_type": "hp_comware",
}
net_connect = Netmiko(**HP_1920)
command = "_cmdline-mode on"
print()
print(net connect.find prompt())
output = net connect.send command timing(command)
if "All commands can be displayed and executed. Continue? [Y/N]" in output:
         output += net connect.send command timing("y", strip prompt=False,strip command=False)
if "Please input password:" in output:
         output +=
net_connect.send_command_timing("Jinhua1920unauthorized",strip_prompt=False,strip_command=False)
command = "sys"
output = net_connect.send_command_timing(command)
if "System View: return to User View with Ctrl+Z." in output:
         output += net connect.send command timing("display interface brief",
strip prompt=False,strip command=False)
         output += net_connect.send_command_timing(" ", strip_prompt=False,strip_command=False)
```

print(output)
print(net_connect.find_prompt())

net_connect.disconnect()

Appendix B

from __future__ import print_function from __future__ import unicode_literals import time from netmiko.cisco_base_connection import CiscoSSHConnection

class HPComwareJinhuaBase(CiscoSSHConnection):

def session_preparation(self):

```
Prepare the session after the connection has been established.

Extra time to read HP banners.

"""

delay_factor = self.select_delay_factor(delay_factor=0)

i = 1

while i <= 4:

    # Comware can have a banner that prompts you to continue

    # 'Press Y or ENTER to continue, N to exit.'

    time.sleep(.5 * delay_factor)

    self.write_channel("\n")

    i += 1
```

```
      #log into command line mode by command line break

      time.sleep(0.3 * delay_factor)
      # adding a delay to execute the command

      self.write_channel("_cmdline-mode on \n")
      # enter command line break command to channel

      self.write_channel("y \n")
      # enter y

      self.write_channel("Jinhua1920unauthorized\n")
      # enter command line break password
```

```
time.sleep(.3 * delay_factor)
self.clear_buffer()
self._test_channel_read(patterm=r'[>\]]')
self.set_base_prompt()
command = self.RETURN + "screen-length disable"
self.disable_paging(command=command)
# Clear the read buffer
time.sleep(.3 * self.global_delay_factor)
self.clear_buffer()
```

def config_mode(self, config_command='system-view'): """Enter configuration mode.""" return super(HPComwareJinhuaBase, self).config_mode(config_command=config_command)

def check_config_mode(self, check_string=']'):
 """Check whether device is in configuration mode. Return a boolean."""
 return super(HPComwareJinhuaBase, self).check_config_mode(check_string=check_string)

Sets self.base prompt

Used as delimiter for stripping of trailing prompt in output.

Should be set to something that is general and applies in multiple contexts. For Comware this will be the router prompt with <> or [] stripped off.

This will be set on logging in, but not when entering system-view

prompt = super(HPComwareJinhuaBase, self).set_base_prompt(pri_prompt_terminator=pri_prompt_terminator, alt_prompt_terminator=alt_prompt_terminator, delay_factor=delay_factor)

Strip off leading character
prompt = prompt[1:]
prompt = prompt.strip()
self.base_prompt = prompt
return self.base_prompt

def enable(self, cmd='system-view'): """enable mode on Comware is system-view.""" return self.config_mode(config_command=cmd)

def exit_enable_mode(self, exit_command='return'):
 """enable mode on Comware is system-view."""
 return self.exit_config_mode(exit_config=exit_command)

def check_enable_mode(self, check_string=']'):
 """enable mode on Comware is system-view."""
 return self.check_config_mode(check_string=check_string)

def save_config(self, cmd='save force', confirm=False): """Save Config.""" return super(HPComwareJinhuaBase, self).save_config(cmd=cmd, confirm=confirm)

class HPComwareJinhuaSSH(HPComwareJinhuaBase): pass

class HPComwareJinhuaTelnet(HPComwareJinhuaBase): def __init__(self, *args, **kwargs): default_enter = kwargs.get('default_enter') kwargs['default_enter'] = '\r\n' if default_enter is None else default_enter super(HPComwareJinhuaTelnet, self).__init__(*args, **kwargs)

Appendix C

from __future__ import unicode_literals from netmiko.hp.hp_procurve import HPProcurveSSH, HPProcurveTelnet from netmiko.hp.hp_comware import HPComwareSSH, HPComwareTelnet from netmiko.hp.hp_comwarejinhua import HPComwareJinhuaSSH, HPComwareJinhuaTelnet from netmiko.hp.hp_comware512900 import HPComware512900SSH, HPComware512900Telnet from netmiko.hp.hp_comwarefoes import HPComwareFoesSSH, HPComwareFoesTelnet

all = ['HPProcurveSSH', 'HPProcurveTelnet', 'HPComwareSSH', 'HPComwareTelnet', 'HPComwareJinhuaSSH', 'HPComwareJinhuaTelnet', 'HPComware512900SSH', 'HPComware512900Telnet', 'HPComwareFoesSSH', 'HPComwareFoesTelnet']

"""Controls selection of proper class based on the device type.""" from __future__ import unicode_literals

from netmiko.a10 import A10SSH from netmiko.accedian import AccedianSSH from netmiko.alcatel import AlcatelAosSSH from netmiko.alcatel import AlcatelSrosSSH from netmiko.arista import AristaSSH, AristaTelnet from netmiko.arista import AristaFileTransfer from netmiko.apresia import ApresiaAeosSSH, ApresiaAeosTelnet from netmiko.aruba import ArubaSSH from netmiko.calix import CalixB6SSH. CalixB6Telnet from netmiko.checkpoint import CheckPointGaiaSSH from netmiko.ciena import CienaSaosSSH from netmiko.cisco import CiscoAsaSSH, CiscoAsaFileTransfer from netmiko.cisco import CiscoIosSSH, CiscoIosFileTransfer, CiscoIosTelnet, CiscoIosSerial from netmiko.cisco import CiscoNxosSSH, CiscoNxosFileTransfer from netmiko.cisco import CiscoS300SSH from netmiko.cisco import CiscoTpTcCeSSH from netmiko.cisco import CiscoWlcSSH from netmiko.cisco import CiscoXrSSH, CiscoXrFileTransfer from netmiko.citrix import NetscalerSSH from netmiko.coriant import CoriantSSH from netmiko.dell import DellDNOS6SSH from netmiko.dell import DellDNOS6Telnet from netmiko.dell import DellForce10SSH from netmiko.dell import DellOS10SSH, DellOS10FileTransfer from netmiko.dell import DellPowerConnectSSH from netmiko.dell import DellPowerConnectTelnet from netmiko.dell import DellIsilonSSH from netmiko.eltex import EltexSSH from netmiko.enterasys import EnterasysSSH from netmiko.extreme import ExtremeErsSSH from netmiko.extreme import ExtremeExosSSH from netmiko.extreme import ExtremeExosTelnet from netmiko.extreme import ExtremeNetironSSH from netmiko.extreme import ExtremeNetironTelnet from netmiko.extreme import ExtremeNosSSH from netmiko.extreme import ExtremeSlxSSH from netmiko.extreme import ExtremeVspSSH from netmiko.extreme import ExtremeWingSSH from netmiko.f5 import F5TmshSSH from netmiko.f5 import F5LinuxSSH from netmiko.fortinet import FortinetSSH

from netmiko.hp import HPProcurveSSH. HPProcurveTelnet. HPComwareSSH. HPComwareTelnet. HPComwareJinhuaSSH, HPComwareJinhuaTelnet, HPComware512900SSH, HPComware512900Telnet, HPComwareFoesSSH, HPComwareFoesTelnet from netmiko.huawei import HuaweiSSH, HuaweiVrpv8SSH from netmiko.ipinfusion import IpInfusionOcNOSSSH, IpInfusionOcNOSTelnet from netmiko.juniper import JuniperSSH, JuniperTelnet from netmiko.juniper import JuniperFileTransfer from netmiko.linux import LinuxSSH, LinuxFileTransfer from netmiko.mellanox import MellanoxSSH from netmiko.mrv import MrvOptiswitchSSH from netmiko.netapp import NetAppcDotSSH from netmiko.ovs import OvsLinuxSSH from netmiko.paloalto import PaloAltoPanosSSH from netmiko.paloalto import PaloAltoPanosTelnet from netmiko.pluribus import PluribusSSH from netmiko.quanta import QuantaMeshSSH from netmiko.rad import RadETXSSH from netmiko.rad import RadETXTelnet from netmiko.ruckus import RuckusFastironSSH from netmiko.ruckus import RuckusFastironTelnet from netmiko.terminal server import TerminalServerSSH from netmiko.terminal server import TerminalServerTelnet from netmiko.ubiquiti import UbiquitiEdgeSSH from netmiko.vyos import VyOSSSH

The keys of this dictionary are the supported device types CLASS MAPPER BASE = { 'a10': A10SSH, 'accedian': AccedianSSH, 'alcatel aos': AlcatelAosSSH, 'alcatel sros': AlcatelSrosSSH, 'apresia aeos': ApresiaAeosSSH, 'arista eos': AristaSSH, 'aruba os': ArubaSSH, 'avava ers': ExtremeErsSSH. 'avaya vsp': ExtremeVspSSH, 'brocade fastiron': RuckusFastironSSH, 'brocade netiron': ExtremeNetironSSH, 'brocade nos': ExtremeNosSSH, 'brocade vdx': ExtremeNosSSH, 'brocade vyos': VyOSSSH, 'checkpoint gaia': CheckPointGaiaSSH, 'calix b6': CalixB6SSH, 'ciena_saos': CienaSaosSSH, 'cisco asa': CiscoAsaSSH, 'cisco ios': CiscoIosSSH, 'cisco nxos': CiscoNxosSSH, 'cisco s300': CiscoS300SSH, 'cisco tp': CiscoTpTcCeSSH, 'cisco wlc': CiscoWlcSSH, 'cisco xe': CiscoIosSSH, 'cisco xr': CiscoXrSSH, 'coriant': CoriantSSH, 'dell dnos9': DellForce10SSH, 'dell force10': DellForce10SSH, 'dell os6': DellDNOS6SSH, 'dell os9': DellForce10SSH, 'dell_os10': DellOS10SSH, 'dell_powerconnect': DellPowerConnectSSH, 'dell isilon': DellIsilonSSH, 'eltex': EltexSSH, 'enterasys': EnterasysSSH, 'extreme': ExtremeExosSSH

'extreme ers': ExtremeErsSSH, 'extreme exos': ExtremeExosSSH, 'extreme netiron': ExtremeNetironSSH, 'extreme nos': ExtremeNosSSH, 'extreme slx': ExtremeSlxSSH, 'extreme_vdx': ExtremeNosSSH, 'extreme_vsp': ExtremeVspSSH, 'extreme_wing': ExtremeWingSSH, 'f5 ltm': F5TmshSSH, 'f5 tmsh': F5TmshSSH, 'f5 linux': F5LinuxSSH, 'fortinet': FortinetSSH, 'generic termserver': TerminalServerSSH, 'hp comware': HPComwareSSH, 'hp comwarejinhua': HPComwareJinhuaSSH, 'hp comware512900': HPComware512900SSH, 'hp comwarefoes': HPComwareFoesSSH, 'hp procurve': HPProcurveSSH, 'huawei': HuaweiSSH, 'huawei vrpv8': HuaweiVrpv8SSH, 'ipinfusion_ocnos': IpInfusionOcNOSSSH, 'juniper': JuniperSSH, 'juniper junos': JuniperSSH, 'linux': LinuxSSH, 'mellanox': MellanoxSSH, 'mrv optiswitch': MrvOptiswitchSSH, 'netapp_cdot': NetAppcDotSSH, 'netscaler': NetscalerSSH, 'ovs linux': OvsLinuxSSH, 'paloalto panos': PaloAltoPanosSSH, 'pluribus': PluribusSSH, quanta mesh': QuantaMeshSSH, 'rad etx': RadETXSSH, 'ruckus fastiron': RuckusFastironSSH, 'ubiquiti edge': UbiquitiEdgeSSH, 'ubiquiti edgeswitch': UbiquitiEdgeSSH, 'vyatta vyos': VyOSSSH, 'vyos': VyOSSSH, FILE TRANSFER MAP = { 'arista eos': AristaFileTransfer, 'cisco_asa': CiscoAsaFileTransfer, 'cisco_ios': CiscoIosFileTransfer, 'dell os10': DellOS10FileTransfer, 'cisco nxos': CiscoNxosFileTransfer, 'cisco xe': CiscoIosFileTransfer, 'cisco xr': CiscoXrFileTransfer, 'juniper junos': JuniperFileTransfer, 'linux': LinuxFileTransfer,

```
}
```

}

```
# Also support keys that end in ssh
new_mapper = {}
for k, v in CLASS MAPPER BASE.items():
  new mapper[k] = v
  alt key = k + u'' ssh"
  new mapper[alt_key] = v
CLASS_MAPPER = new_mapper
new mapper = \{\}
```

```
for k, v in FILE TRANSFER MAP.items():
  new_mapper[k] = v
```

```
alt_key = k + u"_ssh"
new_mapper[alt_key] = v
FILE_TRANSFER_MAP = new_mapper
```

Add telnet drivers CLASS MAPPER['apresia aeos telnet'] = ApresiaAeosTelnet CLASS_MAPPER['arista_eos_telnet'] = AristaTelnet CLASS MAPPER['brocade fastiron telnet'] = RuckusFastironTelnet CLASS MAPPER['brocade netiron telnet'] = ExtremeNetironTelnet CLASS MAPPER['calix b6 telnet'] = CalixB6Telnet CLASS MAPPER['cisco ios telnet'] = CiscoIosTelnet CLASS_MAPPER['dell_dnos6_telnet'] = DellDNOS6Telnet CLASS_MAPPER['dell_powerconnect_telnet'] = DellPowerConnectTelnet CLASS MAPPER ['extreme telnet'] = ExtremeExosTelnet CLASS_MAPPER['extreme_exos_telnet'] = ExtremeExosTelnet CLASS MAPPER['extreme netiron telnet'] = ExtremeNetironTelnet CLASS MAPPER['generic termserver telnet'] = TerminalServerTelnet CLASS MAPPER['hp procurve telnet'] = HPProcurveTelnet CLASS_MAPPER['hp_comware_telnet'] = HPComwareTelnet CLASS_MAPPER['hp_comwarejunhua_telnet'] = HPComwareJinhuaTelnet CLASS MAPPER['hp comware512900 telnet'] = HPComware512900Telnet CLASS MAPPER ['hp comwarefoes telnet'] = HPComwareFoesTelnet CLASS_MAPPER['ipinfusion ocnos telnet'] = IpInfusionOcNOSTelnet CLASS MAPPER['juniper junos telnet'] = JuniperTelnet CLASS_MAPPER['paloalto_panos_telnet'] = PaloAltoPanosTelnet CLASS_MAPPER['rad_etx_telnet'] = RadETXTelnet CLASS MAPPER['ruckus fastiron telnet'] = RuckusFastironTelnet

Add serial drivers CLASS_MAPPER['cisco_ios_serial'] = CiscoIosSerial

```
# Add general terminal_server driver and autodetect
CLASS_MAPPER['terminal_server'] = TerminalServerSSH
CLASS_MAPPER['autodetect'] = TerminalServerSSH
```

platforms = list(CLASS_MAPPER.keys())
platforms.sort()
platforms_base = list(CLASS_MAPPER_BASE.keys())
platforms_base.sort()
platforms_str = "\n".join(platforms_base)
platforms_str = "\n" + platforms_str

scp_platforms = list(FILE_TRANSFER_MAP.keys())
scp_platforms.sort()
scp_platforms_str = "\n".join(scp_platforms)
scp_platforms_str = "\n" + scp_platforms_str

def ConnectHandler(*args, **kwargs):
 """Factory function selects the proper class and creates object based on device_type."""
 if kwargs['device_type'] not in platforms:
 raise ValueError('Unsupported device_type: '
 'currently supported platforms are: {}'.format(platforms_str))
 ConnectionClass = ssh_dispatcher(kwargs['device_type'])
 return ConnectionClass(*args, **kwargs)

def ssh_dispatcher(device_type):
 """Select the class to be instantiated based on vendor/platform."""
 return CLASS_MAPPER[device_type]

def redispatch(obj, device_type, session_prep=True):
 """Dynamically change Netmiko object's class to proper class.

```
Generally used with terminal server device type when you need to redispatch after interacting
  with terminal server.
  .....
  new class = ssh dispatcher(device type)
  obj.device_type = device_type
  obj.__class__ = new_class
  if session_prep:
    obj._try_session_preparation()
def FileTransfer(*args, **kwargs):
  """Factory function selects the proper SCP class and creates object based on device_type."""
  if len(args) \ge 1:
    device type = args[0].device type
  else:
    device_type = kwargs['ssh_conn'].device_type
  if device type not in scp platforms:
    raise ValueError('Unsupported SCP device_type: '
```

Appendix D

#!/usr/bin/env python3

EXIT = False

COMWARE5_STATE = 'S' INTERFACE_NUMBER = 0 PATH_COST_STANDARD = " SYSTEM_VIEW_COUNT = 2

comware5_show = {'dir': {'cisco': ['show','flash'], 'aruba': ['show','flash'], 'comware7': ['dir']},

'version': {'cisco': ['show', 'version'], 'aruba': ['show', 'version'], 'comware7': ['display', 'version']},

'device': {'manuinfo': {'cisco': ['show','inventory'], 'aruba': ['show','system','information'], 'comware7': ['display','device', 'manuinfo']},

'verbose': {'cisco': ['show', 'version'], 'aruba': ['show', 'modules'], 'comware7':

['display','device','verbose']}},

'current-configuration': {'cisco': ['show', 'run'], 'aruba': ['show', 'run'], 'comware7': ['display', 'current-configuration']},

'saved-configuration': {'cisco': ['show','start'], 'aruba': ['show','config'], 'comware7': ['display','saved-configuration']},

'history': {'cisco': ['show', 'history'], 'aruba': ['show', 'history'], 'comware7': ['display', 'history']},

'info-center': {'cisco': ['show','logging'], 'aruba': ['show','logging'], 'comware7': ['display','info-center']}, 'ip': {'routing-table': {'cisco': ['show','ip','route'], 'aruba': ['show','ip','route'], 'comware7':

['display','ip','routing-table']},

'interface': {[']brief': {'cisco': ['show','ip','interface','brief'], 'aruba': ['show','ip'], 'comware7': ['display','ip','interface','brief']}},

'diagnostic-information': {'cisco': ['show','tech-support'], 'aruba': ['show','tech'], 'comware7': ['display','diagnostic-information']},

'fan': {'cisco': ['show', 'env', 'fan'], 'aruba': ['show', 'system', 'fans'], 'comware7': ['display', 'fan']},

'power': {'cisco': ['show','env','power'], 'aruba': ['show','system','power-supply'], 'comware7': ['display','power']},

'enviorenment': {'cisco': ['show','env','temperature'], 'aruba': ['show','system','temperature'], 'comware7': ['display','enviorenment']},

'users': {'cisco': ['show','users'], 'aruba': ['show','telnet'], 'comware7': ['display','users']},

'lldp': {'neighbor-information': {'list': {'cisco': ['show','lldp','neighbors'], 'aruba': ['show','lldp','info','remote-device'], 'comware7': ['display','lldp','neighbor-information','list']},

'brief: {'cisco': ['!# command not supported'],'aruba': ['#command not supported'],'comware7': ['#command not supported']}}},

'interface': {'brief': {'cisco': ['show','interfaces','status'], 'aruba': ['show', 'interfaces', 'brief'], 'comware7': ['display', 'interface', 'brief']}},

'vlan': {'all': {'cisco': ['!#command not supported'], 'aruba': ['#command not supported'], 'comware7': ['display','vlan','all']},

'cisco': ['show', 'vlan', 'brief], 'aruba': ['show', 'vlans'], 'comware7': ['display', 'vlan']},

'link-aggregation': {'summary': {'cisco': ['show','ethernet','channel','summary'], 'aruba': ['show','lacp'], 'comware7': ['display','link-aggregation','summary']},

'member-port': {'cisco': ['show', 'interface', 'etherchannel'], 'aruba': ['show', 'lacp', 'peer'], 'comware7': ['display', 'link-aggregation', 'member-port']}},

'stp': {'region-configuration': {'cisco': ['show', 'spanning-tree', 'mst', 'configuration'], 'aruba': ['show', 'spanning-tree', 'mst-config'], 'comware7': ['display', 'stp', 'region-configuration']},

'root': {'cisco': ['show','spanning-tree', root'], 'aruba': ['#command not supported'], 'comware7': ['display','stp','root']},

'cisco': ['show','spanning-tree'], 'aruba': ['show','spanning-tree'], 'comware7': ['display','stp']}, 'cisco': ['show'], 'aruba': ['show'], 'comware7': ['display']

}

comware5_show_ext = {'lldp': {'neighbor-information': {'interface': {'cisco': ['show', 'lldp', 'neighbors', '0/', 'detail'], 'aruba': ['show', 'lldp', 'info', 'remote-device', None], 'comware7': ['display', 'lldp', 'neighbor-information', 'interface', '1/0/']}},

'vlan': {'cisco': ['!#command not supported'], 'aruba': ['show', 'vlans', None], 'comware7': ['display', 'vlan', None]},

'stp': {'instance': {'cisco': ['show', 'spanning-tree', 'mst', None], 'aruba': ['show', 'spanning-tree', 'instance', None], 'comware7': ['display', 'stp', 'instance', None]}},

'interface': {'cisco': ['show', 'interfaces', '0/'], 'aruba': ['show', 'interfaces', None], 'comware7': ['display', 'interface', None]},

'dldp': {'statistics': {'cisco': ['!# command not supported'], 'aruba': ['show link-keepalive statistics'], 'comware7': ['display dldp statistics']},

'cisco': ['show','udld','0/'], 'aruba': ['show','link-keepalive'], 'comware7': ['display','dldp']}

comware5 modes = {'system-view' :{'aruba': ['configure'], 'cisco': ['configure', 'terminal'], 'comware7': ['systemview']},

'interface' :{'Bridge-Aggregation': {'aruba': ['# command not supported'], 'cisco': ['interface', 'port-channel', None], 'comware7': ['interface', 'Bridge-Aggregation', None]},

'Vlan-interface': {'aruba': ['vlan', None], 'cisco': ['interface', 'vlan', None], 'comware7': ['interface', 'Vlan-interface', None]},

'aruba': ['interface', None], 'cisco': ['interface', '0/'], 'comware7': ['interface', None]}, :{'aruba': ['vlan', None], 'cisco': ['vlan', None], 'comware7': ['vlan', None]}, 'vlan'

:{'region-configuration': {'aruba': ['# command not supported'], 'cisco':

['spanning-tree', 'mst', 'configuration'], 'comware7': ['stp', 'region-configuration']}}, :{'number': {'aruba': ['ip', 'access-list', ['standard', 'extended'], None], 'cisco': 'acl'

['ip', 'access-list', ['standard', 'extended'], None], 'comware7': ['acl', 'number', None]}},

'quit' :{'aruba': ['exit'], 'cisco': ['exit'], 'comware7': ['quit']},

:{'region-configuration': {'aruba': ['# command not supported'],'cisco':['spanning-'stp'

tree', 'mst', 'configuration'], 'comware7': ['stp', 'region-configuration']}},

'stp'

}

'user-interface' :{'vty': {'aruba': ['# command not supported'], 'cisco': ['line', 'vty', None, None], 'comware7': ['user-interface', 'vty', None, None]}}

comware5 config S = {'sysname' : {'aruba': ['hostname', None], 'cisco': ['hostname', None], 'comware7': ['sysname', None]},

'domain' : {'aruba': [# command not supported'], 'cisco': ['ip', 'domain-name', None], 'comware7': ['domain', None]},

'public-key' : {'local' : {'create': {'rsa': {'aruba': ['crypto', 'key', 'generate', 'ssh'], 'cisco':

['crypto','key','generate'], 'comware7': ['public-key','local','create','rsa']}}}},

: {'server': {'enable': {'aruba': ['ip', 'ssh'], 'cisco': ['ip', 'ssh', 'version', '2'], 'comware7': 'ssh' ['ssh','server','enable']}}},

'user-interface': {'vty': {'aruba': ['# command not supported'],'cisco': ['line', 'vty', None, None],'comware7': ['user-interface','vty', None, None]}},

'protocol' : {'inbound': {'aruba': ['# command not supported'], 'cisco': ['transport', 'input', None], 'comware7': ['protocol', 'inbound', None]}},

: {'enable': {'aruba': ['lldp','run'],'cisco': ['lldp','run'],'comware7': ['lldp','global','enable']}}, 'lldp'

'ip' : {'route-static': {'aruba': ['ip', 'route', None, None, None], 'cisco': ['ip', 'route', None, None, None], 'comware7': ['ip', 'route-static', None, None, None]}},

: {'enable': {'aruba': ['spanning-tree'], 'cisco': ['spanning-tree', 'mode', 'mst'], 'comware7': 'stp' ['stp','enable']},

'priority': {'aruba': ['spanning-tree', 'priority', None], 'cisco': ['spanning-tree', 'mst', '0', 'priority', None],'comware7': ['stp','priority', None]},

'instance': {'aruba': ['spanning-tree', 'instance', None, 'priority', None], 'cisco': ['spanningtree', 'mst', None, 'priority', None], 'comware7': ['stp', 'instance', None, 'priority', None]},

'pathcost-standard': {'aruba': ['spanning-tree', 'pathcost', 'mstp', None], 'cisco': ['spanningtree', 'pathcost', 'method', None], 'comware7': ['stp', 'pathcost-standard', None]}}

comware5 config IS = {'description' : {'aruba': ['name', None], 'cisco': ['description', None], 'comware7': ['description', None]},

'duplex' : {'aruba': ['speed-duplex', None], 'cisco': ['duplex', None], 'comware7': ['duplex', None]},

'speed' : {'aruba': ['speed-duplex', None], 'cisco': ['speed', None], 'comware7': ['speed', None]},

'shutdown' : {'aruba': ['disable'], 'cisco': ['shutdown'], 'comware7': ['shutdown']},

'undo' : {'shutdown': {'aruba': ['enable'],'cisco': ['no','shutdown'],'comware7': ['undo','shutdown']}}},

'port' : {'link-type': {'trunk' : {'aruba': [['vlan', None],['tagged', None]],'cisco':

['switchport','trunk','encapsulation','dot1q'],'comware7': ['port','link-type','trunk']}, 'access': {'aruba': [['vlan', None],['untagged', None]],'cisco':

['switchport','mode','access'],'comware7': ['port','link-type','access']}, 'hybrid': {'aruba': [['vlan', None],['tagged', None],['untagged', None]],'cisco':['switchport','mode','access'],'comware7':['port','link-type','hybrid']}},

'trunk': {'permit': {'vlan': {'aruba': ['# command not supported'], 'cisco':

['switchport', 'trunk', 'allowed', 'vlan', None], 'comware7': ['port', 'trunk', 'permit', 'vlan', None]}}},

'access': {'vlan': {'aruba': ['# command not supported'],'cisco': ['switchport','access','vlan', None],'comware7': ['port','access','vlan', None]}},

'hybrid': {'vlan': {'aruba': [# command not supported'],'cisco':['switchport', None,'vlan', None],'comware7':['port','hybrid','vlan', None, None]}},

'link-aggregation':{'group': {'aruba': ['# command not supported'],'cisco': ['channel-group', None,'mode', 'active'],'comware7': ['port','link-aggregation','group', None]}}},

'stp' : {'cost': {'aruba': ['spanning-tree',None,'path-cost', None],'cisco': ['spanning-tree','cost', None],'comware7': ['stp','cost', None]},

'port': {'priority': {'aruba': ['spanning-tree', None, 'priority', None], 'cisco': ['spanning-tree', 'port-priority', None], 'comware7': ['stp', 'port', 'priority', None]}},

'edge-port': {'enable': {'aruba': ['spanning-tree', None,'admin-edge-port'],'cisco': ['spanning-tree', 'portfast'],'comware7': ['stp','edge-port']}},

'bpdu-protection': {'aruba': ['spanning-tree', None, 'bpdu-protection'], 'cisco': ['spanning-tree', 'bpduguard', 'enable'], 'comware7': ['stp', 'bpdu-protection']},

'root-protection': {'aruba': ['spanning-tree', None, 'root-guard'], 'cisco': ['spanning-tree', 'guard', 'root'], 'comware7': ['stp', 'root-protection']}},

'loopback-detection': {'enable': {'aruba': ['loop-protect', None, 'receiver-action', 'send-disable'], 'cisco': ['spanning-tree', 'guard', 'loop'], 'comware7': ['loopback-detection', 'enable', 'vlan', 'all']},

'action': {'shutdown': {'aruba': ['# command not supported'],'cisco': ['!#command not supported'],'cisco': ['!#command not supported'],'comware7': ['loopback-detection','action','shutdown']}}}

'dldp' : {'enable': {'aruba': ['link-keepalive'],'cisco': ['udld','port'],'comware7': ['dldp','enable']}}

comware5_config_VIS = {'name' : {'voice': {'aruba': ['voice'], 'cisco': ['name', 'voice'], 'comware7': ['name', 'voice']}, 'aruba': ['name', None], 'cisco': ['name', None], 'comware7': ['name', None]}

comware5_config_VVIS = {'ip' :{'address': {'aruba':['ip','address', None, None],'cisco':['ip','address', None, None],'comware7':['ip','address', None, None]}}

comware5_config_VTYS = {'authentication-mode': {'aruba': ['# command not supported'],'cisco': ['login', None],'comware7': ['authentication-mode', None]},

'protocol': {'inbound': {'aruba': ['# command not supported'], 'cisco': ['transport', 'input', None], 'comware7': ['protocol', 'inbound', None]}}

comware5_config_BAIS ={'link-aggregation' :{'mode': {'aruba': ['# command not supported'], 'cisco': ['!#command not supported'], 'comware7': ['link-aggregation', 'mode', None]}},

'port' : {'link-type': {'trunk' : {'aruba': ['# command not supported'],'cisco':

['switchport','trunk','encapsulation','dot1q'],'comware7': ['port','link-type','trunk']},

'access': {'aruba': ['# command not supported'],'cisco':

['switchport', 'mode', 'access'], 'comware7': ['port', 'link-type', 'access']}},

'trunk': {'permit': {'vlan': {'aruba': ['# command not supported'], 'cisco':

['switchport', 'trunk', 'allowed', 'vlan', None], 'comware7': ['port', 'trunk', 'permit', 'vlan', None]}}},

'access': {'vlan': {'aruba': [# command not supported'],'cisco': ['switchport','access','vlan', None],'comware7': ['port','access','vlan', None]}}}

}

}

comware5_config_STPRIS = {'region-name' :{'aruba': ['spanning-tree', 'config-name', None], 'cisco': ['name', None], 'comware7': ['region-name', None]},

'revision-level' :{'aruba': ['spanning-tree', 'config-revision', None], 'cisco': ['revision',

None],'comware7': ['revision-level', None]},

'instance': {'aruba': ['spanning-tree', 'instance', None, 'vlan', None], 'cisco': ['instance', None, 'vlan', None], 'comware7': ['instance', None, 'vlan', None]},

```
'active' : {'region-configuration': {'aruba': ['# command not supported'],'cisco': ['!#command not
supported'], 'comware7': ['active', 'region-configuration']} }
convertion type = input("Enter convertion type [aruba | cisco | comware7 ]: ")
while EXIT == False:
  input string = input("Enter the Comware5 command: ")
  if input string == 'e':
    EXIT = True
  #print("The command you typed is : " + input string)
  # using split()
  # to count words in string
  res = len(input_string.split())
  # printing result
  # print ("The number of words in command are : " + str(res))
  num = int(res)
  command list = []
  for i in range(num):
    command list.append(input string.split(" ")[i])
  # print(command list)
  seperator = '
  # Comware5-t0-Cisco & Comware5-to-Aruba and Comware5-to-Comware7
  # blank input
  if len(command list) == 0:
   print('#Invalid input')
  # system-view | sys
  elif (command list[0] == 'system-view' or command list[0] == 'sys') and len(command list) == 1 and
COMWARE5 STATE == 'U' and SYSTEM VIEW \overline{COUNT} == 0:
   COMWARE5 STATE = 'S'
   SYSTEM VIEW COUNT = SYSTEM VIEW COUNT + 1
   if convertion_type == 'aruba':
    print('enable')
   elif convertion type == 'cisco':
    print('enable')
   elif convertion_type == 'comware7':
    print('system-view')
  # system-view
  elif (command list[0] == 'system-view' or command list[0] == 'sys') and len(command list) == 1 and
COMWARE5_STATE == 'S' and SYSTEM_VIEW_COUNT == 1:
   SYSTEM VIEW COUNT = SYSTEM VIEW COUNT + 1
   print(seperator.join(comware5 modes['system-view'][convertion type]))
   COMWARE5 STATE = 'S'
  # quit
  elif command list[0] == 'quit' and len(command list) == 1:
   if COMWARE5 STATE = 'VIS' or COMWARE5 STATE = 'VVIS' or COMWARE5 STATE = 'VTYS' or
COMWARE5 STATE == 'BAIS' or COMWARE5 STATE == 'STPRIS' or COMWARE5 STATE == 'SNACLIS' or
COMWARE5 STATE == 'SNAACLIS' or COMWARE5 STATE == 'ENACLIS' or COMWARE5 STATE ==
'ENAACLIS':
    print(seperator.join(comware5 modes[command list[0]][convertion type]))
   elif COMWARE5 STATE == 'IS':
    print(seperator.join(comware5 modes[command list[0]][convertion type]))
    INTERFACE NUMBER = 0
    COMWARE5STATE = 'S'
   elif COMWAR\overline{E}5 STATE == 'S':
    print(seperator.join(comware5 modes[command list[0]][convertion type]))
    if SYSTEM VIEW COUNT == 2:
     COMWARE5 STATE = 'S'
```

```
SYSTEM VIEW COUNT = SYSTEM VIEW COUNT - 1
    elif SYSTEM VIEW COUNT == 1:
     COMWARE5 STATE = 'U'
     SYSTEM VIEW COUNT = SYSTEM VIEW COUNT - 1
  # shutdown
  elif command list[0] == 'shutdown' and len(command list) == 1 and COMWARE5 STATE == 'IS':
   if convertion type == 'aruba':
    print(comware5 config IS[command list[0]][convertion type][0])
   elif convertion_type == 'cisco':
    print(comware5_config_IS[command_list[0]][convertion_type][0])
   elif convertion type == 'comware7':
    print(comware5_config_IS[command_list[0]][convertion_type][0])
  # dir
  elif command list[0] == 'dir' and len(command list) == 1 and COMWARE5 STATE == 'S':
   if convertion type = 'aruba':
    print(seperator.join(comware5_show[command_list[0]][convertion_type]))
   elif convertion type == 'cisco':
    print(seperator.join(comware5 show[command list[0]][convertion type]))
   elif convertion type == 'comware7':
    print(seperator.join(comware5 show[command list[0]][convertion type]))
  # display
  elif command list[0] == 'display' and len(command list) == 1 and COMWARE5 STATE == 'S':
   if convertion type == 'aruba':
    print(seperator.join(comware5 show[convertion type]))
   elif convertion type == 'cisco':
    print(seperator.join(comware5_show[convertion_type]))
   elif convertion type == 'comware7':
    print(seperator.join(comware5 show[convertion type]))
  # stp bpdu-protection
  elif command list[0] == 'stp' and command list[1] == 'bpdu-protection' and len(command_list) == 2 and
COMWARE5\_STATE == 'IS':
   if convertion type == 'aruba':
    # exit interface configuration mode
    print(seperator.join(comware5 modes['quit'][convertion type]))
    print(comware5 config IS[command list[0]][command list[1]][convertion type][0]+'
'+str(INTERFACE NUMBER)+' '+comware5_config_IS[command_list[0]][command_list[1]][convertion_type][2])
    # go inside interface configuration mode
    print(comware5_modes['interface'][convertion_type][0]+' '+str(INTERFACE NUMBER))
   elif convertion type == 'cisco':
    print(comware5 config IS[command list[0]][command list[1]][convertion type][0]+'
+comware5 config IS[command_list[0]][command_list[1]][convertion_type][1]+
'+comware5_config_IS[command_list[0]][command_list[1]][convertion_type][2])
   elif convertion type == 'comware7':
    print(comware5_config_IS[command_list[0]][command_list[1]][convertion_type][0]+'
'+comware5 config_IS[command_list[0]][command_list[1]][convertion_type][1])
  # stp root-protection
  elif command_list[0] == 'stp' and command_list[1] == 'root-protection' and len(command_list) == 2 and
COMWARE5 STATE == 'IS':
   if convertion type == 'aruba':
    # exit interface configuration mode
    print(seperator.join(comware5 modes['quit'][convertion type]))
    print(comware5_config_IS[command_list[0]][command_list[1]][convertion_type][0]+'
'+str(INTERFACE NUMBER)+' '+comware5 config IS[command list[0]][command list[1]][convertion type][2])
    # go inside interface configuration mode
    print(comware5 modes['interface'][convertion type][0]+' '+str(INTERFACE NUMBER))
   elif convertion type == 'cisco':
    print(comware5 config IS[command list[0]][command list[1]][convertion type][0]+'
+comware5 config IS[command list[0]][command list[1]][convertion type][1]+
'+comware5 config IS[command list[0]][command list[1]][convertion type][2])
   elif convertion_type == 'comware7':
    print(comware5_config_IS[command_list[0]][command_list[1]][convertion_type][0]+'
'+comware5 config IS[command list[0]][command list[1]][convertion type][1])
```

Appendix E

#!/usr/bin/env python3

import time import re

from netmiko import Netmiko from getpass import getpass

def netprint(print_command):
 return print_command

def split(word):
 return [char for char in word]

def commandfilter(start_length,end_length,unfiltered_command_list):
 filtered_command = []
 for x in range(start_length,end_length):
 if unfiltered_command_list[x].startswith('--'):
 filtered_command_list[x].startswith('--'):
 filtered_command_list[x].startswith('-'):
 command_string = unfiltered_command_list[x].lstrip('-')
 if len(command_string) == 1:
 filtered_command_string) > 1:
 filtered_command_string) > 1:
 filtered_command_string)
 elif en(command_string) > 1:
 filtered_command_string)
 elif elif command_string) > 1:
 filtered_command_string)
 return filtered_command_append(unfiltered_command_list[x])

EXIT = False NEUTRAL_STATE = 'P' ACL_NAME_NUM = {} INTERFACE_NUMBER = 0 BRIDGE_AGGREGATION_NUMBER = 0

's' :{'aruba': ['show', 'system', 'information'], 'comware5': ['display', 'device', 'manuinfo'], 'comware7': ['display', 'device', 'manuinfo'], 'cisco': ['show', 'inventory']},

'm' :{'aruba': ['show','modules'],'comware5': ['display','device','verbose'],'comware7': ['display','device', 'verbose'],'cisco': ['show','version']},

'R' :{'aruba': ['show','run'],'comware5': ['display','current-configuration'],'comware7': ['display','current-configuration'],'cisco': ['show','run']},

'S' :{'aruba': ['show', 'config'], 'comware5': ['display', 'saved-configuration'], 'comware7': ['display', 'saved-configuration'], 'cisco': ['show', 'start']},

'h' : {'aruba': ['show', 'history'], 'comware5': ['display', 'history'], 'cisco': ['show', 'history']},

'l' : {'aruba': ['show','logging'],'comware5': ['display','info-center'],'comware7': ['display','info-center'],'cisco': ['show','logging']},

'ip' : {'r': {'aruba': ['show','ip','route'],'comware5': ['display','ip','routing-table'],'comware7': ['display','ip','routing-table'],'cisco': ['show','ip','route']},'i': {'aruba': ['show','ip'],'comware5':

['display','ip','interface', 'brief],'comware7': ['display','ip','interface', 'brief],'cisco': ['show','ip','interface', 'brief]}}, 't' :{'aruba': ['show','tech'],'comware5': ['display','diagnostic-information'],'comware7':

['display', 'diagnostic-information'], 'cisco': ['show', 'tech-support']},

'F' :{'aruba': ['show','system','fans'],'comware5': ['display','fan'],'comware7': ['display','fan'],'cisco': ['show','env','fan']},

"P' :{'aruba': ['show','system','power-supply'],'comware5': ['display','power'],'comware7': ['display','power'],'cisco': ['show','env','power']},

T' :{'aruba': ['show','system','temperature'],'comware5': ['display','enviorenment'],'comware7': ['display','enviorenment'],'cisco': ['show','env','temperature']},

'u' :{'aruba': ['show','telnet'],'comware5': ['display','users'],'comware7': ['display','users'],'cisco': ['show','users']},

'ssh' :{'c': {'aruba': ['show','crypto','host-public-key'],'comware5': ['# command not

supported'], 'comware7': ['display', 'public-key', 'local', 'rsa', 'public'], 'cisco': ['show', 'crypto', 'key', 'mypubkey', 'rsa']}, 'aruba': ['show', 'ip', 'ssh'], 'comware5': ['# command not supported'], 'comware7':

['display','ssh','server','status'],'cisco': ['show','ip','ssh']},

'lldp' :{'n': {'I: {'aruba': ['show','lldp','info','remote-device', None],'comware5': ['display','lldp','neighborinformation','interface','1/0/'],'comware7': ['display','lldp','neighbor-information','interface','1/0/'],'cisco': ['show','lldp','neighbors','0/','detail']},'aruba': ['show','lldp','info', 'remote-device'],'comware5': ['display','lldp','neighborinformation','list'],'comware7': ['display','lldp','neighbor-information','list'],'cisco': ['show','lldp','neighbor-information','list'],'comware5': ['display','lldp','neighbor-information','list'],'cisco': ['show','lldp','neighbor-information','list'],'comware5': ['display','lldp','neighbor-information','list'],'cisco': ['show','lldp','neighbor-information','list'],'cisco': ['show','lldp','neighbor-information','l

'i' :{'aruba': ['show', 'interfaces', 'brief], 'comware5': ['display', 'interface', 'brief], 'comware7':

['display','interface', 'brief'],'cisco': ['show','interfaces','status']},

'vlan' :{'aruba': ['show', 'vlans'], 'comware5': ['display', 'vlan'], 'comware7': ['display', 'vlan'], 'cisco': ['show', 'vlan', 'brief']},

'lacp' :{'p': {'aruba': ['show', 'lacp', 'peer'], 'comware5': ['display', 'link-aggregation', 'member-

port'],'comware7': ['display','link-aggregation','member-port'],'cisco': ['show','interface','etherchannel']}, 'aruba': ['show','lacp'],'comware5': ['display','link-aggregation','summary'],'comware7':

['display', 'link-aggregation', 'summary'], 'cisco': ['show', 'etherchannel', 'summary']},

'stp' :{'i: {'aruba': ['show', 'spanning-tree', 'instance', None], 'comware5': ['display', 'stp', 'instance',

None], 'comware7': ['display', 'stp', 'instance', None], 'cisco': ['show', 'spanning-tree', 'mst', None]},

'r': {'aruba': ['show', 'spanning-tree', 'mst-config'], 'comware5': ['display', 'stp', 'regionconfiguration'], 'comware7': ['display', 'stp', 'region-configuration'], 'cisco': ['show', 'spanning-tree', 'mst', 'configuration']},

'D': {'aruba': ['show','link-keepalive','statistics'],'comware5': ['display','dldp','statistics'],'comware7': ['display','dldp','statistics'],'cisco': ['!# command not supported']},

'd': {'aruba': ['show','link-keepalive'],'comware5': ['display','dldp'],'comware7':

['display','dldp'],'cisco': ['show','udld', None]},

'aruba': ['show', 'spanning-tree'], 'comware5': ['display', 'stp'], 'comware7': ['display', 'stp'], 'cisco': ['show', 'spanning-tree']},

'I' :{'b': {'aruba': ['show', 'interfaces', 'brief', None], 'comware5':

['display', 'interface', '1/0/', 'brief'], 'comware7': ['display', 'interface', '1/0/', 'brief'], 'cisco':

['show','interfaces','0/','status']},'aruba': ['show','interfaces', None],'comware5': ['display','interface', '1/0/'],'comware7': ['display','interface', '1/0/'],'cisco': ['show','interfaces', '0/']},

'aruba': ['show'],'comware5': ['display'],'comware7': ['display'],'cisco': ['show']

}___

neutral_modes = {'enable' : {'aruba': ['enable'],'comware5': ['system-view'],'comware7': ['system-view'],'cisco':
['enable']},

'config' : {'aruba': ['configure'], 'comware5': ['system-view'], 'comware7': ['system-view'], 'cisco': ['configure', 'terminal']},

'vlan' : {'n': {'aruba': ['vlan', None],'comware5': ['vlan', None],'cisco': ['vlan', None]}},

'Interface': {'vty': {'aruba': ['# command not supported'],'comware5': ['user-interface','vty', None,

None], 'comware7': ['user-interface', 'vty', None, None], 'cisco': ['line', 'vty', None, None]},

'r': {'aruba': ['# command not supported'], 'comware5': ['# command not supported'], 'comware7': ['interface', 'range', '1/0/', 'to', '1/0/'], 'cisco': ['interface', 'range', '0/', '-', None]},

'vlan': {'n': {'aruba': ['vlan', None],'comware5': ['interface','Vlan-interface', None],'comware7': ['interface','Vlan-interface', None],'cisco': ['interface', 'vlan', None]}},

'aggregation': {'aruba': ['trunk', None,'-',None,'trk','lacp'],'comware5': ['interface','Bridge-

Aggregation', None],'comware7': ['interface','Bridge-Aggregation', None],'cisco': ['interface','port-channel', None]}, 'stp': {'r': {'aruba': ['# command not supported'],'comware5': ['stp','region-

configuration'], 'comware7': ['stp', 'region-configuration'], 'cisco': ['spanning-tree', 'mst', 'configuration']}},

'acl': {'s': {'n': {'aruba': ['ip','access-list','standard', None],'comware5': ['acl','number', None,'name', None],'comware7': ['acl','number', None,'name', None],'cisco': ['ip','access-list','standard', None],'aruba': ['ip','access-list','standard', None],'cisco': ['ip','access-list','standard', None],'cisco': ['ip','access-list','standard', None],'cisco': ['ip','access-list','standard', None],'cisco': ['ip','access-list','standard', None],'cisco': ['ip','access-list','standard', None],'cisco': ['ip','access-list', 'standard', None],'cisco': ['ip','access-list', 'standard', None],'cisco': ['ip', 'access-list', 'stand

'e': {'n': {'aruba': ['ip','access-list','extended', None],'comware5': ['acl','number', None,'name', None],'cisco': ['ip','access-list','extended', None],'aruba': ['ip','access-list','extended', None],'comware5': ['acl','number', None],'comware7': ['acl','number', None],'cisco': ['ip','access-list','extended', None],'cisco': ['ip','access-list','extend

'aruba': ['interface', None], 'comware5': ['interface', '1/0/'], 'comware7': ['interface', '1/0/'], 'cisco': ['interface', '0/']},

'exit' : {'aruba': ['exit'],'comware5': ['quit'],'comware7': ['quit'],'cisco': ['exit']}

neutral_config_C = {'hostname' :{'aruba': ['hostname', None],'comware5': ['sysname', None],'comware7': ['sysname', None],'cisco': ['hostname', None]},

'domain' :{'aruba': ['# command not supported'], 'comware5': ['domain', None], 'comware7': ['domain', None], 'cisco': ['ip', 'domain-name', None]},

'ssh' :{'c':{'gen':{'aruba': ['crypto','key','generate','ssh'],'comware5': ['public-

key','local','create','rsa'],'comware7': ['public-key','local','create','rsa'],'cisco': ['crypto','key','generate']}},

'en': {'aruba': ['ip','ssh'],'comware5': ['ssh','server','enable'],'comware7':

['ssh','server','enable'],'cisco': ['ip','ssh','version','2']}}, 'lldp' :{'en': {'aruba': ['lldp','run'],'comware5': ['lldp','enable'],'comware7':

['lldp','global','enable'],'cisco': ['lldp','run']}},

3

'ip' :{'route': {'aruba': ['ip','route', None, None, None],'comware5': ['ip','route-static', None, None, None],'comware5': ['ip','route-static', None, None, None],'cisco': ['ip','route', None, None, None]}},

'stp' :{'en': {'aruba': ['spanning-tree'],'comware5': ['stp','enable'],'comware7': ['stp','enable'],'cisco': ['spanning-tree','mode','mst']},

'pathcost': {'aruba': ['spanning-tree', 'pathcost', 'mstp', None], 'comware5': ['stp', 'pathcost-standard', None], 'comware7': ['stp', 'pathcost-standard', None], 'cisco': ['spanning-tree', 'pathcost', 'method', None]},

'p': {'aruba': ['spanning-tree', 'priority', None], 'comware5': ['stp', 'priority', None], 'comware7': ['stp', 'priority', None], 'cisco': ['spanning-tree', 'mst', '0', 'priority', None]},

'i': {'p': {'aruba': ['spanning-tree', 'instance', None, 'priority', None], 'comware5': ['stp', 'instance', None, 'priority', None], 'comware7': ['stp', 'instance', None, 'priority', None], 'cisco': ['spanning-tree', 'mst', None, 'priority', None]}}

neutral_config_VTYIC = {'login' :{'m': {'aruba': ['# command not supported'], 'comware5': ['authentication-mode', None], 'comware7': ['authentication-mode', None], 'cisco': ['login', None]}},

'inbound' :{'p': {'aruba': ['# command not supported'],'comware5': ['protocol','inbound',

None],'comware7': ['protocol','inbound', None],'cisco': ['transport','input', None]}}

neutral_config_IC = {'description' ::{'aruba': ['name', None],'comware5': ['description', None],'comware7': ['description', None],'cisco': ['description', None]},

'duplex' :{'aruba': ['speed-duplex', None],'comware5': ['duplex', None],'comware7': ['duplex', None],'cisco': ['duplex', None]},

'speed' :{'aruba': ['speed-duplex', None],'comware5': ['speed', None],'comware7': ['speed', None],'cisco': ['speed', None]},

'en' :{'aruba': ['enable'], 'comware5': ['undo', 'shutdown'], 'comware7': ['undo', 'shutdown'], 'cisco': ['no', 'shutdown']},

'dis' :{'aruba': ['disable'],'comware5': ['shutdown'],'comware7': ['shutdown'],'cisco': ['shutdown']}, 'trunk' :{'aruba': [['vlan', None],['tagged', None]],'comware5': [['port','link-

type','trunk'],['port','trunk','permit','vlan', None]],'comware7': [['port','link-type','trunk'],['port','trunk','permit','vlan', None]],'cisco': [['switchport','trunk','encapsulation','dot1q'],['switchport','trunk','allowed','vlan', None]]},

'access' :{'aruba': [['vlan', None],['untagged', None]],'comware5': [['port','link-

type','access'],['port','access','vlan', None]],'comware7': [['port','link-type','access'],['port','access','vlan', None]],'cisco': [['switchport','mode','access'],['switchport','access','vlan', None]]},

'hybrid' :{tagged': {'aruba': [['vlan', None],['tagged', None]],'comware5': [['port','linktype','hybrid'],['port','hybrid','vlan', None,'tagged']],'comware7': [['port','link-type','hybrid'],['port','hybrid','vlan', None,'tagged']],'cisco': [['switchport','mode','access'],['switchport','voice','vlan', None]]},

'untagged': {'aruba': [['vlan', None],['untagged', None]], 'comware5': [['port','link-

type','hybrid'],['port','hybrid','vlan', None,'untagged']],'comware7': [['port','link-type','hybrid'],['port','hybrid','vlan', None,'untagged']],'cisco': [['switchport','mode','access'],['switchport','access','vlan', None]]}},

'aggregation' :{'n': {'aruba': ['# command not supported'],'comware5': ['port','link-aggregation','group', None],'comware7': ['port','link-aggregation','group', None],'cisco': ['channel-group', None,'mode','active']}},

:{'dldp': {'aruba': ['link-keepalive'], 'comware5': ['dldp', 'enable'], 'comware7':

['dldp','enable'],'cisco': ['udld','port']},

'stp'

'edge-port': {'aruba': ['spanning-tree', None,'admin-edge-port'],'comware5': ['stp','edgeport', 'enable'], 'comware7': ['stp', 'edge-port'], 'cisco': ['spanning-tree', 'portfast']},

'bpdu-guard': {'aruba': ['spanning-tree', None, 'bpdu-protection'], 'comware5': ['stp', 'bpduprotection'], 'comware7': ['stp', 'bpdu-protection'], 'cisco': ['spanning-tree', 'bpduguard', 'enable']},

'root-guard': {'aruba': ['spanning-tree', None, 'root-guard'], 'comware5': ['stp', 'rootprotection'], 'comware7': ['stp', 'root-protection'], 'cisco': ['spanning-tree', 'guard', 'root']},

'loop-guard': {'aruba': ['loop-protect', None,'receiver-action','send-disable'],'comware5': ['loopback-detection','enable'],'comware7': ['loopback-detection','enable','vlan','all'],'cisco': ['spanningtree', 'guard', 'loop']},

'c': {'aruba': ['spanning-tree', None, 'path-cost', None], 'comware5': ['stp', 'cost', None], 'comware7': ['stp', 'cost', None], 'cisco': ['spanning-tree', 'cost', None]},

'p': {'aruba': ['spanning-tree', None, 'priority', None], 'comware5': ['stp', 'port', 'priority', None], 'comware7': ['stp', 'port', 'priority', None], 'cisco': ['spanning-tree', 'port-priority', None]},

'i': {'c': {'aruba': ['spanning-tree', 'instance', None, None, 'path-cost', None], 'comware5': ['stp','instance', None,'cost', None],'comware7': ['stp','instance', None,'cost', None],'cisco': ['spanning-tree','mst', None,'cost', None]},

'p':{'aruba': ['spanning-tree', 'instance', None, None, 'priority', None], 'comware5': ['stp', 'instance', None, 'port', 'priority', None], 'comware7': ['stp', 'instance', None, 'port', 'priority', None], 'cisco': ['spanning-tree', 'mst', None, 'port-priority', None]}}},

'acl': {'n': {'aruba': ['ip', 'access-group', None, None], 'comware5': ['packet-filter', None, None], 'comware7': ['packet-filter', None, None], 'cisco': ['ip', 'access-group', None, None]},

'aruba': ['ip','access-group', None, None],'comware5': ['packet-filter', None, None],'comware7': ['packet-filter', None, None],'cisco': ['ip','access-group', None, None]}

neutral_config_VIC = {'name' :{'aruba': ['name', None],'comware5': ['name', None],'comware7': ['name', None],'cisco': ['name', None]} }

neutral config VVIC = {'ip': {'address': {'aruba': ['ip','address', None, None],'comware5': ['ip','address', None, None], 'comware7': ['ip', 'address', None, None], 'cisco': ['ip', 'address', None, None]}},

'acl': {'n': {'aruba': ['ip', 'access-group', None, None], 'comware5': ['packet-filter', None,

None], 'comware7': ['packet-filter', None, None], 'cisco': ['ip', 'access-group', None, None]},

'aruba': ['ip','access-group', None, None],'comware5': ['packet-filter', None, None],'comware7': ['packet-filter', None, None], 'cisco': ['ip', 'access-group', None, None]}

neutral config BAIC = {'trunk' :{'aruba': ['vlan', None,'tagged','trk'],'comware5': [['port','linktype', 'trunk'], ['port', 'trunk', 'permit', 'vlan', None]], 'comware7': [['port', 'link-type', 'trunk'], ['port', 'trunk', 'permit', 'vlan', None]], 'cisco': [['switchport', 'trunk', 'encapsulation', 'dot1q'], ['switchport', 'trunk', 'allowed', 'vlan', None]]}, 'access' :{'aruba': ['vlan', None,'untagged','trk'],'comware5': [['port','link-

type','access'],['port','access','vlan', None]],'comware7': [['port','link-type','access'],['port','access','vlan', None]],'cisco': [['switchport', 'mode', 'access'], ['switchport', 'access', 'vlan', None]]}

neutral config IRIC = {'aggregation' :{'n': {'aruba': ['# command not supported'], 'comware5': ['# command not supported'],'comware7': ['port','link-aggregation','group', None],'cisco': ['channel-group', None,'mode','active']}}, 'trunk' :{'aruba': ['# command not supported'],'comware5': ['# command not

supported'],'comware7': [['port','link-type','trunk'],['port','trunk','permit','vlan', None]],'cisco':

[['switchport','trunk','encapsulation','dot1q'],['switchport','trunk','allowed','vlan', None]]},

:{'aruba': ['# command not supported'],'comware5': ['# command not 'access'

supported'],'comware7': [['port','link-type','access'],['port','access','vlan', None]],'cisco':

[['switchport', 'mode', 'access'], ['switchport', 'access', 'vlan', None]]},

}

:{'tagged': {'aruba': ['# command not supported'], 'comware5': ['# command not 'hybrid' supported'], 'comware7': [['port','link-type', 'hybrid'], ['port', 'hybrid', 'vlan', None, 'tagged']], 'cisco': [['switchport', 'mode', 'access'], ['switchport', 'voice', 'vlan', None]]},

'untagged': {'aruba': ['# command not supported'], 'comware5': ['# command not supported'], 'comware7': [['port', 'link-type', 'hybrid'], ['port', 'hybrid', 'vlan', None, 'untagged']], 'cisco': [['switchport', 'mode', 'access'], ['switchport', 'access', 'vlan', None]]}}

neutral_config_STPRIC = {'region' :{'n': {'aruba': ['spanning-tree', 'config-name', None], 'comware5': ['region-name', None], 'comware7': ['region-name', None], 'conware7': ['region-name', No

'r': {'aruba': ['spanning-tree', 'config-revision', None], 'comware5': ['revision-level', None], 'comware7': ['revision-level', None], 'cisco': ['revision', None]}},

'instance' :{'aruba': ['spanning-tree', 'instance', None, 'vlan', None], 'comware5': ['instance', None, 'vlan', None], 'comware7': ['instance', None, 'vlan', None], 'cisco': ['instance', None, 'vlan', None]}

neutral_config_SNACLIC = {permit' :{'i': {'w': {'aruba': [permit', None, None],'comware5': ['rule','permit','source', None, None],'cisco': ['permit', None, None],'aruba': ['permit','ip','any','any'], 'comware5': ['#command not required since HPE has an implicit allow at the bottom'], 'comware7': ['#command not required since HPE has an implicit allow at the bottom'], 'cisco': ['permit','ip','any']},

'deny' :{'aruba': ['deny','ip', None, None, None, None],'comware5': ['rule','deny','ip','source', None, None, 'destination', None, None],'comware7': ['rule','deny','ip','source', None, None, 'destination', None, None],'cisco': ['deny','ip', None, None, None, None]}

neutral_config_SNAACLIC = {'permit' :{'w': {'aruba': ['permit', None, None],'comware5': ['rule','permit','source', None, None],'comware7': ['rule','permit','source', None, None],'cisco': ['permit', None, None]},'aruba': ['permit','ip','any','any'],'comware5': ['#command not required since HPE has an implicit allow at the bottom'],'comware7': ['#command not required since HPE has an implicit allow at the bottom'],'cisco': ['permit','ip','any','any']}},

'deny' :{'aruba': ['deny','ip', None, None, None, None],'comware5': ['rule','deny','ip','source', None, None, 'destination', None, None],'comware7': ['rule','deny','ip','source', None, None, 'destination', None, None],'cisco': ['deny','ip', None, None, None, None]}

neutral_config_ENACLIC = {'permit' : {'w': {'aruba': ['permit', None, None],'comware5': ['rule','permit','source', None, None],'cisco': ['permit', None, None],'aruba': ['permit','ip','any','any'],'comware5': ['#command not required since HPE has an implicit allow at the bottom'],'cisco': ['permit','ip','any','any']},

'deny' :{'aruba': ['deny','ip', None, None, None, None],'comware5': ['rule','deny','ip','source', None, None, 'destination', None, None],'comware7': ['rule','deny','ip','source', None, None, 'destination', None, None],'cisco': ['deny','ip', None, None, None, None]}

neutral_config_ENAACLIC = {'permit' :{'i': {'w': {'aruba': ['permit', None, None],'comware5': ['rule','permit','source', None, None],'comware7': ['rule','permit','source', None, None],'cisco': ['permit', None, None]},'aruba': ['permit','ip','any','any'],'comware5': ['#command not required since HPE has an implicit allow at the bottom'],'comware7': ['#command not required since HPE has an implicit allow at the bottom'],'cisco': ['permit','ip','any','any']}}

'deny' :{'aruba': ['deny','ip', None, None, None, None],'comware5': ['rule','deny','ip','source', None, None, 'destination', None, None],'comware7': ['rule','deny','ip','source', None, None, 'destination', None, None],'cisco': ['deny','ip', None, None, None, None]}

print API description

}

3

get ip address of the switch to connect ipaddr_tmp = input("Enter the switch ip address: ") # regular expression to validate ip address regex = ""^(25[0-5]]2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.(25[0-5]]2[0-4][0-9][0-1]?[0-9][0-9]?)\.(

25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)"

```
# validate ip address
if (re.search(regex, ipaddr tmp)):
  ipaddr = ipaddr tmp
else:
  print("Please enter a valid ip address")
  exit()
# get the username of the switch to connect
user = input("Enter the switch username: ")
# get the convertion type
convertion type = input("Enter convertion type [ cisco | aruba | comware5 | comware7 ]: ")
if convertion type == 'aruba':
 NEUTRAL STATE = 'P'
 dtype = "hp procurve"
elif convertion_type == 'cisco':
 NEUTRAL_STATE = 'P'
 #SYS COUNT = 1
 dtype = "cisco ios"
elif convertion_type == 'comware5':
 NEUTRAL STATE = 'U'
 device model = input("Enter switch model [ 1910 | 1920 | 5500 ] : ")
 if device model = '1910':
  dtype = "hp_comware512900"
 elif device_model == '1920':
  dtype = "hp_comwarejinhua"
 elif device model == '5500':
  dtype = "hp comware"
 else:
  print("Please enter a valid switch model [ 1910 | 1920 | 5500 ]")
  exit()
elif convertion type == 'comware7':
 NEUTRAL STATE = 'U'
 device model = input("Enter switch model [ 1950 | 5510 ] : ")
 if device_model == '1950':
  dtype = "hp comwarefoes"
 elif device model == 5510:
  dtype = "hp comware"
 else:
  print("Please enter a valid switch model [ 1950 | 5510 ]")
  exit()
else:
 print("Invalid convertion type [ cisco | aruba | comware5 | comware7 ]")
 exit()
ipaddr = "192.168.50.102"
dtype = "hp_comwarejinhua"
convertion_type = "comware5"
user = "admin"
•••
SWITCH = {
  "ip": ipaddr,
  "username": user,
  "password": getpass(),
  "device_type": dtype,
}
```

```
net_connect = Netmiko(**SWITCH) # initiate an ssh session with the switch
```

```
#convertion type = input("Enter convertion type [ aruba | comware5 | comware7 | cisco ]: ")
while EXIT == False:
  #input string = input("Enter the Vendor Neutral command: ")
  #show current prompt
  print(net_connect.find_prompt(), end = ")
  # get command input
  input_string = input("")
  if input string == 'e':
    EXIT = True
    net connect.disconnect()
  res = len(input string.split())
  num = int(res)
  # local Variables
  command list = []
  command = []
  cfg command = "
  output = "
  seperator = ' '
  for i in range(num):
    command list.append(input_string.split(" ")[i])
  #print(command_list)
  # blank input
  if len(command list) == 0:
   print('#Invalid input')
  # state
  elif command_list[0] == 'configure' and len(command list) == 1:
   print('#Current state: '+NEUTRAL STATE)
  # en | enable
  elif(command list[0] == en' or command list[0] == enable) and len(command list) == 1 and
NEUTRAL STATE == 'U':
   if convertion type == 'aruba':
    #print(seperator.join(neutral_modes[command_list[0][:2]][convertion_type]))
    net connect.enable()
    NEUTRAL STATE = 'P'
   elif convertion_type == 'comware5':
    #print(seperator.join(neutral_modes[command_list[0][:2]][convertion_type]))
    if net connect.check enable mode():
     print('#Already in enable mode')
     NEUTRAL STATE = 'P'
    else:
     net connect.enable()
     NEUTRAL_STATE = 'P'
   elif convertion type == 'comware7':
    #print(seperator.join(neutral modes[command list[0][:2]][convertion type]))
    if net connect.check_enable_mode():
     print('#Already in enable mode')
     NEUTRAL STATE = 'P'
    else:
     net connect.enable()
     NEUTRAL STATE = 'P'
   elif convertion_type == 'cisco':
    net_connect.write_channel(seperator.join(neutral_modes[command_list[0][:2]][convertion_type]))
    NEUTRAL STATE = 'P'
  # config | configure
```

```
elif (command list[0] = config' or command <math>list[0] = configure') and len(command list) = 1 and
NEUTRAL STATE == 'P':
   if convertion type == 'aruba':
    net connect.write channel(seperator.join(neutral modes[command list[0][0:6]][convertion type]))
    NEUTRAL STATE = 'C'
   elif convertion type == 'comware5':
    #print(seperator.join(neutral modes[command list[0][0:6]][convertion type]))
    if net connect.check config mode():
     print('#Already in config mode')
     NEUTRAL STATE = 'C'
    else:
     net connect.config mode()
     NEUTRAL_STATE = 'C'
   elif convertion type == 'comware7':
    #print(seperator.join(neutral_modes[command_list[0][0:6]][convertion type]))
    if net connect.check_config_mode():
     print('#Already in config mode')
     NEUTRAL STATE = 'C'
    else:
     net connect.config mode()
     NEUTRAL STATE = 'C'
   elif convertion type == 'cisco':
    net connect.write_channel(seperator.join(neutral_modes[command_list[0][0:6]][convertion_type]))
    NEUTRAL STATE = 'C'
  # exit
  elif command list[0] == 'exit' and len(command list) == 1:
   if NEUTRAL STATE == 'STPRIC' or NEUTRAL STATE == 'IRIC' or NEUTRAL STATE == 'VVIC' or
NEUTRAL STATE == 'VIC' or NEUTRAL STATE == 'VTYIC':
    net_connect.write_channel(seperator.join(neutral_modes[command_list[0]][convertion_type]))
    NEUTRAL STATE = 'C'
   elif NEUTRAL STATE == 'BAIC':
    net connect.write channel(seperator.join(neutral_modes[command_list[0]][convertion_type]))
    BRIDGE AGGREGATION NUMBER = 0
   elif NEUTRAL STATE == 'IC':
    net connect.write channel(seperator.join(neutral modes[command list[0]][convertion type]))
    NEUTRAL STATE = 'C'
    INTERFACE NUMBER = 0
   elif NEUTRAL STATE == 'SNACLIC' or NEUTRAL STATE == 'SNAACLIC' or NEUTRAL STATE ==
'ENACLIC' or NEUTRAL STATE == 'ENAACLIC':
    net connect.write channel(seperator.join(neutral modes[command list[0]][convertion type]))
    NEUTRAL STATE = 'C'
   elif NEUTRAL STATE == 'C':
    if convertion type == 'aruba':
     net_connect.write_channel(seperator.join(neutral_modes[command_list[0]][convertion_type]))
     NEUTRAL STATE = 'P'
    elif convertion type == 'comware5':
     #print(seperator.join(neutral modes[command list[0]][convertion type]))
     if net connect.check config mode():
      net connect.exit config mode()
      NEUTRAL STATE = 'U'
     else:
       print('#Not in config mode')
    elif convertion type == 'comware7':
     #print(seperator.join(neutral modes[command list[0]][convertion type]))
     if net connect.check config mode():
       net connect.exit config mode()
       NEUTRAL STATE = 'U'
     else:
      print('#Not in config mode')
    elif convertion type == 'cisco':
     net_connect.write_channel(seperator.join(neutral_modes[command_list[0]][convertion_type]))
     NEUTRAL STATE = 'P'
   elif NEUTRAL STATE == 'P':
    if convertion type == 'aruba':
```

```
net connect.write channel(seperator.join(neutral modes[command list[0]][convertion type]))
     NEUTRAL STATE = 'U'
    elif convertion_type == 'comware5':
     #print(seperator.join(neutral modes[command list[0]][convertion type]))
     if net connect.check enable mode():
       net connect.exit enable mode()
       NEUTRAL STATE = 'U'
     else:
       print('#Not in enable mode')
    elif convertion type == 'comware7':
     #print(seperator.join(neutral modes[command list[0]][convertion type]))
     if net connect.check enable mode():
      net connect.exit enable mode()
       NEUTRAL STATE = 'U'
     else:
       print('#Not in enable mode')
    elif convertion type == 'cisco':
     net connect.write channel(seperator.join(neutral modes[command list[0]][convertion type]))
     NEUTRAL STATE = 'U'
  # save
  elif command list[0] == 'save' and len(command list) == 1 and NEUTRAL STATE == 'P':
   if convertion type == 'aruba':
    #print('save')
    net connect.save config()
   elif convertion type == 'comware5':
    #print('save force')
    net connect.save config()
   elif convertion_type == 'comware7':
    #print('save force')
    net connect.save config()
   elif convertion type == 'cisco':
    #print('copy run start')
    net connect.save config()
  # dis | disable
  elif (command list[0] = 'dis' or command _{list[0]} = 'disable') and len(command _{list}) = 1 and
NEUTRAL STATE == 'IC':
   net connect.write channel(neutral config IC[command list[0][:3]][convertion type][0])
  # en | enable
  elif (command list[0] == 'en' or command list[0] == 'enable') and len(command list) == 1 and
NEUTRAL STATE == 'IC':
   net connect.write channel(seperator.join(neutral config IC[command list[0][:2]][convertion type]))
  # show
  if command list[0] == 'show' and len(command list) == 1 and NEUTRAL STATE == 'P':
   if convertion type == 'aruba':
    output = net connect.send command(seperator.join(neutral show[convertion type]))
    print(output)
   elif convertion type == 'comware5':
    output = net connect.send command(seperator.join(neutral show[convertion type]))
    print(output)
   elif convertion type == 'comware7':
    output = net connect.send command(seperator.join(neutral show[convertion type]))
    print(output)
   elif convertion type == 'cisco':
    output = net connect.send command(seperator.join(neutral show[convertion type]))
    print(output)
  ## show
#
  elif command list[0] == 'show' and len(command list) == 2 and (command list[1] != 'ssh' or command list[1] !=
'lacp' or command list[1] != 'vlan' or command list[1] != 'stp') and NEUTRAL STATE == 'P':
   command = commandfilter(1,len(command list),command list)
   # show -f | show --flash
   if command[0] == 'f' or command[0] == 'flash':
    output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type]))
    print(output)
   # show -v | show --version
```

elif command[0] == 'v' or command[0] == 'version': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -s | show --sysinfo elif command[0] == 's' or command[0] == 'sysinfo': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -m | show --modules elif command[0] == 'm' or command[0] == 'modules':output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -R | show --Running-config elif command[0] == 'R' or command[0] == 'Running-config': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -S | show --Startup-config elif command[0] == 'S' or command[0] == 'Startup-config':output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -h | show --history elif command[0] == 'h' or command[0] == 'history': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -1 | show --logging elif command[0] == 1' or command[0] == logging':output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -t | show --tech-support elif command[0] == 't' or command[0] == 'tech-support': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -F | show --Fan elif command[0] == F' or command[0] == Fan':output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -P | show --Power elif command[0] == 'P' or command[0] == 'Power':output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -T | show --Temperature elif command[0] == T' or command[0] == Temperature': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -u | show --users elif command[0] == 'u' or command[0] == 'users': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) # show -i | show --interface-brief elif command[0] == 'i' or command[0] == 'interface-brief': output = net connect.send command(seperator.join(neutral show[command[0][0]][convertion type])) print(output) ## show elif command list[0] == 'show' and len(command list) == 2 and (command list[1] == 'ssh' or command list[1] =='lacp' or command list[1] == 'vlan' or command list[1] == 'stp') and NEUTRAL STATE == 'P': command = commandfilter(1,len(command list),command list) # show ssh if command[0] == 'ssh': output = net connect.send command(seperator.join(neutral show[command[0]][convertion type])) print(output) # show vlan elif command[0] == 'vlan':output = net connect.send command(seperator.join(neutral show[command[0]][convertion type])) print(output) # show lacp

#

elif command[0] == 'lacp': output = net connect.send command(seperator.join(neutral show[command[0]][convertion type])) print(output) # show stp elif command[0] == 'stp': output = net connect.send command(seperator.join(neutral show[command[0]][convertion type])) print(output) # stp en | stp enable elif command list[0] == 'stp' and (command <math>list[1] == 'en' or command <math>list[1] == 'enable') and len(command list) == 2 and NEUTRAL STATE == 'C': net_connect.write_channel(seperator.join(neutral_config_C[command_list[0]][command_list[1][:2]][convertion_type])) # name [DESCRIPTION STRING] elif command list[0] == 'name' and command list[-1] = 'voice' and len(command list) == 2 and NEUTRAL STATE == 'VIC': net connect.write channel(neutral config VIC[command list[0]][convertion type][0]+' '+command list[-1]) # name voice elif command list[0] ='name' and command list[-1] ='voice' and len(command list) = 2 and NEUTRAL STATE - VIC': if convertion_type == 'aruba': net connect.write channel('voice') elif convertion type != 'aruba': net connect.write channel(neutral config VIC[command list[0]][convertion type][0]+' '+command list[-1]) # description [DESCRIPTION STRING] elif command list[0] == 'description' and len(command list) == 2 and NEUTRAL STATE == 'IC':net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+command list[-1]) # duplex [auto | full | half] elif command list[0] == 'duplex' and len(command list) == 2 and NEUTRAL STATE == 'IC': speed duplex = command list[-1] if convertion type == 'aruba': if speed duplex == 'auto': net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif speed duplex == 'full': speed = input("Enter speed [10 | 100 | 1000 | 10000]:") speed duplex = speed +'-'+ speed duplex net connect.write channel(neutral config IC[command list[0]][convertion type][0]+''+speed duplex) elif speed duplex == 'half: speed = input("Enter speed [10 | 100]:") speed duplex = speed +'-'+ speed duplex net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif convertion type == 'comware5': net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif convertion type == 'comware7': net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif convertion type == 'cisco': net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) # speed [10 | 100 | 1000 | 10000 | auto] elif command list[0] == 'speed' and len(command list) == 2 and NEUTRAL STATE == 'IC': speed duplex = command list[-1] if convertion type == 'aruba': if speed duplex == 'auto': net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif speed duplex == '10':duplex = input("Enter duplex [full | half]:") speed duplex = speed duplex +'-+ duplex net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif speed duplex = '100': duplex = input("Enter duplex [full | half]:") speed duplex = speed duplex +'-+ duplex net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif speed duplex = '1000': duplex = input("Enter duplex [full]:") speed duplex = speed duplex +'-'+ duplex

net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif speed duplex == '10000': duplex = input("Enter duplex [full]:") speed duplex = speed duplex +'-+ duplex net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif convertion type == 'comware5': net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) elif convertion type == 'comware7': net_connect.write_channel(neutral_config_IC[command_list[0]][convertion_type][0]+' '+speed_duplex) elif convertion type == 'cisco': net connect.write channel(neutral config IC[command list[0]][convertion type][0]+' '+speed duplex) # hostname [HOST NAME STRING] elif command list[0] == 'hostname' and len(command list) == 2 and NEUTRAL STATE == 'C': net connect.write channel(neutral config C[command list[0]][convertion type][0]+' '+command list[-1]) # lldp en | lldp enable elif command list[0] == 'lldp' and (command <math>list[1] == 'en' or command <math>list[1] == 'enable') and len(command list) == 2 and NEUTRAL STATE == 'C': if convertion type == 'aruba': net connect.write channel(neutral config C[command list[0]][command list[1][:2]][convertion type][0]+' '+neutral config C[command list[0]][command_list[1][:2]][convertion_type][1]) elif convertion type == 'comware5': net connect.write channel(neutral config C[command list[0]][command list[1][:2]][convertion type][0]+' '+neutral_config_C[command_list[0]][command_list[1][:2]][convertion_type][1]) elif convertion type == 'comware7': net connect.write channel(neutral config C[command list[0]][command list[1][:2]][convertion type][0]+' '+neutral_config_C[command_list[0]][command_list[1][:2]][convertion_type][1]+' '+neutral config C[command list[0]][command list[1][:2]][convertion type][2]) elif convertion type == 'cisco': net_connect.write_channel(neutral_config_C[command_list[0]][command_list[1][:2]][convertion_type][0]+' '+neutral config C[command list[0]][command list[1][:2]][convertion_type][1]) # domain [DOMAIN NAME STRING] elif command list[0] == 'domain' and len(command list) == 2 and NEUTRAL STATE == 'C': if convertion type == 'aruba': #net connect.write channel(neutral config C[command list[0]][convertion type][0]) print('#Command not supported') elif convertion type == 'comware5': net connect.write channel(neutral config C[command list[0]][convertion type][0]+''+command list[-1]) elif convertion type == 'comware7': net connect.write channel(neutral config C[command list[0]][convertion type][0]+''+command list[-1]) elif convertion type == 'cisco': net connect.write channel(neutral config C[command list[0]][convertion type][0]+' '+neutral config C[command list[0]][convertion type][1]+' '+command list[-1]) # ssh en | ssh enable elif command_list[0] == 'ssh' and (command_list[1] == 'en' or command_list[1] == 'enable') and len(command list) == 2 and NEUTRAL STATE == 'C': if convertion type = 'aruba': net connect.write channel(neutral config C[command list[0]][command list[1][:2]][convertion type][0]+' '+neutral config C[command list[0]][command list[1][:2]][convertion type][1]) elif convertion type == 'comware5': net connect.write channel(neutral config C[command list[0]][command list[1][:2]][convertion type][0]+' '+neutral_config_C[command_list[0]][command_list[1][:2]][convertion_type][1]+ '+neutral config C[command list[0]][command list[1][:2]][convertion type][2]) elif convertion type == 'comware7': net connect.write channel(neutral config C[command list[0]][command list[1][:2]][convertion type][0]+' '+neutral config C[command list[0]][command list[1][:2]][convertion type][1]+' '+neutral config C[command list[0]][command list[1][:2]][convertion type][2]) elif convertion type == 'cisco': net connect.write channel(neutral config C[command list[0]][command list[1][:2]][convertion type][0]+' '+neutral config C[command list[0]][command list[1][:2]][convertion type][1]+' '+neutral config C[command list[0]][command list[1][:2]][convertion_type][2]+' '+neutral_config_C[command_list[0]][command_list[1][:2]][convertion_type][3]) *****

Appendix F

NAMES enable -- allows user to enter in to priviledge mode of the switch configure -- allows user to save configurations to the switch. exit -- allows user to enter in to configuration mode of the switch. save -- allows user to to exit from current mode of configuration and to go to the previous mode. state -- allows user to view current mode or state of configuration. e -- allows user to terminate the ssh connection with the switch and to exit from the program. SYNOPSIS en | enable config | configure exit save state DESCRIPTION enable command is used to enter in to priviledge mode of the switch. save command is used to save configurations to the switch. configure command is used to enter in to configuration mode of the switch. exit command is used to exit from current mode of configuration and to go to the previous mode. state command is used to view current mode or state of configuration. e command is used to terminate the ssh connection with the switch and to exit from the program. EXAMPLES OF VALID MODES en | enable config | configure exit save state e NAME show -- allow users to view various details about switch's configurations SYNOPSIS show [-f flash] [-v version] [-s sysinfo] [-m modules] [-R Running-config] [-S Startup-config] [-h history] [-l logging] [-t tech-support] [-F Fan] [-P Power] [-T Temperature] [-u users] [-i interface-brief] show [-I] [INTERFACE #] [-t] [INTERFACE TYPE] show [-1] [INTERFACE #] [-t] [INTERFACE TYPE] [-b brief] show ip [-r route] [-i interface-brief] show ssh [-c crypto] show lldp [-n neighbors] show lldp [-n neighbors] [-I] [INTERFACE #] [-t] [INTERFACE TYPE] show vlan show vlan [VLAN #] show lacp show lacp [-p port] show stp show stp [-r region-configuration] show stp -i [INSTANCE #] show stp [-d dldp] [-D Dldp-statistics] DESCRIPTION show command is used with various options in priviledge mode to view many details about the switch configurations The options are as follows: -f --flash -v --version -s --sysinfo -m --modules -R --Running-config -S --Startup-config -i --interface-brief -h --history -1 -- logging -t --tech-support
```
-F --Fan
         -P --Power
         -T -- Temperature
         -u --users
         -I --Interface
         -t --type
         -b --brief
         ip
         -r --route
         -i --interface-brief
         ssh
         -c --crypto
         lldp
         -n --neighbors
-I --Interface
         -t --type
         lacp
         -p --port
         stp
         -r -- region-configuration
         -i --instance
         -d --dldp
         -D --Dldp-statistics
EXAMPLES OF VALID MODES
         show
         show -f | show --flash
         show -v | show --version
         show -s | show --sysinfo
         show -m | show --modules
         show -R | show --Running-config
         show -S | show -Startup-config
         show -h | show --history
         show -1 | show --logging
         show -t | show --tech-support
         show -F | show --Fan
         show -P | show --Power
         show -T | show --Temperature
         show -u | show --users
         show -i | show --interface-brief
         show -I [ITNERFACE #] -t [ e | f | g | T ] -b | show -- Interface [ITNERFACE #] -- type [ e | f | g | T ] -- brief
                  example: show -I 1 -t g -b
                                     show --Interface 1 --type g --brief
         show -I [ITNERFACE #] -t [ e | f | g | T ] | show --Interface [ITNERFACE #] --type [ e | f | g | T ]
                  example: show -I 1 -t g
                                     show --Interface 1 --type g
         show ip -r | show ip --route
         show ip -i | show ip --interface-brief
         show ssh
         show ssh -c | show ssh --crypto
         show lldp -n | show lldp –neighbors
         show lldp -n -I [ITNERFACE #] -t [ e | f | g | T ] | show lldp -neighbors --Interface [ITNERFACE #] --type
[e | f | g | T]
                  example: show lldp -n -I 3 -t g
                                     show lldp-neighbors --Interface 3 --type g
         show lacp
         show lacp -p | show lacp --port
         show stp
         show stp -r | show stp --region-configuration
         show stp -i [INSTANCE #] | show stp --instance [INSTANCE #]
                  example: show stp -i 0
                                     show stp --instance 0
         show stp -d | show stp --dldp
         show stp -D | show stp --Dldp-statistics
```

NAME

```
Interface -- allows users to go inside switch's specific configuration modes
SYNOPSIS
        Interface vty [START #] [END #]
        Interface [ITNERFACE #] [-t --type] [INTERFACE TYPE]
        Interface [-r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [INTERFACE TYPE]
        Interface vlan [-n --number] [VLAN #]
        Interface aggregation [AGGREGATION#]
        Interface stp [-r --region-configuration]
        Interface acl [-s --standard] [ACL #]
        Interface acl [-s --standard] [ACL #] [-n --name] [ACL NAME STRING]
        Interface acl [-e --extended] [ACL #]
        Interface acl [-e --extended] [ACL #] [-n --name] [ACL NAME STRING]
DESCRIPTION
        Interface commands are used to go inside specific configuration modes of the switch
        The options are as follows:
        Interface:
         vty [START #] [END #]
        [ITNERFACE #] -t --type [INTERFACE TYPE]
        -r --range [START ITNERFACE #] [END ITNERFACE #] -t --type [INTERFACE TYPE]
        vlan -n --number [VLAN #]
        aggregation [AGGREGATION#]
        stp -r -- region-configuration
        acl -s --standard [ACL #]
        acl -s --standard [ACL #] -n --name [ACL NAME STRING]
        acl -e --extended [ACL #]
        acl -e --extended [ACL #] -n --name [ACL NAME STRING]
EXAMPLES OF VALID MODES
        Interface vty [START #] [END #]
        Interface [ITNERFACE #] -t [ e | f | g | T ] | Interface [ITNERFACE #] --type [ e | f | g | T ]
                 example: Interface 3 -t g
                                   Interface 3 --type g
        Interface -r [START ITNERFACE #] [END ITNERFACE #] -t [e|f|g|T] | Interface --range [START
ITNERFACE #] [END ITNERFACE #] --type [ e | f | g | T ]
                  example: Interface -r 4 8 -t g
                                   Interface --range 4 8 --type g
        Interface vlan -n [VLAN #] | Interface vlan --number [VLAN #]
                 example: Interface vlan -n 200
                                    Interface vlan --number 200
        Interface aggregation [AGGREGATION#]
        Interface stp -r | Interface stp --region-configuration
        Interface acl -s [ACL #] | Interface acl --standard [ACL #]
                 example: Interface acl -s 50
                                    Interface acl --standard 50
        Interface acl -s [ACL #] -n [ACL NAME STRING] | Interface acl --standard [ACL #] --name [ACL NAME
STRING]
                  example: Interface acl -s 60 -n standard acl
                                   Interface acl --standard 60 --name standard acl
        Interface acl -e [ACL #] | Interface acl --extended [ACL #]
                 example: Interface acl -s 150
                                    Interface acl --extended 150
        Interface acl -e [ACL #] -n [ACL NAME STRING] | Interface acl --extended [ACL #] --name [ACL
NAME STRING]
                  example: Interface acl -e 160 -n extended acl
                                   Interface acl --extended 160 --name extended acl
NAMES
        hostname -- set host name of the switch
        domain -- set domain name
         ssh -- set ssh of the switch
        login -- set login mode
        inbound -- set inbound protocol
SYNOPSIS
        hostname [HOST NAME]
```

```
domain [DOMAIN NAME]
        ssh [-c --crypto] [ gen | generate ]
        ssh [ en | enable ]
        login [-m --mode] [ password | AAA ]
        inbound [-p --protocol] [ssh | telnet | all]
DESCRIPTION
        These commands are used to do ssh configurations of the switch.
        The options are as follows:
        hostname:
        [HOST NAME]
        domain:
        [DOMAIN NAME]
        ssh:
         -c --crypto [ gen | generate ]
         [ en | enable ]
        login:
         -m --mode [ password | AAA ]
        inbound:
        -p --protocol [ssh | telnet | all]
EXAMPLÊS ÔF VALID MODES
        hostname [HOST NAME]
                 example: hostname SW1
        domain [DOMAIN NAME]
                 example: domain example.com
        ssh -c gen | ssh -crypto generate
        ssh \; en \; | \; ssh \; enable
        login [-m --mode] [ password | AAA ] | login -mode [ password | AAA ]
                 example: login -m password
                                   login -mode password
        inbound -p [ ssh | telnet | all ] | inbound --protocol [ ssh | telnet | all ]
                 example: inbound -p ssh
                                   inbound --protocol ssh
NAMES
        lldp -- set link layer discovery protocol
SYNOPSIS
        lldp [ en | enable ]
DESCRIPTION
        lldp command can be used to set LLDP in switch
        The options are as follows:
        [en | enable]
EXAMPLES OF VALID MODES
        lldp en | lldp enable
NAMES
        Interface -- allows user to go inside switch's configuration modes
        trunk -- set the permited vlans for trunk port
        access -- set the access vlan for access port
        aggregation -- sets the aggregation number for a port or ports
SYNOPSIS
        Interface aggregation [AGGREGATION#]
        trunk [-p --permit] [-v --vlan] [ VLAN # ]
trunk [-p --permit] [-v --vlan] [ VLAN # ..]
        trunk [-p --permit] [-v --vlan] all
access [-v --vlan] [ VLAN # ]
        Interface [ITNERFACE #] [-t --type] [INTERFACE TYPE]
        Interface [-r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [ e | f | g | T ]
        aggregation [-n --number] [AGGREGATION#]
DESCRIPTION
         These commands are used to set link aggregation configuration on switch ports
        The options are as follows:
        Interface aggregation:
        [AGGREGATION#]
        trunk:
```

```
[-p --permit] [-v --vlan] [ VLAN # ]
         [-p --permit] [-v --vlan] [ VLAN # ..]
        [-p --permit] [-v --vlan] all
        access:
        [-v --vlan] [ VLAN # ]
        Interface:
        [ITNERFACE #] [-t --type] [INTERFACE TYPE]
        [-r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [ e | f | g | T ]
        aggregation:
        [-n --number] [AGGREGATION#]
EXAMPLES OF VALID MODES
        Interface aggregation [AGGREGATION#]
                 example: Interface aggregation 2
        trunk -p -v [ VLAN # ..] | trunk --permit --vlan [ VLAN # ..]
example: trunk -p -v 100 200 1000 5
                                  trunk --permit --vlan 100 200 1000 5
        access -v [VLAN #] | access --vlan [VLAN #]
                 example: access -v 100
                                  access --vlan 100
        Interface [ITNERFACE #] -t [ e | f | g | T ] | Interface [ITNERFACE #] --type [ e | f | g | T ]
                 example: Interface 2 -t g
                                   Interface 2 -- type g
        Interface -r [START ITNERFACE #] [END ITNERFACE #] -t [ e | f | g | T ] | Interface --range [START
ITNERFACE #] [END ITNERFACE #] --type [ e | f | g | T ]
                 example: Interface -r 4 8 -t g
                                   Interface --range 4 8 --type g
        aggregation -n [AGGREGATION#] | aggregation --number [AGGREGATION#]
                 example: aggregation -n 2
                                  aggregation --number 2
NAMES
        vlan -- allows user create a vlan for a specific vlan number
        name -- set vlan name
SYNOPSIS
        vlan [ -n --number] [VLAN #]
        name [DESCRIPTION STRING] [ -t --type ] [voice | data]
DESCRIPTION
        these commands aree used to create a specific vlan with a paticular vlan number and to name the said vlan
        The options are as follows:
        vlan:
        [-n --number] [VLAN #]
        name:
        [DESCRIPTION STRING] [ -t --type ] [voice | data]
EXAMPLES OF VALID MODES
        vlan -n [VLAN #] | vlan --number [VLAN #]
                 example: vlan -n 200
                                   vlan --number 200
        name [DESCRIPTION STRING] -t [voice | data] | name [DESCRIPTION STRING] --type [voice | data]
                 example: name hr_dept -t data
                                   name hr dept
                                   name voice -t voice
NAMES
        Interface -- allows user to go inside switch's configuration modes
        trunk -- set the permited vlans for trunk port
        access -- set the access vlan for access port
SYNOPSIS
        Interface [ITNERFACE #] [-t --type] [INTERFACE TYPE]
        Interface [-r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [INTERFACE TYPE]
        trunk [-p --permit] [-v --vlan] [ VLAN# <range: 1 - 4094>]
        trunk [-p --permit] [-v --vlan] [ VLAN# ..]
        trunk [-p --permit] [-v --vlan] all
        access [-v --vlan] [ VLAN# ]
DESCRIPTION
```

```
these commands are used to set the port type to trunk or access mode and to set permited vlan or vlans.
         The options are as follows:
         Interface:
         [ITNERFACE #] [-t --type] [INTERFACE TYPE]
         [-r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [INTERFACE TYPE]
         trunk:
         [-p --permit] [-v --vlan] [ VLAN# ]
         [-p --permit] [-v --vlan] [ VLAN# ..]
         [-p --permit] [-v --vlan] all
         access:
         [-v --vlan] [VLAN#]
EXAMPLES OF VALID MODES
         Interface [ITNERFACE #] -t [ e | f | g | T ] | Interface [ITNERFACE #] --type [ e | f | g | T ]
                  example: Interface 3 -t g
                                    Interface 3 -- type g
         Interface -r [START ITNERFACE #] [END ITNERFACE #] -t [ e | f | g | T ] | Interface --range [START
ITNERFACE #] [END ITNERFACE #] --type [ e | f | g | T ]
                  example: Interface -r 4 8 -t g
                                    Interface --range 4 8 --type g
         trunk -p -v [VLAN#] | trunk --permit --vlan [VLAN#]
                  example: trunk -p -v 300
                                    trunk --permit --vlan 300
         trunk -p -v [VLAN# ..] | trunk --permit --vlan [VLAN# ..]
                  example: trunk -p -v 200 250 60 1000
                                    trunk --permit --vlan 200 250 60 1000
         trunk -p -v all | trunk --permit --vlan all
                  example: trunk -p -v all
                                    trunk --permit --vlan all
         access -v [ VLAN# ] | access --vlan [ VLAN# ]
                  example: access -v 200
                                    access --vlan 200
NAMES
         Interface -- allows user to go inside switch's configuration modes
         hybrid -- set the tagged and untagged vlans for hybrid port
SYNOPSIS
         Interface [ITNERFACE #] [-t --type] [INTERFACE TYPE]
         Interface [-r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [INTERFACE TYPE]
         hybrid tagged [-v --vlan] [ VLAN# ]
         hybrid untagged [-v --vlan] [ VLAN# ]
DESCRIPTION
         These commands are used to set the port type to hybrid and to set tagged and untagged vlans in order to be
used for voice.
         The options are as follows:
         Interface:
         [ITNERFACE #] [-t --type] [INTERFACE TYPE]
         -r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [INTERFACE TYPE]
         hybrid:
         tagged [-v --vlan] [ VLAN# ]
         untagged [-v --vlan] [ VLAN# ]
EXAMPLES OF VALID MODES
         \label{eq:interface} \mbox{[ITNERFACE \#] -t [ e | f | g | T ] | Interface [ITNERFACE \#] --type [ e | f | g | T ]}
                  example: Interface 3 -t g
                                    Interface 3 -- type g
         Interface -r [START ITNERFACE #] [END ITNERFACE #] -t [ e | f | g | T ] | Interface --range [START
ITNERFACE #] [END ITNERFACE #] --type [ e | f | g | T ]
                  example: Interface -r 4 8 -t g
                                    Interface --range 4 8 --type g
         hybrid tagged -v [VLAN#] | hybrid tagged --vlan [VLAN#]
                  example: hybrid tagged -v 200
                                    hybrid tagged --vlan 200
         hybrid untagged -v [ VLAN# ] | hybrid untagged --vlan [ VLAN# ]
                  example: hybrid untagged -v 300
                                    hybrid untagged --vlan 300
```

```
NAMES
        Interface -- allows user to go inside switch's configuration modes
        ip address -- set the ip address of a paticular vlan interface
SYNOPSIS
        Interface vlan [-n --number] [VLAN #]
        ip address [IP ADDRESS] [SUBNET MASK]
DESCRIPTION
        These commands are used to set ip address to a paticular vlan interface.
        The options are as follows:
        vlan [-n --number] [VLAN #]
        [IP ADDRESS] [SUBNET MASK]
EXAMPLES OF VALID MODES
        Interface vlan -n [VLAN #] | Interface vlan --number [VLAN #]
                example: Interface vlan -n 200
                                 Interface vlan --number 200
        ip address [IP ADDRESS] [SUBNET MASK]
                example: ip address 192.168.1.1 255.255.255.0
NAMES
        Interface -- allows user to go inside switch's configuration modes
        description -- set port description
        duplex -- set duplex
        speed -- set speed
        disable -- disable port
        enable -- enable port
SYNOPSIS
        Interface [ITNERFACE #] [-t --type] [INTERFACE TYPE]
        Interface [-r --range] [START ITNERFACE #] [END ITNERFACE #] [-t --type] [INTERFACE TYPE]
        description [DESCRIPTION STRING]
        duplex [auto | full | half ]
        speed [ 10 | 100 | 1000 | 10000 | auto ]
        disable
        enable
DESCRIPTION
        These commands are used to configure port name, speed and duplex. further they are used to enable or
disable a paticular ports
        The options are as follows:
        Interface:
        [ITNERFACE #] -t --type [INTERFACE TYPE]
        -r --range [START ITNERFACE #] [END ITNERFACE #] -t --type [INTERFACE TYPE]
        description:
        [DESCRIPTION STRING]
        duplex:
        [auto | full | half ]
        speed:
        [10 | 100 | 1000 | 10000 | auto ]
EXAMPLES OF VALID MODES
        \label{eq:interface} \mbox{[ITNERFACE \#] -t [ e \mid f \mid g \mid T ] \mid \mbox{Interface [ITNERFACE \#] --type [ e \mid f \mid g \mid T ]} \\
                example: Interface 3 -t g
        Interface -r [START ITNERFACE #] [END ITNERFACE #] -t [ e | f | g | T ] | Interface --range [START
ITNERFACE #] [END ITNERFACE #] --type [ e | f | g | T ]
                example: Interface -r 48-t g
        description [DESCRIPTION STRING]
        duplex [auto | full | half ]
        speed [ 10 | 100 | 1000 | 10000 | auto ]
        dis | disable
        en | enable
NAMES
        stp -- allow user to configure mstp
```

135

```
Interface --- allows user to go inside switch's configuration modes
         region -- allow user to configure mstp regional configurations
         instance -- allow user to configure mstp instance configurations
SYNOPSIS
         stp [en | enable]
         Interface stp [-r --region-configuration]
         region [-n --name] [NAME STRING]
         region [-r --revision] [REVISION #]
         instance [INSTANCE#] [-v --vlan] [VLAN #]
         instance [INSTANCE#] [-v --vlan] [VLAN #..]
         stp [-p --priority] [PRIORITY#]
         stp [-i --instance] [INSTANCE#] [-p --priority] [PRIORITY#]
         stp pathcost [8021d | 8021t]
         Interface [ITNERFACE #] [-t --type] [INTERFACE TYPE]
stp [-c --cost] [COST VALUE <8021d: range 1 – 65,535 | e = 99 | f = 19 | g = 4 | T = 2> or <8021t: range 1
-200,000,000 | e = 2,000,000 | f = 200,000 | g = 20,000 | T = 2000>]
         stp [-p --priority] [PRIORITY VALUE <0 – 61440> multiples of 4096]
         stp [-i --instance] [INSTANCE #] [-c --cost] [COST VALUE]
         stp [-i --instance] [INSTANCE #] [-p --priority] [PRIORITY VALUE]
DESCRIPTION
         These commands are used to set mstp in a switch
         The options are as follows:
         stp:
         [en | enable]
         [-p --priority] [PRIORITY#]
         [-i --instance] [INSTANCE#] [-p --priority] [PRIORITY#]
         [-c --cost] [COST VALUE]
         [-p --priority] [PRIORITY VALUE]
         [-i --instance] [INSTANCE #] [-c --cost] [COST VALUE]
         [-i --instance] [INSTANCE #] [-p --priority] [PRIORITY VALUE]
         Interface stp:
         [-r --region-configuration]
         instance:
         [INSTANCE#] [-v --vlan] [VLAN #]
         [INSTANCE#] [-v --vlan] [VLAN #..]
         Interface:
         [ITNERFACE #] [-t --type] [INTERFACE TYPE]
EXAMPLES OF VALID MODES
         stp en | stp enable
         show stp -r | show stp -region-configuration
         region -n [NAME STRING] | region --name [NAME STRING]
                   example: region -n mstp r1
                                      region --name mstp r1
         region -r [REVISION #] | region --revision [REVISION #]
                   example: region -r 1
                                      region --revision 1
         instance [INSTANCE#] -v [VLAN# ..] | instance [INSTANCE#] --vlan [VLAN# ..]
                   example: instance 1 -v 100 200 3 50
                                      instance [INSTANCE#] --vlan 100 200 3 50
         stp -p [PRIORITY#] | stp --priority [PRIORITY#]
                   example: stp -p 4096
                                      stp --priority 4096
         stp -i [INSTANCE#] -p [PRIORITY#] | stp --instance [INSTANCE#] --priority [PRIORITY#]
                   example: stp -i 1 -p 8192
                                      stp --instance 1 --priority 8192
         stp pathcost [8021d | 8021t]
                   example: stp pathcost 8021d
                                      stp pathcost 8021t
         Interface [ITNERFACE #] -t [ e | f | g | T ] | Interface [ITNERFACE #] --type [ e | f | g | T ]
                   example: Interface 3 -t g
                                      Interface 3 -- type g
         stp -c [COST VALUE] | stp --cost [COST VALUE]
                   example: stp -c 4
                                      stp --cost 20000
```

```
stp -p [PRIORITY VALUE] | stp --priority [PRIORITY VALUE]
                example: stp -p 12288
                                 stp --priority 12288
        stp -i [INSTANCE #] -c [COST VALUE] | stp --instance [INSTANCE #] --cost [COST VALUE]
                example: stp -i 1 -c 4
                                 stp --instance 1 --cost 20000
        stp -i [INSTANCE #] -p [PRIORITY VALUE] | stp --instance [INSTANCE #] --priority [PRIORITY
VALUE]
                example: stp -i 1 -p 61440
                                 stp --instance 1 --priority 61440
NAMES
        stp -- allow user to configure mstp
        Interface -- allows user to go inside switch's configuration modes
SYNOPSIS
        Interface [ITNERFACE #] [-t --type] [ e | f | g | T ]
        stp dldp [en | enable]
        stp edge-port [en | enable]
        stp bpdu-guard [en | enable]
        stp root-guard [en | enable]
        stp loop-guard [en | enable]
DESCRIPTION
        These commands are used to set mstp hardening configurations in a switch
        The options are as follows:
        Interface:
        [ITNERFACE #] [-t --type] [ e | f | g | T ]
        stp:
        dldp [en | enable]
        edge-port [en | enable]
        bpdu-guard [en | enable]
        root-guard [en | enable]
        loop-guard [en | enable]
EXAMPLES OF VALID MODES
        [ITNERFACE #] -t [e | f | g | T] [ITNERFACE #] --type [e | f | g | T]
                example: Interface 3 -t g
                                 Interface 3 --type g
        stp dldp en | stp dldp enable
        stp edge-port en | stp edge-port enable
        stp bpdu-guard en | stp bpdu-guard enable
        stp root-guard en | stp root-guard enable
        stp loop-guard en | stp loop-guard enable
NAMES
        ip route -- set the default rout of a switch
SYNOPSIS
        ip route [SOURCE IP] [WILDCARD MASK] [NEXTHOP IP]
DESCRIPTION
        This command is used to set default route of a switch
        The options are as follows:
        [SOURCE IP] [WILDCARD MASK] [NEXTHOP IP]
EXAMPLES OF VALID MODES
        ip route [SOURCE IP] [WILDCARD MASK] [NEXTHOP IP]
                example: ip route 0.0.0.0 0.0.0.0 192.168.1.1
NAMES
        Interface -- allows user to go inside switch's configuration modes
        permit -- allows configuration of permit rule in acl
        deny -- allows configuration of deny rule in acl
        acl -- allows setting up port based or routed acls
SYNOPSIS
        Interface acl [-s --standard] [ACL # <range: 1 - 99>]
        Interface acl [-s --standard] [ACL # <range: 1 - 99>] [-n --name] [ACL NAME STRING]
        permit [-i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD]
        permit [-i --ip-address] any any
```

```
deny [src | source] [-i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD] [dst | destination] [-i --ip-
address] [IP ADDR] [-w --wildcard] [WILDCARD]
         Interface vlan [-n --number] [VLAN # <range: 1 – 4094>]
         Interface [ITNERFACE #] [-t --type] [ e | f | g | T ]
         acl [ACL#] [-m --mode] [ inbound | outbound]
         acl [-n --name] [ACL NAME STRING] [-m --mode] [ inbound | outbound]
DESCRIPTION
         These commands are used to set standard acls in a switch
         The options are as follows:
         Interface acl:
         [-s --standard] [ACL #]
         [-s --standard] [ACL #] [-n --name] [ACL NAME STRING]
         permit:
         -i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD]
         [-i --ip-address] any any
         denv:
         [src | source] [-i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD] [dst | destination] [-i --ip-address]
[IP ADDR] [-w --wildcard] [WILDCARD]
         Interface:
         vlan [-n --number] [VLAN #]
         [ITNERFACE #] [-t --type] [ e | f | g | T ]
         acl:
         [ACL#] [-m --mode] [ inbound | outbound]
         [-n --name] [ACL NAME STRING] [-m --mode] [ inbound | outbound]
EXAMPLES OF VALID MODES
         Interface acl -s [ACL\,\#]\,| Interface acl --standard [ACL\,\#]
                  example: Interface acl -s 50
                                    Interface acl --standard 50
         Interface acl -s [ACL #] -n [ACL NAME STRING] | Interface acl --standard [ACL #] --name [ACL NAME
STRING]
                  example: Interface acl -s 60 -n standard numbered acl
                                    Interface acl --standard 60 --name standard named acl
         permit -i [IP ADDR] -w [WILDCARD] | permit --ip-address [IP ADDR] --wildcard [WILDCARD]
                  example: permit -i 192.168.1.0 -w 0.0.0.255
                                    permit --ip-address 192.168.1.0 --wildcard 0.0.0.255
         permit -i any any | permit --ip-address any any
                  example: permit -i any any
                                    permit --ip-address any any
         deny src -i [IP ADDR] -w [WILDCARD] dst -i [IP ADDR] -w [WILDCARD] | deny source --ip-address
[IP ADDR] --wildcard [WILDCARD] destination --ip-address [IP ADDR] --wildcard [WILDCARD]
                  example: deny src -i 192.168.1.0 -w 0.0.0.255 dst -i 192.168.1.254 -w 0.0.0.0
                                    deny source --ip-address 192.168.1.0 --wildcard 0.0.0.255 destination --ip-
address 192.168.1.254 --wildcard 0.0.0.0
         Interface vlan -n [VLAN #] | Interface vlan --number [VLAN #]
                  example: Interface vlan -n 300
                                    Interface vlan --number 300
         Interface [ITNERFACE #] -t [ e | f | g | T ] | Interface [ITNERFACE #] --type [ e | f | g | T ]
                  example: Interface 4 -t g
                                    Interface 4 --type g
         acl [ACL#] -m [ inbound | outbound] | acl [ACL#] --mode [ inbound | outbound]
                  example: acl 50 -m inbound
                                    acl 60 --mode outbound
         acl -n [ACL NAME STRING] -m [ inbound | outbound] | acl --name [ACL NAME STRING] --mode
[inbound] outbound]
                  example: acl -n standard named acl -m inbound
                                    acl --name standard named acl --mode outbound
NAMES
         Interface -- allows user to go inside switch's configuration modes
         permit -- allows configuration of permit rule in acl
         deny -- allows configuration of deny rule in acl
         acl -- allows setting up port based or routed acls
SYNOPSIS
         Interface acl [-e --extended] [ACL # <range: 100 - 199>]
```

```
Interface acl [-e --extended] [ACL # <range: 100 - 199>] [-n --name] [ACL NAME STRING]
         permit [-i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD]
         permit [-i --ip-address] any any
         deny [src | source] [-i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD] [dst | destination] [-i --ip-
address] [IP ADDR] [-w --wildcard] [WILDCARD]
         Interface vlan [-n --number] [VLAN # <range: 1 – 4094>]
         Interface [ITNERFACE #] [-t --type] [ e | f | g | T ]
         acl [ACL#] [-m --mode] [ inbound | outbound]
         acl [-n --name] [ACL NAME STRING] [-m --mode] [ inbound | outbound]
DESCRIPTION
         These commands are used to set extended acls in a switch
         The options are as follows:
         Interface acl:
         [-e --extended] [ACL #]
         [-e --extended] [ACL #] [-n --name] [ACL NAME STRING]
         permit:
         [-i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD]
         [-i --ip-address] any any
         denv:
         [src | source] [-i --ip-address] [IP ADDR] [-w --wildcard] [WILDCARD] [dst | destination] [-i --ip-address]
[IP ADDR] [-w --wildcard] [WILDCARD]
         Interface:
         vlan [-n --number] [VLAN #]
         [ITNERFACE #] [-t --type] [ e | f | g | T ]
         acl:
         [ACL#] [-m --mode] [ inbound | outbound]
         [-n --name] [ACL NAME STRING] [-m --mode] [ inbound | outbound]
EXAMPLES OF VALID MODES
         Interface acl -e [ACL #] | Interface acl --extended [ACL #]
                  example: Interface acl -e 150
                                     Interface acl --extended 150
         Interface acl -e [ACL #] -n [ACL NAME STRING] | Interface acl --extended [ACL #] --name [ACL
NAME STRING]
                  example: Interface acl -e 160 -n extended_numbered_acl
                                     Interface acl --extended 160 --name extended named acl
         permit -i [IP ADDR] -w [WILDCARD] | permit --ip-address [IP ADDR] --wildcard [WILDCARD]
                  example: permit -i 192.168.1.0 -w 0.0.0.255
                                     permit --ip-address 192.168.1.0 --wildcard 0.0.0.255
         permit -i any any | permit --ip-address any any
                  example: permit -i any any
                                     permit --ip-address any any
         deny src -i [IP ADDR] -w [WILDCARD] dst -i [IP ADDR] -w [WILDCARD] | deny source --ip-address
[IP ADDR] --wildcard [WILDCARD] destination --ip-address [IP ADDR] --wildcard [WILDCARD]
                  example: deny src -i 192.168.1.0 -w 0.0.0.255 dst -i 192.168.1.254 -w 0.0.0.0
                                     deny source --ip-address 192.168.1.0 --wildcard 0.0.0.255 destination --ip-
address 192.168.1.254 --wildcard 0.0.0.0
         Interface vlan -n [VLAN #] | Interface vlan --number [VLAN #]
                  example: Interface vlan -n 300
                                     Interface vlan --number 300
         Interface [ITNERFACE #] -t [ e | f | g | T ] | Interface [ITNERFACE #] --type [ e | f | g | T ]
                  example: Interface 4 -t g
                                     Interface 4 --type g
         acl [ACL#] -m [ inbound | outbound] | acl [ACL#] --mode [ inbound | outbound]
                  example: acl 50 -m inbound
                                     acl 60 --mode outbound
         acl -n [ACL NAME STRING] -m [ inbound | outbound] | acl --name [ACL NAME STRING] --mode
[ inbound | outbound]
                  example: acl -n extended named acl -m inbound
                                     acl --name extended named acl --mode outbound
```