DEVELOPMENT OF SAFE OPERATIONAL CRITERIA FOR SHIPS BASED ON VIBRATION ANALYSIS

Dasanayaka Mudiyanselage Prasad Milinda Dasanayaka

(148006 B)

Degree of Master of Philosophy

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

November 2019

DEVELOPMENT OF SAFE OPERATIONAL CRITERIA FOR SHIPS BASED ON VIBRATION ANALYSIS

Dasanayaka Mudiyanselage Prasad Milinda Dasanayaka

(148006 B)

Thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Philosophy in Mechanical Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

November 2019

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Further, I hereby grant the University of Moratuwa the right to archive and to make available my thesis or dissertation in whole or part in the university libraries in all forms of media, subject to the provisions of the current copyright act of Sri Lanka. I retain all property right to use in further works (such as articles or books) all or part of this thesis.

Signature

The above candidate has carried out the research for the MPhil under my supervision and I have accepted this thesis for the award of the degree.

Signature

Dr. P.A.B.A.R. Perera Senior Lecturer Department of Mechanical Engineering University of Moratuwa

Date

Date

ACKNOWLEDGEMENT

I acknowledge with gratitude the University of Moratuwa and Department of Mechanical Engineering for giving me the opportunity to conduct this project with the fullest support and supervision while providing access to its resource facilities. The financial support and the ground assistance to conduct sea trials rendered by Sri Lanka Navy are also acknowledged.

I am grateful to Dr. P.A.B.A.R Perera, my supervisor, who very generously spent his valuable time to provide necessary guidance and assistance to carry out the task.

I also extend my gratitude and thanks to Dr. W.K. Wimalsiri, Dr. Damith Chaturanga and Prof. R.A.R.C. Gopura for providing me with the necessary guidance to carry out this research effectively.

Further, I wish to sincerely thank the Commander of the Navy, Director General Engineering and staff, Director General Training and staff who helped me in numerous ways to complete my research successfully.

Finally, I greatly appreciate the assistance of Lt (E) EN Fernando and the staff at the Machinery Testing and Trials Unit for their excellent support rendered during the sea trials and data compilation. In conclusion, I dedicate this publication to the bravery and valour of all Sri Lanka Naval Personnel who made supreme sacrifice for the protection of the motherland and her sovereignty.

D.M.P.M Dasanayaka

Abstract

The origin of shipboard vibrations is dominantly determined by vessels propulsion system, main machinery, auxiliary systems, pumps, breaking of the waves at the ship hull, etc. All of these peripherals and systems origin the static and dynamic induction of vibration onboard a ship while various analytical and statistical methods may be declared to assess the levels of vibration in order to declare a combined safe operational criteria for ships depending on the spectrums. Few similar researches had been completed on identification and quantified estimation of the noise or the multiple vibrations resulted from ship and machinery during passage.

However, those researches were addressed mainly towards developing a relationship for a single new ship or category particularly prior to commissioning. This research was focused on studying the shipboard transferred vibration (of the vessel's structure and to sea) and vibration spectra generated by shipboard machinery / structures using portable vibration analysers for in-service ships. Data was recorded onboard classes of ships/ craft (new and old) through a series of sea trials to establish a common relationship for ships and to comprehend use this methodology as a tool in understanding complex patterns of ship vibration spectra to predict possible defects.

The study commenced on 05^{th} May 2014 under the patronage and guidance of the Department of Mechanical Engineering, University of Moratuwa to identify the unique patterns of shipboard vibration signatures generated whilst vessels are on sail, paying attention to the external forces and to develop a data base with existing vibration levels after being identified as safe operational limits (depending on the observations based on datum readings). The research data was collected using two modern vibration analysers (Make: Areva, Model: Oneprod MVP -2C, Country of Origin: France, Frequency Range: 0 - 40,000 Hz) integrated with Areva XPR 300 software system uploaded computers for the spectrum analysing task. Sea trials at following conditions had been carried out.

- a. Sea State : 3 and below;
- b. Ship Loading Condition : Full Load, Half Load;
- c. Wind Condition : Moderate < 15 knots;
- d. Sea Direction : Ahead, Astern

Numerical relationships and probabilities were established using practical outcomes of the sea trials. Data analysis and Spectrum datum comparison were used to identify and quantify the safe operational vibration limits with respect to individual classes of ships being the primary outcome. The similar defect patterns and respective statistics were averaged to find out a common relationship to identify a figure named "Shipboard Machinery Vibration Safety Index (S_v)", which was the secondary outcome of the study.

Key words: Shipboard Vibration, Vibration spectra, Vibration analyser, Hull

TABLE OF CONTENTS

Declaration of	f the Candidate and Supervisor	i
Acknowledgements and Dedication		
Abstract		iii
Table of Cont	ent	iv
List of Figure	s	x
List of Tables		xiii
List of Abbrev	viations and Symbols	xiii
List of Appen	dices	xvii
1. Introd	uction to Condition Based Predictive Maintenance (CBPM)	1
1.1	Introduction	1
1.2	Aim and Objectives of Study	2
	1.2.1 Aim	2
	1.2.2 Objectives	2
1.3	Vibration Analysis in Sri Lanka Navy	3
1.4	Maintenance	5
1.5	The Principal Objectives of Maintenance	5
1.6	Maintenance Philosophies	6
	1.6.1 Breakdown Maintenance	6
	1.6.2 Planned Preventive Maintenance	7
	1.6.3 Condition Based Predictive Maintenance (CBPM)	8
1.7	Proactive Maintenance	9
1.8	Condition Monitoring Techniques	9
	1.8.1 Primary Technique	10
	1.8.2 Secondary Techniques	10
	1.8.3 Justification for Selection of Vibration Analysis over	
	Other Techniques	11

2.	Litera	ture Study on Shipboard Vibration, Machinery Vibration
and H	ull Vibr	ration 1
	2.1	Ship Vibration 1
		2.1.1 Machinery Vibration
		2.1.2 Hull Vibration
	2.2	Classification of Vibration
	2.3	Causes for Vibration
	2.4	Vibration Measurement Units1
	2.5	Vibration Characteristics
		2.5.1 Vibration Displacement
		2.5.2 Vibration Velocity 1
		2.5.3 Vibration Acceleration
		2.5.4 Spike Energy 1
		2.5.5 Phase in Vibration
	2.6	Additional Characteristics and Terms Referred in Ship Vibration 1
		2.6.1 Driving Frequency 1
		2.6.2 Natural Frequency 1
		2.6.3 Resonant Frequency
		2.6.4 Critical Speed
		2.6.5 Harmonics
		2.6.6 Vibration Amplitude
	2.7	Measurement Modes in VA
		2.7.1 Velocity Measurements in VA
		2.7.2 Displacement Measurements in VA
		2.7.3 Acceleration Measurements in VA
	2.8	Data Interpretation and Vibration Analysis 2
		2.8.1 Data Interpretation Requirement
		2.8.2 Vibration Analysis Procedure in General
		2.8.3 Vibration Spectrums

3	Fast F	ourier T	Fransforms (FFT) and Signal Processing	27
	3.1	Fast F	ourier Transforms (FFT)	27
	3.2	Spectr	ums	28
	3.3	Signal	Processing in an Analyser	29
		3.3.1	Sample Time	33
	3.4	Key P	rocesses in Signal Processing	33
		3.4.1	Filtering	34
		3.4.2	Integration	34
		3.4.3	Sampling	35
		3.4.4	Aliasing	36
		3.4.5	Windowing	37
			3.4.5.1 Window Type and Bandwidth	37
		3.4.6	Averaging	38
	3.5	Time	Wave Form Analysis	39
		3.5.1	Waveform Patterns	39
		3.5.2	Beating	39
		3.5.3	Amplitude Modulation	40
4	Diagn	osing M	Iachinery Vibration	41
	4.1	Vibrat	ion Signature (Spectrum) Analysis	41
	4.2	Calcul	ation of Different Frequencies of Vibration	43
		4.2.1	Defect Frequencies Analysis in Rolling Element Bearing	43
		4.2.2	Frequency of Hydraulic and Aerodynamic Force related	
		Vibrat	ions	44
		4.2.3	Frequency of vibration due to Gear Problems .	44
		4.2.4	Frequency of Vibration due to Electrical Problems .	45
		4.2.5	Frequency of Vibration Due to Belt Problems .	45
		4.2.6	Firing Frequency of Diesel Engines	45
	4.3	Identif	fying the Different causes of Vibration	46
		4.3.1	Vibration Due to Unbalance	46
		4.3.2	Vibration Due to Misalignment	47
		4.3.3	Vibration Due to Eccentricity	49
		4.3.4	Vibration Due to Faulty Bearing	49

		4.3.5	Vibration Due to Faulty Sleeve Bearing / Journal Bearing	51
		4.3.6	Improper Lubrication	52
		4.3.7	Vibration from Mechanical Looseness	52
		4.3.8	Vibration Due to Gear Problem	52
		4.3.9	Vibration from Resonance	53
		4.3.10	Vibration from Aerodynamic and Hydraulic Forces	53
		4.3.11	Vibration Due to Reciprocating Action (IC engines)	54
		4.3.12	Vibration Due to Friction	58
		4.3.13	Beat Vibration	58
		4.3.14	Background Vibration	59
	4.4	Refere	nce to International Standards	59
	4.5	Availa	ble Standards	59
		4.5.1	International Organization for Standardization (ISO)	
		Standa	ırds	60
			4.5.1.1 ISO 21984: 2018	60
			4.5.1.2 ISO 20283-5: 2016	61
			4.5.1.3 ISO 8528-9: 2017	62
			4.5.1.4 ISO 10816-6: 1995	63
			4.5.1.5 ISO 6954-2000	63
		4.5.2	Det Norske Veritas (DNV) Standards	63
5	Ship V	Vibratio	n Data Recording Instrument Selection and Setup	65
	5.1	Types	of Vibration Measuring Instruments	65
		5.1.1	Overall Vibration Level Measurement	65
		5.1.2	Swept Frequency-Filter Data Analysis	66
		5.1.3	FFT Programmable Data Collection	66
		5.1.4	Real-Time Vibration Spectrum Analysis	66
	5.2	Vibrat	ion Transducers	66
		5.2.1	Piezo-electric Velocity Pickup	67
		5.2.2	Accelerometers	68
	5.3	Mount	ing a Contact Type Transducer	68
		5.3.1	Stud Mounting	69
		5.3.2	Epoxy /Wax Mounting	70

	5.3.3	Hand Held Probe	70
	5.3.4	Magnetic Holder	71
5.4	Guideli	nes Followed in Transducer Selection	71
	5.4.1	Frequency Range	72
5.5	Vibrati	on Data Recording Measurement Points	73
	5.5.1	Localization of Measurement Points	73
	5.5.2	Direction of Measurement	73
	5.5.3	Measurement Positions – Hull	74
	5.5.3	Measurement Guidelines on Propulsion System	75
5.6	Method	lology Sequence Followed in Ship Vibration Data Record	ng76
	5.6.1	Vibration Monitoring Tips Observed during Trials	76
5.7	Selection	on of Transducer / Vibration Data recorder	77
	5.7.1	Transducer Selection	77
	5.7.2	Instrument Selection	78
		5.7.2.1 Areva OneProd MVP 2C	78
		5.7.2.2 Areva XPR 30	78
		5.7.2.3 Viber X 2	78
5.8	Selection	on of Most Viable Method of Monitoring	79
	5.8.1	On-Line Monitoring	79
	5.8.2	Offline Monitoring	79
5.9	Schedu	ling the Vibration Sea Trials	80
5.10	Identify	ying the Operating Conditions / Measurement Procedure	81
	5.10.1	Operating Conditions	81
	5.10.2	Measurement Procedure	82
5.11	Identify	ying the Locations to Record Data	82
5.12	Conduc	et of Sea Trials	83
5.13	Data V	alidation	84
	5.13.1	Importance of Data Validation	84
	5.13.2 \$	Steps Followed in Data Validation	84
Ship C	Categoriz	ation, Conduct of Sea Trials and Results Obtained .	86
6.1	Ships /	Craft Involved in the Research	86
6.2	Onboar	d Research Setup and Data Acquisition	90

6

	6.3	3 Research Setup and Data Acquisition Process			
	6.4	Computerized Maintenance Management System (CMMS) .			
7	Research Data Interpretation, Discussion of Results and				
Identif	fication of Safety Index				
	7.1 Key Vibration Issues Encountered			99	
	7.1.1 Defect of Craft 11.3.4: Looseness in Tappet and Irregula				
		Combu	ustion	100	
		7.1.2	Defect of Craft 11.5.2: Gear Box Driven Gear Failure	104	
		7.1.3	Defect of Craft 11.11.7: Structural Looseness .	108	
		7.1.4	Defect of Ship 2.0.1: Unbalanced Coupling Engine to G/B	111	
		7.1.5	Defect of Ship 5.4.0: Misalignment M/E to G/B .	113	
		7.1.6	Defect of Ship 2.0.4: Gear Box Clutch Defect .	115	
		7.1.7	Defect of Ship 2.0.2: Shafting Misalignment and Propeller	Blade	
		Out of	Pitch	118	
		7.1.8 E	Defect of Ship 7.0.1: Gear Box Bearing Failure .	121	
		7.1.9 E	Defect of Ship 5.2.8: Weak Mounting / Base Plate .	123	
	7.2	Safety	Index Calculation using Average Values of Past Records	125	
		7.2.1	Ship 2.0.4: Gear Box Clutch Defect	125	
		7.2.2	Craft 11.3.4: Looseness in Tappet and Irregular Combustio	n in	
		M/E		130	
		7.2.3	Craft 11.5.2: Gear Box Driven Gear Failure	130	
		7.2.4	Craft 11.11.7: Structural Looseness	131	
		7.2.5	Ship 2.0.1: Unbalanced Coupling M/E to G/B .	131	
		7.2.6	Ship 5.4.0: Misalignment M/E to G/B	132	
		7.2.7	Ship 2.0.2: Shafting Misalignment and Propeller Blade Out	of	
		Pitch		133	
		7.2.8	Ship 7.0.1: Gear Box Bearing Failure	134	
		7.2.9	Ship 5.2.8: Weak Mounting / Base Plate	134	
	7.3	Safe O	perational Criterion for Ships (Series wise)	136	
		7.3.1	Category 1 - Advanced Off Shore Patrol Vessel (AOPV)	136	
		7.3.2	Category 2 - Off Shore Patrol Vessel (OPV)	136	
		7.3.3	Category 3 - Fast Missile Vessels (FMV)	137	

		7.3.4	Category 4 - Fast Patrol Vessel (FPV)	137
		7.3.5	Category 5 - Fast Gun Boat (FGB)	138
		7.3.6	Category 6 - Auxiliary Ship (Aux)	139
		7.3.7	Category 7 - Landing Ship Tanker (LST)	139
		7.3.8	Category 8 - Landing Craft Mechanized (LCM) .	139
		7.3.9	Category 9 - Landing Craft Utility (LCU)	139
		7.3.10	Category 10 - Fast Personnel Carrier (FPC)	140
		7.3.11	Category 11 - Fast Attack Craft (FAC)	140
8	Conclu	ision an	d Future Work	143
:	8.1	Declar	ation of Shipboard Machinery Vibration Safety Index (Sv)	143
:	8.2	Safe O	peration Criteria	145
		8.2.1 S	etting Up and Auditing a VA Condition Monitoring Program	m
		for an	Old Ship	145
:	8.3	Ship V	ibration Analysis Procedure in a Flow Chart	148
:	8.4	Future	Work	150
Referen	ce List	t		151
Bibliog	raphy			156
Append	ices			159

LIST OF FIGURES

Page

Figure 2.1: Relationship diagram for ship vibration	14
Figure 2.2: Relationship between amplitude of vibration measuring units .	16
Figure 2.3: Demonstration of Phase Lag / Change	19
Figure 2.4: Relationship of Velocity and Displacement to Acceleration .	23
Figure 2.5: Various types of defects occurred due to vibration on machinery	26
Figure 3.1: Definition of Spectrum	28
Figure 3.2: Fourier representation of some signals	30
Figure 3.3: Representation of a Leakage	32
Figure 3.4: Representation of a use of Hanning window	32
Figure 3.5: Process of digitizing a standard analog waveform	35
Figure 3.6: Sampling Period (T _s)	36

Figure 3.7: Aliasing 3	7
Figure 4.1: Sample 1 X indication in an unbalance condition4	6
Figure 4.2: Sample 1 X, 2 X, 3 X indication in a misaligned condition . 4	8
Figure 4.3: Bearing Health Curve5	0
Figure 4.4: Effect of oil wedge and lubrication5	1
Figure 4.5: Sample geared system in a G/B5	2
Figure 4.6: Deterministic signal transformation of a reciprocating engine . 5	4
Figure 4.7: Simplified model of a reciprocating engine cylinder	5
Figure 4.8: Force representation of the Piston5	8
Figure 4.9: Data Recording Location in a RIC Engine and Directions . 6	2
Figure 5.1: Piezo-electric Velocity Pickup 6	7
Figure 5.2: An accelerometer6	8
Figure 5.3: Mounting methods and sensitivity6	9
Figure 5.4: Operational Ranges of an Accelerometer 7	2
Figure 5.5: Vibration measuring points 7	3
Figure 5.6: Direction of measurement points for an accelerometer	4
Figure 5.7: Direction of measurement points for a displacement probe . 74	4
Figure 5.8: Typical frequency response curves for various sensitivities . 7	7
Figure 5.9: Example of On-line monitoring system 7	9
Figure 5.10: Example of Off-line monitoring system 8	0
Figure 6.1: PPM to CBM Conversion with Aging of Machinery8	6
Figure 6.2: Step 1 – Route configuration and uploading9	1
Figure 6.3: Step 2 – Data recording during sea trials9	1
Figure 6.4: Step 3 – Data downloaded to software9	2
Figure 6.5: Step 4 – Spectrum analysis in Vibration Velocity9	2
Figure 6.6: Step 5 – Cepstrum analysis9	3
Figure 6.7: Step 6 – Harmonic generation9	4
Figure 6.8: Step 7 – Superposed vibration spectrum plots 9	4
Figure 6.9: Step 8 – Waterfall diagram 3D spectrum plots9	5
Figure 6.10: web interface mttu.navy.lk9	6
Figure 6.11: A Sample of Data Trending of Ship No. 3.0.19	7
Figure 6.12: G/B Free End Vertical (Port) – Data Trending on a Line Chart with	

Error Bar – Ship No. 3.0.1	98
Figure 6.13: M/E Drive End Vertical (Port) – Data Trending on a Line Chart with	
Error Bar – Ship No. 3.0.1	98
Figure 7.1: Schematic Layout -Ships Propulsion System	100
Figure 7.2: Stbd M/E free end vertical - Craft 11.3.4	
100	
Figure 7.3: Stbd M/E free end vertical (2) - Craft 11.3.4	101
Figure 7.4: Stbd M/E free end horizontal - Craft 11.3.4	102
Figure 7.5: Stbd M/E free end horizontal (2) - Craft 11.3.4	102
Figure 7.6: Results of Irregular Combustion - Craft 11.3.4	104
Figure 7.7: Both Engine Spectrum Comparisons – Craft 11.5.2	104
Figure 7.8: Both G/Bs Spectrum Comparisons – Craft 11.5.2	105
Figure 7.9: In depth Analysis Port G/B – Craft 11.5.2	105
Figure 7.10: In depth Analysis Stbd G/B – Craft 11.5.2	106
Figure 7.11: Broken valley in Driven Gear– Craft 11.5.2	107
Figure 7.12: Port Gear Box drive end axial - Craft 11.11.7	108
Figure 7.13: Stbd Gear Box free end horizontal - Craft 11.11.7	108
Figure 7.14: Stbd Shaft bearing vertical - Craft 11.11.7	109
Figure 7.15: Stbd Shaft Cooper bearings vertical - Craft 11.11.7	109
Figure 7.16: Inspection to Structural Looseness - Craft 11.11.7	110
Figure 7.17: Spectrums at 33.52 Hz and 27.34 Hz Stbd M/E	
Horizontal - Ship 2.0.1	111
Figure 7.18: Coupling with Shim Pack and After Removal - Ship 2.0.1	112
Figure 7.19: Fwd Port M/E Free end horizontal at 850 rpm – Ship 5.4.0 .	113
Figure 7.20: Fwd Port G/B Free end horizontal at 850 rpm – Ship 5.4.0	113
Figure 7.21: Alignment recheck – Ship 5.4.0	114
Figure 7.22: Both M/E drive end radial at 650 rpm – Ship 2.0.4	115
Figure 7.23: Both G/B drive end radial at 650 rpm (M/E) – Ship 2.0.4	115
Figure 7.24: Both G/B free (driven) end radial at 650 rpm (M/E) – Ship 2.0.4	116
Figure 7.25: 2014 vs 2016 Stbd G/B free end radial readings – Ship 2.0.4 .	116
Figure 7.26: Defective clutch pack disassembling– Ship 2.0.4	117
Figure 7.27: Stbd M/E free end vertical – Ship 2.0.2	118

Figure 7.28: Stbd G/B drive end horizontal – Ship 2.0.2	118
Figure 7.29: Stbd Plummer block horizontal – Ship 2.0.2	119
Figure 7.30: Stbd stern gland (near seal and stern tube) horizontal – Ship 2.0.2	119
Figure 7.31: Ship at dock for repairs – Ship 2.0.2	120
Figure 7.32: Port M/E drive end radial 600 rpm spectrums overlapped- Ship 7.0.1	121
Figure 7.33: Port shaft bearing 600 rpm spectrums overlapped - Ship 7.0.1	121
Figure 7.34: Port G/B drive end radial 600 rpm spectrums overlapped- Ship 7.0.1	122
Figure 7.35: Defective caging with pitting drive bearing in G/B - Ship 7.0.1	123
Figure 7.36: Spectrum at mountings Port M/E - Ship 5.2.8	123
Figure 7.37: Spectrum at mountings Port G/B - Ship 5.2.8	124
Figure 7.38: Tightening the mountings Port M/E - Ship 5.2.8	125
Figure 7.39: Calculation of Harmonics Frequency against Vibration Velocity	127
(Defect Spectrum – Ship 2.0.4)	
Figure 7.40: Calculation of Harmonics Frequency against Vibration Velocity	128
(Normal Spectra - Ship 2.0.4)	
Figure 8.1: Severity of Safety Index (Sv) with possibilities	144
Figure 8.2: Shipboard VA Process in a Flow Chart	149

LIST OF TABLES

	Page
Table 2.1: Units of Vibration Characteristics	19
Table 4.1: Machinery Vibration Diagnosis Chart	42
Table 4.2: Limitations for Shaft line bearings	63
Table 4.3: Limitations for Diesel engines < 200 rpm	64
Table 4.4: Limitations for Diesel engines > 200 rpm	64
Table 4.5: Limitations for Turbochargers	64
Table 4.6: Limitations for Gears	64
Table 5.1: Types of Vibration Trials attended during Study	80
Table 5.2: Identified Data Recording Locations with Directions of a Ship	83
Table 6.1: List of Ships/ Craft under CBPM programme	87
Table 6.2: Technical Particulars of Ships/ Craft under CBPM programme .	88

Table 7.1: Key vibration issues observed during period of research	99
Table 7.2: Values of Port M/E D/E Radial at 650 rpm (with defect) - Ship 2.0.4	127
Table 7.3: Average values of M/E D/E Radials at 650 rpm - Ship 2.0.4	128
Table 7.4: Deduced practical Safety Index values	135
Table 7.5: Summarised Safe Operational Vibration Limits	136

LIST OF ABBREVIATIONS

Abbreviation	Description
CBPM	Condition Based Predictive Maintenance
FAC	Fast Attack Craft
OPV	Offshore Patrol Vessel
LST	Landing Ship Tanker
FGB	Fast Gun Boat
LCU	Landing Craft Utility
FPC	Fast Personnel Carrier
FMV	Fast Missile Vessel
FPV	Fast Patrol Vessel
Aux	Auxiliary Ship
LCM	Landing Craft Mechanised
НАТ	Harbour Acceptance Trials
MTTU	Machinery Testing and Trials Unit
PPM	Planned Preventive Maintenance
SAT	Sea Acceptance Trials
VA	Vibration Analysis
Vib.	Vibration
OES	Optical Emission Spectrometry
TAN	Total Acidic Number
TBN	Total Base Number
SLN	Sri Lanka Navy

SLNS	Sri Lanka Naval Ship
XPR	Version of Areva Vibration Analysis Software
MCR	Machinery Control Room
NDT	Non Destructive Testing
OEM	Original Equipment Manufacturer
G/B	Gear Box
M/E	Main Engine
D/A	Diesel Alternator
F/E	Free End
D/E	Drive End
Port	Port Side of Ship/ Machinery - Left viewed back
Stbd	Starboard Side – Right viewed from back
СРР	Controllable Pitch Propeller
SEMT	SEMT Pielstick Company
MTU	MTU Friedrichshafen Company
FWD or fwd	Forward end
AFT or aft	After end
AFT or aft MJP	After end Marine Jet Propulsion
MJP	Marine Jet Propulsion
MJP UK	Marine Jet Propulsion United Kingdom
MJP UK CDL	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka
MJP UK CDL Max Acc	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration
MJP UK CDL Max Acc Min Acc	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration Minimum Acceleration
MJP UK CDL Max Acc Min Acc Max Vel	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration Minimum Acceleration Maximum Velocity
MJP UK CDL Max Acc Min Acc Max Vel Min Vel	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration Minimum Acceleration Maximum Velocity Minimum Velocity
MJP UK CDL Max Acc Min Acc Max Vel Min Vel GMBH	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration Minimum Acceleration Maximum Velocity Minimum Velocity Gesellschaft Mit Beschränkter Haftung, Germany
MJP UK CDL Max Acc Min Acc Max Vel Min Vel GMBH US	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration Minimum Acceleration Maximum Velocity Minimum Velocity Gesellschaft Mit Beschränkter Haftung, Germany United States
MJP UK CDL Max Acc Min Acc Max Vel Min Vel GMBH US USA	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration Minimum Acceleration Maximum Velocity Minimum Velocity Gesellschaft Mit Beschränkter Haftung, Germany United States United States of America
MJP UK CDL Max Acc Min Acc Max Vel Min Vel GMBH US USA RPM	Marine Jet Propulsion United Kingdom Colombo Dockyard Pvt. Ltd, Sri Lanka Maximum Acceleration Minimum Acceleration Maximum Velocity Minimum Velocity Gesellschaft Mit Beschränkter Haftung, Germany United States United States of America Rounds/ Rotations per Minute
MJP UK CDL Max Acc Min Acc Max Vel Min Vel GMBH US USA RPM CPM	Marine Jet PropulsionUnited KingdomColombo Dockyard Pvt. Ltd, Sri LankaMaximum AccelerationMinimum AccelerationMaximum VelocityGesellschaft Mit Beschränkter Haftung, GermanyUnited StatesUnited States of AmericaRounds/ Rotations per MinuteCycles per Minute
MJP UK CDL Max Acc Min Acc Min Acc Max Vel Min Vel GMBH US USA USA RPM CPM RMS	Marine Jet PropulsionUnited KingdomColombo Dockyard Pvt. Ltd, Sri LankaMaximum AccelerationMinimum AccelerationMaximum VelocityGesellschaft Mit Beschränkter Haftung, GermanyUnited StatesUnited States of AmericaRounds/ Rotations per MinuteCycles per MinuteRoot Mean Square

RIC	Reciprocating Internal Combustion
FFT	Fast Fourier Transform
MVP	Portable Version of Areva Analyser
RCM	Reliability Cantered Maintenance
VM	
	Vibration Monitoring
VA	Vibration Analysis
СМ	Condition Monitoring
Dia	Diameter
GMF	Gear Mesh Frequency
Nb	Number of balls or Rollers
Bd	Ball or Roller Diameter (in or mm)
Pd	Bearing Pitch Diameter (in or mm)
BPF	Blade (or vane) Pass Frequency
BPFI	Ball Pass Frequency Inner
BPFO	Ball Pass Frequency Outer
FTF	Fundamental Train Frequency
BPF	Ball Pass Frequency
BSF	Ball Spin Frequency
BRF	Blade Rate Frequency
BR	Belt Rate / Frequency
Niv	Number of Impeller Vanes
Ndv	Number of Diffuser Vanes
Κ	Highest common factor of Niv and Ndv
Ns	Synchronous Speed
Fs	Slip Frequency
Fp	Pole Pass Frequency
RBPF	Rotor Bar Pass Frequency
Lt (E)	Lieutenant (Engineering)

LIST OF SYMBOLS

Abbreviation	Description
HP	Horse Power

rpm or RPM	Rounds per Minute
СРМ	Cycles per Minute
NM	Nautical Mile
kW	kilowatt
MW	megawatt
kVA	kilo (Volt x Amperes)
Hrs	Hours
Hz	Hertz
mm/sec	millimetre per second
cm/sec ²	centimetre per second squared
In/sec RMS	Inches per seconds Root Mean Square
In/sec Peak	Inches per seconds Peak
In/sec ²	Inches per second squared
mm/sec RMS	millimetre per second Root Mean Square
mm/sec Peak	millimetre per second Peak
mm/sec ²	millimetre per second squared
m/s	meters per seconds
cm	centimetre
g	Gravity
SE	Spike Energy
°C	Celsius
S	seconds
1X	Fundamental frequency or first harmonic / first order
2X	Second harmonic / order
nX	n th harmonic / n th order
S_v	Safety Index

LIST OF APPENDICES

Appendix	Description	Page
Appendix 1	Images of Ships/ Craft Subjected to Research	159
Appendix 2	Sample Data Trending of Ships/ Craft Subjected to)
	Research	
171		
Appendix 3	Paper submitted at International Research	179
	Conference at General Sir John Kotelawala	
	Defence University, 2015 titled "Investigation	
	into Propeller Induced Hull Vibration Effects"	
Appendix 4	Paper submitted at International Research	184
	Symposium at University of Ruhuna, 2015 titled	
	"Study in to Vibration Spectrum Patterns Indu	ced
	by Various Impellers for Optimization of	
	Water Jet Propulsion Forces"	
Appendix 5	Paper submitted at International Research	190
11	Conference at General Sir John Kotelawala	
	Defence University, 2016 titled "Estimation	
	of Hydro-acoustic Signatures Originated	
	from Ship's Hull Vibration"	
Appendix 6	Paper submitted at International Research	195
11	Conference at BCAS Campus, 2016 titled	
	"Estimation of Machinery Vibration	
	Signatures Transferred to Ship's Hull	
	using Spectrum Analysis"	
Appendix 7	Paper submitted at International Research .	199
Appendix 7	Conference at General Sir John Kotelawala	199
	Defence University, 2017 titled	
	"Trending of Vibration Spectrum in	
	Marine Diesel Engine, Marine Gear	
	Box and Variations with Rotational Speeds"	

Appendix 8	Paper submitted at International Research Conference at General Sir John Kotelawala Defence University, 2018 titled "Shipboard Vibration Data Analysis as an Effective Monitoring Tool in Computerised Maintenance Management System (CMMS) for Sri Lanka Na	
Appendix 9	Journal Paper published in International Journal for Innovation Education and Research (IJIER) Volume 6 Number 2 February 2018 titled "Detection of Isolated Vibration Spectrum Patterns Generated in Hull and Shafting Lines which Result Shipboard Faults"	209
Appendix 10	Copy of Vibration Analysis Reports submitted by MTTU, SLN	214