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Abstract 

 

Cable Suspended Parallel Robots (CSPR) are a type of cable driven parallel 

manipulators (CDPR) that has recently become popular for large workspace 

operations. They possess many advantages over common parallel robot architectures. 

They also possess the disadvantage of limited dynamics in motion due to the inability 

to exert compression and the constant limited downward force, gravity. Further, the 

redundancy in actuation in planar and spatial robots of certain footprints makes it 

challenging to determine the cable tensions and suitable dynamics for trajectories. 

This thesis introduces an analytical model to circumvent the cable tension 

determination problem using a concept termed as ‘Feasible Acceleration Diagram’. It 

then designs a novel methodology to generate time optimized point  to  point straight 

line trajectories with smooth dynamics for redundantly actuated 2DOF and 3DOF 

point-mass cable suspended parallel robots while ensuring positive cable tensions. 

The procedure of determination of kinematics for the trajectory is explained in detail 

with a test case for the 3DOF 4 cable scenario. Finally, the results obtained are verified 

by a simulation followed by a numerical method. 
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