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ABSTRACT 

 
The current practise of pond operation of Upper Kotmale Hydropower Station is studied, 
where management of the pond is by subjective judgements of the operator. Accurate and 
reliable inflow forecast makes up an important basis for optimum pond operation connected 
with effective spillway gate operation. This research proposes a novel technique to forecast 
inflow to the pond and utilise these forecasts to optimise the operation of the pond. 
 
In the first phase of the research, an artificial neural network based Nonlinear Autoregressive 
eXogenous model, which is a dynamic neural network meant for time series forecasting, is 
used to develop the real time inflow forecasting system. Cross correlation analysis is used as 
feature selection for effective selection of the inputs to the Nonlinear Autoregressive 
eXogenous network. In the second phase, real time inflow forecast for next six hours is used 
to optimise the pond operation focusing on goals of shorter-term nature, such as maximising 
power generation, maximising pond storage and minimising spillway discharge. Multi-
objective global optimisation using MATLAB “fmincon” algorithm and weighted approach 
of solving multi-objective problem are utilised to solve the optimisation problem. Trading-off 
conflicting objectives by this approach proves very effective. This optimisation approach 
enhances the flexibility of the operator in the decision making process resulting in achievement 
of efficiency in pond operation. 
 
The results show that the Nonlinear Autoregressive eXogenous modelling is an efficient tool 
for inflow forecasting and MATLAB “fmincon” algorithm can be used effectively to carry out 
the multi-objective optimisation of run-of-river pond. Simulation studies for the past years 
show that there exists an opportunity for optimising run-of river ponds for generation using 
inflow forecast and with the use of the proposed methodology, it enhances the hydropower 
generation with gains of over 5% which is significant in a  plant of this type. 
 
 
Keywords : Artificial neural network, cross correlation, dynamic neural network,  feature 
selection, inflow forecast, multi-objective global optimisation, Nonlinear Autoregressive 
Exogenous (NARX); pond operation, run-of-river, time series forecasting, ,  
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1 INTRODUCTION 

1.1 Background 

Upper Kotmale Power Station (UKPS), is a run of river hydropower station with no 

irrigation requirements as can be seen in other power stations on the Mahaweli river. 

Operation of the pond in Talawakelle presents a significant opportunity for the plant 

operation engineers to manage the pond in an optimised manner so as to maximise 

generation while minimising spilling. Furthermore, Upper Kotmale Power Station is 

currently considered to be a semi-dispatchable plant. Even during the peak times, the 

opening and closing of spillway gates are decided by the plant operation engineers 

although the plant is dispatched by System Control Centre. Table 1.1 show basic plant 

data. 

Table 1.1: Basic Plant Data at UKPS [1] 

Item Value Unit 

Plant Capacity 150  MW 

Effective Storage of Pond 0.8  MCM 
Annual Expected Generation 409  GWh 
Catchment Area 317  km2 

Annual Rainfall 2000  mm 

1000-year flood 2000  m3/s 

10000-year flood 3000  m3/s 
 

Optimisation. of Hydropower! Stations can be carried out from three levels namely, 

unit Level, plant level, and system level.  At system level, it is the unit dispatch based 

on lowest incremental cost that achieves optimisation for the whole generating system. 

Whereas unit level refers to running the unit at its best efficiency point, which 

consumes less discharge thus saving water. Managing the pond skilfully with 

minimum release of water while maximising generation is the plant level optimisation. 

Accurate and reliable inflow forecast makes up an important basis for optimum pond 

operation connected with effective spillway gate operation. Pond operation is a 

complex problem which involves numerous requirements including flood control and 
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warning, power optimisation, downstream water users, etc. Often, it becomes more 

complex when it comes to a small pond as in Upper Kotmale Power Station. Moreover, 

pond operation without a proper mechanism is subjective in nature; consequently, 

optimum or near optimum operation is hardly achieved with only human intervention.  

1.2 Problem Statement 

There are five rainfall measuring stations (Nuwara Eliya, Ambewela, Calidonia, 

Sandringham, Talawakelle) and two water level gauging stations (Nanuoya, 

Calidonia) in the catchment of Upper Kotmale pond. The overall hydro-meteorological 

observation network of Upper Kotmale PS is shown in Figure 1.1. The data is real time 

telemetered to a computer in Main Control Room. Both inflow and telemetry data is 

available after commissioning since 2012.  

 

Figure 1.1: Hydro-Meteorological Observation Network of Upper Kotmale PS [2] 

 

Present method of inflow forecasting uses hydrological modelling that involves many 

parameters which are dynamic in nature. Not only it requires field data such as river 

cross sections to be measured to calibrate the system regularly, but also it requires 
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detailed understanding of the underlying physical processes for such calibration. This 

exercise is both time consuming and costly. Hence, an alternative modelling technique 

is advantageous to model the system to get inflow forecast. At the same time, it will 

be possible to update with the data being collected with new model to make the forecast 

more accurate.   

Reservoir at Upper Kotmale, being a small pond and not having gate operation rules, 

plant level optimisation made by the operator based on subjective judgements can 

cause unnecessary spilling; thus, wasting energy. Accurate inflow forecast will allow 

an effective spillway gate operation, thereby reducing spilling and use water 

effectively for power generation. 

1.3 Objectives of the Study 

The main objective of this study is to design an intelligent inflow forecast algorithm 

to improve the efficiency of power generation at Upper Kotmale Power Station by 

effective operation of spillway gates 

Other specific objectives are as follows: 

 To develop a correlation between rainfall forecast from reputed sources such as 

reliable websites and rainfall data recorded in the five rainfall gauging stations 

 To analyse past operation data and develop a new model to forecast inflow to 

reservoir at Upper Kotmale 

 To use inflow forecast to develop reservoir operation rules with the aim of 

minimising spill while effectively using water for power generation subject to 

other issues such as flood control. 

1.4 Overall Model Development 

In this research, two models were developed: Inflow Forecast Model using MATLAB 

Nonlinear Auto Regressive with eXogenous model (NARX) and Pond Optimisation 

Model using MATLAB Nonlinear multi-objective multivariable optimisation 

techniques. The outcome of the above inflow forecast model was utilised as the main 
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input to the pond optimisation model. The procedure and the methodology applied in 

this study is depicted in Figure 3.1.  

 

Figure 1.2: Overall Methodology 

1.5 Thesis Outline 

Chapter 1 gives the background and problem statement of the research together with 

the objectives. It also gives a brief introduction to the overall model development. 

Chapter 2 describes the theory on development of Artificial Neural Network Model 

for inflow forecasting system and explains how to utilise the inflow forecast for 

managing of pond by optimisation. It also explains different feature selection methods 

available for input selection for ANN. It also describes different strategies available 

for multistep ahead forecasting. Chapter 3 provides the insight into development of 

ANN models for inflow forecasting for Upper Kotmale Hydropower Station; thus, the 

overall setting up of Inflow Forecasting Model (IFM). Feature selection and design of 

the neural network architecture for the models are described.  Chapter 4 provides the 

mathematical formulation of Pond Optimisation Model (POM) using inflow forecast 

from the IFM described in Chapter 3. Chapter 5 presents the results of performance of 

MATLAB models of Inflow Forecasting Model and the performance of Pond 

Optimisation Model. Chapter 6 summarises the overall work done together with the 

energy gain in the study of pond optimisation using inflow forecasting; furthermore, it 

gives areas of future work. 
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2 LITERATURE REVIEW 

2.1 The background 

In a run-of-river hydropower plant like Upper Kotmale Power Station (PS) and Kukule 

Ganga1 PS in Sri Lanka, where there are no irrigation requirements as seen in other 

power stations in Mahaweli river, the management of reservoir (pond) is done usually 

in “the way it is used to do approach” rather than using a scientifically optimised 

approach. Several studies suggest that reservoirs are managed using fixed or pre-

defined rules, which are presented by way of tables and graphs. They further claim 

that these tables assist the operator in releasing water based on hydro- meteorological 

factors, the current level, and the time of the year [3]. However, these curves, which 

are designed by experience or trial and error, are not efficient.  Furthermore, these rule 

curves are meant for long term operation and cannot be used for run-of-river type 

ponds where short term optimisation is important. Presence of trade-offs among 

hydropower generation, pond storage and downstream releases to maintain waterfall 

consistently pose pond management a multi-purpose problem. 

A series of recent studies has indicated that short term optimisation of pond operation 

can be done with the forecasted information on inflows. To enhance the efficiency of 

pond operation, prior research has demonstrated how compelling the online operating 

systems are [4].  Accuracy and lead time are used as parameters to assess the quality 

of inflow forecasting. The accuracy is usually defined as the difference between 

observed and forecasted inflows and the lead time is the time interval after issuing the 

forecast to occur the forecasted event [5].  With the inflow forecasting assuming 

perfect accuracy forecasts, the benefits in terms of power generation increase with the 

extension of forecast lead time [6]. Previous studies have also emphasised that in spite 

of error in inflow forecast, it is best to utilise inflow forecasting [7]. 

 

 

 

1 Kukule Ganga Power Station is another run-of-river hydropower station in Sri Lanka built on a 
tributary of the Kalu Ganga. 
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2.2 Inflow Forecasting Methods 

2.2.1 Types of Models 

A model is a set of software and tools to replicate a real physical system that is used 

to help predict its response and behaviour to new inputs. 

 

Figure 2.1: Different types of models 

Figure 2.1 shows one simple classification ofidifferentitypes of modelsiusedifor 

inflow forecasting in resources of water. A physical model is often a scaled down 

version of the original system. A mathematical model refers to models developed with 

equations and mathematical logic, that are used to simulate a system, and can be 

divided into three types as:iAnalytical,iConceptual andiData;Driven models.   

Analyticalimodelidescribes a system by explicit mathematical equations. Application 

of analytical model is limited to the extent of the knowledge of mathematics behind 

the system and often applied for non-complex systems.  

Models prepared using data-driven techniques utilise input/output data to discover 

patterns with the intention of generalising them to a larger set of data. Two types of 

models under data-driven types are statistical and artificial intelligence models. A 

conceptualimodeliis a combinationiof data-driven model and analytical models. 

Statistical model is linked to a stochastic process, which includes both random and 

deterministic variables. Deterministic part is dealt with mathematical models and 

Models

PhysicalMathamatical

AnalyticalConceptualData-Driven

Statistical

Artificial 
Intelligent
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random part is dealt with theory of probability and probabilistic modelling. Artificial 

Intelligence models include Fuzzy logic, and Artificial Neural Network that replicate 

real world system utilising biological concepts. 

2.2.2 Artificial Neural Network (ANN) 

Artificial Neural Network are models based on the structure of the human brain and 

are used for complicated problems of pattern recognition, clustering, regression etc. 

Any complicated nonlinear function can be mapped by them very easily, which is done 

intelligently by learning through training. It can be emphasised that ANN has the 

ability to learn the exact behaviour between the inputs and outputs from examples 

without any kind of the physical knowledge and physical involvement.  ANN has been 

known as to recognise the fundamental behaviour between the variables although data 

is noisy and containing some errors [8].   

The basic component of ANN is a neuron, a unit that acts two jobs of joining the inputs 

coming towards it (Xi) and comparingithe joined inputsiwith a set thresholdi(α) to 

ascertain suitable output.  

 

 

 

 

 

 

Figure 2.2 gives the neuron structure. The inputs to a neuron are weighted by a weight 

matrix, and it can have an additional bias input, too. The mathematical relation of a 

functional neuron is defined as in Equation (2.1) and (2.2). 

 𝐼 = 𝑊′ × 𝑋′ + 𝑏′ (2-1) 
 𝑌 =

1, 𝐼 ≥  𝛼
0, 𝐼 < 𝛼

 (2-2) 

 

1 

X1 

b 

X2 
W1

Σ α 
W2 

wm 

xm 

Y 

Figure 2.2: Structure of a Neuron 
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In the above equations, Xi = ;inputs, Wi = ‘weight matrix, bi = ;bias, Ii= ;sum of the 

weighted inputs, α = ;threshold, Yi = ;output 

Processing element explained in Figure 2.2 is called a perceptron. Furthermore, a 

single neuron is not sufficient for solving numerous practical problems; hence, a 

network of perceptrons is commonly used in series or parallel, and it is called a neural 

network. The threshold value (α) in Figure 2.2 of the secondihalf’ of theineuron can 

be substituted by aimathematicalifunction to generalise the rangeiof ioutputsi which a 

neuron can output. It is called a transfer function, which connects an input to an output. 

Some of the transfer functions which are commonly in use with the artificial neurons 

are Linear, Log Sigmoid and Tangent Sigmoid.  

The biases and weights are parameters of a network which shall be initialised before 

training ANN using a supervised approach, which will ultimately decide on the 

optimum weights and biases. The training in supervised mode of an ANN can be done 

using delta rule with backpropagation algorithm.  Upon training, the network is ready 

to simulatei the outputs for specific inputs associatediutilising final derived biases  and 

weights.  

2.2.3 ANN Modelling Process 

A step by step process was introduced to develop neural network (NN) models for 

hydrological applications in [9]. They are as follows: 

1. Data selection: Collect appropriate and sufficient data 

2. Choose appropriate predictors: Determine what to be modelled (inflow discharge) 

3. Neural Net selection: Choose appropriate type of network and training algorithm 

4. Data pre-processing: Feature selection to identify predictors and treat for missing 

data. Scaling the input before being fed. 

5. Training the network 

6. Use appropriate assessment criteria such as MSE. 

2.2.4 Data Selection and Preparation 

For the effective development of Neural Net models, adequate data shall be available. 

In other words, the data shall be of high quality free from errors and omissions and 
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available in adequate quantity. On the contrary, the presence of too many inputs 

types/features could lead to poor generalisation performance. If  the data used has 

covered a broad range of more than one year, it is not required to eliminate any 

seasonal components from the data set and if the data selected periods are adjacent, it 

is not necessary to remove any long term trends or cycles. Some abnormal noise in the 

data can be filtered out by using an appropriate filter such as moving average filter or 

Butterworth filter. The Butterworth filter is more popular in ANN environment.  

Suitable tuning of cut off frequency (fc) and sampling frequency (fs) can be done by 

looking at the output using trial and error approach in MATLAB environment.   

2.2.5 Feature Selection 

Feature selection refers to the selection of appropriate inputs for the modelling of 

Neural Network model. There are different categories of inputs such as rainfall, water 

level, evaporation, their cumulative values and antecedent values of all. Not all inputs 

have an impact to the outputs; hence, including them arbitrary to the ANN training 

will weaken the generalisation performance of the ANN model. The following are 

three common methods for feature selection. 

 Cross correlation Analysis 

 Stepwise regression  

 Use of Genetic Algorithms 

In stepwise regression, all possible combinations of inputs are used to train an ANN 

network one after the other.  Mean square error can be assessed for each combination 

and drop the combinations, which have no relation to output that giving very high 

MSE. This method never fails, but it consumes a lot of time making it difficult to apply 

for a practical case having many variables such as in inflow forecasting. Use of Genetic 

Algorithms also can speed up the process. However, it still consumes a lot of time for 

evaluation of fitness function. Therefore, cross correlation analysis is a suitable feature 

selection technique for most ANN applications. Several studies suggest that cross 

correlation techniques can be used to identify suitable antecedent values (lags) of 

inputs as well. In [8], cross correlation between water level, rainfall, and the lag time 

necessary for the system to respond was evaluated and the lag was identified as the 
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value producing a peakiin the crossicorrelationidiagram. It is required to check the 

cross correlation between each input and inflow (output) and partial autocorrelation of 

each input. The partialiautocorrelationi function measures the correlation between yt’ 

and yt’ +’ k  afteriadjusting for the linearieffects of yt’ + 1,...,yt’ + k’ – 1. The detailed cross 

correlation analysis was performed in this research to identify the suitable inputs and 

it is described in Chapter 3.  

2.2.6 Data Preprocessing 

Once the suitable inputs are selected, next step is to prepare the data before being fed 

to the ANN. Two processes frequently applied for data pre-processing are as follows: 

 Standardising/Normalising 

 Data Division 

In standardising, the input values are rescaled to a uniformed scale. It can be [-1 1], [0 

1] or [0.1 0.9]. MATLAB automatically does the standardising of inputs and it is not 

required to do explicitly. It is mathematically expressed by equation (2-3) [10]  

 
𝑋 = 𝑋   +  

(𝑋 − 𝑋  )

(𝑋  − 𝑋  )
 (𝑋  − 𝑋  ) (2-3) 

 
 

Where 𝑿𝒐  and 𝑿𝒏  denote the original and transformed data, whereas 𝑿𝒐 𝒎𝒂𝒙  and 

𝑿𝒐 𝒎𝒊𝒏  denote the maximum and minimum values of original data, respectively. 

𝑿𝒏 𝒎𝒊𝒏  and 𝑋   are the uniform scale defined previously, which in MATLAB is [-

1 1]. 

Before training ANN, the data is divided into three subsets namely training set, 

validation set and test set. The training set is used for computing the gradient and 

updating the network weights and biases while validation set is utilised to monitor the 

error when the training is in progress. The validation error normally decreases during 

the training together with training set error. Conversely, when the network starts to 

overfitting, the error on validation data set starts to rise. At this point, the weights and 

biases of the network are saved right at the lowest error on the validation data set. 

Overfitting of network should be avoided in this way, and it is very important in ANN 

modelling. In overfitting, ANN tries to memorise the training samples and not learn 
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the underlying pattern. This technique is also called early stopping in some literature. 

Figure 2.3 shows an extract from MATLAB documentation, which describes how 

MATLAB avoids overfitting of ANN. 

 

Figure 2.3: Extract from MATLAB Documentation of Overfitting 

As shown in Figure 2.3, the error decrease after more iterations (epochs) of training, 

but start to increase on the validation data set from 9th epoch, at which time the network 

starts overfitting the training data. In the MATLAB setup, the training ceases after six 

consecutive increases in validation error, and the best performance is taken from the 

9th epoch, which has the lowest validation error [11]. The test set is used to verify the 

performance of the model and different models are compared. As in the Figure 2.3, it 

is useful to plot the test set error during the training process. If the error on the test set 

reaches a minimum at a significantly different iteration number (epoch) than the 

validation set error, it might indicate a poor division of the data set. In general, data is 

divided as 70%, 15% and 15% for training, validation and test sets, respectively. It can 

be 80%, 10% and 10%, too. Data division depends on number of data points available. 

Higher the number of data points available, even a small percentage allocated to test 

error is a significant number of samples. It is very important that data division is done 
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in a manner that protects the patterns and relationships of time series; hence, random 

data division techniques were not be applied for inflow forecasting model in this 

research. 

2.2.7 ANN Architecture 

Figure 2.4 show a simple neural network with one hidden layer. It has the input and 

output layers. This network is called a two-layer network as number of layers are 

calculated including output layer for a ANN. 

 

Figure 2.4: Simple neural network with one hidden layer 

Input layer has three nodes, hidden layer has 4 nodes and output layer has two nodes. 

A heuristic approach is used in [12] to set the hiddeninumber of nodesiand to decide 

the finalistructureiof theineuralinetwork. According to some literature, the number of 

hidden nodes be taken as the half of the input nodes [13]. Often two-layer network is 

suitable for most problems except for very complex models, in which more than one 

hidden layer is used. If the number of hidden layers is very high, then the network is 

said to be deep neural network; however, for the inflow forecasting, shallow neural 

network is sufficient. The weights shall not exceed the training samples, and a ratio of 

training sample to weight number up to 30 is necessary to obtain good generalisation 

[14]. 

2.2.8 Training of ANN 

Neural networks are trained with a selected data set and it is generally assumed that a 

network does not have any a prior-knowledge about the problem before it is trained 

[15]. At the start of the training, the weights initialisation takes place with a set of 
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random values and then the weights are systematically modified by the learning 

algorithm with the aim of minimising, for a given input, the difference between the 

actual output and output of ANN. The process is terminated when this difference 

becomes smaller than the set values as the learning samples are repeatedly presented 

to the network. At this stage, the ANN is supposed to have been trained and the 

resulting weight vector of the properly trained network carries its knowledge about the 

problem. The three mainitraining methods are : 

 Supervised Learning 

 Unsupervised Learning 

 Reinforcement Learning 

For Supervised Learning, both inputs and corresponding outputs are fed to the 

networks. In Unsupervised learning, learning is by clustering technique and the 

expected output is not known beforehand and Reinforcement learning is a combination 

of both unsupervised learning and supervised learning. It has penalty for wrong outputs 

and rewards for correct outputs [11]. In many applications supervised learning is 

chiefly used. 

The most popular method of network training algorithm has been the back-propagation 

learning rule [16]. Nevertheless, back-propagation has a few drawbacks including long 

duration of training with many iterations. Owing to the drawbacks of back-

propagation, some authors have proposed more efficient rules such as the Levenberg-

Marquardt rule, which is the most powerful method at present and reach to one of the 

best solutions in a few iterations [17].   

2.2.9 Nonlinear Autoregressive EXogenous Model (NARX) 

Prior knowledge of the system to be modeled will determine the choice of the ANN. 

In this sense, inflow forecasting being a  time series and NARX neural network being  

a good predictor of time series, it is suitable for inflow forecasting modelling [18]. 

NARX could be used to model various kinds of non-linear dynamic systems. They are 

used in numerous applications that include time series applications [19].  The NARX 

is a recurrent dynamic neural network. Dynamic networks have memory in it, and they 

can be trained to learn time-varying or sequential patterns; hence, they are more 
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powerful than the networks of static counterparts. Furthermore, these networks have 

feedback connections across multiple network layers. To derive the full potential of 

NARX for time series forecast, it is useful to use its memory capability using the 

antecedent of true or predicted time series.  There are two distinct architectures for the 

NARX model, open loop (series parallel) and closed loop ( parallel architecture). Their 

equations are as shown in (2-4) and (2-5) respectively. 

 
𝑌(𝑡 + 1) = 𝐹

𝑦(𝑡), 𝑦(𝑡 − 1), … . 𝑦 𝑡 − 𝑛 , 𝑥(𝑡 + 1),

𝑥(𝑡), 𝑥(𝑡 − 1), … 𝑥(𝑡 − 𝑛 )
  

 
(2-4) 

 
 

𝑌(𝑡 + 1) = 𝐹
𝑦(𝑡),  𝑦(𝑡 − 1), … . 𝑦 𝑡 − 𝑛 , 𝑥(𝑡 + 1),

𝑥(𝑡), 𝑥(𝑡 − 1), … 𝑥(𝑡 − 𝑛 )
  

 
(2-5) 
 

 
Where function F’ is the network mapping function, 𝒀(𝒕 + 𝟏) is the NARX output at 

the’ time t’ for the time t’+1 (i.e. predicted’value’of Y’for the time’t+1). 

𝒚(𝒕),  𝒚(𝒕 − 𝟏), … . 𝒚 𝒕 − 𝒏𝒚  are the past outputs of the NARX.  𝒚(𝒕), 𝒚(𝒕 −

𝟏), … . 𝒚 𝒕 − 𝒏𝒚  are the true past values of the time series, called also the desired 

output values. 𝒙(𝒕), 𝒙(𝒕 − 𝟏), … 𝒙(𝒕 − 𝒏𝒙) are the’inputs’of’ the’‘NARX. 𝑛  is the 

number’of’input’ delays’ and 𝒏𝒚 is the number’of output’delays. If only series’parallel 

architecture is used, it can forecast one-step ahead time series forecasting and for 

multi-step ahead forecast, different strategy shall be used. 

2.2.10 Multistep Time Series forecasting Strategies 

In time series prediction, forecasting the next time step is generally common, and it is 

called a one-step forecast. In the case of multiple time steps to be forecasted, it is called 

multi-step forecasting. The four common methods for multi-step forecasting [20]. 

1. Direct Multistep Forecasting 

2. Recursive Multistep Forecasting 

3. Direct Recursive Hybrid Multistep Forecasting 

4. Multiple Output Forecasting 

Direct Multistep forecasting requires to develop a separate model for every time step. 

In case of forecasting inflow for the next six hours, for 30 minute time steps, it is 
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required to develop 12 models. Equation (2-6) and (2-7) underlines the relationship of 

this strategy. 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1) = 𝑚𝑜𝑑𝑒𝑙1(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) 
 

(2-6) 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙2(𝑜𝑏𝑠(𝑡 − 2), 𝑜𝑏𝑠(𝑡 − 3), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) 
 

(2-7) 

To have one model for every time step is an additional burden in view of computation 

and maintenance, particularly, as the timesteps to be forecasted increases.  

Recursive Multistep Forecasting involves using a one’step ahead modelimultiple 

times where the forecast for the prior time step is used as an input for making forecast 

on the following’time step. Equation (2-7) and (2-9) underlines the relationship of this 

strategy. 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1) = 𝑚𝑜𝑑𝑒𝑙(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) 
 

(2-8) 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1), 𝑜𝑏𝑠(𝑡 − 1), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) 
 

(2-9) 
 

In this case, in place of observations, forecasts are used. The recursive strategy let 

forecast errors to accumulate so that performance quickly degrades as the forecast time 

horison increases. 

In Direct Recursive Hybrid Multistep Forecasting, direct and recursive strategies 

are combined to offer benefits of both methods. iA separate’model is constructedifor 

each timestep to be forecasted, but each model use the forecasts made by models at 

prior’time steps as input values. Equation (2-10) and (2-11) explains the relationship 

of this strategy. 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1) = 𝑚𝑜𝑑𝑒𝑙1(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) 
 

(2-10) 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙2(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1), 𝑜𝑏𝑠(𝑡 − 1), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) (2-11) 
   

Combining the recursive and direct strategies can help overcome the limitations of 

each.  

Multiple Output Forecasting involves developing one model that is capable of 

forecasting the entire forecast sequence in a one-shot manner. Equation (2-12) depicts 

the relationship of this strategy. 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1), 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) (2-12) 



16 
 

Multiple output models can learn the dependence structure between inputs and outputs 

as well as between outputs; hence, these models are more complex. Which strategy is 

better for model is to be decided based on trial and error or by judgement. 

2.2.11 Performance of ANN model 

The performance of ANN model can be evaluated using statistical comparisons of 

predicted and observed outputs. One common such statistic is Mean Square Error 

(MSE). It is defined as in equation 2-13. 

 
𝑀𝑆𝐸 =

∑ ((𝑜𝑏𝑠 − 𝑓𝑜𝑟 ) )

𝑛
 

(2-13) 
 

Where 𝑜𝑏𝑠  is ith observed data and 𝒇𝒐𝒓𝒊 is the ith forecast data and 𝒏 is the number of 

observed values. Root Mean Square (RMSE) is the square root of MSE. 

2.3 Pond Optimisation Methods 

Mathematical Optimisation refers to a process of maximising or minimising objectives 

without violating design constraints, and regulating a set of decision variables that 

affect both the objectives and the design constraints [21].  

2.3.1 Categories of Optimisation 

There exists a considerable body of literature on the categories of optimisation. They 

can be classified as follows: 

1. Nonlinear vs Linear 

2. Unconstrained vs Constrained  

3. Continuous vs Discrete 

4. Multobjective  vs Single 

5. Multiple vs Single Minima 

6. Non-deterministic vs 

Deterministic  

7. Simple vs Complex 

If the objective function or any of the constraints is a nonlinear function of the design 

variables, then the problem is called a nonlinear optimisation problem. If the 

optimisation problem has constraints, then it is called a constrained optimisation 

problem. If any design variable is discrete, it is called discrete optimisation, and if this 

discrete variable can have only one or zero then the problem is binary optimisation 

problem whereas design variables can have any integer, then it is an integer 

programming problem. Optimisation problem having several optima is referred to as 
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global optimisation problem. If the design variables are nondeterministic, then the 

problem is nondeterministic optimisation, and if the optimisation problem can be 

solved easily as it may be nonlinear and deterministic etc., then the problem is simple 

optimisation problem. 

2.3.2 Multi-objective Optimisation Problem 

In general, most practical problems involves trade-offs among competing objectives. 

Maximising power generation while maximising end pond storage together with 

minimising spilling is a Multi objectiveioptimisation problem.  

Several objectives are optimized simultaneously in ‘Multiobjective optimization. The 

objectivesiareiofteniiniconflict with each other and are measured by different units. 

Therefore, the most importanticomponentiof multiple objectiveiproblem solving is 

how to evaluate solutions or parameter sets, when there are two or moreiperformance 

measures [22]. 

The structure of multi objective optimisation problem can be defined referring to two 

objective case (n=2) as given by (2-14) - (2-16). 

 𝑚𝑖𝑛  [𝜇 (𝑥)  𝜇 (𝑥) ] 
                            Subject to 

𝑔(𝑥) ≤ 0 
ℎ(𝑥) = 0 

 
𝑥 ≤ 𝑥 ≤ 𝑥  

(2-14) 
 

(2-15) 
 
(2-16) 
 

𝒙𝒊 is the designivariable vector, 𝒈(𝒙) representsithe vectoriofiinequalityiconstraintsi 

and  𝒉(𝒙) isitheivectoriof equalityiconstraints.  

The solution to the Multi-objective problem can be found from two different ways: 

Using Aggregated Objective Function (AOF) Method and Pareto Domination 

Approach. The AOF method combines different objectives into a single objective 

using weightages. Pareto approach is based on whether one solution is dominated by 

other and not on a single comparative value. Trade off among differentiobjectives is 

presentediby theiset of Paretoioptimalisolutions. For each solution in this pareto 

solutioniset, aniimprovementiin one objectiveicannot be achieved without 

compromising others. 
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In this research, weighted approach is used for optimisation of the pond. Maximising 

power generation while maximising end-pond storage at the end of period are 

conflicting objectives. The aggregate objective function for the two objective case can 

be written as in (2-17). 

 𝐽(𝑥) = 𝑤1 × 𝜇 (𝑥) + 𝑤2 × 𝜇 (𝑥) (2-17) 
Where 𝑤1 + 𝑤2 = 1. 

MATLAB fmincon command can be used to find the solution to this multi-objective 

optimisation problem after converting to single objective optimisation problem with 

weighted approach. MATLAB fmincon command is as in (2-18) [11]: 

 𝑚𝑖𝑛  [𝑓(𝑥) ] 
                            Subject to 

𝑐(𝑥) ≤ 0 
𝑐𝑒𝑞(𝑥) = 0 

𝐴𝑥 ≤ 𝑏 
𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞 

𝐿𝐵 ≤ 𝑥 ≤ 𝑈𝐵 
 

 
 
(2-18) 
 

Firstitwoiconstraints areinonlinear constraints and next twoiconstraints are for linear 

constraints. Final constraint defines the upper and lower bounds. The syntax for 

fmincon is as follows [11]. 

  [𝑥𝑜𝑝𝑡, 𝑓𝑜𝑝𝑡]  =  𝑓𝑚𝑖𝑛𝑐𝑜𝑛(‘𝑓𝑢𝑛’, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝐿𝐵, 𝑈𝐵, ‘𝑛𝑜𝑛𝑙𝑐𝑜𝑛’) (2-19) 
 

Wherei x0, A, b, Aeq, beq, LB, and UB are theiinput variables which needito be 

defined beforeicalling ‘fmincon’ function. ‘fun’ is the name of the function file 

containing the definition of f(x), and ‘nonlcon’ is the name of the function file 

containing nonlineariconstraints if any. The variables xopt and fopt are the outputs of 

fmincon, where xopt is the optimumivector of variables [x1, x2] and fopt is the 

minimumivalue of objective function f. To maximise a function, it is required to 

simply perform operation of minimisation of -f(x). 

2.3.3 Global Optimisation 

Pond optimisation may have global minima and local minima; hence, it is called a 

multi-modal optimisation problem. The global optimisation is to find the global 

optima. Most of the algorithms in optimisation do not guarantee finding global minima 

as optimisation can easily converge to a local minima based on the starting point used.  
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GlobalSearch and MultiStart algorithms of MATLAB have similar approaches to 

finding global or multiple minima. Both algorithms start a local solver (such as 

fmincon) from multiple start points. GlobalSearch uses the scatter search algorithm to 

generate a set of trial points. GlobalSearch generates trial points within any finite 

bounds set within LB and UB [11]. Several authors have recognised MATLAB 

GlobalSearch to find the global minimum. However, in all the cases, global minimum 

is not guaranteed but somewhat closer. Figure 2.5 shows MATLAB peaks function 

which demonstrates the both local and global minimum. 

 

Figure 2.5: MATLAB peak function  
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3 INFLOW FORECASTING USING NEURAL NETWORK 

3.1 Introduction 

Figure 3.1 shows the overall diagram of Inflow Forecasting Model. First, raw data was 

screened through a process called Feature Selection through which the final inputs to 

the model were derived. Using the derived inputs and the output of inflow MATLAB 

NARX network was trained using supervised learning approach. Finally, trained 

network was used to forecast the inflow one step ahead. One step ahead means 0.5 

hours ahead. Several of similar models trained utilised in a Direct Recursive Strategy 

to forecast the inflow for the multiple time steps ahead. The whole procedure of the 

setting up of the inflow forecast model is discussed next. 

 

Figure 3.1: Overall Block Diagram of Inflow Forecast Model 

3.2 Data Collection and Pre-processing 

Routine rainfall and water level observations are made by UKPS as a part of Flood 

Forecasting & Warning System (FF&WS) established in the Power Station. The Power 

Station was commissioned in year 2012, but FF&WS was established much later in 

year 2014. UKPS operates a hydro-meteorological network of seven meteorological 

stations where rainfall and water level data are transmitted real time to the Main 

Control Room of the Power Station at every 10 minutes interval. Various calibration 

and model setups had been taken place prior to 2016 before taking over the system 
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from the contractor.  Hence, analysis and assessment indicate that the data before 2016 

are not of good quality. 

3.2.1 Raw Data Selection in the Present Study 

It is important to select adequate; data which are specific; for the modelling task. On 

the contrary, limited data shall be selected as much as feasible to minimize the training, 

time and potential for overfitting of the model. Rainfall, water level and actual 

recorded inflow time series data from year 2016 to 2019 were collected at 30-minute 

interval. Figure 3.2 shows an extract of collected raw data from the Upper Kotmale 

Power Station.  

 

Figure 3.2: Extract of Collected Raw Data 

 

Gauging stations, from which data was collected as in Figure 3.2, are further 

summarised in Table 3.1. 
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Table 3.1: Summery of Gauging Stations and Raw Data Sources 

Station Code Description Unit 
NE_RF Nuwara Eliya Rainfall mm 
AW_RF Ambewela Rainfall mm 
SH_RF Sandringham Rainfall mm 
CD_RF Calidonia Rainfall mm 
TK_RF Talawakelle Rainfall mm 
Basin_RF Basin Average Rainfall mm 
NO_WL Nanuoya Water Level masl 
CD_WL Calidonia Water Level masl 
TK_WL Talawakelle Water Level masl 
Q Inflow Discharge to Pond m3/s 

 

Basin_RF, as referred in Table 3.1, is the total average rainfall of the Upper Kotmale 

Catchment calculated based on Theisen polygon average, and it is readily available. 

3.2.2 Outliers and Missing Data 

Data was plotted on a MATLAB time-plot that contains missing values and outliers, 

then gaps appeared on the plot where missing data existed, and outliers were easily 

recognisable. Furthermore, most the missing data and outliers of input raw data were 

treated manually with the author’s engineering judgement. The inflow discharge was 

also applied a Butterworth filter (fc = 10Hz, fs = 100Hz, Step 2) to compensate noise 

errors in the inflow values particularly when low inflow discharges were calculated.  

 

Figure 3.3: Low-Pass Butterworth Filter used for Inflow Discharge to remove noise 
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Figure 3.3 shows an extract from the result of inflow discharge vs time before and after 

applying low-pass Butterworth Filter in MATLAB.   

3.3 Feature Selection 

This part of the study could be considered as one of the most important and challenging 

process. As described in the Chapter 2: Literature Review, feature selection refers to 

the selection of appropriate inputs for the modelling of Neural Network based Inflow 

Forecast Model. The candidate data were present rainfall values of five rainfall 

gauging stations (Pt), their Antecedent Rainfall Values (Pt-1, Pt-2,..), Present Water 

Levels of three water Level gauging stations (Lt), their Antecedent values (Lt-1, Lt-

2,..), Present Inflow discharge (Qt) and its Antecedent values (Qt-1, Qt-2,..). 

The steps given next were followed in the feature selection process. 

Step 1: Correlation Coefficient between each combination of the present values of 

input variables were calculated using MATLAB correlation matrix.  Figure 3.4 shows 

the results of correlation coefficients (R) between each. Present value of rainfall means 

that rainfall in mm recorded between now and half hour before. 

 

Figure 3.4: Correlation Matrix of Present Values of Input Data 

The correlation matrix above suggests that there is no significant correlation between 

the present values of selected inputs. Moreover, the first column of this matrix gives 

the correlation of present rainfall of the rainfall gauging stations and the present inflow 

to the pond. It is also clear that inflow to the pond at any given time is not due to the 
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rainfall at that time but the rainfall that had received before that time. With the 

conclusion that present values of rainfall have no bearing on the present inflow; hence, 

present values of rainfall were not considered as inputs to the Neural Network model. 

Similarly, present values of Water Levels at Calidonia and Nanuoya also have no effect 

on present values of inflow; therefore, they, too, were not considered as inputs. 

Step 2: Next step was to see if any correlation between antecedent values of rainfall 

and present inflow. In here, antecedent values refer to the point rainfall values recorded 

in the past. For example: rainfall before 0.5 h (t-1), 1.0 h (t-2), 1.5 h (t-3), etc. 

MATLAB programme was written to calculate 200 lags (1 lag = 0.5 hours) and to see 

any cross-correlation between the present inflow against each rainfall input. The cross 

correlation of present inflow and lagged values of Nuwara Eliya Rainfall is shown in 

Figure 3.5. The cross correlation of inflow and lagged rainfall values for each of the 

other rainfall gauging station are shown in Figure 3.6. One lagged rainfall means that 

rainfall recorded between half an hour before and one hour before. It is clear from the 

Figure 3.5 & 3.6 that even point values of lagged values of rainfall have no bearing 

with the present inflow as there is no significant cross-correlation in any of the graph 

in Figure 3.5 & 3.6. 

 

Figure 3.5: Cross Correlation between Present Inflow and Lagged Values of Nuwara Eliya RF 
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Figure 3.6: Cross Correlation between Inflow and Rainfall Values 

Hence, it was concluded not to consider as inputs to the neural network model even 

the point lagged values of rainfall.  

Step 3: Next step was to see if any correlation between antecedent values of water 

levels at Nanuoya and Calidonia with present inflow. Figure 3.7 shows the cross-

correlation between present inflow and up to two days lagged values of Calidonia 

water level while Figure 3.8 shows the cross-correlation between present inflow and 

up to 10 hours lagged values of Nanuoya water level. It can be seen a significant 

correlation between lagged point values of Nanuoya water level and present Inflow. 

The lag time of the river in Upper Kotmale varies between 4 to 6 hours.   

 

Figure 3.7: Cross-Correlation between Present Inflow and Lagged Values of Calidonia Water Level 
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Figure 3.8: Cross-correlation between Present Inflow and Nanuoya Water Level 

 

In order to ascertain, how many lagged values of Nanu Oya water level have the 

significant information, partial autocorrelation of Nanuoya water level was analysed 

using MATLAB as shown in Figure 3.9. Up to two lags need to be considered from 

Nanuoya water level. 

 

Figure 3.9: Partial Autocorrelation of Nanuoya Water Level 

Step 4: With regard to rainfall, failing to spot correlation for present values of rainfall 

or lagged values of point rainfall with present inflow, next step was to see if any cross-

correlation available between present inflow and cumulative values of rainfall of each 
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station. Figure 3.10 shows the cross-correlation matrix among present inflow and 

cumulative rainfall values. The values in first column gives the cross-correlation 

between present inflow and cumulative rainfall of Nuwara Eliya for different 

cumulative time steps.  

 

Figure 3.10: Cross Correlation among Nuwara Eliya Cumulative Rainfall(up to 300 
timesteps) and Present Inflow 

The highest correlation value, as in Figure 3.9, is 0.6938, and it belongs to the 

cumulative Nuwara Eliya rainfall for last 260 timesteps (130 hours). This means, the 

present inflow is highly correlated with the cumulative Nuwara Eliya rainfall for the 

last 5.4 days. Hence, it is taken as an input to the Neural Network model. Furthermore, 

similar observations were done for the other rainfall gauging values.  In addition to 

each individual cumulative rainfall values, effect of cumulative basin average was also 

analysed in a similar way. Accordingly, the following rainfall variables were selected 

for the modelling. 

- 5.4 days cumulative Nuwara Eliya rainfall 

- 7.6 days cumulative Ambewela rainfall  

- 7.9 days cumulative Sandringham rainfall  

- 8.3 days cumulative Calidonia rainfall  

- 5.0 days cumulative Talawakelle rainfall  

- 5.4 days cumulative Basin average rainfall 
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It is clear that not the point rainfall, or lagged values of point rainfall that has an effect 

on inflow but the cumulative values of rainfall. 

Moreover, partial autocorrelation of each of the above rainfall inputs were considered 

to identify the effect of antecedent cumulative rainfall values on the present cumulative 

values. Figure 3.11 shows the partial autocorrelation of 5.4 days cumulative Nuwara 

Eliya rainfall. 

 

Figure 3.11: Partial-Autocorrelation of 5.4 days (260 steps) Comulative Nuwara Eliya Rainfall 

Two antecedent values of this variable carry significant information content as seen in 

Figure 3.11. Similar analysis done for the other cumulative rainfall variables selected 

in this step. Furthermore, NARX model in MATLAB does not permit configuring 

different antecedent values for different input variables; by analysing all other graphs 

of other 11 models, a common 5 antecedent values were selected for all cumulative 

rainfall variables. In other words, if V is equal to “5.4 days cumulative Nuwara Eliya 

rainfall”, Vt-1, Vt-2, Vt-3, Vt-4, Vt-5   were also considered as inputs. 

Step 5: Next, the analysis was done to identify the effect of present inflow with its 

antecedent values and up to how many antecedent values were to be considered. For 

this, partial autocorrelation was carried out as shown in Figure 3.12. 
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Figure 3.12: Partial autocorrelation of Inflow to the Pond 

Figure 3.12 indicates that present inflow is correlated to the past inflows. Hence, at 

least, two antecedent values of inflows need to be considered as inputs to the model.  

Step 6: Another user defined variable was created as flag to indicate the range of 

present inflow to the model. Table 3.2 shows values of the user defined inflow flag 

variable. 

Table 3.2: User Defined Inflow Flag 

 

 

 

 

 

 

Step 7: In addition to the variables selected in the previous steps, 6-hour and 24-hour 

cumulative rainfall of each gauging station and whole basin were considered as inputs 

after analysing their cross-correlation significance to the present inflows. The total 

cross-correlation results among variables selected together with their significant lags 

are further summarised in Table 3.3. 

Inflow, Q (m3/s) flag 
Q < 10 1 

10 ≤ Q < 20 2 
20 ≤ Q < 30 3 
30 ≤ Q < 40 4 
40 ≤ Q < 50 5 
50 ≤ Q < 60 6 
60 ≤ Q < 70 7 
70 ≤ Q < 80 8 
80 ≤ Q < 90 9 

  90 ≤ Q < 100 10 
100 ≤ Q 11 
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Table 3.3: Cross-correlation values of cumulative rainfall values and inflow for most 
significant lags (most significant lag is shown in brackets) 

Variable 6 hr 
Cumulative  

24 hr 
Cumulative 

X days Cumulative 

Nuwara Eliya Rainfall  0.429 (lag= 4) 0.584 (lag= 1) 0.697 (lag= 0),  (X= 5.4)  
Ambewela Rainfall 0.407 (lag= 5) 0.668 (lag= 0) 0.670 (lag= 0),  (X= 7.6)  
Calidonia Rainfall 0.399 (lag= 3) 0.549 (lag= 1) 0.550 (lag= 0),  (X= 8.3)  
Sandringham Rainfall 0.446 (lag= 5) 0.595 (lag= 1) 0.637 (lag= 0),  (X= 7.9)  
Talawakelle Rainfall 0.424 (lag= 3) 0.574 (lag= 0) 0.675 (lag= 0),  (X= 5.0) 
Basin Rainfall 0.500 (lag= 5) 0.650 (lag= 1) 0.697 (lag= 0),  (X= 5.4) 

 

As can be seen in Table 3.3, lag-5 is the highest lag available as significant input of a 

variable. Hence, the input delay to the neural network model was selected as 5 for all 

input variables.  

The list of inputs selected for the Neural network model is as follows. 

1. Cumulative Rainfall in the last 6 hours of each Rainfall Gauging Station (5 inputs) 

2. Cumulative Rainfall in the last 6 hours of the whole basin (1 input) 

3. Cumulative Rainfall in the last 24 hours of each Rainfall Gauging Station                                   

(5 inputs) 

4. Cumulative Rainfall in the last 24 hours of the whole basin (1 input) 

5. Cumulative Rainfall in the last 5.4 days of Nuwara Eliya Rainfall Gauging Station 

(1 input) 

6. Cumulative Rainfall in the last 7.4 days of Ambewela Rainfall Gauging Station  

(1 input) 

7. Cumulative Rainfall in the last 7.9 days of Sandringham Rainfall Gauging Station 

(1 input) 

8. Cumulative Rainfall in the last 8.3 days of Calidonia Rainfall Gauging Station     

(1 input) 

9. Cumulative Rainfall in the last 5 days of Talawakelle Rainfall Gauging Station   

(1 input) 
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10. Cumulative Rainfall in the last 5.4 days of Whole Basin (1 input) 

11. Water Level at Nanuoya Gauging Station (1 input) 

12. Water Level at Calidonia Gauging Station (1 input) 

13. Flag Variable to represent inflow value (1 input) 

14. Significant Lag Values of above variables between 1 to 5 

15. Past Natural Inflow to Reservoir (10 input) 

A MATLAB programme was written to create these variables real time when their raw 

values are available real time. Appendix-A describes the programme. 

3.4 Design of Neural Network Architecture 

For half-hourly simulations and model setup, three years rainfall, water level and 

inflow recorded at 30-minute interval from 2016 to 2018 were used. Whole dataset 

was divided preserving the sequential relationships using MATLAB dividerint 

command into three sets: 80% training set, 10% validation set and 10% testing set. The 

raw input and output values were set to normalised to [-1, 1] in the NARX programme. 

The MATLAB programme for NARX modelling is attached as Appendix-A. Figure 

3.13 shows the Open Loop NARX model used for modelling the inflow forecasting. 

 

Figure 3.13: MATLAB Open Loop NARX Network used for Modelling 

A heuristic approach (trial and error) was used; to decide on the layer numbers, types 

of transfer functions used for each layer, number of hidden; nodes and the 
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finalistructure of the neural network model. Mean Square Error (MSE) was used as the 

performance function, and same was used in the above trial and error approach. 

Finally, selected architecture has two layers (1 input layer, 1 hidden layer), and 11 

hidden nodes and one output node. A rule of thumb of deciding number of hidden 

nodes, as discussed in the Chapter 2, for any neural network is to get the half of the 

input nodes.  

Input Nodes = 21  Half of Input Nodes = 10.5  Hence, Hidden Nodes = 11 

Basic characteristics of ANN model selected is summarised in Table 3.4. 

 

Table 3.4: Characteristics of Selected ANN Model 

Characteristic Value/Description 
Number of Layers 2 
Hidden Layer Neurons 11 
Input Delay 5 
Feedback Delay 10 
Activation function of Input Layer Tansig 
Activation function of Hidden Layer Linear 
Training Algorithm Levenberg Marquardt 
Maximum Epochs 1000 
Error Performance Function MSE 

 

Based on the feature selection, as significant lag values of input is 5, input delay for 

NARX network is set to 5. Similarity, feedback delay, antecedent values of inflow, 

was set to 10.  

3.5 Multistep Ahead Forecasting 

The ANN model discussed in section 3.4 is used to forecast inflow one step ahead i.e. 

inflow for next half an hour. To forecast multi step ahead, direct recursive hybrid 

strategy was used. Figure 3.14 shows the method of forecasting multistep ahead. 
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Figure 3.14: Multistep ahead forecasting methodology 

There are 12 models for 12 timesteps ahead forecasting. The difference in each model 

is in the output with which the model was trained. As shown in the Figure 3.14, Model-

2 was trained with output of inflow two step ahead inflow recorded in the past. The 

equations (3.1) and (3.2) show the case of two-step ahead forecast. Output of Equation 

(3.1) is fed to input of Equation (3.2). 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1) = 𝑀𝑜𝑑𝑒𝑙1 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑡) + 𝑜𝑏𝑠(𝑡 − 1) + ⋯ . . 𝑜𝑏𝑠(𝑡 − 𝑛)   

(3-1) 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 2) = 𝑀𝑜𝑑𝑒𝑙2 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1) + 𝑜𝑏𝑠(𝑡) + ⋯ … . . 𝑜𝑏𝑠(𝑡 − 𝑛)  

                (3-2) 

Arrows and numbers in Figure 3.14 show the sequence in carrying out the multi-step 

ahead forecasting. 
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4 POND OPTIMISATION USING INFLOW FORECAST 

4.1 Introduction 

Using inflow forecast from inflow forecast model described in Chapter 3 was utilised 

to optimise the pond operation. Main objective in this pond optimisation is to maximise 

generation while minimising spilling all the time. This model was developed in total 

independence from the inflow forecast model so that any inflow forecast received from 

any other source could well be input to this model for optimisation. The overall block 

diagram of this model is shown in Figure 4.1.  

 

Figure 4.1: Overall Block Diagram of Pond Optimisation Model 

It is expected the programme to run automatically without human intervention. 

Forecasted inflow for next 24 hours from Inflow Forecast models and initial water 

level at the start of optimisation are input to this model. Constraints such as pond 

capacity, environmental releases (St Claire release 2 ) and Plant turbine capacity 

constraints are accounted in the MATLAB optimisation programme. When the 

programme is run, it presents optimised loading pattern for next 24 hours. Based on 

the results presented in the Chapter 5 for Inflow forecast models, the accuracy of the 

 

2 St. Claire is a waterfall on the downstream of Upper Kotmale pond in Talawakelle. It is required to 
release 1.33 m3/s of water from 5am to 3pm every day from Upper Kotmale pond to the St. Claire 
waterfall downstream. 
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inflow forecast diminishes after four to five hours, the average lag time of this river. 

Therefore, the optimisation model was also set to run in every 4 hours. Even if the 

optimisation could be run for less than 4-hour intervals, sufficient time was allowed 

for the periodical training of ANN models in Inflow Forecast models to take place.  

4.2 Problem Formulation 

Cross section of the pond and various parameters concerned are shown in Figure 4.2. 

It is noted here that the optimisation period in this study is in hours and period concern 

is very short term; hence, the effect of variables, such as the rate; of evaporation, 

infiltration, Evapo-transpiration are not considered.  

 

The objective functions: in this optimisation are: 

 Maximise Turbine flow 

 Minimise Spilling flow 

 Maximise Pond storage 

This is a multi-objective optimisation problem for which a method of Aggregate 

Objective Function (AOF) was used to convert multi-objective problem into single-

objective problem for optimisation using MATLAB FMINCON optimisation 

command. FMINCON function in MATLAB is used for both non-linear and linear 

optimisation problems.  

Figure 4.2: Pond Cross Section and Different Flows 
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The decision variables and other parameters of the problem are summarised in the 
Table 4.1. 

Table 4.1: Decision Variables and Other Parameters 

 

The AOF was expressed as in Equation (4-1).  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐽 = 𝑤 × 𝐷 −  𝑤 × 𝑆𝑃 +  𝑤 × 𝑃𝑆  
 

(4-1) 

Where,   

w1, w2, w3 are non-negative weight between 0 to 1 to each objective. In Equation (4-

1), t refers to the period of optimisation. D is total Turbine discharge during 

optimisation period, SP is the total spilling required during the optimisation period, 

and PS is the amount of water stored in the pond during the optimisation period of 24 

hours. 

Appropriate values w1, w2, w3 were set using trial and error by looking at the results. 

The optimum values for w1, w2, w3 could also have been obtained using the Pareto 

Frontier for the three objectives. The Pareto solution using pareto frontier is explained 

in Chapter 3 : Literature Review. 

Other variables in the objective function defined in Equation (4-1) can be expressed as 

follows in Equation (4-2), (4-3), (4-4). 

 
𝐷 =  𝑋(𝑖) 

 

 
 (4-2) 

 
𝑆𝑃 =  𝑋(𝑖) 

 

 
(4-3) 

 

 
𝑃𝑆 =  𝑋(𝑖) 

 

 
(4-4) 

 

Item Unit t=1h t=2h ……………… t=23h t=24h 

Initial Storage  m3 S0 X(49)  X(70) X(71) 
Inflow m3 I(1) I(2) ……………… I(23) I(24) 
Turbine Flow m3 X(1) X(2) ……………… X(23) X(24) 
Spilling m3 X(25) X(26) ……………….. X(47) X(48) 
Final Storage m3 X(49) X(50) ……………….. X(71) X(72) 
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The decision vector was expressed in vector form as shown in Equation (4-5). 

 

𝑋 =  

⎝

⎜
⎜
⎛

𝑋(1)

𝑋(2)
. .
. .

𝑋(71)

𝑋(72)⎠

⎟
⎟
⎞

 

 

 
 

(4-5) 
 

 

The remaining equations to fully describe the problem are the constraints. First, the 

boundary constraints for the decision variables are as following: 

As plant has a minimum discharge (one unit minimum discharge) and a maximum 

discharge (both units in full load), the constraint (4.6) can be written. For all practical 

concerns, spilling can be assumed to have no upper limit. So, constraint (4-7) was 

written for spilling. 

 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑀𝑖𝑛 ≤ 𝑋(1), 𝑋(2), … … . . 𝑋(24) ≤ 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑀𝑎𝑥 
 

(4-6) 

 0 ≤ 𝑋(25), 𝑋(26), … … . . 𝑋(48) (4-7) 
 

The storage of reservoir, in this case the effective storage was considered, has 

minimum 0 and maximum SM corresponding to MOL of 1190 masl and Spill Level of 

1194 masl respectively. SM for Upper Kotmale is 822470 m3. Hence, the constraint 4-

8 can be written as follows. 

 0 ≤ 𝑋(49), 𝑋(50), … … . . 𝑋(72) ≤  𝑆  (4-8) 
   

Water for St Clair (Et) is released as follows: 

 
𝐸(𝑡) =

0 𝑚 𝑠⁄ , 0000 < 𝑡 ≤ 0500

1.13 𝑚 𝑠⁄ , 0500 < 𝑡 ≤ 1500

      0 𝑚 𝑠⁄ ,         1500 < 𝑡 ≤ 2400

 

 

 
(4-9) 

 

 

Other constraints that govern the model is Pond water balance equation for each 

period. The inflow to the pond is used to change the reservoir volume, spilling, turbine 

discharge etc. There are 24 constraints for the total period of 24 hours. The set of 

equations are as shown in (4-10). 
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Period 1 𝑆 +  𝐼(1) − 𝑋(1) − 𝑋(25) =  𝑋(49)  
 

(4-10) 

Period 2 𝑋(49) +  𝐼(2) − 𝑋(2) − 𝑋(26) =  𝑋(50) 
Period 3 𝑋(50) +  𝐼(3) − 𝑋(3) − 𝑋(27) =  𝑋(51) 
Period …                                  ……………………………………… 
Period 24 𝑋(71) +  𝐼(24) − 𝑋(24) − 𝑋(48) =  𝑋(72) 

 

The MATLAB fmincon command requires all constraints to be defined as AX < b , 

and boundary constraints as lb ≤ X < ub. The programme written in MATLAB is 

attached as Appendix-A and MATLAB fmincon command explained in the Chapter 

2: Literature Review. 
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5 RESULTS AND ANALYSIS 

5.1 Introduction 

This section presents results of the feature selection, results and analysis of the Inflow 

Forecast Model (IFM) described in Chapter 3 and Pond Optimisation Model (POM) 

described in Chapter 4.  As the IFM was trained using plant data from 2016 to 2018, 

the model performance was assessed using 2019 data.  The POM was run with 

historical data between 2018 to 2019 assuming perfect knowledge of then future inflow 

for every next four hours.  

5.2 Results of Feature Selection 

It can be seen from feature selection that neither the point values of rainfall nor the 

antecedent values of point rainfall values have an impact to the inflow. It is the 

cumulative values of rainfall that have the influence on the future inflow. Antecedent 

values of cumulative rainfall have also got a significant effect on the future inflow. 

5.3 Performance of Inflow Forecast Model  

As there are twelve models trained for forecasting for next six hours, the performances 

of all the models are described in this section with various standard MATLAB plots. 

The progress of training the Model-1 Artificial Neural Network (ANN) is shown in 

Figure 5.1 and Figure 5.2 shows the regression plots of Model-1 which display the 

network outputs with respect to targets for training, validation, and test sets. As the 

data falls along a 45 degree line, where network outputs are equal to the targets, and 

as the fit is reasonably good for all data sets (training, validation and test) with 

correlation Coefficient (R value) of above 0.99, the Model-1 is a good fit for 

forecasting inflow for next 0.5 hours.  To get additional verification of the models, 

error histogram was also plotted using MATLAB for all 12 models. Figure 5.3 shows 

the error histogram for Model-1. In this diagram, the blue bars represent training data, 

the green bars represent validation data, and the red bars represent testing data and it  
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Figure 5.1: Progress Window of Training of ANN Model-1 
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Figure 5.2: Model-1 Regression Plots 

 

Figure 5.3: Error Histogram for Model-1 
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gives an indication of outliers, which are data points where the fit is significantly worse 

than most data. In this case, most errors fall between -1 and 1. Furthermore, the 

datapoints used for training the models can be deemed good as no significant outliers 

in any of the Models. During the training, all models were set to stop training if 

validation error increases to prevent models overfitting.  

 

Figure 5.4: Best Validation Performance for Model-1 

 

Figure 5.4 shows a plot of the training errors, validation errors, and test errors against 

each iteration as the training of the Model-1 progressed. The final Mean Square Error 

(MSE) is 0.0117 at iteration 16 (RMSE = 0.108 m3/s), and it is very small. Also, it can 

be noted that the test error and validation error have similar characteristics. Hence, the 

result of model training was quite satisfactory.   
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Figure 5.5: Plot of Error Autocorrelation for Model-1 

 

Figure 5.5 shows the plot of error autocorrelation for Model-1, which explains how 

the error predictions are related in time. There should only be one nonzero value of the 

autocorrelation function for a perfect prediction model. Moreover, it should appear at 

zero lag. (This is the mean square error). As there is no significant correlation in the 

prediction errors, it could no longer be possible to improve the prediction by increasing 

the number of delays in the tapped delay lines. In this case, the correlations, except for 

the one at zero lag, fall approximately within the 95% confidence limits around zero, 

so the Model-1 seems to be adequate. The final plot used to validate performance was 

shown in Figure 5.6, which shows the plot of input-error correlation. This input-error 

cross-correlation plot illustrates how the errors are correlated with the input sequence 

and for a perfect prediction model, all the correlations should be zero. If the input is 

correlated with the error, then it should be possible to improve the prediction, perhaps 

by increasing the number of delays in the tapped delay lines. In the case of Model-1, 

all of the correlations fall within the confidence bounds around zero. 
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Figure 5.6: Input Error Correlation for Model-1 

The results of training performance of all twelve models are summarised in Table 5.1.  

Table 5.1:Summery of Statistics of Model Training for all 12 Models 

ANN 

Model 

Forecasting 

Period 

(hours) 

No. of 

Iterations 

(Epoch) 

RMSE 

(m3/s) 

R-

Training 

R-

Validation 

R- 

Testing 

Model-1 0.5 16 0.1082 0.99994 0.99993 0.99992 

Model-2 1.0 87 0.1106 0.99993 0.99993 0.99992 

Model-3 1.5 11 0.1125 0.99993 0.99992 0.99992 

Model-4 2.0 189 0.1130 0.99993 0.99992 0.99992 

Model-5 2.5 17 0.1142 0.99993 0.99992 0.99992 

Model-6 3.0 61 0.1154 0.99993 0.99992 0.99991 

Model-7 3.5 263 0.1156 0.99993 0.99992 0.99992 

Model-8 4.0 10 0.1160 0.99993 0.99992 0.99992 

Model-9 4.5 117 0.1170 0.99993 0.99992 0.99991 

Model-10 5.0 116 0.1183 0.99993 0.99992 0.99992 

Model-11 5.5 76 0.1187 0.99993 0.99991 0.99992 

Model-12 6.0 57 0.1207 0.99993 0.99991 0.99993 

 

A few cases of 2019 data used to verify the forecasting accuracy of the Inflow 

Forecasting Model. It should be noted here, as this system is to be applied in real time 
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system where new data is gathered real time, it was programmed to retrain the network 

with new data being gathered in every 4 hours. This period could be changed in the 

programme as the system is in use. Table 5.7 shows the forecasting done by the models 

for six hours ahead from 5:00pm on 18 July 2019.  

 

Figure 5.7: Actual Inflow and Forecasted Inflow with Time of 18 July 2019 

The calculation of Root Mean Square Error and Mean Absolute Deviation for the case 

described in Figure 5.7 is shown in Table 5.2. Furthermore, a plot of RMSE and MAD 

vs time is show in Figure 5.8.  

Table 5.2 : Calculation of RMSE and MAD 
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Actual Forecast Error
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Value of Error
Square of 

Error

Absolute Values of 
Errors divded by 

Atual Values

number 
of 

periods
t At Ft At-Ft |At-Ft| (At-Ft)2 |(At-Ft)/At| n
0.5 158 156 2.20 2.20 4.827 0.01 1 2.20 2.20
1.0 160 157 3.33 3.33 11.103 0.02 2 2.82 2.76
1.5 156 155 0.52 0.52 0.272 0.00 3 2.32 2.02
2.0 149 150 -1.00 1.00 1.007 0.01 4 2.07 1.76
2.5 143 143 0.38 0.38 0.142 0.00 5 1.86 1.49
3.0 139 134 5.21 5.21 27.151 0.04 6 2.72 2.11
3.5 136 129 7.34 7.34 53.934 0.05 7 3.75 2.86
4.0 135 125 9.57 9.57 91.657 0.07 8 4.87 3.69
4.5 134 120 13.89 13.89 192.829 0.10 9 6.52 4.83
5.0 134 98 36.16 36.16 1307.419 0.27 10 13.00 7.96
5.5 135 63 71.74 71.74 5146.338 0.53 11 24.93 13.76
6.0 134 29 104.83 104.83 10989.137 0.78 12 38.54 21.35

RMSE MAD
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It can be seen from Figure 5.7, 5.8 and Table 5.2 that the forecasting error increases 

beyond 4 to 4.5 hours. This is typical lag time of the Upper Kotmale river. 

 

Figure 5.8 : RMSE adn MAD of Forecasting vs Forecasting Period 

 

The result of the Inflow Forecasting model explained so far reveals that it can forecast 

to a reasonable accuracy for the next 4 to 4.5 hours. 

5.4 Performance of Pond Optimisation 

Any optimisation programme written in MATLAB can be written in three files 

namely, “Main”, “ObjFunc” and “ConFun” as a practice.  “Main” file has the initial 

conditions and boundary conditions, “ObjFun” has the objective function and 

“ConFun” has any non-linear constraints if any. The MATLAB programme written 

for the Pond Optimisation is given in Appendix-A.  

Using trial and error, it was found that optimum weightages that meet the multi-

objectives defined are w1 = 0.51, w2 = 0.49, w3 =0. w1, w2, & w3, as explained in 

Chapter 4, are the weightages of aggregate objective function referring to Generation, 

Pond Storage and Spilling. It is clear from the optimum weightings found, that 

maximising generation, and end storage automatically minimise spilling. Hence, one 

can consider the optimisation as two objective problem of maximising generation and 

end storage. For simulation, hourly inflow records of 2017, 2018, and 2019 were used 
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and optimisation was run every four hours for each year assuming perfect knowledge 

of the future inflow. 

Figure 5.9 is the optimisation run for year 2016, which shows for every hour, average 

plant loading in MW and average spilling required in m3/s and the resulting Average 

Level in the pond in masl for optimum operation of the pond for year 2016.  

 

Figure 5.9: Optimisation run for year 2016 

The optimised generation given by the programme and actual generation for each 

month in 2016 was compared and the results are shown in Table 5.4. The gain in 

generation in GWh and as a percentage is shown in this table.  

It was observed that gain in generation of about 8% could be achieved for year 2016. 

Table 5.3: Comparison of Actual and Optimised Generation with Gain for 2016 

Month Actual 

Generation 

(GWh) 

Optimised 

Generation 

(GWh) 

Gain in 

Generation 

(GWh) 

Percentage 

Generation 

Gain 

(%) 

January 24.62 26.95 2.33 9.5 

February 10.65 11.80 1.15 10.8 

March 8.76 9.49 0.73 8.3 

April 10.00 10.81 0.81 8.1 

May 45.54 49.19 3.65 8.0 

June 32.03 34.81 2.78 8.7 

July 25.63 27.27 1.64 6.4 
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August 22.06 23.67 1.61 7.3 

September 18.96 19.75 0.79 4.2 

October 11.28 13.03 1.75 15.5 

November 17.77 18.37 0.6 3.4 

December 7.01 8.36 1.35 19.3 

Total 243.3 253.5 19.19 8.2 

 

Furthermore, same analysis done for year 2017 and 2018. Figure 5.10 shows the results 

of optimisation run for the year 2017.  

 

Figure 5.10: Optimisation Run for the Year 2017 

The generation comparison for year 2017 is shown in Table 5.4. 

Table 5.4: Comparison of Actual and Optimised Generation with Gain for 2017 

Month Actual 

Generation 

(GWh) 

Optimised 

Generation 

(GWh) 

Gain  

(GWh) 

Percentage Gain 

(%) 

January 7.17 8.23 1.06 14.8 

February 3.95 4.11 0.16 4.1 

March 18.41 20.09 1.68 9.1 

April 8.85 9.70 0.85 9.6 

May 19.01 19.17 0.16 0.8 

June 26.08 28.02 1.94 7.4 

July 12.29 13.22 0.93 7.6 

August 31.41 32.79 1.38 4.4 
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September 35.44 37.41 1.97 5.6 

October 46.00 47.99 1.99 4.3 

November 42.32 44.31 1.99 4.7 

December 51.48 54.23 2.75 5.3 

Total 302.41 319.27 16.86 5.6 

 

It can be seen from Table 5.4 that about 6% gain in generation can be achieved for 

year 2017. Figure 5.11 shows the results of optimisation run for the year 2018.  

 

Figure 5.11: Optimisation Run for the Year 2018 

 

The generation comparison for year 2018 is shown in Table 5.5. 

Table 5.5: Comparison of Actual and Optimised Generation with Gain for 2018 

Month Actual 

Generation 

(GWh) 

Optimised 

Generation 

(GWh) 

Gain  

(GWh) 

Percentage 

Gain 

(%) 

January 18.67 20.37 1.7 9.1 

February 11.83 12.66 0.83 7.0 

March 12.18 12.97 0.79 6.5 

April 23.62 25.84 2.22 9.4 

May 57.33 60.49 3.16 5.5 

June 67.39 71.72 4.33 6.4 

July 53.20 56.22 3.02 5.7 

August 79.74 83.07 3.33 4.2 
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September 47.69 49.94 2.25 4.7 

October 91.91 96.68 4.77 5.2 

November 60.02 63.54 3.52 5.9 

December 26.01 27.54 1.53 5.9 

Total 549.59 581.04 31.45 5.7 

 

From the analysis of 2018 generation data, 5.7% gain in generation could be achieved 

had the pond was operated optimally. 

Figure 5.12 shows a zoomed-in extract from Figure 5.9 pertaining to data of the 15 

May 2016 for closer viewing. Figure 5.13 shows the comparison of actual and 

optimised generation with inflow on 15 May 2016. 

 

Figure 5.12: Extract of 2016 data from 15 May 2016 

As can be seen from Figure 5.13, when inflow is forecasted to have a sharp rise, Pond 

Optimisation Model (POM), being anticipative and proactive, increases the generation 

in anticipation of high inflow coming in; thus, managing the pond effectively. The 

operator failed to increase the generation due to not having proper inflow forecast and 

being judgemental. 
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Figure 5.13: Comparison of Actual and Optimised Generation with Inflow on 15 May 2016 

Figure 5.14 shows the summery of actual generation and optimised generation for 

three years of 2016, 2017 and 2018. 

 

Figure 5.14: Comparison of Actual and Optimised Generation for 2016, 2017 and 2018 

 

Next, it was analysed to see the amount of water spilled by the operator and amount of 

water that would have spilled if the gates were operated to meet optimum spilling 

required for each hour for years 2016, 2017 and 2018. Table 5.6 shows the actual and 

optimised spilling for the year 2016, 2017 and 2018. 
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Table 5.6: Comparison of Actual and Optimised Spilling in year 2016, 2017, 2018 

Year 2016 2017 2018 Total 

Actual Spilling (MCM) 10.39 12.19 63.957 86.54 

Optimised Spilling (MCM) 9.48 9.73 59.74 78.95 

Saving in Spilling (MCM) 0.91 2.46 4.22 7.59 

 

It can be seen from Table 5.6 that significant amount of water can be saved by 

optimally operating the reservoir. The effective storage of the pond is 0.8 MCM, and 

water can be saved more than the effective storage for each year. It is, indeed, this 

saving of water which causes enhancement of generation in optimal operation cases.   

5.5 Economic Evaluation of Water Saving 

The gain in energy generation in this study is mainly attributable to water saving as a 

result of optimal reservoir operation. Therefore, to ascertain the benefit in economic 

terms, water values need to be considered for the reservoir. When contacted the System 

Control Centre (SCC) of CEB, it was pointed out that value of water depends on many 

factors including current storage, required irrigation releases, price of thermal unit, 

availability of thermal power plants, planned plant outages, inflows, etc and that a 

software is run every month to estimate these water values. The value of unit of 

electricity in Rs/kWh that were derived from water values3 given from the software 

for each month from 2016 to 2018 were received from SCC of CEB as shown in the 

Table 5.7. 

Table 5.7: Economic Water Value for each Month from 2016 to 2018 

Month Economic Water Value (Rs / kWh) 

2016 2017 2018 

January 57.94 24.71 71.35 

February 47.19 28.80 58.19 

March 49.96 33.97 34.20 

April 64.66 32.26 35.55 

May 48.12 29.07 32.23 

June 20.72 51.64 26.09 

 

3 These water values may not be accurate in case of spilling. 
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July 16.11 18.43 22.98 

August 17.13 19.38 24.27 

September 16.71 20.13 24.45 

October 18.24 20.10 24.64 

November 20.26 20.16 26.65 

December 21.01 20.13 28.66 

 

The gains in generation for the three years from 2016 to 2018 valued based on above 

economic terms are summarised in the Table 5.8  

Table 5.8: Summary of Economic Gain for years 2016 -2018 

 Year  
2016 2017 2018 Total 

Economic Gain (Rs. million) 651 439 951 2,041 
 

A total gain in economic terms, which is long term in nature, is around Rs. 2 billion 

for the three years of 2016 to 2018.  
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6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusion 

Historical data of rainfall, water level and inflow for 2016, 2017, 2018 and 2019 at 

Upper Kotmale Power Station was collected. Then, an input and output model using 

MATLAB NARX was trained using the historical data to develop a model to forecast 

pond inflow at Upper Kotmale. After that, second model using MATLAB FMINCON 

was developed to utilise inflow forecast from the first model to optimise the pond in 

order to maximise the power generation while minimising spilling. Operator is given 

the optimum loading and spilling pattern of the power station without any human 

intervention.  Models were developed such that they can be updated and trained as the 

new data is collected. 

Using the results of present study, it is possible to characterise the pond optimisation 

of run-of-river hydropower plant using accurate inflow forecasting with ANN 

modelling and optimising the pond using that inflow forecast. Although the research 

done as a solution for Upper Kotmale Power Station, the methodology described could 

well be applied in other scenarios of forecasting and optimisation.  

Results of the inflow forecasting model show that inflow to Upper Kotmale Pond could 

reasonably be forecasted for next 4 to 5 hours, which is approximately the average lag 

time of the river. ANN models could well be developed in real time applications like 

inflow forecasting, where accuracy and speed is crucial. Among such ANN models, 

Nonlinear Autoregressive network with eXogenous inputs (NARX), which is a 

recurrent dynamic network with feedback connections, was used in the research for 

inflow forecasting, and it was modelled using MATLAB. The Inflow Forecasting 

Model (IFM) was setup using data for the period 2016-2018 and tested for 2019 data, 

too.  

In any ANN modelling, it is very important to select the input data set, which is enough 

to determine the neural network. At the same time, too many unnecessary input 

features could lead to poor performance. The method of selecting input in this research 

was discussed under feature selection mainly using correlation analysis. It was 
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established that cumulative inputs such as cumulative rainfall is more important than 

point rainfall. 

It was noted that the optimisation of pond is a multi-objective optimisation problem; 

hence, MATLAB multi-objective optimisation algorithms used for optimisation of 

pond using Aggregate Objective Function (AOF). It was also noted that the appropriate 

weightings for the AOF were selected by trial and error.  This research reveals that 

there exists a room for optimisation to enhance the gain in generation by more than 

about 5% with allowance for uncertainty in inflow forecasts.  

With successful implementation of these models, operator is presented with optimum 

loading pattern of plant and required optimum spilling each hour for next 24 hours. 

Furthermore, it can be concluded that this type of modelling and optimisation could be 

done for run-of-river hydro plant with small pondages such as in Upper Kotmale PS 

and Kukule PS in CEB. 

6.2 Future Work 

In this study, Direct Recursive Hybrid Strategy was used to multi-step ahead 

forecasting for inflow forecasting models. Other methods also can be experimented 

with different ANN structures.  

Optimisation in this study forecasted only on plant level optimisation, reader could 

also incorporate unit level and system level optimisation as well to some extent. It is 

also possible to add some weightage on the different time slots so that units loading is 

given higher priority in peak time rather than in off peak time. Moreover, the 

optimisation in the present study does not have any sense of number of start and stops 

of the units, so it can be programmed in future work.  
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APPENDIX-A: MATLAB PROGRAMMES OF IFM 

Inflow Forecast Model 

 
tic 
  
LoadData1 
myDataInput 
OptimizeModels 
ForecastAhead 
  
toc 

 

 
clear; 
clc; 
  
% Import data from spreadsheet 
% Script for importing data from the following spreadsheet: 
  
% Workbook: F:\2. Results\Final Row Data 15 Nov 2019.xlsx 
% Worksheet: 16 & 17 
  
% Auto-generated by MATLAB on 15-Nov-2019 19:51:25 
  
% Setup the Import Options 
opts = spreadsheetImportOptions("NumVariables", 10); 
  
% Specify sheet and range 
opts.Sheet = "16 to 18"; 
opts.DataRange = "B3:K52598"; 
  
% Specify column names and types 
opts.VariableNames = ["Q1", "InF1", "InR1", "InR5", "InR9", "InR13", 
"InR17", "InR21", "InL1", "InL2"]; 
opts.VariableTypes = ["double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double"]; 
  
% Import the data 
tbl = readtable("F:\2. Results\Final Row Data 15 Nov 2019.xlsx", 
opts, "UseExcel", false); 
  
% Convert to output type 
Q1 = tbl.Q1; 
InF1 = tbl.InF1; 
InR1 = tbl.InR1; 
InR5 = tbl.InR5; 
InR9 = tbl.InR9; 
InR13 = tbl.InR13; 
InR17 = tbl.InR17; 
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InR21 = tbl.InR21; 
InL1 = tbl.InL1; 
InL2 = tbl.InL2; 
  
% Clear temporary variables 
clear opts tbl 
  
%% Import data from spreadsheet 
% Script for importing data from the following spreadsheet: 
% 
%    Workbook: F:\2. Results\Final Row Data 15 Nov 2019.xlsx 
%    Worksheet: 18 
% 
% Auto-generated by MATLAB on 15-Nov-2019 19:54:36 
  
%% Setup the Import Options 
clc; 
clear; 
  
opts = spreadsheetImportOptions("NumVariables", 10); 
  
% Specify sheet and range 
opts.Sheet =    "16 to 9 Apr"    ;          % "16 to 19 Aug";            
%"forecast"; 
opts.DataRange = "B3:K57334" ;    %"B3:K62136";  %"B3:K9540"; 
  
% Specify column names and types 
opts.VariableNames = ["Qnew1", "InewF1", "InewR1", "InewR5", 
"InewR9", "InewR13", "InewR17", "InewR21", "InewL1", "InewL2"]; 
opts.VariableTypes = ["double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double"]; 
  
% Import the data 
tbl = readtable("F:\2. Results\2019 data forecast.xlsx", opts, 
"UseExcel", false); 
  
%% Convert to output type 
Qnew1 = tbl.Qnew1; 
InewF1 = tbl.InewF1; 
InewR1 = tbl.InewR1; 
InewR5 = tbl.InewR5; 
InewR9 = tbl.InewR9; 
InewR13 = tbl.InewR13; 
InewR17 = tbl.InewR17; 
InewR21 = tbl.InewR21; 
InewL1 = tbl.InewL1; 
InewL2 = tbl.InewL2; 
  
%% Clear temporary variables 
clear opts tbl 

 

 
%% Import data from spreadsheet 
% Script for importing data from the following spreadsheet: 
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% 
%    Workbook: C:\Users\Dell\Documents\Sixteen_to18 as at 13 Sep 
2019.xlsx 
%    Worksheet: 16_17_18 
% 
% Auto-generated by MATLAB on 14-Aug-2019 19:32:07 
  
  
%% Data input from Excel and initial procesing 
% Step 1 
n =size(Q1,1); % get number of data points 
  
InR2(n)=0; InR3(n)=0; InR4(n)=0; 
InR6(n)=0; InR7(n)=0; InR8(n)=0; 
InR10(n)=0; InR11(n)=0; InR12(n)=0; 
InR14(n)=0; InR15(n)=0; InR16(n)=0; 
InR18(n)=0; InR19(n)=0; InR20(n)=0; 
InR22(n)=0; InR23(n)=0; InR24(n)=0; 
InF1(n)=0; 
sum1=0;sum2=0;sum3=0; 
sum4=0;sum5=0;sum6=0; 
sum7=0;sum8=0;sum9=0; 
sum10=0;sum11=0;sum12=0; 
sum13=0;sum14=0;sum15=0; 
sum16=0;sum17=0;sum18=0; 
for j=1:n 
     
    % Nuwara Eliya 
    if j<12+1 
        sum1=0; 
        for i=1:j-1 
            sum1=sum1+InR1(i); 
        end 
        InR2(j)=sum1; 
    end 
     
    if j>12 
        sum1=0; 
        for i=j-12:j-1 
            sum1=sum1+InR1(i); 
        end 
        InR2(j)=sum1; 
    end 
     
    if j<48+1             % 
        sum2=0; 
        for i=1:j-1 
            sum2=sum2+InR1(i); 
        end 
        InR3(j)=sum2;       % 
    end 
     
    if j>48                % 
        sum2=0; 
        for i=j-48:j-1     % 
            sum2=sum2+InR1(i); 
        end 
        InR3(j)=sum2;      % 



61 
 

    end 
     
    if j<259+1              % 
        sum3=0; 
        for i=1:j-1 
            sum3=sum3+InR1(i); 
        end 
        InR4(j)=sum3;       % 
    end 
     
    if j>259                % 
        sum3=0; 
        for i=j-259:j-1     % 
            sum3=sum3+InR1(i); 
        end 
        InR4(j)=sum3;      % 
    end 
     
    %Ambewela 
    if j<12+1 
        sum4=0; 
        for i=1:j-1 
            sum4=sum4+InR5(i); 
        end 
        InR6(j)=sum4; 
    end 
     
    if j>12 
        sum4=0; 
        for i=j-12:j-1 
            sum4=sum4+InR5(i); 
        end 
        InR6(j)=sum4; 
    end 
     
    if j<48+1             % 
        sum5=0; 
        for i=1:j-1 
            sum5=sum5+InR5(i); 
        end 
        InR7(j)=sum5;       % 
    end 
     
    if j>48                % 
        sum5=0; 
        for i=j-48:j-1     % 
            sum5=sum5+InR5(i); 
        end 
        InR7(j)=sum5;      % 
    end 
     
    if j<363+1              % 
        sum6=0; 
        for i=1:j-1 
            sum6=sum6+InR5(i); 
        end 
        InR8(j)=sum6;       % 
    end 
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    if j>363                % 
        sum6=0; 
        for i=j-363:j-1     % 
            sum6=sum6+InR5(i); 
        end 
        InR8(j)=sum6;      % 
    end 
     
    %Sandrigham 
    if j<12+1 
        sum7=0; 
        for i=1:j-1 
            sum7=sum7+InR9(i); 
        end 
        InR10(j)=sum7; 
    end 
     
    if j>12 
        sum7=0; 
        for i=j-12:j-1 
            sum7=sum7+InR9(i); 
        end 
        InR10(j)=sum7; 
    end 
     
    if j<48+1             % 
        sum8=0; 
        for i=1:j-1 
            sum8=sum8+InR9(i); 
        end 
        InR11(j)=sum8;       % 
    end 
     
    if j>48                % 
        sum8=0; 
        for i=j-48:j-1     % 
            sum8=sum8+InR9(i); 
        end 
        InR11(j)=sum8;      % 
    end 
     
    if j<380+1              % 
        sum9=0; 
        for i=1:j-1 
            sum9=sum9+InR9(i); 
        end 
        InR12(j)=sum9;       % 
    end 
     
    if j>380                % 
        sum9=0; 
        for i=j-380:j-1     % 
            sum9=sum9+InR9(i); 
        end 
        InR12(j)=sum9;      % 
    end 
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        sum13=0; 
        for i=j-12:j-1 
            sum13=sum13+InR17(i); 
        end 
        InR18(j)=sum13; 
    end 
     
    if j<48+1             % 
        sum14=0; 
        for i=1:j-1 
            sum14=sum14+InR17(i); 
        end 
        InR19(j)=sum14;       % 
    end 
     
    if j>48                % 
        sum14=0; 
        for i=j-48:j-1     % 
            sum14=sum14+InR17(i); 
        end 
        InR19(j)=sum14;      % 
    end 
     
    if j<240+1              % 
        sum15=0; 
        for i=1:j-1 
            sum15=sum15+InR17(i); 
        end 
        InR20(j)=sum15;       % 
    end 
     
    if j>240                % 
        sum15=0; 
        for i=j-240:j-1     % 
            sum15=sum15+InR17(i); 
        end 
        InR20(j)=sum15;      % 
    end 
     
    %Basin 
    if j<12+1 
        sum16=0; 
        for i=1:j-1 
            sum16=sum16+InR21(i); 
        end 
        InR22(j)=sum16; 
    end 
     
    if j>12 
        sum16=0; 
        for i=j-12:j-1 
            sum16=sum16+InR21(i); 
        end 
        InR22(j)=sum16; 
    end 
     
    if j<48+1             % 
        sum17=0; 



64 
 

        for i=1:j-1 
            sum17=sum17+InR21(i); 
        end 
        InR23(j)=sum17;       % 
    end 
     
    if j>48                % 
        sum17=0; 
        for i=j-48:j-1     % 
            sum17=sum17+InR21(i); 
        end 
        InR23(j)=sum17;      % 
    end 
     
    if j<261+1              % 
        sum18=0; 
        for i=1:j-1 
            sum18=sum18+InR21(i); 
        end 
        InR24(j)=sum18;       % 
    end 
     
    if j>261                % 
        sum18=0; 
        for i=j-261:j-1     % 
            sum18=sum18+InR21(i); 
        end 
        InR24(j)=sum18;      % 
    end 
     
    if Q1(j)<10 
        InF1(j)=1; 
    elseif Q1(j)<20 
        InF1(j)=2; 
    elseif Q1(j)<30 
        InF1(j)=3; 
    elseif Q1(j)<40 
        InF1(j)=4; 
    elseif Q1(j)<50 
        InF1(j)=5; 
    elseif Q1(j)<60 
        InF1(j)=6; 
    elseif Q1(j)<70 
        InF1(j)=7; 
    elseif Q1(j)<80 
        InF1(j)=8; 
    elseif Q1(j)<90 
        InF1(j)=9; 
    elseif Q1(j)<100 
        InF1(j)=10; 
    else 
        InF1(j)=11; 
    end 
     
     
     
end 
  



65 
 

if isrow(InR2)==1 InR2=InR2'; end 
if isrow(InR3)==1 InR3=InR3'; end 
if isrow(InR4)==1 InR4=InR4'; end 
if isrow(InR6)==1 InR6=InR6'; end 
if isrow(InR7)==1 InR7=InR7'; end 
if isrow(InR8)==1 InR8=InR8';end 
if isrow(InR10)==1 InR10=InR10'; end 
if isrow(InR11)==1 InR11=InR11';end 
if isrow(InR12)==1 InR12=InR12'; end 
if isrow(InR14)==1 InR14=InR14'; end 
if isrow(InR15)==1 InR15=InR15'; end 
if isrow(InR16)==1 InR16=InR16'; end 
if isrow(InR18)==1 InR18=InR18'; end 
if isrow(InR19)==1 InR19=InR19'; end 
if isrow(InR20)==1 InR20=InR20'; end 
if isrow(InR22)==1 InR22=InR22'; end 
if isrow(InR23)==1 InR23=InR23'; end 
if isrow(InR24)==1 InR24=InR24'; end 
if isrow(InF1)==1 InF1=InF1';end 
  
  
Q2=lagmatrix(Q1,-1); 
Q3=lagmatrix(Q1,-2); 
Q4=lagmatrix(Q1,-3); 
Q5=lagmatrix(Q1,-4); 
Q6=lagmatrix(Q1,-5); 
Q7=lagmatrix(Q1,-6); 
Q8=lagmatrix(Q1,-7); 
Q9=lagmatrix(Q1,-8); 
Q10=lagmatrix(Q1,-9); 
Q11=lagmatrix(Q1,-10); 
Q12=lagmatrix(Q1,-11); 
  
  
  
%% 
InputData=    [InF1';... 
    
InR2';InR4';InR6';InR8';InR10';InR12';InR14';InR16';InR18';InR20';In
R22';InR24';... 
    InR3';InR7';InR11';InR15';InR19';InR23';... 
    InL1';InL2']; 
  
  
  
inputSeries = tonndata(InputData,true,false); 
targetSeries{1} = tonndata(Q1',true,false); 
targetSeries{2} = tonndata(Q2',true,false); 
targetSeries{3} = tonndata(Q3',true,false); 
targetSeries{4} = tonndata(Q4',true,false); 
targetSeries{5} = tonndata(Q5',true,false); 
targetSeries{6} = tonndata(Q6',true,false); 
targetSeries{7} = tonndata(Q7',true,false); 
targetSeries{8} = tonndata(Q8',true,false); 
targetSeries{9} = tonndata(Q9',true,false); 
targetSeries{10} = tonndata(Q10',true,false); 
targetSeries{11} = tonndata(Q11',true,false); 
targetSeries{12} = tonndata(Q12',true,false); 
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trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
%trainFcn = 'trainbr'; 
  
% Create a Nonlinear Autoregressive Network with External Input 
inputDelays = 1:5;  % 1:5 input delay is the best 
feedbackDelays = 1:10; % 1:15 is the best 
hiddenLayerSize = 11; %11 the best 
  
save 
%% 
  
% Data Filtering   : final selection 
Step 2 
fc = 10; 
fs = 100; 
  
[b,a] = butter(2,fc/(fs/2)); 
dataIn = Qnew1; 
dataOut = filter(b,a,dataIn); 
dataOut=lagmatrix(dataOut,-3); 
title('Inflow to Upper Kotmale vs Time') 
plot(TimeV,dataIn,'r'); 
hold on; 
plot(TimeV,dataOut); 
xlabel('Time') 
ylabel('Inflow (m3/s)') 
legend({'Before Filtering','After Filtering'}) 
  
  
%% 

 
load MSE; 
  
  
for m= 1:1    %1:12 
    tic 
    for i=1:1  %  5 
        %net{m} = init(net{m}); 
        net{m} = 
narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn); 
        net{m}.layers{1}.transferFcn = 'tansig'; 
        net{m}.layers{2}.transferFcn = 'purelin'; 
         
        % Prepare the Data for Training and Simulation 
        [inputs,inputStates,layerStates,targets] = 
preparets(net{m},inputSeries,{},targetSeries{m}); 
         
        %net1.divideFcn = 'divideblock'; 
        net{m}.divideFcn = 'divideint'; 
        net{m}.divideParam.trainRatio = 80/100; 
        net{m}.divideParam.valRatio = 10/100; 
        net{m}.divideParam.testRatio = 10/100; 
         
        % Choose a Performance Function 
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        % For a list of all performance functions type: help 
nnperformance 
        net{m}.performFcn = 'mse';  % Mean Squared Error 
         
        % Choose Plot Functions 
        % For a list of all plot functions type: help nnplot 
        net{m}.plotFcns = {'plotperform','plottrainstate', 
'ploterrhist', ... 
            'plotregression', 'plotresponse', 'ploterrcorr', 
'plotinerrcorr'}; 
         
        % Train the Network 
        %net.trainParam.showWindow=false;  %hide training window 
        [net{m},tr,A,Es] = 
train(net{m},inputs,targets,inputStates,layerStates); 
         
        % Test the Network 
        outputs = net{m}(inputs,inputStates,layerStates); 
        errors = gsubtract(targets,outputs); 
        performance = perform(net{m},targets,outputs); 
         
        ts        = cell2mat(targets); 
        MSE00         = var(ts,1); 
        %R2(1) = 1-mse(Es)/MSE00 
        % View the Network 
        %view(net1); 
         
        %  TS = size(targets1,2); 
        %  
plot(1:TS,cell2mat(targets1),'b',1:TS,cell2mat(outputs1),'r') 
         
        if performance<MSE(m) 
            MSE(m)=performance; 
            R2(m)=1-mse(Es)/MSE00 ; 
            fprintf('m = %d MSE = %d ', m,performance); 
            pause(0.5); 
            fprintf(' Done. \n'); 
            MODEL{m}=net{m}; 
            save MODEL; 
            save MSE; 
        end 
    end 
    toc 
end 
  
  

 
 
%% Direct-Recursive Hybrid Strategies 
% 
% prediction(t+1) = model1(obs(t-1), obs(t-2), …, obs(t-n)) 
% prediction(t+2) = model2(prediction(t+1), obs(t-1), …, obs(t-n)) 
% 
% 1. Use train data to train model1 
% 2. Predict t+1 for all train data 
% 3. Use predicted t+1 plus train data to train model2 
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%% 
load MODEL; 
  
n =size(Qnew1,1); % get number of data points 
  
%InR2 = ComNE last 6hr RF 
%InR3 = ComNE last 24hr RF 
%InR4 = ComNE last 5.4days RF 
InewR2(n)=0; InewR3(n)=0; InewR4(n)=0; 
InewR6(n)=0; InewR7(n)=0; InewR8(n)=0; 
InewR10(n)=0; InewR11(n)=0; InewR12(n)=0; 
InewR14(n)=0; InewR15(n)=0; InewR16(n)=0; 
InewR18(n)=0; InewR19(n)=0; InewR20(n)=0; 
InewR22(n)=0; InewR23(n)=0; InewR24(n)=0; 
InewF1(n)=0; 
sum1=0;sum2=0;sum3=0; 
sum4=0;sum5=0;sum6=0; 
sum7=0;sum8=0;sum9=0; 
sum10=0;sum11=0;sum12=0; 
sum13=0;sum14=0;sum15=0; 
sum16=0;sum17=0;sum18=0; 
for j=1:n 
     
    % Nuwara Eliya 
    if j<12+1 
        sum1=0; 
        for i=1:j-1 
            sum1=sum1+InewR1(i); 
        end 
        InewR2(j)=sum1; 
    end 
     
    if j>12 
        sum1=0; 
        for i=j-12:j-1 
            sum1=sum1+InewR1(i); 
        end 
        InewR2(j)=sum1; 
    end 
     
    if j<48+1             % 
        sum2=0; 
        for i=1:j-1 
            sum2=sum2+InewR1(i); 
        end 
        InewR3(j)=sum2;       % 
    end 
     
    if j>48                % 
        sum2=0; 
        for i=j-48:j-1     % 
            sum2=sum2+InewR1(i); 
        end 
        InewR3(j)=sum2;      % 
    end 
     
    if j<259+1              % 
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        sum3=0; 
        for i=1:j-1 
            sum3=sum3+InewR1(i); 
        end 
        InewR4(j)=sum3;       % 
    end 
     
    if j>259                % 
        sum3=0; 
        for i=j-259:j-1     % 
            sum3=sum3+InewR1(i); 
        end 
        InewR4(j)=sum3;      % 
    end 
     
    %Ambewela 
    if j<12+1 
        sum4=0; 
        for i=1:j-1 
            sum4=sum4+InewR5(i); 
        end 
        InewR6(j)=sum4; 
    end 
     
    if j>12 
        sum4=0; 
        for i=j-12:j-1 
            sum4=sum4+InewR5(i); 
        end 
        InewR6(j)=sum4; 
    end 
     
    if j<48+1             % 
        sum5=0; 
        for i=1:j-1 
            sum5=sum5+InewR5(i); 
        end 
        InewR7(j)=sum5;       % 
    end 
     
    if j>48                % 
        sum5=0; 
        for i=j-48:j-1     % 
            sum5=sum5+InewR5(i); 
        end 
        InewR7(j)=sum5;      % 
    end 
     
    if j<363+1              % 
        sum6=0; 
        for i=1:j-1 
            sum6=sum6+InewR5(i); 
        end 
        InewR8(j)=sum6;       % 
    end 
     
    if j>363                % 
        sum6=0; 
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        for i=j-363:j-1     % 
            sum6=sum6+InewR5(i); 
        end 
        InewR8(j)=sum6;      % 
    end 
     
    %Sandrigham 
    if j<12+1 
        sum7=0; 
        for i=1:j-1 
            sum7=sum7+InewR9(i); 
        end 
        InewR10(j)=sum7; 
    end 
     
    if j>12 
        sum7=0; 
        for i=j-12:j-1 
            sum7=sum7+InewR9(i); 
        end 
        InewR10(j)=sum7; 
    end 
     
    if j<48+1             % 
        sum8=0; 
        for i=1:j-1 
            sum8=sum8+InewR9(i); 
        end 
        InewR11(j)=sum8;       % 
    end 
     
    if j>48                % 
        sum8=0; 
        for i=j-48:j-1     % 
            sum8=sum8+InewR9(i); 
        end 
        InewR11(j)=sum8;      % 
    end 
     
    if j<380+1              % 
        sum9=0; 
        for i=1:j-1 
            sum9=sum9+InewR9(i); 
        end 
        InewR12(j)=sum9;       % 
    end 
     
    if j>380                % 
        sum9=0; 
        for i=j-380:j-1     % 
            sum9=sum9+InewR9(i); 
        end 
        InewR12(j)=sum9;      % 
    end 
     
    %Calidonia 
    if j<12+1 
        sum10=0; 
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        for i=1:j-1 
            sum10=sum10+InewR13(i); 
        end 
        InewR14(j)=sum10; 
    end 
     
    if j>12 
        sum10=0; 
        for i=j-12:j-1 
            sum10=sum10+InewR13(i); 
        end 
        InewR14(j)=sum10; 
    end 
     
    if j<48+1             % 
        sum11=0; 
        for i=1:j-1 
            sum11=sum11+InewR13(i); 
        end 
        InewR15(j)=sum11;       % 
    end 
     
    if j>48                % 
        sum11=0; 
        for i=j-48:j-1     % 
            sum11=sum11+InewR13(i); 
        end 
        InewR15(j)=sum11;      % 
    end 
     
    if j<400+1              % 
        sum12=0; 
        for i=1:j-1 
            sum12=sum12+InewR13(i); 
        end 
        InewR16(j)=sum12;       % 
    end 
     
    if j>400                % 
        sum12=0; 
        for i=j-400:j-1     % 
            sum12=sum12+InewR13(i); 
        end 
        InewR16(j)=sum12;      % 
    end 
    %Talawakelle 
    if j<12+1 
        sum13=0; 
        for i=1:j-1 
            sum13=sum13+InewR17(i); 
        end 
        InewR18(j)=sum13; 
    end 
     
    if j>12 
        sum13=0; 
        for i=j-12:j-1 
            sum13=sum13+InewR17(i); 
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        end 
        InewR18(j)=sum13; 
    end 
     
    if j<48+1             % 
        sum14=0; 
        for i=1:j-1 
            sum14=sum14+InewR17(i); 
        end 
        InewR19(j)=sum14;       % 
    end 
     
    if j>48                % 
        sum14=0; 
        for i=j-48:j-1     % 
            sum14=sum14+InewR17(i); 
        end 
        InewR19(j)=sum14;      % 
    end 
     
    if j<240+1              % 
        sum15=0; 
        for i=1:j-1 
            sum15=sum15+InewR17(i); 
        end 
        InewR20(j)=sum15;       % 
    end 
     
    if j>240                % 
        sum15=0; 
        for i=j-240:j-1     % 
            sum15=sum15+InewR17(i); 
        end 
        InewR20(j)=sum15;      % 
    end 
     
    %Basin 
    if j<12+1 
        sum16=0; 
        for i=1:j-1 
            sum16=sum16+InewR21(i); 
        end 
        InewR22(j)=sum16; 
    end 
     
    if j>12 
        sum16=0; 
        for i=j-12:j-1 
            sum16=sum16+InewR21(i); 
        end 
        InewR22(j)=sum16; 
    end 
     
    if j<48+1             % 
        sum17=0; 
        for i=1:j-1 
            sum17=sum17+InewR21(i); 
        end 
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        InewR23(j)=sum17;       % 
    end 
     
    if j>48                % 
        sum17=0; 
        for i=j-48:j-1     % 
            sum17=sum17+InewR21(i); 
        end 
        InewR23(j)=sum17;      % 
    end 
     
    if j<261+1              % 
        sum18=0; 
        for i=1:j-1 
            sum18=sum18+InewR21(i); 
        end 
        InewR24(j)=sum18;       % 
    end 
     
    if j>261                % 
        sum18=0; 
        for i=j-261:j-1     % 
            sum18=sum18+InewR21(i); 
        end 
        InewR24(j)=sum18;      % 
    end 
     
    if Qnew1(j)<10 
        InewF1(j)=1; 
    elseif Qnew1(j)<20 
        InewF1(j)=2; 
    elseif Qnew1(j)<30 
        InewF1(j)=3; 
    elseif Qnew1(j)<40 
        InewF1(j)=4; 
    elseif Qnew1(j)<50 
        InewF1(j)=5; 
    elseif Qnew1(j)<60 
        InewF1(j)=6; 
    elseif Qnew1(j)<70 
        InewF1(j)=7; 
    elseif Qnew1(j)<80 
        InewF1(j)=8; 
    elseif Qnew1(j)<90 
        InewF1(j)=9; 
    elseif Qnew1(j)<100 
        InewF1(j)=10; 
    else 
        InewF1(j)=11; 
    end 
     
     
     
end 
  
if isrow(InewR2)==1 InewR2=InewR2'; end 
if isrow(InewR3)==1 InewR3=InewR3'; end 
if isrow(InewR4)==1 InewR4=InewR4'; end 
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if isrow(InewR6)==1 InewR6=InewR6'; end 
if isrow(InewR7)==1 InewR7=InewR7'; end 
if isrow(InewR8)==1 InewR8=InewR8';end 
if isrow(InewR10)==1 InewR10=InewR10'; end 
if isrow(InewR11)==1 InewR11=InewR11';end 
if isrow(InewR12)==1 InewR12=InewR12'; end 
if isrow(InewR14)==1 InewR14=InewR14'; end 
if isrow(InewR15)==1 InewR15=InewR15'; end 
if isrow(InewR16)==1 InewR16=InewR16'; end 
if isrow(InewR18)==1 InewR18=InewR18'; end 
if isrow(InewR19)==1 InewR19=InewR19'; end 
if isrow(InewR20)==1 InewR20=InewR20'; end 
if isrow(InewR22)==1 InewR22=InewR22'; end 
if isrow(InewR23)==1 InewR23=InewR23'; end 
if isrow(InewR24)==1 InewR24=InewR24'; end 
if isrow(InewF1)==1 InewF1=InewF1';end 
  
  
Qnew2=lagmatrix(Qnew1,-1); 
Qnew3=lagmatrix(Qnew1,-2); 
Qnew4=lagmatrix(Qnew1,-3); 
Qnew5=lagmatrix(Qnew1,-4); 
Qnew6=lagmatrix(Qnew1,-5); 
Qnew7=lagmatrix(Qnew1,-6); 
Qnew8=lagmatrix(Qnew1,-7); 
Qnew9=lagmatrix(Qnew1,-8); 
Qnew10=lagmatrix(Qnew1,-9); 
Qnew11=lagmatrix(Qnew1,-10); 
Qnew12=lagmatrix(Qnew1,-11); 
  
  
%% 
inputNS = [InewF1';... 
    InewR2';InewR3';InewR4';InewR6';InewR7';InewR8';... 
    InewR10';InewR11';InewR12';InewR14';InewR15';InewR16';... 
    InewR18';InewR19';InewR20';InewR22';InewR23';InewR24';... 
    InewL1';InewL2']; 
  
  
targetNS1 = Qnew1'; targetNS2 = Qnew2'; targetNS3 = Qnew3'; 
targetNS4 = Qnew4'; 
targetNS5 = Qnew5'; targetNS6 = Qnew6'; targetNS7 = Qnew7'; 
targetNS8 = Qnew8'; 
targetNS9 = Qnew9'; targetNS10 = Qnew10'; targetNS11 = Qnew11'; 
targetNS12 = Qnew12'; 
  
inputNS = tonndata(inputNS,true,false); 
  
targetNS1 = tonndata(targetNS1,true,false); targetNS2 = 
tonndata(targetNS2,true,false); 
targetNS3 = tonndata(targetNS3,true,false); targetNS4 = 
tonndata(targetNS4,true,false); 
targetNS5 = tonndata(targetNS5,true,false); targetNS6 = 
tonndata(targetNS6,true,false); 
targetNS7 = tonndata(targetNS7,true,false); targetNS8 = 
tonndata(targetNS8,true,false); 
targetNS9 = tonndata(targetNS9,true,false); targetNS10 = 
tonndata(targetNS10,true,false); 
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targetNS11 = tonndata(targetNS11,true,false); targetNS12 = 
tonndata(targetNS12,true,false); 
  
Forecast(1:12)=0; 
  
  
%% 
numTimesteps = size(inputNS,2); 
knownOutputTimesteps = 1:numTimesteps; 
x = inputNS(1,knownOutputTimesteps); 
  
%% Forecast 30min ahead 
t1 = targetNS1(1,knownOutputTimesteps); 
% nets1 = removedelay(MODEL{1}); 
% adaptFcn   =  net1.adaptFcn; 
% adaptParam =  net1.adaptParam; 
  
[Xs1,Xis1,Ais1,ts1] = preparets(MODEL{1},x,{},t1); 
%net1=init(MODEL{1}); 
% net1.trainparam.min_grad=1e-30; 
  
% 
%[net1  Ys Es Xf Yf tr]  = adapt(net1,Xs1,ts1,Xis1,Ais1); 
[net1] = train(MODEL{1},Xs1,ts1,Xis1,Ais1); 
  
nets1 = removedelay(net1); 
[Xs1,Xis1,Ais1,ts1] = preparets(nets1,x,{},t1); 
Ys1 = nets1(Xs1,Xis1,Ais1); 
Forecast(1)=Ys1{end} 
  
%% Forecast 1hour ahead 
  
t2 = targetNS2(1,knownOutputTimesteps); 
t2{end}=Forecast(1); 
%t2{end}=158; 
% 
%  nets2 = removedelay(MODEL21111NET2); 
  
[Xs2,Xis2,Ais2,ts2] = preparets(MODEL{2},x,{},t2); 
% net2=init(MODEL21111NET2); 
% net2.trainparam.min_grad=1e-30; 
  
  
[net2] = train(MODEL{2},Xs2,ts2,Xis2,Ais2); 
  
nets2 = removedelay(net2); 
[Xs2,Xis2,Ais2] = preparets(nets2,x,{},t2); 
Ys2 = nets2(Xs2,Xis2,Ais2); 
Forecast(2)=Ys2{end} 
%% Forecast 1.5hour ahead 
  
t3 = targetNS3(1,knownOutputTimesteps); 
t3{end}=Forecast(2); 
t3{end-1}=Forecast(1); 
  
% nets3 = removedelay(MODEL21111NET3); 
  
[Xs3,Xis3,Ais3,ts3] = preparets(MODEL{3},x,{},t3); 
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%net3=init(MODEL21111NET3); 
% net3.trainparam.min_grad=1e-30; 
  
[net3] = train(MODEL{3},Xs3,ts3,Xis3,Ais3); 
  
nets3 = removedelay(net3); 
[Xs3,Xis3,Ais3] = preparets(nets3,x,{},t3); 
Ys3 = nets3(Xs3,Xis3,Ais3); 
Forecast(3)=Ys3{end} 
  
%% Forecast 2.0hour ahead 
  
t4 = targetNS4(1,knownOutputTimesteps); 
t4{end}=Forecast(3); 
t4{end-1}=Forecast(2); 
t4{end-2}=Forecast(1); 
  
%nets4 = removedelay(MODEL21111NET4); 
[Xs4,Xis4,Ais4,ts4] = preparets(MODEL{4},x,{},t4); 
% net4=init(MODEL21111NET4); 
% net4.trainparam.min_grad=1e-30; 
[net4] = train(MODEL{4},Xs4,ts4,Xis4,Ais4); 
  
nets4 = removedelay(net4); 
[Xs4,Xis4,Ais4] = preparets(nets4,x,{},t4); 
Ys4 = nets4(Xs4,Xis4,Ais4); 
Forecast(4)=Ys4{end} 
  
  
%% Forecast 2.5hour ahead 
  
t5 = targetNS5(1,knownOutputTimesteps); 
t5{end}=Forecast(4); 
t5{end-1}=Forecast(3); 
t5{end-2}=Forecast(2); 
t5{end-3}=Forecast(1); 
  
%nets5 = removedelay(MODEL21111NET5); 
[Xs5,Xis5,Ais5,ts5] = preparets(MODEL{5},x,{},t5); 
% net5=init(MODEL21111NET5); 
% net5.trainparam.min_grad=1e-30; 
[net5] = train(MODEL{5},Xs5,ts5,Xis5,Ais5); 
  
nets5 = removedelay(net5); 
[Xs5,Xis5,Ais5] = preparets(nets5,x,{},t5); 
Ys5 = nets5(Xs5,Xis5,Ais5); 
Forecast(5)=Ys5{end} 
  
  
%% Forecast 3.0hour ahead 
  
t6 = targetNS6(1,knownOutputTimesteps); 
t6{end}=Forecast(5); 
t6{end-1}=Forecast(4); 
t6{end-2}=Forecast(3); 
t6{end-3}=Forecast(2); 
t6{end-4}=Forecast(1); 
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%nets6 = removedelay(MODEL21111NET6); 
[Xs6,Xis6,Ais6,ts6] = preparets(MODEL{6},x,{},t6); 
%net6=init(MODEL21111NET6); 
% net6.trainparam.min_grad=1e-30; 
[net6] = train(MODEL{6},Xs6,ts6,Xis6,Ais6); 
  
nets6 = removedelay(net6); 
[Xs6,Xis6,Ais6] = preparets(nets6,x,{},t6); 
Ys6 = nets6(Xs6,Xis6,Ais6); 
Forecast(6)=Ys6{end} 
  
%% Forecast 3.5hour ahead 
  
t7 = targetNS7(1,knownOutputTimesteps); 
t7{end}=Forecast(6); 
t7{end-1}=Forecast(5); 
t7{end-2}=Forecast(4); 
t7{end-3}=Forecast(3); 
t7{end-4}=Forecast(2); 
t7{end-5}=Forecast(1); 
  
%nets7 = removedelay(MODEL21111NET7); 
[Xs7,Xis7,Ais7,ts7] = preparets(MODEL{7},x,{},t7); 
% net7=init(MODEL21111NET7); 
% net7.trainparam.min_grad=1e-30; 
[net7] = train(MODEL{7},Xs7,ts7,Xis7,Ais7); 
  
nets7 = removedelay(net7); 
[Xs7,Xis7,Ais7] = preparets(nets7,x,{},t7); 
Ys7 = nets7(Xs7,Xis7,Ais7); 
Forecast(7)=Ys7{end} 
  
%% Forecast 4.0hour ahead 
  
t8 = targetNS8(1,knownOutputTimesteps); 
t8{end}=Forecast(7); 
t8{end-1}=Forecast(6); 
t8{end-2}=Forecast(5); 
t8{end-3}=Forecast(4); 
t8{end-4}=Forecast(3); 
t8{end-5}=Forecast(2); 
t8{end-6}=Forecast(1); 
  
%nets8 = removedelay(MODEL21111NET8); 
[Xs8,Xis8,Ais8,ts8] = preparets(MODEL{8},x,{},t8); 
% net8=init(MODEL21111NET8); 
% net8.trainparam.min_grad=1e-30; 
[net8] = train(MODEL{8},Xs8,ts8,Xis8,Ais8); 
  
nets8 = removedelay(net8); 
[Xs8,Xis8,Ais8] = preparets(nets8,x,{},t8); 
Ys8 = nets8(Xs8,Xis8,Ais8); 
Forecast(8)=Ys8{end} 
  
%% Forecast 4.5hour ahead 
  
t9 = targetNS9(1,knownOutputTimesteps); 
t9{end}=Forecast(8); 
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t9{end-1}=Forecast(7); 
t9{end-2}=Forecast(6); 
t9{end-3}=Forecast(5); 
t9{end-4}=Forecast(4); 
t9{end-5}=Forecast(3); 
t9{end-6}=Forecast(2); 
t9{end-7}=Forecast(1); 
  
%nets9 = removedelay(MODEL21111NET9); 
[Xs9,Xis9,Ais9,ts9] = preparets(MODEL{9},x,{},t9); 
%  net9=init(MODEL21111NET9); 
% % net9.trainparam.min_grad=1e-30; 
[net9] = train(MODEL{9},Xs9,ts9,Xis9,Ais9); 
  
nets9 = removedelay(net9); 
[Xs9,Xis9,Ais9] = preparets(nets9,x,{},t9); 
Ys9 = nets9(Xs9,Xis9,Ais9); 
Forecast(9)=Ys9{end} 
  
%% Forecast 5.0hour ahead 
  
t10 = targetNS10(1,knownOutputTimesteps); 
t10{end}=Forecast(9); 
t10{end-1}=Forecast(8); 
t10{end-2}=Forecast(7); 
t10{end-3}=Forecast(6); 
t10{end-4}=Forecast(5); 
t10{end-5}=Forecast(4); 
t10{end-6}=Forecast(3); 
t10{end-7}=Forecast(2); 
t10{end-8}=Forecast(1); 
  
% %nets10 = removedelay(MODEL21111NET10); 
[Xs10,Xis10,Ais10,ts10] = preparets(MODEL{10},x,{},t10); 
%  net10=init(MODEL21111NET10); 
% % net10.trainparam.min_grad=1e-30; 
[net10] = train(MODEL{10},Xs10,ts10,Xis10,Ais10); 
  
nets10 = removedelay(net10); 
[Xs10,Xis10,Ais10] = preparets(nets10,x,{},t10); 
Ys10 = nets10(Xs10,Xis10,Ais10); 
Forecast(10)=Ys10{end} 
  
%% Forecast 5.5hour ahead 
  
t11 = targetNS11(1,knownOutputTimesteps); 
t11{end}=Forecast(10); 
t11{end-1}=Forecast(9); 
t11{end-2}=Forecast(8); 
t11{end-3}=Forecast(7); 
t11{end-4}=Forecast(6); 
t11{end-5}=Forecast(5); 
t11{end-6}=Forecast(4); 
t11{end-7}=Forecast(3); 
t11{end-8}=Forecast(2); 
t11{end-9}=Forecast(1); 
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% %nets11 = removedelay(MODEL21111NET11); 
[Xs11,Xis11,Ais11,ts11] = preparets(MODEL{11},x,{},t11); 
%  net11=init(MODEL21111NET11); 
% % net11.trainparam.min_grad=1e-30; 
[net11] = train(MODEL{11},Xs11,ts11,Xis11,Ais11); 
  
nets11 = removedelay(net11); 
[Xs11,Xis11,Ais11] = preparets(nets11,x,{},t11); 
Ys11 = nets11(Xs11,Xis11,Ais11); 
Forecast(11)=Ys11{end} 
  
%% Forecast 6.0hour ahead 
  
t12 = targetNS12(1,knownOutputTimesteps); 
t12{end}=Forecast(11); 
t12{end-1}=Forecast(10); 
t12{end-2}=Forecast(9); 
t12{end-3}=Forecast(8); 
t12{end-4}=Forecast(7); 
t12{end-5}=Forecast(6); 
t12{end-6}=Forecast(5); 
t12{end-7}=Forecast(4); 
t12{end-8}=Forecast(3); 
t12{end-9}=Forecast(2); 
t12{end-10}=Forecast(1); 
  
% %nets12 = removedelay(MODEL21111NET12); 
[Xs12,Xis12,Ais12,ts12] = preparets(MODEL{12},x,{},t12); 
%  net12=init(MODEL21111NET12); 
% % net12.trainparam.min_grad=1e-30; 
[net12] = train(MODEL{12},Xs12,ts12,Xis12,Ais12); 
  
nets12 = removedelay(net12); 
[Xs12,Xis12,Ais12] = preparets(nets12,x,{},t12); 
Ys12 = nets12(Xs12,Xis12,Ais12); 
Forecast(12)=Ys12{end} 
  
%% 
  
Forecast(1:12) 
  

  
 
function [P] = Discharge_to_Power(q, DamLevel 
,TailraceLevel,SyncUnits) 
% q : Turbine Discharge (m3/s) 
% DamLevel : Prsent Dm Level (masl) 
% TailraceLevel : Present TailraceLevel (masl) 
% SyncUnits : Number of synchronized Units 
  
A = DamLevel - TailraceLevel; 
C = SyncUnits; 
  
if A<490 && C==1; 
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    a11 = 0.00000719;      a12 = 0.00000699;  b11 = -0.00066977;     
b12 = -0.00067913; 
    c11 = 0.22347804;      c12 = 0.22235891;  d11 = 1.48000195;      
d12 = 1.48062322; 
     
    %a*x^3 + b*x^2 + c*x + d 
    a = (490-A)*a11 + (A-487)*a12; 
    b = (490-A)*b11 + (A-487)*b12; 
    c = (490-A)*c11 + (A-487)*c12; 
    d = (490-A)*d11 + (A-487)*d12 -3.0*q; 
     
    x = roots([a b c d]); 
    x(imag(vpa(x))~=0) = []; 
    P=x; 
     
elseif A>=490 && C==1; 
     
    a13 = 0.00000675;      a12 = 0.00000699;  b13 = -0.00068570;     
b12 = -0.00067913; 
    c13 = 0.22091472;      c12 = 0.22235891;  d13 = 1.48250266;      
d12 = 1.48062322; 
     
    %a*x^3 + b*x^2 + c*x + d 
    a = (493.73-A)*a12 + (A-490)*a13; 
    b = (493.73-A)*b12 + (A-490)*b13; 
    c = (493.73-A)*c12 + (A-490)*c13; 
    d = (493.73-A)*d12 + (A-490)*d13 -3.73*q; 
     
    x = roots([a b c d]); 
    x(imag(vpa(x))~=0) = []; 
    P=x; 
     
     
elseif A<490 && C==2; 
     
    a21 = 0.00000996;      a22 = 0.00000960;  b21 = -0.00085761;     
b22 = -0.00083571; 
    c21 = 0.22692553;      c22 = 0.22551339;  d21 = 1.47198975;      
d22 = 1.47409836; 
     
    %a*x^3 + b*x^2 + c*x + d 
    a = (490-A)*a21 + (A-487)*a22; 
    b = (490-A)*b21 + (A-487)*b22; 
    c = (490-A)*c21 + (A-487)*c22; 
    d = (490-A)*d21 + (A-487)*d22 -3.0*q; 
     
    x = roots([a b c d]); 
    x(imag(vpa(x))~=0) = []; 
    P=x; 
     
else A>=490 && C==2; 
     
    a23 = 0.00000919;      a22 = 0.00000960;  b23 = -0.00081176;     
b22 = -0.00083571; 
    c23 = 0.22394178;      c22 = 0.22551339;  d23 = 1.47548317;      
d22 = 1.47409836; 
     
    %a*x^3 + b*x^2 + c*x + d 



81 
 

    a = (493.73-A)*a22 + (A-490)*a23; 
    b = (493.73-A)*b22 + (A-490)*b23; 
    c = (493.73-A)*c22 + (A-490)*c23; 
    d = (493.73-A)*d22 + (A-490)*d23 -3.73*q; 
     
    x = roots([a b c d]); 
    x(imag(vpa(x))~=0) = []; 
    P=x; 
     
end 
  

  
 
function [LS] = LevelStorage(flag,LevelStorage) 
  
% flag : if flag =1  then function returns Storage given input as 
Level 
%        if flag =0  then function returns Level given input as 
Storage 
% Storage is above 1190 level storage 
  
X = LevelStorage; 
a = 3.213; b= -72.56; c= 650.4; d= -2958; e=7326; f= -9374; g=17760; 
h= 151500; 
  
  
if flag == 1 ; 
    Le = (X-1190); 
     
     
    f = a*Le^8 + b*Le^7 + c*Le^6 + d*Le^5 + e*Le^4 + f*Le^3 + g*Le^2 
+ h*Le; 
    LS =f; 
else 
    % given storage(above 1190) find Level 
    % X = a*X^8 + b*X^7 + c*X^6 + d*X^5 + e*X^4 + f*X^3 + g*X^2 + 
h*X; 
     
    x = roots([a b c d e f g h -X]); 
    B = x(real(x) >= 0 & imag(x) == 0); 
    LS=B+1190; 
     
end 
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APPENDIX-B: MATLAB PROGRAMMES OF POM 

 
Pond Optimization Model 

 

 
clc; clear; 
  
%% Setup the Import Options 
opts = spreadsheetImportOptions("NumVariables", 2); 
  
% Specify sheet and range 
opts.Sheet = "2018 Vertical"; 
opts.DataRange = "A2:B8749"; 
  
% Specify column names and types 
opts.VariableNames = ["Time", "Inflow"]; 
opts.VariableTypes = ["datetime", "double"]; 
  
% Import the data 
tbl = readtable("F:\2. Results\Matlab 
Files\New\OptimizedResults.xlsx", opts, "UseExcel", false); 
  
% Convert to output type 
Time = tbl.Time; 
Inflow = tbl.Inflow; 
  
% Clear temporary variables 
clear opts tbl 
  
%% 
  
%% Input Inflow data  (m3/s) 
numInflow = size(Inflow,1); 
optimizeperiod = 4; 
  
P(numInflow)=0; 
PP(numInflow)=0; 
SP(numInflow)=0; 
SPSP(numInflow)=0; 
S(numInflow)=0; 
SS(numInflow)=0; 
%% 
  
for k=1:optimizeperiod:numInflow-20 
     
    [a,b1] = getData1(k,Inflow,Time); 
    for m=1:24 
        inflow(m)=b1(m); 
    end 
     
    TimeHour = hour(a(1)); 
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    % Input inflow convert to m3 
    for j=1:24 
        I(j) = inflow(j)*3600; 
    end 
    %% 
     
    %% Initial values 
    InitialLevel= 1192.38; 
    s0 = LevelStorage(1,InitialLevel);   % Initial Storage (m3)  
1193.14 masl 
    sm = 822470;  % Maximum Storage (m3)  1194.00 masl 
    x0 = [26000*ones(24,1);zeros(24,1);s0*ones(24,1)];  % Initial 
Values 
     
    %% Linear Parameters 
    A=[]; b=[]; 
     
     
    %% 
    Aeq = [1 zeros(1,23) 1 zeros(1,23) 1 zeros(1,23)]; 
    Aeq = [Aeq ; zeros(1,1) 1 zeros(1,22)   zeros(1,1) 1 zeros(1,22)   
-1 1 zeros(1,22)]; 
    Aeq = [Aeq ; zeros(1,2) 1 zeros(1,21)   zeros(1,2) 1 zeros(1,21)    
zeros(1,1) -1 1 zeros(1,21)]; 
    Aeq = [Aeq ; zeros(1,3) 1 zeros(1,20)   zeros(1,3) 1 zeros(1,20)    
zeros(1,2) -1 1 zeros(1,20)]; 
    for jj=5:24 
        Aeq = [Aeq ; zeros(1,jj-1) 1 zeros(1,24-jj)   zeros(1,jj-1) 
1 zeros(1,24-jj)    zeros(1,jj-2) -1 1 zeros(1,24-jj)]; 
    end 
     
    % 
    beq = s0 + I(1); 
    beq = [beq ; I(2)]; 
    for mm=3:24 
        beq = [beq ; I(mm)]; 
    end 
     
    %% Boundry Constarints 
    LB = [25295*ones(24,1);zeros(48,1)]; 
     
    if (TimeHour <= 5) 
        LB = [25295*ones(24,1);zeros(5+1-
TimeHour,1);4788*ones(10,1);zeros(10-1+TimeHour-1,1);zeros(24,1)];     
% must have positive flow 
    elseif (TimeHour >= 15) 
        LB = [25295*ones(24,1);zeros(14+5+1-
TimeHour,1);4788*ones(10,1);zeros(TimeHour-15,1);zeros(24,1)];     % 
must have positive flow 
    elseif (TimeHour >= 6) 
        LB = [25295*ones(24,1);4788*ones(10-
TimeHour+5,1);zeros(14,1);4788*ones(TimeHour-5,1);zeros(24,1)];     
% must have positive flow 
    end 
     
     
    UB = [128160*ones(24,1);Inf*ones(24,1);822470*ones(24,1)]; 
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    %% Weight initialization of AOA of objective function 
    % AOA = Aggregrade Objective Function 
    %w1 = 0.89; w2 =0.11; 
    w1 = .51; w2 =0.49; 
    %% FMINCON 
    options = 
optimset('MaxFunEval',Inf,'MaxIter',3000,'Algorithm','interior-
point','Display','off'); 
     
    %[x, fval] = fmincon(@objfun1,x0,A,b,Aeq,beq, LB, 
UB,[],options,w1,w2); 
     
    %% if Global Search is used 
    % Comment FMINCON line above before run for global search 
    f1 = @(x)objfun1(x,w1,w2); 
    problem.options = options; 
    problem.solver = 'fmincon'; 
    problem.objective = f1; 
    problem.x0 = x0; 
    problem.A = A; 
    problem.b = b; 
    problem.Aeq = Aeq; 
    problem.beq = beq; 
    problem.lb = LB; 
    problem.ub = UB; 
    problem.nonlcon =[]; 
     
    gs = GlobalSearch; 
    [x, fval] = run(gs, problem); 
     
    %% 
    for i= 1 :72 
        if i<=24 
            P(i) = 4.269663*x(i)/3600; 
            PP(k-1+i)=P(i); 
        elseif i<= 48 
            Sp(i-24) = x(i)/3600; 
            SpSp(k-1+i-24)=Sp(i-24); 
        else 
            S(i-48) = LevelStorage(0,x(i)); 
            SS(k-1+i-48)=S(i-48); 
        end 
    end 
     
    for q=1:24 
        T(k-1+q)=4.249292*X(q)/3600; 
        Sp(k-1+q)=Y(q)/3600; 
        S(k-1+q)=Z(q); 
        DL(k-1+q)=LevelStorage(0,S(k-1+q)); 
        if k ==1 
            AvgLevel(k-1+q)=(InitialLevel+DL(k-1+q))/2; 
        else 
            AvgLevel(k-1+q)=(DL(k-1+q-1)+DL(k-1+q))/2; 
        end 
    end 
     
    pause(0.5); 
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    fprintf('Completion : %d', k *100 /numInflow ); 
    fprintf(' Done. \n'); 
     
end 
%% 
%inflow = [i1;i2;i3;i4]; 
%plotmine(inflow,Sp,P,S); 
plotmine(Inflow,SpSp,PP,SS); 
plotbar(Time,Inflow,Sp,T,AvgLevel); 
  
%% 
 

 
function [f] = objfun1(x,w1,w2) 
  
% TS = x(5)+x(6)+x(7)+x(8);  % spilling 
D = 
x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)+x(8)+x(9)+x(10)+x(11)+x(12)... 
    
+x(13)+x(14)+x(15)+x(16)+x(17)+x(18)+x(19)+x(20)+x(21)+x(22)+x(23)+x
(24);   % generation 
  
SP = 
x(25)+x(26)+x(27)+x(28)+x(29)+x(30)+x(31)+x(32)+x(33)+x(34)+x(35)+x(
36)... 
    
+x(37)+x(38)+x(39)+x(40)+x(41)+x(42)+x(43)+x(44)+x(45)+x(46)+x(47)+x
(48);  % Spiling 
  
PS = 
x(49)+x(50)+x(51)+x(52)+x(53)+x(54)+x(55)+x(56)+x(57)+x(58)+x(59)+x(
60)... 
    
+x(61)+x(62)+x(63)+x(64)+x(65)+x(66)+x(67)+x(68)+x(69)+x(70)+x(71)+x
(72);  % storage 
  
  
f = -w1*D-w2*PS+0*SP; %FINAL 
  

 
 
%% Alternative Optimzation programme for main1 programme 
  
clc; clear; 
  
%% Setup the Import Options 
opts = spreadsheetImportOptions("NumVariables", 2); 
  
% Specify sheet and range 
opts.Sheet = "2017 Vertical"; 
opts.DataRange = "A2:B8761"; 
  
% Specify column names and types 
opts.VariableNames = ["Time", "Inflow"]; 
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opts.VariableTypes = ["datetime", "double"]; 
  
% Import the data 
tbl = readtable("F:\2. Results\Matlab 
Files\New\OptimizedResults.xlsx", opts, "UseExcel", false); 
  
% Convert to output type 
Time = tbl.Time; 
Inflow = tbl.Inflow; 
  
% Clear temporary variables 
clear opts tbl 
  
%% Input Inflow data  (m3/s) 
numInflow = size(Inflow,1); 
optimizeperiod = 4; 
  
T(numInflow)=0; 
Sp(numInflow)=0; 
S(numInflow)=0; 
DL(numInflow)=0; 
AvgLevel(numInflow)=0; 
  
%% Initial values 
InitialLevel= 1193.63; 
S0 = LevelStorage(1,InitialLevel); 
Smax = 822470; 
%x0 = [25416*ones(1,1);zeros(1,1);S0*ones(1,1)]; 
x0 = [zeros(1,1);zeros(1,1);S0*ones(1,1)]; 
X(1:24)=0; Y(1:24)=0; Z(1:24)=0; I(1:24)=0; 
Z0=S0; 
%% 
for k=1:optimizeperiod:numInflow-20 
    if k>1 
        Z0=S(k-1); 
    end 
     
    [a,b1] = getData1(k,Inflow,Time); 
    %% 
    for m=1:24 
        I(m)=b1(m)*3600; 
    end 
    TimeHour = hour(a(1)); 
        
    %% Linear Parameters 
    A=[]; b=[]; 
    Aeq = [1  1  1 ]; 
    %% 
    for j=1:24 
        %01 Iteration 
         
        if j==1 
            beq = Z0+I(1) ;   %s0+I1-sm; 
        else 
            beq = Z(j-1)+I(j); 
        end 
        %% Boundry Constarints 
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        %LB = [25416*ones(1,1);zeros(1,1);zeros(1,1)]; UB = 
[127080*ones(1,1);Inf*ones(1,1);822470*ones(1,1)]; 
        LB = [zeros(1,1);zeros(1,1);zeros(1,1)]; UB = 
[127080*ones(1,1);Inf*ones(1,1);822470*ones(1,1)]; 
        options = 
optimset('MaxFunEval',Inf,'MaxIter',3000,'Algorithm','interior-
point','Display','off'); 
        [R, fval] = fmincon(@objfun3,x0,A,b,Aeq,beq, LB, 
UB,[],options); 
         
         
         
        Y(j)= R(2); 
        Z(j)= R(3); 
        if  R(1)<25416            %I(j)<36000 
            if TimeHour<18 
                Z(j)=Z(j)+R(1); 
                X(j)=0; 
            elseif TimeHour>21 
                Z(j)=Z(j)+R(1); 
                X(j)=0; 
            else 
                X(j)= R(1); 
            end 
             
            if R(2)>0 
                X(j)= X(j)+R(2) ; 
                Y(j)=0; 
            end 
             
        else 
            X(j)= R(1); 
        end 
         
        if (TimeHour+j)<16 
            if (TimeHour+j)>5 
                if R(2)< 4788 
                    Y(j)=4788; 
                     
                    if Z(j)>4788-R(2) 
                        Z(j)=Z(j)-(4788-R(2)); 
                    end 
                end 
            end 
        end 
         
         
    end 
     
     
     
    for q=1:24 
        T(k-1+q)=4.249292*X(q)/3600; 
        Sp(k-1+q)=Y(q)/3600; 
        S(k-1+q)=Z(q); 
        DL(k-1+q)=LevelStorage(0,S(k-1+q)); 
        if k ==1 
            AvgLevel(k-1+q)=(InitialLevel+DL(k-1+q))/2; 
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        else 
            AvgLevel(k-1+q)=(DL(k-1+q-1)+DL(k-1+q))/2; 
        end 
    end 
     
    %% 
    pause(0.5); 
    fprintf('Completion : %d', k *100 /numInflow ); 
    fprintf(' Done. \n'); 
end 
  
%plotmine(Inflow,SpSp,PP,SS); 
plotbar(Time,Inflow,Sp,T,AvgLevel); 
  
%% 

 

 
function [T24,inflow24] = getData1(startIndex,Inflow,Time) 
  
T24 = Time(startIndex:startIndex+23,1); 
inflow24 =Inflow(startIndex:startIndex+23,1); 
  
end 

 

 
function [f] = objfun3(y) 
  
TG = 0.51*y(1)+0.49*y(3);   % generation 
  
f=-TG; 

 

 
function plotbar(Time,Inflow,Sp,P,DL) 
  
%figure; 
  
%% Top plot of Spilling data 
ha(1)=subplot(4,1,1); 
bar(Time,Inflow,'b'); 
ylim([0 200]); 
grid on 
title('Average Hourly Inflow to Pond vs Time'); 
ylabel('Avg Hourly Inflow (m3/s)'); 
xlabel('Time (hrs)'); 
xtickformat('HH:mm'); 
  
ha(2)=subplot(4,1,2); 
bar(Time,P,'r'); 
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ylim([0 150]); 
grid on 
title('Required Average Hourly Loading on the Plant vs Time'); 
ylabel('Avg Hourly Loading (MW)'); 
xlabel('Time (hrs)'); 
xtickformat('HH:mm'); 
  
ha(3)=subplot(4,1,3); 
bar(Time,Sp,'g'); 
grid on 
%ylim([0 200]); 
title('Minimum Average Hourly Spilling Required vs Time'); 
ylabel('Optimum Avg Hourly Spilling (m3/s)'); 
xlabel('Time (hrs)'); 
xtickformat('HH:mm'); 
  
ha(4)=subplot(4,1,4); 
bar(Time,DL,'m'); 
grid on 
title('Average Hourly Level Change vs Time'); 
ylim([1190.00 1194.00]); 
ytickformat('%.2f') 
ylabel('Avg Hourly Level (masl)'); 
xlabel('Time (hrs)'); 
xtickformat('HH:mm'); 
  
  
linkaxes(ha, 'x'); 
 

 
function plotmine(Inflow,Sp,P,DL) 
%function plotmine(inflow,AP,OP,AL,OL,OS,AS,Time) 
  
  
% Create a new figure 
figure; 
  
%% Top plot of Spilling data 
ha(1)=subplot(3,1,1); 
yyaxis right 
plot(Inflow); 
ylim([0 100]); 
  
ylabel('inflow (m3/s)'); 
hold on; 
yyaxis left 
plot(Sp,'-b'); 
ylim([0 100]); 
  
xlabel('Time (hrs)'); 
  
ylabel('Required Spilling (m3/s)'); 
title('Minimum Spilling of the Upper Kotmale Plant'); 
  
%% Top plot of Plant Loading 
ha(2)=subplot(3,1,2); 
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%% 
plot(P,'-r'); 
ylim([0 152]); 
  
% Add labels 
xlabel('Time (hrs)'); 
  
ylabel('Plant Loading (MW)'); 
title('Optimum Plant Loading of the Upper Kotmale Plant'); 
% Add legend in upper left (NorthWest) corner 
% legend('Turbine flow','Spill flow','Location','NorthWest'); 
  
  
%% Bottom plot of Level Data 
ha(3)=subplot(3,1,3); 
  
plot(DL,'-g'); 
ylim([1190.00 1194.00]); 
  
xlabel('Time (hrs)'); 
  
ylabel('Reservoir Level (masl)'); 
title('Reservoir Level of the Upper Kotmale Plant'); 
  
linkaxes(ha, 'x'); 
% % 
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