ANALYSIS FOR OPTIMIZATION OF ENERGY EFFICIENCY IN OFFICE BUILDINGS IN SRI LANKA

Mirihana Kankanamge Tharanga Dilhan

(148612E)

Degree of Master of Science in Building Services Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

March 2019

ANALYSIS FOR OPTIMIZATION OF ENERGY EFFICIENCY IN OFFICE BUILDINGS IN SRI LANKA

Mirihana Kankanamge Tharanga Dilhan

(148612E)

Thesis submitted in partial fulfilment of the requirements for the degree Master of Science in Building Services Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

March 2019

DECLARATION

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the Candidate (M.K.T. Dilhan)

Date

The above candidate has carried out research for the Masters thesis under my supervision.

.....

Signature of the Supervisor (Prof. K.K.C.K. Perera) Date

ABSTRACT

Energy consumed in the building sector consists of residential and commercial end users and it accounts for 20.1% of the total delivered energy consumed worldwide [22].Global primary energy demand is projected to increase by annual rate of 1.6% between 2004 and 2030[23].

There are building codes, Standards, Guidelines etc. to regulate and promote energy efficiency in building sector [page 33]. Sri Lanka also had focused on minimising these increasing trends during the past decade. "Code of Practice for Energy Efficient Buildings in Sri Lanka 2008" was introduced as an initiative. Sri Lankan government is carrying out various programmes, seminars and activities to encourage building owners, developers, designers to implement energy saving measures.

In this research three commercial buildings in Colombo region having 8, 8 & 10 floors and total floor areas of around 35 000 ft², 60 000 ft² & 90 000 ft² and monthly average energy consumption around 50 000 kWh, 70 000 kWh & 100 000 kWh were selected. The study and analysis were done to find out whether there are none-compliances of the selected buildings with ASHERAE 92.1-2007 standard and Code of Practice for Energy Efficient Buildings in Sri Lanka-2008 which are used by professionals in the subject and to find out whether there are opportunities to improve energy efficiency of already constructed buildings further by modelling those buildings in Trace 700 software by simulating various possible options.

None of the three selected buildings fully complied with the standards considered. Major weak points were poor building envelope sealing, insufficiency of usage of automatic controls, improper balancing of systems, poor lighting system efficiency, higher lighting power density and higher Solar Heat Gain Coefficient of vertical glazing.

Though Building Automation Systems (BAS) are installed, it was revealed that by adding/upgrading some new features/options to BAS and by eliminating the weaknesses found, there are still more opportunities to increase energy efficiency further significantly.

ACKNOWLEDGEMENT

I take this opportunity to thank my supervisor Prof. K.K.C.K Perera, Vice-chancellor, University of Moratuwa for his guidance throughout the research work as well as during the course, his encouragement and his patience on my mistakes and weak points.

I would like to thank all the lecturers in the post graduate course, including two coordinators Dr. M.A. Wijewardane and Dr. M.M.I.D. Manthilake who always gave guidance and encouraged patiently to complete this report.

And I would like to express my appreciation to the staff of the buildings studied who gave me required information and arranged access to the building services systems kindly.

TABLE OF CONTENTS

DECLARATION	i			
ABSTACT	ii			
ACKNOWLEDGEMENT	iii			
TABLE OF CONTENTS	iv			
LIST OF FIGURES				
LIST OF TABLES	vii			
LIST OF ABBREVIATIONS	ix			
1. INTRODUCTION	1			
1.1 Background	1			
1.2 Problem Statement	2			
2. AIM AND OBJECTIVE	3			
2.1 Aim	3			
2.2 Objectives	3			
3. LETERATURE REVIEW	4			
3.1 Energy Efficiency in Buildings	4			
3.2 Systems Which Consumes Energy/Electricity	4			
3.3 Energy Percentages Used By Each System	5			
3.4 HVAC System	6			
3.5 Lighting System	22			
3.6 Controls, BMS and System Integration	27			
3.7 Other Methods Commonly Used In Buildings To Save Energy	29			
3.8 Energy Efficiency And Life Cycle Cost Analysis	31			
3.9 Energy Efficiency Standards (Codes) For Buildings	31			
4. METHODOLOGY	35			
4.1 Selection Of Three Buildings In Colombo Region	35			
4.2 Collection Of Available Data Of Selected Buildings	35			
4.3 Verification Of Compliance Of Selected Buildings With	36			
Standards				
4.4 Analysis Of Selected Buildings With Different Configurations/	36			
Options				
5. SELECTION OF BUILDINGS FOR ANALYSIS	38			
5.1 Building No.01 - Ceylon Petroleum Corporation Head Office	38			
5.2 Building No.02 - Peoples Leasing Property Dev. Head Office	38			

5.3 Building No.03 - Ceylinco Life Insurance Head Office 39
6. SOFTWARE FOR MODELLING OF BUILDINGS
6.1 General Requirements 40
6.2 Overview Of The Trane Trace 700 Software
7. REQUIREMENTS FOR COMPLIANCE IN BRIEF 42
7.1 Requirements For Compliance With ASHRAE 92.1-2007 42
7.2 Requirements For Compliance With Code Of Practice For
Buildings In Sri Lanka - 2008 49
8. VERIFICATION OF COMPLIANCE OF SELECTED BUILDINGS 52
8.1 Compliance With ASHRAE Standard 90.1-2007 - Path 1 52
8.2 Compliance With ASHRAE Standard 90.1-2007 - Path 2 62
8.3 Compliance With Code Of Practice For Energy Efficient
Sri Lanka - 2008 63
9. MODELING OF SELECTED BUILDINGS
9.1 Basic Internal Load Data For The Building Models
9.2 Building Construction Material Data
9.3 Occupancy Schedules Used For Each Building
9.4 Creation Of Models For Each Building
10. ANALYSIS OF THE SELECTED BUILDINGS 78
10.1 Comparison Of Actual Annual Energy Consumption Vs.
Consumption Given By Trace 700 Software
10.2 Current Situation Of The Selected Buildings 79
10.3 Peak Demand And Annual Energy Consumption When
Minimum Requirements Of ASHRAE 90.1-2007 82
10.4 Finding The Amount Of Energy Which Can Be Saved By
System Options/Configurations
11. RESULTS & DISCUSSION
12. CONCLUSION
13. REFERENCE LIST
14. APPENDIX A - Data Of Building No. 1
15. APPENDIX B - Data Of Building No. 2
16. APPENDIX C - Data Of Building No. 3133
17. APPENDIX D - Model Input Data142

LIST OF FIGURES

Figure 3.5.5 : Type of Lamp Technology and Their Total Light Output	26
Figure 10.1.1: Cooling Load of Building No.01 vs. Time of the day	78
Figure 10.2.1: Current Building Load by Each Element at Coil Peak-	
Ceylon Petroleum Corporation Head Office Building	80
Figure 10.2.2: Current Building Load by Each Element at Coil Peak-	
Peoples Leasing Head Office Building	81
Figure 10.2.3: Current Building Load by Each Element at Coil Peak-	
Ceylinco Life Insurance Head Office Building	81
Figure A.1: Ceylon Petroleum Corporation Building - Ground Floor	119
Figure A.2: Ceylon Petroleum Corporation Building - First Floor	120
Figure A.3: Ceylon Petroleum Corporation Building - 2 to 6 Typical Floor	121
Figure A.4: Ceylon Petroleum Corporation Building - Seventh Floor	122
Figure A.5: Ceylon Petroleum Corporation Building - Schematic Diagram.	123
Figure B.1: Peoples Leasing Building - 1 to 3 Typical Floor	128
Figure B.2: Peoples Leasing Building - Fourth Floor	129
Figure B.3: Peoples Leasing Building - 5 to 9 Typical Floor	130
Figure B.4: Peoples Leasing Building - Tenth Floor	131
Figure B.4: Peoples Leasing Building - Schematic Diagram (AC)	132
Figure C.1: Ceylinco Life Insurance Building - 1 to 6 Typical Floor	137
Figure C.2: Ceylinco Life Insurance Building - Seventh Floor	138
Figure C.3: Ceylinco Life Insurance Building - Eighth Floor	139
Figure C.4: Ceylinco Life Insurance Building - Eighth Mezzanine Floor	140
Figure C.5: Ceylinco Life Insurance Building - Schematic Diagram (AC)	141

LIST OF TABLES

Table 3.4.3.2.3: Energy saving potential and guidelines	20
Table 8.1.1.1: Mandatory Requirements-Building Envelop Sealing	52
Table 8.1.1.2: Prescriptive Requirements-Construction Materials of Buildings	53
Table 8.1.1.3: Prescriptive Requirements-Fenestration area requirements	54
Table 8.1.1.4: Trade-Off Option–Building Envelop	55
Table 8.1.2.1: Mandatory Requirements-Minimum Equipment Efficiencies	55
Table 8.1.2.2: Mandatory Requirements - Control requirements	56
Table 8.1.2.3: Mandatory Requirements - Insulation	56
Table 8.1.2.4: Prescriptive Requirements - Economizers/Hydronic controls	57
Table 8.1.2.5: Prescriptive Requirements - Fan Power Limitation	57
Table 8.1.2.6: Prescriptive Requirements - Hydronic System Design and	58
Control	
Table 8.1.3.1.1: Building 01 - Ceylon Petroleum Building-Voltage Drop	59
Table 8.1.3.1.2: Building 02 - Peoples Leasing Building-Voltage Drop	59
Table 8.1.3.1.3: Building 03 - Ceylinco Life Insurance Building-Voltage Drop	60
Table 8.1.4.1: Mandatory Requirements - Control requirements of lighting	60
Table 8.1.4.2: Mandatory Requirements - LPD for Building Exteriors	61
Table 8.1.4.3.1: Prescriptive Requirements - Building Area Method	61
Table 8.1.4.3.2: Prescriptive Requirements - Space by Space Method	61
Table 8.2.1: Compliance with mandatory requirements in section 5, 6, 7,	
8, 9 and 10	62
Table 8.2.2: Annual Energy consumption of Budget Building vs. Proposed	
Building	62
Table 8.3.1.1: Mandatory Requirements - Lighting Controls	63
Table 8.3.1.2: Mandatory Requirements - Lighting power densities	63
Table 8.3.1.3: Prescriptive Requirements - Lighting source selection	64
Table 8.3.1.4: Prescriptive Requirements - Minimum lamp efficacy	64
Table 8.3.2.1: Mandatory Requirements - Ventilation and Air Conditioning	
Controls	65
Table 8.3.2.2: Mandatory Requirements - Piping & Duct Insulation	66
Table 8.3.2.3: Mandatory Requirements-Air Conditioning Equipment	
Minimum Performance	66
Table 8.3.3.1: Mandatory Requirements - Envelope Sealing	67

Table 8.3.3.3: Prescriptive RequirementsTable 9.1: Basic internal load data used for building models	68 69 70 72			
Table 9.1: Basic internal load data used for building models	70			
Table 9.2: Construction material properties used for models				
Table 9.3.1: Occupancy variation with time of the day - Building No.01				
Table 9.3.2: Occupancy variation with time of the day - Building No.02				
Table 9.3.3: Occupancy variation with time of the day - Building No.03				
Table 10.3.1: Comparison of peak demand & annual energy consumption of				
current building and the same building with minimum ASHRAE				
92.1-2007 requirements	83			
Table 11.2: Possible Energy Savings by various options/configurations	106			
Table A.1: Building No 01 - Main Energy Consuming Equipment Details	115			
Table A.2: Building No 01 - Monthly Energy Consumption Data	115			
Table A.3: Building No 01 - Water consumption data	116			
Table A.4: Building No 01 - Building Envelop details	116			
Table A.5: Building No 01 - Building Areas	117			
Table B.1: Building No 02 - Main Energy Consuming Equipment Details	124			
Table B.2: Building No 02 - Monthly Energy Consumption Data				
Table B.3: Building No 02 - Water consumption data				
Table B.4: Building No 02 - Building Envelop details	125			
Table B.5: Building No 02 - Building Areas	126			
Table C.1: Building No 03 - Main Energy Consuming Equipment Details	133			
Table C.2: Building No 03 - Monthly Energy Consumption Data	134			
Table C.3: Building No 03 - Water consumption data	134			
Table C.4: Building No 03 - Building Envelop details	134			
Table C.5: Building No 03 - Building Areas	135			

LIST OF ABBREVIATIONS

Abbreviation	Description
А	Ampere
AC	Air Conditioning
A.M.	Ante Meridiem
AHU	Air Handling Unit
ASHRAE	American Society of Heating Refrigeration and Air
	Conditioning Engineers
BAS	Building Automation System
BMS	Building Management System
CEB	Ceylon Electricity Board
CFM	Cubic Feet per Minute
СТ	Cooling Tower
COP	Coefficient Of Performance
CFL	Compact Fluorescent Lamp
°C	Celsius
DCV	Demand Control Ventilation
DDC	Direct Digital Control
EPF	Envelop Performance Factor
EER	Energy Efficiency Ratio
ft	Feet
°F	Fahrenheit
GMT	Greenwich Mean Time
gpm/hp	Gallons per minute per horsepower
hp	Horsepower
HVAC	Heating, Ventilation and Air Conditioning
hp/CFM	Horsepower per Cubic Feet per Minute
IPLV	Integrated Part Load Value
kW	Kilowatt

kWh	Kilowatt-hours
KIP	Key Performance Indicators
LPD	Lighting Power Density
lm/W	Lumens per Watt
LCC	Life Cycle Cost
LED	Light Emitting Diode
m	Meter
mm	Millimetre
OTTV	Overall Thermal Transfer Value
PCM	Phase Change Material
PV	Photo Voltaic
P.M.	Post Meridiem
ppm	Parts Per Million
PIR	Passive Infra-Red
Rs	Sri Lankan rupees
SHGC	Solar Heat Gain Coefficient
T5	Tubular with 5/8" in diameter
Ton	Cooling capacity in Ton
UV	Ultra Violet
V	Volt
VFD	Variable Frequency Drive
VLT	Visual Light Transmittance
W	Watt
W/m ²	Watts per Square Meter
W/ft ²	Watts per Square Foot