
STANDARDIZED COMMUNICATION FOR BIGDATA

ANALYTICS THROUGH JSON

K.L.K Madushanka

(168244U)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2020

STANDARDIZED COMMUNICATION FOR BIGDATA

ANALYTICS THROUGH JSON

K.L.K Madushanka

(168244U)

Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Science specializing Data Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2020

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant the University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or another medium. I

retain the right to use this content in whole or part in future works.

.. ...

Kasun Madushanka Liyanage Date

I certify that the declaration above by the candidate is true to the best of my knowledge

and the above candidate has carried out research for the Masters Dissertation under

my supervision.

.. ...

Dr. Amal Shehan Perera Date

ii

Abstract

Big data is not a new terminology in the Information Technology sector anymore. With the

emergence of big data, arise the need for analyzing large amounts of data that consist trillions

of records. Additionally, big data have already penetrated multiple areas in data analytics.

Therefore, different technological solutions were developed to handle these big data

complexities. However, even after decades, contemporary solutions are unable to address

complex issues and overcome several limitations.

Lack of a common communication standard has resulted in many issues in big data analytics.

Presently, all the big data solution companies are using their in-house ad hoc communication

methods to perform analytics. Unfortunately, this leads to limitations in integration and

reusability of the solutions built. To overcome this, Microsoft introduced the XMLA (XML

for Analysis), an industry standard for accessing data in analytical systems, namely OLAP

(online analytical processing) systems. XMLA was well standardized and well designed for

accessing data through Multi-Dimensional Expressions (MDX). Development of tailor-made

query languages to access and analyze the stack of scattered data stores has caused the creation

of different standards. This leads to the state where almost all big data services offering their

proprietary query languages and APIs for data analysis.

This research is to propose a methodology for addressing the ad-hoc integration of these big

data analytics endpoints through a JSON based specification by reusing XMLA structures.

The research components are publishing a communication model using JSON specification

and proposing to adopt the standards to existing stores. This solution will enable frontend tools

to be fully independent of the backend storage model. Also, this will allow existing JSON

standardized frontend tools to easily integrate with big data analytics through eliminating the

necessity of a specific frontend tool aiming a data store.

Keywords: Big Data Communication, JSON Based Communication, JQA Specification

iii

ACKNOWLEDGEMENT

I would like to take this time to sincerely appreciate the people who helped and guided

me in this research. First, Dr. Amal Shehan Perera, my supervisor, for the supervision

and guidance provided throughout the research and all the MSc module lecturers for

encouraging and motivating me to complete this dissertation.

For Zone24x7.inc and the management for offering me flexibilities and support for the

MSC initiation and related work and for my family for always trusting me and

supporting me in my educational journey.

I also wish to thank all my colleagues and friends for all their help, support, interest

and valuable advice. Finally, I would like to thank all others whose names are not listed

particularly but have given their support in many ways and encouraged me to make

this a success.

iv

TABLE OF CONTENT

DECLARATION i

Abstract ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENT iv

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVIATIONS viii

1. INTRODUCTION 1

1.1 Big Data and Analytics 2

1.2 Big Data Analytics and Communication 3

1.3 Research Problem 6

1.4 Research Objectives 7

1.5 Summary 8

2. LITERATURE SURVEY 9

2.1 JavaScript Object Notation 10

2.2 XML for Analysis and OLAP 12

2.3 JavaScript Object Notation and Big Data Stores 13

2.3.1 Apache Kylin ... 14

2.3.2 Druid .. 15

2.3.3 ElasticSearch .. 17

2.3.4 Data Services ... 18

2.4 Summary 19

3. METHODOLOGY 20

3.1 JSON Queries for Analysis 21

v

3.2 JQA Implementation 23

3.3 Summary 25

4. CASE STUDY, RESULTS AND OBSERVATIONS 26

4.1 Case Study 27

4.2 Dashboard, Results and Observations 28

4.3 Summary 32

5. CONCLUSION 33

5.1 Challenges and Limitation 35

5.2 Future Work 36

REFERENCES 38

vi

LIST OF FIGURES

 Page

Figure 1.1 : OLAP Design with SQL Data Sources Separating each Layer 5

Figure 2.1 : Simple JSON object with key/value pair 11

Figure 2.2 : Simple JSON List 11

Figure 2.3 : Multi Types JSON Object 11

Figure 2.4 : Sample Discovery request [23] 13

Figure 2.5 : Sample Execute request [23] 13

Figure 2.6 : Apache Kylin sample request [24] 14

Figure 2.7 : Apache Kylin sample response [24] 15

Figure 2.8 : Druid sample request [13] 16

Figure 2.9 : Druid sample response [13] 16

Figure 2.10 : ElasticSearch sample request [7] 17

Figure 2.11 : ElasticSearch sample response [7] 17

Figure 3.1 : JQA communication overview 22

Figure 3.2 : JQA store Meta method 23

Figure 3.3 : Search API list method 24

Figure 3.4 : Aggregation API Syntax 24

Figure 3.5 : Aggregation Count Syntax 25

Figure 4.1 : Dashboard Overview 29

Figure 4.2 : Widget Configurator 31

file:///G:/Business/MSC%20DOC/ThesisReport.docx%23_Toc31930148
file:///G:/Business/MSC%20DOC/ThesisReport.docx%23_Toc31930152
file:///G:/Business/MSC%20DOC/ThesisReport.docx%23_Toc31930153

vii

LIST OF TABLES

 Page

Table 4.1 Frontend development effort in hours 29

Table 4.2 Backend development effort in hours 30

viii

LIST OF ABBREVIATIONS

 Abbreviation Description

API Application Programming Interface

ETL Extract, Transform, and Load

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

MDX Multidimensional Expressions

NoSQL Not Only SQL

OLAP Online Analytical Processing

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSAS SQL Server Analysis Services

WSP Web-Service Protocol

WWW World Wide Web

XML Extensible Markup Language

XMLA

JQA

DaaS

XML for Analysis

JSON Queries for Analysis

Data As a Service

1

CHAPTER 1

1. INTRODUCTION

2

The introduction chapter will briefly discuss the nature of big data and big data

analytics. This chapter will elaborate on how the communication methods work in the

current big data analytics and will discuss existing issues in current approaches. Then,

Microsoft XMLA standards and OLAP architecture are explored to understand the

communication model of XMLA. Finally, a solution is proposed to resolve existing

issues in big data analytics.

1.1 Big Data and Analytics

Term big data is normally referred to as the data that is large in size, complex in

structure and difficulty in handling. With the rise of IoT (Internet of things) and social

media, a vast amount of data is being generated every second. The increased usage of

social media networks has immensely contributed to the big data generation.

Organizations with low-cost traditional storage devices motivate to store billions and

trillions of records in stores. Unfortunately, once the data is collected, it is realized that

processing on large volumes of data would be expensive and challenging. Even simple

traditional SQL database select queries would take days to complete on such large data

volumes.

First of all, storing such a large volume of data into a SQL database is been a problem.

Additionally, above storage volume, the complex structure of the data also cause many

issues in traditional databases. Unstructured textual data from social media networks

have vastly scaled the complexity of big data processing. Nevertheless, with all these

complexities, it was a necessity to solve these problems and explore the potentials of

big data.

As a revolution, technology giants such as Google, Facebook, and other open source

communities stepped into the picture and introduced big data solutions, [1] [2] [3] [4]

tackling different problems with different approaches. Later, few promising

technological solutions emerged to address the big data complexities and marked a

name in the industry. Similarly, NoSQL was quite a buzzword when these solutions

initially introduced. Finally, with all these evolutions the industry started to win the

battle of handling data volume and the complexities in the big data processing. Once

the initial complexities of the big data were stabilized, researchers began to realize the

3

potentials of big data, which led to the opening of opportunities for applications in

many different fields of big data.

Data scientist role became the main authority in charge of performing analytical

operations on top of this vast amount of data. Researchers developed different kinds

of big data storage methods, algorithms, and tools to fulfil different analytical needs

of big data. Furthermore, distinctive ways and methods are used to cover the diverse

analytical aspects such as divide and conquer approach to perform analytics in scaled

environments [5] [6] and analytics on unstructured textual data using indexes [7].

Collectively, all these approaches enabled opportunities for analytics on large and

complex data with acceptable delay, fulfilling most of the need for big data analytics

required at that period. Gradually, big data analytics soon spread to almost every sector

where data was stored. The industry realized the power of analytics and the benefits of

big data analytics [8] [9].

1.2 Big Data Analytics and Communication

In this era of big data, analytics has become the new hype among the industry. Whereas

the past industrial approaches were only concerned about storage and retrieval of this

vast volume of data, now the companies have visions towards big data analytics

including data analytics and business intelligence. A significant amount of effort has

been invested to analyze these large volumes of data generated through IoT devices,

social media platforms (Facebook, Twitter) and multinational business organizations

to mine these data to discover a lot of valuable information, statistics and insights.

With big data capabilities, there is the potential for analyzing a large range of historical

data. To fulfil this necessity, various mining techniques have been developed on top

of big data. Any insight is worthless unless it is visualized in a proper user-friendly

manner and presented to end business consumer. Most of the big data analytics

companies have their proprietary dashboards, widgets and pivot grids to accomplish

such requirements.

4

Currently, big data analytics is systematized and has achieved the capabilities to

analyze big data in real-time or near real-time with just milliseconds of delay.

Moreover, most of these big data solutions have their proprietary query languages and

API endpoints to perform different analytical operations with stable implementation

and good performance. Regrettably, due to the proprietary on query methods, it is

required to utilize different types of queries and requests to perform an identical

operation in different data stores. As mentioned above, this is one of the major issues

in big data analytics in recent times.

In software engineering, the best practice is to develop a reusable component with less

cohesion. Therefore, to implement such standards, system architecture should be

designed in a manner where each communication layer is defined with clear interfaces

and protocols. Once a system is designed with such clear interfaces, it is very easy to

replace and reuse existing components in the system with minimum effort and cost.

Unfortunately, there is no standard query language such as SQL or proper

communication contract for big data analytics. This research is to focus on designing

a system for big data analytics to solve the above mentioned issues. Since most of the

big data stores in the industry provide JSON based APIs to perform analytic

operations, this research focuses on a more viable solution to resolve current

communication issues involved with JSON based specification.

Primarily, the existing SQL based OLAP systems can be designed based on the

Microsoft XMLA specification [10] [11]. To start with, the data layer can be separated

from the data cube implementation with a proper ETL design. Which facilitates the

data sources to be plugged or removed without affecting the data cube implementation.

Also, the data cube and front end visualization widgets will be separated through the

XMLA endpoints. Only the widget communicates through the XMLA endpoint

regardless of the actual cube technology.

5

Figure 1.1 : OLAP Design with SQL Data Sources Separating each Layer

Figure 1.1 above depicts an overall picture of a proposed OLAP design with SQL data

sources separating each layer. As in the figure, with the use of SQL technologies,

systems that are less cohesive in each layer can be designed and the components can

be replaced in each layer without affecting the other layers.

Even though this can be achieved through a similar design such as an SSAS with

OLAP [9], designing less cohesive and reusable layers is still a challenging task. Big

data analytics systems can also be separated in the data layers through ETL design, but

the execution of data analytics to front end widgets is still tied up with the backend

implementation. This is one of the major issues in the big data analytics that restricts

the design for a less cohesive system. Each time when a backend data store is changed,

all the front end tools and middle-tier components should be replaced due to specific

communication implementations.

6

1.3 Research Problem

Big data is a famous research area among individuals, institutions, and universities in

the world. Initially, to get a clear picture of the issues and challenges in the big data

industry, a variety of studies were made on different past research. Current trends and

technologies of big data industry were studied to identify issues and challenges which

have not been reached or solved by anyone in the past [26] [28]. Similarly, the

forthcoming phases of the massive use of big data technologies were also analyzed to

find the possible future challenges and issues and to identify the challenges which

should be addressed with more precaution to avoid difficulties in the future [27] [29].

Whereas, specific problems such as real-time data processing and data communication

are major and rising challenges faced by the community due to the increased use of

vehicular networks [30]. Information security, scalability, visualization of data,

knowledge discovery, computational complexities and data storage and analysis are

some of the other commonly discussed challenges [31]. Based on the knowledge

gained the significant problem which has not been analyzed prior by anyone was

chosen to be addressed in this analysis.

The main problem addressed in this research is that all of the data stores have their

visualization tools integrated into it so that it cannot be reused with any other

implementation. In recent times, modern databases such as Druid [12] [13] and

MongoDB [14] [15] have their pivot and dashboard integration. With such integration

approaches, it is unable to replace one of the backend stores without replacing the

entire backend, frontend and middle-tier logic. Most of the business intelligence

applications come in suites with the package having both front and backend. This

causes a lot of limitations because some advanced backend stores come with very

limited visualization tools and vice versa. As a result, this limit users from utilizing all

the capabilities of one tool due to the limitations in another.

Making a standard endpoint for big data integration will increase the usability and

popularity of big data engines since a lot of good backend models have been fallen out

from usage due to lack of proper visualization tools. Proper and user-friendly

visualizations are very essential from the business customer perspective. If the system

7

provider fails to offer a great package of both services then the customer tends to seek

different solutions. On the other hand, if standards are involved consumers can rely on

the standards and make their development based on such standards.

This research attempts to address the existing integration and communication

inconsistencies in current big data analytics platforms and frontend tools. Current big

data storage models and engines have their designs and platforms for storing, indexing

and analyzing petabytes of data. However, all these engines need frontend

visualization tools to represent insights. For integration and communication purposes,

these big data communities have developed their query languages and APIs. Since

there is no standard format or specification for these integrations, no one has attempted

to implement a reusable frontend tool. The discrepancies in such systems will be

discussed in detail in the Literature Survey section of the next chapter of this study.

1.4 Research Objectives

The main objective of this research is to design a communication specification to

standardize the frontend and backend communication of big data analytics. Therefore,

a frontend visualization tool adhering the standard is to be developed and facilitating

reusability with any backend store. Both frontend and backend communication related

implementations should follow the specification contracts once it is finalized. When

the objective is achieved, any frontend client can communicate with any backend big

data store and vice versa, enabling reusability in both parts.

It would be a great advantage to have the possibility to select the backend and the

frontend separately based on the capabilities and requirements and being able to plug

them together rather than to be bound to a single suite. This will make a huge impact

on the big data technologies and the community since consumers will eventually start

contributing to the community on the reusable components based on the standards.

Then there will be no necessity for a proprietary company to do complete development

from frontend to backend of a solution. Instead, the existing components could be

customized and the solutions could be contributed to the community.

8

1.5 Summary

In this chapter, the background of big data and big data analytics were briefly

discussed. Similarly, the communication components of big data analytics tools and

the procedures of communication between them were elaborated along with the issues

in the existing communication methods. Additionally, existing technologies in big data

analytics and communication such as Microsoft XMLA standards and OLAP

architecture were explored. Similarly, modern data stores such as Druid and MongoDB

were analyzed. The limitations and issues faced by the users due to the drawback

incompatibility were identified by examining these existing solutions. Finally, the

main research problem to initiate this research was defined and also the objectives of

this research to address the given problems were stated along with a proposed solution.

9

CHAPTER 2

2. LITERATURE SURVEY

10

This chapter provides a literature survey for this research explaining a detailed

description of related research work. The literature survey is organized according to

the following aspects. Initially, the study aids to understand the XMLA and JSON

specifications. Similarly, the next section of the literature survey focuses on the areas

of related work to investigate the existing integration techniques and to discover if

anyone had attempted to implement JSON into big data analytics. Finally, the study

chooses the identified big data stores and understands the existing communication

behaviors.

2.1 JavaScript Object Notation

JavaScript Object Notation is a lightweight, text-based, language-independent data

interchange format [16]. It stores information in a well-structured, organized and easily

accessible manner. JSON was developed based on a subset of the JavaScript

Programming Language. Since there is no fixed schema, JSON would be very flexible

for communication needs [17]. In recent times, a common trend is being seen where

XML preferred specifications are moving to text-based data format since JSON is

known to be faster and lightweight than XML for communication purposes [18]. Since

JSON has a language-independent format, many programming languages and scripting

languages including Java, C#, PHP, and JavaScript use JSON as the data transfer

medium. With the improvement in World Wide Web (WWW) JSON has a good

performance with AJAX, enabling websites to load data quickly and asynchronously,

or in the background without any hassle in delay for page rendering or refreshing.

JSON format mainly consists of two structures:

 A collection of name key/value pairs

- JSON allows declaring any number of properties using a "name": "value"

format.

 An ordered list of values

- List of values or object within square brackets and separated by commas.

11

Figure 2.1 : Simple JSON object with key/value pair

Figure 2.2 : Simple JSON List

Using simple notations and strings as in figure 2.1 and figure 2.2, JSON can be used

to build complex but light-weighted structures for data exchange as in figure 2.3.

Due to the flexibility and the performance concerns, there is a variety of different

JSON based communication models namely, protocols, description languages, and

API contracts. For example, famous projects such as JSON-RPC, XMPP [19], SOAPjr

and JSON-WSP proves that JSON is a good medium for developing specifications.

{

"code" : "200",

"message" : "success"

}

[

"Druid", "MongoDB", "Hadoop", "HBase"

]

{

"items":

 {

 "item":

 [

 {

 "id": "0001",

 "type": "donut",

 "name": "Cake",

 "ppu": 0.55,

 "batters": {"batter": [{ "id": "1001", "type": "Regular" },

 { "id": "1003", "type": "Blueberry" }]

 },

 "topping":

 [{“id": "5001", "type": "None”},

 {“id": "5005", "type": "Sugar”}]

 },

 ...

]

 }

}

Figure 2.3 : Multi Types JSON Object

12

JSON-RPC (JSON Remote Procedure Call) is a remote procedure call protocol based

on XML-RPC, encoded in JSON and it is a very simple protocol with minimum types

and commands to be dealt with [20]. SOAPjr is a protocol specification designed based

on a hybrid model of Simple Object Access Protocol (SOAP) and JSON-RPC, for

exchanging structured information fast in the contract of Web services or AJAX-style

APIs [21]. JSON-WSP (JavaScript Object Notation Web-Service Protocol) is a web-

service protocol that uses JSON for service description, requests and responses

namely, Web Service Definition Language (WSDL). Because of these advantages,

JSON enables most of the modern data stores in moving towards JSON based APIs. A

few selected data stores and their nature of communication with JSON based models

are discussed in the latter of the literature review.

2.2 XML for Analysis and OLAP

XMLA was developed based on SOAP for universal data access of any standard

multidimensional data sources exposed over HTTP [10]. This was designed by

Microsoft, primarily targeting Microsoft analysis services in the year 2005 [11]. It was

not designed just as a data interchange mechanism but also to handle and support

metadata management, session management, and locking capabilities.

The XMLA request standard describes two generally accessible methods namely,

Discover and Execute. Additionally, each of these structure serves a specific purpose.

The ‘Discover’ method is used when a client needs to know about any Metadata

information from backend such as data cube name, available dimensions, measures,

etc. The ‘Execute’ method allows applications to execute specific queries against the

data source and get the result. Originally, XMLA uses MDX as the query language to

get the result from data cubes [22]. Figure 2.4 and 2.5 below demonstrates a sample

discovery request and sample execute request format respectively.

13

Figure 2.4 : Sample Discovery request [23]

Figure 2.5 : Sample Execute request [23]

2.3 JavaScript Object Notation and Big Data Stores

Since JSON is in full text-based and human-readable format, it makes exchanging data

understandable by the receiving party, even without the intervention of the computer.

Because of these properties, many analytical tools use JSON for data exchange.

However, the structure or the specification of the JSON format depends on the tools

being used. The ad-hoc nature of the formats can be visualized when each request and

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Header/>

 <Body>

 <Discover xmlns="urn:schemas-microsoft-com:xml-analysis">

 <RequestType>MDSCHEMA_DIMENSIONS</RequestType>

 <Restrictions>

 <RestrictionList>

 <CATALOG_NAME>Adventure Works DW 2008R2</CATALOG_NAME>

 <CUBE_NAME>Adventure Works</CUBE_NAME>

 </RestrictionList>

 </Restrictions>

 <Properties>

 <PropertyList>

 <Catalog>Adventure Works DW 2008R2</Catalog>

 </PropertyList>

 </Properties>

 </Discover>

 </Body>

</Envelope>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Header></Header>

 <Body>

 <Execute xmlns="urn:schemas-microsoft-com:xml-analysis">

 <Command>

 <Statement> SELECT NON EMPTY

{[Date].[Calendar],[Date].[Calendar].Children} DIMENSION PROPERTIES

CHILDREN_CARDINALITY,PARENT_UNIQUE_NAME ON COLUMNS, NON EMPTY

{[Geography].[City].[All Geographies]} DIMENSION PROPERTIES

CHILDREN_CARDINALITY, PARENT_UNIQUE_NAME ON ROWS FROM [Adventure

Works] WHERE ([Measures].[Reseller Freight Cost])</Statement>

 </Command>

 <Properties>

 <PropertyList>

 <Catalog>Adventure Works DW 2008R2</Catalog>

 <Format>Multidimensional</Format>

 </PropertyList>

 </Properties>

 </Execute>

 </Body>

</Envelope>

14

response from the data store is analyzed. Initially, all the responses are truncated for

brevity. Subsequently, this research scopes down on Apache Kylin, Druid and

ElasticSearch for a detailed analysis of the existing ad-hoc communication models.

2.3.1 Apache Kylin

Apache Kylin is an open-source Distributed Analytics Engine designed to provide

SQL interface and multi-dimensional analysis (OLAP) on Hadoop. Originally

contributed from eBay Inc., Apache Kylin supports very large datasets and it is very

popular since it supports data cube operations on big data [23] [24]. Apache Kylin

supports multiple data source connections such as JDBC, ODBC and provides plugins

for Tableau and Excel. Additionally, it also provides rich JSON based REST API for

querying purposes.

As seen in figure 2.6 and 2.7 below, REST API consists of Apache Kylin specific

query and response format. Due to this propriety communication format, Apache Kylin

needs a dedicated frontend tool for visualization.

Figure 2.6 : Apache Kylin sample request [24]

{

 "sql":"select * from TEST_KYLIN_FACT",

 "offset":0,

 "limit":50000,

 "acceptPartial":false,

 "project":"DEFAULT"

}

15

2.3.2 Druid

Druid is a high-performance, column-oriented, distributed and open-source big data

store designed for real-time exploratory analytics on large data sets. Druid architecture

and its advanced indexing structure allow arbitrary exploration of billion-row tables

with sub-second latencies [12] [13]. Druid has its proprietary query language and

accepts queries as POST requests. The body of the POST request is a JSON object

containing various query parameters.

Figure 2.8 and Figure 2.9 below illustrate the current ad-hoc nature of request and

response format of the Druid. One of the objectives of this research is to standardize

the request and response formats using a JSON specification, including Druid.

{

 "columnMetas":[{

 "isNullable":1,

 "displaySize":0,

 "label":"CAL_DT", …

 },

 {

 "isNullable":1,

 "displaySize":10,

 "label":"LEAF_CATEG_ID",

 "name":"LEAF_CATEG_ID", …

 }

],

 "results":[

 [

 "2013-08-07",

 "32996",

 "15",

 "Auction",

 "49.048952730908745",

 "1"

], …

],

 "cube":"test_kylin_cube_with_slr_desc",

 "affectedRowCount":0, …

}

Figure 2.7 : Apache Kylin sample response [24]

16

Figure 2.9 : Druid sample response [13]

[{

 "timestamp" : "2013-01-01T00:00:00.000Z",

 "result" : {

 "pagingIdentifiers" : {

 "wikipedia_2012-12-29T00:00:00.000Z_2013-01-10T08:00:00.000Z_2013-01-

10T08:13:47.830Z_v9" : 4

 },

 "events" : [{

 "segmentId":"wikipedia_editstream_2012-12-29T00:00:00.000Z_2013-01-

10T08:00:00.000Z_2013-01-10T08:13:47.830Z_v9",

 "offset" : 0,

 "event" : {

 "timestamp" : "2013-01-01T00:00:00.000Z",

 "robot" : "1",

 "namespace" : "article",

 "anonymous" : "0",

 "unpatrolled" : "0",

 "page" : "11._korpus_(NOVJ)",

 "language" : "sl",

 "newpage" : "0",

 "user" : "EmausBot",

 "count" : 1.0,

 "added" : 39.0,

 "delta" : 39.0,

 "variation" : 39.0,

 "deleted" : 0.0

 } } …

}] }

}]

{

 "queryType": "select",

 "dataSource": "wikipedia",

 "descending": "false",

 "dimensions":[],

 "metrics":[],

 "granularity": "all",

 "intervals": [

 "2013-01-01/2013-01-02"

],

 "pagingSpec":{"pagingIdentifiers": {}, "threshold":5}

 }

Figure 2.8 : Druid sample request [13]

17

2.3.3 ElasticSearch

Elasticsearch is one of the main unstructured text processing service available in the

industry. It is available as a package with related components namely, components to

read from data sources, components to transform data and components to visualize

data. Indeed, Elasticsearch is very flexible to search & analyze data in Real-Time [7].

Additionally, Elasticsearch has its proprietary query language based on JSON.

Therefore, any query needs to be requested as a GET or POST request to the exposed

endpoint.

By analyzing figure 2.10 and 2.11 below, it is concluded that the request and response

format of Elasticsearch is different from Druid or Apache Kylin, discussed previously

in this research. Unfortunately, such issues make big data analytics challenging and

limited. Once the standard specification for communication is published, these

limitations could be avoided and the power of analytics could be explored to a greater

extent.

Figure 2.10 : ElasticSearch sample request [7]

Figure 2.11 : ElasticSearch sample response [7]

{

 "query" : {

 "term" : { "message" : "search" }

 }

}

{

 "matches" : true,

 "explanation" : {

 "value" : 0.15342641,

 "description" : "fieldWeight(message:search in 0), product of:",

 "details" : [{

 "value" : 1.0,

 "description" : "tf(termFreq(message:search)=1)"

 }, {

 "value" : 0.30685282,

 "description" : "idf(docFreq=1, maxDocs=1)"

 }, {

 "value" : 0.5,

 "description" : "fieldNorm(field=message, doc=0)"

 }] } }

18

2.3.4 Data Services

Data services or Data as a Service (DaaS) is a cloud computing aspect that provides

client access to plain data or data analytics and also it is charged as per usage. Data

services are one of the trending data access methods because of its scalability and cost-

efficiency. User doesn't have to maintain a hardware platform or manage data issues

since all the maintenance and data cleaning happens in the cloud. Depending on the

cloud agreement user will be charged for the data load or the access frequency [37].

Data services expose access endpoints to third party users. Users can consume data

through a provided endpoint regardless of the backend data storage technology. The

data service communication model is lightly decoupling. Users can just focus on

managing the frontend based on the data services response. This approach won't be a

problem as long as the user binds to a single or the same data provider. Developers can

reuse the same frontend tools as long as the contract remains. For any reason, if the

data service provider or the cloud platform has to be changed, a new vendor contract

has to be made. Therefore, the method the data is consumed has to be changed and the

approach has to be redesigned [38][39]. This problem happens since there is no

standard communication model for data services. Hence, data service providers should

use a universal communication format like JQA. Subsequently, if the data service

provides the data in the same request-response model, the same research objective can

be achieves using the Data Services itself. The proposed solution of the research can

be expanded to be used in such cloud services, imposing the standards in every

backend, frontend communication methods.

19

2.4 Summary

In the literature survey, available communication specifications, namely, JSON and

XMLA were analyzed to select the most suitable technology for our proposed solution.

Related work existing in past were studied to discover whether anyone had attempted

to bring JSON into big data analytics. Further, the integration techniques existing in

the industry for communication of big data analytics tool were examined. Finally, three

big data stores such as Apache Kylin, Druid, and Elasticsearch were selected and each

of these big data store technologies was analyzed to understand the core structure and

the procedures. This thorough analysis provided a clear knowledge of the existing

solution and its drawbacks which supported in determining the necessity of the

proposed solution.

20

CHAPTER 3

3. METHODOLOGY

21

Under the Methodology, the approaches to solve the big data analytics problem using

JQA is discussed. This section mostly focuses on the JQA communication model,

components, syntaxes, and usage. It provides an overview of the architecture and the

implementation methods of the proposed solution.

3.1 JSON Queries for Analysis

To solve the problems discussed in previous sections of this research, a properly

designed specification for communication is the appropriate solution. In this research,

the main focus is to build a JSON based specification to act as the communication

contract. All existing major big data stores seem to support JSON as a communication

method. Additionally, considering all the benefits of JSON, using JSON to solve this

research problem is more viable.

The JSON specification is based on the existing Microsoft XMLA specification design

components. As an example, dividing the XMLA request to read the Metadata or to

read the actual data in starting tag level is a good design in XMLA. This research

inherits such good design approaches in the specification of XMLA. The main

challenge is to cover all the features and functions that are required in analytics within

the specification. For instance, if the client needs to acquire the distinct count of a

given field, there should be a unique way to request for aggregated distinct count

without being ambiguous from the normal count.

Beyond the normal analytical operations, the design should support other functional

and non-functional aspects such as session handling, error handling and security. Each

of this feature is important and should be carefully designed. With the initial

specification release of version 1.0, the research will only facilitate the basic features.

Other aspects would be covered in subsequent versions of this research over time.

The high-level communication architecture of JQA would be a typical client-server

model. The client implements the JQA query generator on its business layer based on

the data representation layer, user interactions and events (Bar chart, Click on pie chart

slice, Grid, etc.). Then, the generated JQA queries are sent as JSON HTTP request to

the server.

22

Figure 3.1 below depicts the communication specification overview of JQA.

Figure 3.1 : JQA communication overview

Once the server has received the request, it extracts the query and passes it to the data

storage provider. Then, the data store provider parses the query and generates raw

queries to execute on the data store to get the result. Subsequently, the result is

transformed back to satisfy the JQA specification and is passed back to the client as a

JSON response. Finally, the client validates and renders the data based on the frontend

visualization widget.

Proposed JSON specification is named JQA. It is a simple and light-weighted JSON

API, designed specifically for standardizing the data analytical interaction between a

client application and the data store. Additionally, it provides universal data access to

any data store that is supported by JQA communication model. In general, it is built

upon the open Internet standards of HTTP and JSON, and it is not bound to any specific

language or technology. Precisely, the main objective is to define a standard to provide

reliable data access to any client applications regardless of the underlying

dependencies such as operating system, hardware or device.

23

The primary goals of this specification include the following:

• Provide a standard data access and analyses API to data stores so the same query

can be executed in any data store.

• Enforce reusability in front widgets, dashboards and queries.

• Simplify the query model so users can easily develop a query with minimum

effort and technical knowledge.

• Support technologically independent implementations using any tool,

programming language, technology, hardware platform or device.

• Build on open Internet standards such as JSON and HTTP.

• Use the power of free and open-source community for growth and popularity.

• Work efficiently with standard data stores supporting full functionality.

3.2 JQA Implementation

JQA specification primarily defines three methods namely, Meta, Query and Custom,

which define and send JSON for data access and analysis.

Meta section defines how a client needs to write a query to get the meta-information

such as datastore name, catalogue details, version information, etc. from the data store.

Figure 3.2 below shows a sample JQA store Meta method.

Figure 3.2 : JQA store Meta method

Query API provides a simple and powerful way to access and perform analytics on the

data stores. Query API is mainly divided into four sections namely, SEARCH,

AGGREGATIONS, FILTER and OPTIONS. Search API is responsible for getting

non-analytic results such as selecting all or a specific set of data columns. It is a typical

way of searching for specific data without using any analytical calculations.

{

 "meta": {

 "store": {}

 }

}

24

Figure 3.3 below illustrates a sample search API list method.

Figure 3.3 : Search API list method

Aggregation API supports standards and analytical functionalities such as COUNT,

COUNT_D, SUM, AVG and so on. This is the primary endpoint to perform a simple

or complex analytical operation through JQA. Since the specification is fully based on

JSON, it is flexible to build queries by removing or nesting JSON properties and

objects into the query.

The sample aggregation syntax is as defined in figures 3.4 and 3.5 below. Full JQA

specification and related information are publically available in the JQA GitHub

repository [25].

Figure 3.4 : Aggregation API Syntax

{

 "query": {

 "search": {

 "list": {}

 }

 }

}

{

 "query": {

 "aggregation": {

 "function": "<AGGREGATION FUNTION>",

 "field": "<FIELD NAME>",

 "grouping": "<FIELD NAME>",

 "having": {

 "aggregation": {

 "function": "<AGGREGATION FUNTION>",

 "field": "<FIELD NAME>",

 "filters": "<FIELD NAME>"

 }

 }

 }

 }

}

25

Figure 3.5 : Aggregation Count Syntax

3.3 Summary

This chapter thoroughly explained the proposed JQA solution and the main

components related to it. The underlying technologies used to build the JQA

specification is also explained with reasons in selecting those technologies. Similarly,

the high-level architecture of the JQA communication was discussed and JQA

implementation methods were explained in detail along with a detailed discussion on

JQA syntaxes and relevant usages. Additionally, the primary goals of the specification

were also discussed to give an overall knowledge on the proposed solution and to

elaborate on the usefulness of the proposed solution.

{

 "query": {

 "aggregation": {

 "function": "count",

 "field": "<FIELD NAME>"

 }

 }

}

26

CHAPTER 4

4. CASE STUDY, RESULTS AND OBSERVATIONS

27

The nature of big data applications makes it a challenging task to switch between

different technologies with minimum effort. The rapid development of existing and

upcoming big data technologies make consistency and maintenance in big data

communication much harder. This section focuses on a use case to minimize these

problems to derive results based on the observations.

One of the main issues with non-standard big data communication is the massive

development effort invested to endeavor. This use case precisely focuses on this issue

of massive development effort.

4.1 Case Study

This research has introduced the JSON Queries for Analytics to overcome most of the

major communication issues in big data communication spectrum. This big data

communication problem was originally raised while developing an actual enterprise

big data project. The raised original use case was unable to be used due to software

licensing agreements and client data confidentiality.

A different case study was performed to demonstrate the practical usage of JQA in

reducing development time and effort when backend data stores keep changing due to

requirement complexities. According to the results that have been collected from the

case study, the proposed communication standard reduced development effort and

time drastically when a need arises to change the big data backend store in the middle

of the development life cycle or to change the existing functioning system.

This section further describes the requirements of the intended use case, the practical

usage of the JQA, with evidence of the demonstration that proves that JQA reduces

development time. This use case also introduces a JQA integrated dashboard to display

the analytical summary in the form of simple graphical representations using graphs

and charts which helps to generate reports. This is a general requirement for a typical

organization namely, Senior Management, BU Heads and Accounts Department and

so on. Additionally, this section describes the non-functional and functional

requirements and other necessary facts to provide a complete description of the

conducted use case study.

28

The scope of this use case is to identify the usage and benefits of JQA specification in

a practical environment and also to demonstrate and explain the specific scenario taken

from the software engineering industry. This use case was performed merely to

demonstrate the usage of JQA and to show the methods to overcome such

communication issues by using JQA and a properly designed dashboard.

4.2 Dashboard, Results and Observations

The dashboard application developed allows displaying the analytical summary of

selected datasets in the form of simple graphical representation. Also, provides

enhancement requirements to demonstrate usage of JQA in engineering.

The big data analytical dashboard was developed using Angular2, Bootstrap and

ChartJS, to facilitate rich visualization charts and graphs. Dashboard charts were

implemented adhering the JQA specification for communication. The main idea of the

case study is to demonstrate the usage of JQA in big data analytics and highlight key

advantages such as ease of use, minimum development time and effort.

Additionally, the dashboard is customizable to add data retrieving queries runtime and

to configure data source endpoints dynamically. This isolates the effort and time spent

on frontend development when data stores are changed in the backend. This is the

achieved extent in solving the existing limitations in big data communication. The

backend services use Atmo to deliver the mocked responses to the dashboard requests.

Figure 4.1 below represents the simple dashboard build, including a few widgets.

These simple widgets are the basic build blocks of any complex dashboard or graphical

report. Here only a limiting number of widgets in a dashboard is shown to cater to the

use case requirement.

29

Figure 4.1 : Dashboard Overview

To build this dashboard a small development team consisting of five members was

chosen. The man-hours consumed is represented in Table 4.1 below. The dashboard is

developed in a reusable manner. Whereas, all human hours spent on this project by the

engineers does not have to be spent again for a new dashboard to support a different

backend data source.

Table 4.1 : Frontend development effort in hours

Role Effort in hours

Project Manager 40

Technical Lead Engineer 80

Software Engineer 200

UI Engineer 100

QA Engineer 60

Practically, to setup and configure a big data store with backend development requires

considerable human effort and time. Table 4.2 below is a fair industrial estimation for

developing a minimal operational druid based big data backend.

30

Table 4.2 : Backend development effort in hours

Role Effort in hours

Project Manager 40

Technical Lead Engineer 160

Data Science Engineer 400

DevOps 100

Software Engineer 200

These hours are subject to change depending on the use case, the complexity of the

requirements, the experience of the developers and the technology stack used. The

main argument this use case highlights is that human efforts and time spent is

important in software engineering. Also, investing time and effort for building reusable

components would be an advantage in the future.

The use case reveals that changing the frontend for a change in the backend store takes

very less effort due to two facts namely, the reusable design of the frontend dashboard

and the JQA specification. Changing a widget or the entire dashboard for a change in

backend takes only a few minutes with the configurations. Since all the queries are

written according to the JQA specification, no changes have to be done in query

implementation. Similarly, new backend related tasks need to be incorporated and

deployed for the backend to be functional. Existing frontend components and query

templates can be reused because of the JQA integration. This makes development a

whole lot easier for the engineers.

The configurator is designed in such a way that the underlying data source, query or

the endpoint is decoupled from the widget. This gives the flexibility of changing one

backend endpoint to another without any development aid if the endpoint is following

the same communication standards. Similarly, the query to fetch the data from backend

could be changed without any development support. Since this dashboard was

developed using JQA specification. In total, 480 frontend development hours are saved

in with this use case. Considerable backend efforts were saved by skipping the learning

efforts and query implementations.

31

Figure 4.2 below displays widget configurator, the configuration panel for the widget

of the dashboard.

Figure 4.2 : Widget Configurator

32

The JQA implementation should be integrated into every big data technology

communication. Plugging it in separately or having an intermediate proxy will have

performance impacts and complications. Since the standards are well defined

beforehand accepting it and implementing it to the big data vendor’s specific

technology is much easier to be done.

4.3 Summary

In this chapter, a case study on the use case performed and the observations received

from the use case were discussed. Similarly, the methods used to arrive at the results

were explained. Further, this chapter highlighted the drastic effort saved by adhering

to the JQA specification. Also, the time and effort saved in using reusable dashboard

design over the traditional designs were argued. An overall idea of the final system of

the proposed solution is presented with the aid of captures of the built system is

presented. This would help the reader to get a better understanding of the easiness and

user-friendliness of the system.

33

CHAPTER 5

5. CONCLUSION

34

Originally, when big data phenomena were initiated, technologies such as Hadoop and

HDFS were chosen by all, in that period. Those few technologies became the solutions

for all the big data problems. But sooner people realized that there are a lot of areas

not explored in the big data spectrum. New opportunities, new problems, and new

solutions were born when people started analyzing further deeper into big data

analytics. Technologies such as Google Cloud Platform [32] [33], Spark Data

Processing Engine [34], Flink Stream Processing [35], Beam [36] and Airflow

immerged and took control over big data analytics. Communication is an important

factor in any big data application. Currently, most of the communication protocols are

vendor-based and follow different standards and specifications. This causes many

problems for the developers when the requirement arises for changes in the backend

stores of the system.

Here in this research, a standard communication named JQA (JSON Queries for

Analysis) is introduced to overcome most of the problem faced in the communication

protocols. This helps to save time and effort when engineering big data solutions. The

case study discussed in this research showed the easiness in switching to a new

backend without many hassles when adhering to the proposed solution, a standard

communication specification. JQA currently supports only the main communication

methods under the initial release of version 1.0 and is planned to be enhanced in future

versions with other functional and non-functional aspects such as session handling,

error handling, and security.

Initially, the background study about big data, big data analytics and big data

communication was made to understand the current technologies available, trends and

also the drawbacks in the industry. Then, the difficulties faced in the big data industry

by using ad-hoc communication mechanisms were identified and the necessity to

standardize communication was proposed along with well-defined objectives to be

achieved with the proposed solution. Subsequently, existing research in the big data

communication sector was studied and analyzed to gain overall knowledge before

initializing the project. Later, the proposed solution was implemented with a

development team and the complete methodologies used were elaborated with

35

examples. Additionally, a sample case study was also presented along with the results

and observations from the dashboard built.

5.1 Challenges and Limitation

Big data spectrum is an evolving and ever-changing track. If the growth of the big data

industry is carefully observed, the rapid change and improvement it has undergone in

the past few decades could be identified. New technologies, tools, and concepts have

emerged and have started to dominate the industry. New vendors and new job

opportunities have resulted in the immense growth of the big data spectrum. With all

the rapid changes and progress it is a very much difficult task to retain all communities

into one standard communication.

Since the new trend in the industry is to make money by tweaking open source projects,

supporting troubleshoots, modelling for service-oriented payments, vendors prefer to

keep proprietary communication standards within the organization to secure the

proprietary products and to standardize the market value of the product. Making a

universal communication standard may threaten some of the business models of these

organizations and that may cause hesitations in the industry to use or develop a

standard communication protocol for big data communications. That could be the main

reason that so far no individual had tried to develop standards as proposed in this

project. That explains the reason for communication standards being ad-hoc until this

research even though the big data industry has grown in many areas.

JQA is a specification that defines how both parties should communicate to maintain

an industry standard. It is not a built-in driver or any implemented package or module

that users can directly integrate into their application. To implement, there is a bit of

work involved. Users must implement the request and response handling mechanism

defined by the specification standards using a preferred language. But reusable

modules and packages could be build that can handle these dined request-response

models and could be made available for the community. That is up to the open-source

community to decide how to handle the implementation aspects once the JQA

specification is publicly available. A small open source project targeting this purpose

has been initiated by the development team of this research.

36

Despite the proposed solution, JQA specification is proved to be beneficial for the

industry by saving time and effort of the development life cycle plus built-in packages

and modules implemented are being publicly available, it cannot be enforced into any

existing solution. There is a lot of hesitations and obstacles to make this research

practically a success in the market. Consequently, it has been published under a free

and open-source license and is available for anyone to use on their own will.

Additionally, since most of the large scale industries stick to their proprietary solutions

and deliver them as a package, companies using solutions of these massive industries

tend to use proprietary solutions than adapting to new open source solutions. This isn’t

an easy task since so much scattered technologies and vendors are still developing

proprietary products for big data consumers. It will take a lot of effort to earn publicity

to market and popularize such newly published specifications.

5.2 Future Work

This research is the very first attempt to unify the communication standards of all the

big data giants in the market. But eventually, big data developers may come to realize

that existing ad-hoc communication standards are wasting a lot of development effort

and time that could be utilized for any other productive work. At the time when the

developer communities are looking for alternative approaches to unify the

communications standards having a specification developed and published at the

moment may give a starting point and a boost to the communities to try out the JQA

specification as a solution for the main issues in big data communication.

Currently, the JQA version 1.0 supports the basic set of methodologies to interact with

the backend stores. The specification provides a simplified API to communicate and

analyze large data stores with easily designed syntaxes. JQA 1.0 covers all the basic

syntaxes to support any big data analytical needs in the current software industry. Even

though JQA currently supports most of the analytical and query needs of the users but

to promote a new solution to the market it has to cover not only basic functionalities

but also should satisfy other non-functional requirements. Therefore, the future

versions of JQA are planned to support other functional and non-functional features

such as security, session management, advanced error handling and other advanced

37

methods of statistics and analytics. With step by step version upgrades, each of these

functionalities is planned to be covered in the future to roll out a complete industry-

standard communication specification.

Presently, an ongoing open-source project has been initiated, named JQA-Dashboard

to specifically promote the JQA specification. It is the same dashboard used in the use

case discussed in this research. This is a JQA based dashboard supporting pluggable

visual components for rich visualization and presentations. This initial repository is

made with few basic widgets with limited supports for alterations. The future plan is

to provide full flexible widgets so developers can alter the dashboards and widgets

easily for their personal needs.

This project is an initiative to support the JQA specification in the industry. This will

boost up the usage of JQA and would be a preliminary point for the developers who

are looking into standardized communications for big data. Anyone interested in

building this community can contribute to the project by developing and integrating

rich JQA based components into the online repository [25]. This facilitates the open

source community to contribute to this initiative and support and enrich the future of

big data communication. This research would contribute to the growth of development

of JQA based applications.

38

REFERENCES

[1] F. Chang et al., “Bigtable,” ACM Transactions on Computer Systems, vol. 26,

no. 2, pp. 1–26, Jan. 2008.

[2] A. Lakshman and P. Malik, “Cassandra,” ACM SIGOPS Operating Systems

Review, vol. 44, no. 2, p. 35, 2010.

[3] K. Shvachko et al., “The Hadoop Distributed File System,” 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), 2010.

[4] “Apache Hadoop,” Apache Hadoop. [Online]. Available:

http://hadoop.apache.org/. [Accessed: 11-Jan-2018].

[5] S. Ghemawat et al., “The Google file system,” ACM SIGOPS Operating

Systems Review, vol. 37, no. 5, p. 29, Jan. 2003.

[6] J. Dean and S. Ghemawat, “MapReduce,” Communications of the ACM, vol.

51, no. 1, p. 107, Jan. 2008.

[7] “Elasticsearch,” Elastic. [Online]. Available:

https://www.elastic.co/products/elasticsearch. [Accessed: 12-Jan-2018].

[8] H. Chen et al., “Business Intelligence and Analytics: From Big Data to Big

Impact,” MIS Quarterly, vol. 36, no. 4, pp. 1165–1188, Dec. 2012.

[9] P. Russom, "Big Data Analytics", TDWI Best Practices Report, 2011.

[10] Natalia, “XML for Analysis Specification,” Microsoft Docs. [Online].

Available: https://msdn.microsoft.com/en-us/library/ms977626.aspx.

[Accessed: 04-Jan-2018].

[11] Archiveddocs, “SQL Server Analysis Services,” Microsoft Docs. [Online].

Available: https://technet.microsoft.com/en-us/library/ms175609. [Accessed:

05-Jan-2018].

[12] F. Yang, et al., “Druid,” Proceedings of the 2014 ACM SIGMOD international

conference on Management of data - SIGMOD 14, 2014.

[13] A. S. Foundation, “Interactive Analytics at Scale,” Druid. [Online]. Available:

https://druid.apache.org/. [Accessed: 20-Oct-2018].

39

[14] “The most popular database for modern apps,” MongoDB. [Online]. Available:

https://www.mongodb.com/. [Accessed: 03-Aug-2018].

[15] “Introducing JSON,” JSON. [Online]. Available: https://www.json.org/json-

en.html. [Accessed 07-Dec-2018].

[16] D. Crockford, “The application/json Media Type for JavaScript Object

Notation (JSON),” 2006.

[17] N. Nurseitov et al., “Comparison of JSON and XML Data Interchange

Formats: A Case Study”, 2009.

[18] “JSON Encodings for XMPP,” XMPP. [Online]. Available:

https://xmpp.org/extensions/xep-0295.html. [Accessed: 07-Dec-2018].

[19] “RPC 1.0 Specification (2005),” JSON. [Online]. Available: http://json-

rpc.org/wiki/specification. [Accessed: 07-Dec-2018].

[20] “SOAPjr - SOAP Junior makes clean, fast AJAX API's using JSON! - specs,”

archive.li, 06-Dec-2008. [Online]. Available: http://archive.li/tPAJn.

[Accessed: 08-Dec-2018].

[21] G. Spofford, MDX solutions with Microsoft SQL Server Analysis Services 2005

and Hyperion Essbase. Indianapolis, IN: Wiley Pub., 2006.

[22] “PivotGrid Control - Kendo UI with support for jQuery,” Telerik.com.

[Online]. Available: http://www.telerik.com/kendo-ui/pivotgrid. [Accessed: 12-

Jan-2018].

[23] L. Han, “Announcing Kylin: Extreme OLAP Engine for Big Data,” Tech Blog

- eBay Inc., 20-Oct-2014. [Online]. Available:

http://www.ebaytechblog.com/2014/10/20/announcing-kylin-extreme-olap-

engine-for-big-data/. [Accessed: 11-Jan-2018].

[24] “Apache Kylin: OLAP engine for big data,” Apache Kylin | OLAP engine for

big data. [Online]. Available: http://kylin.apache.org/. [Accessed: 11-Jan-

2018].

[25] Kasun, “Kasun88/JQA,” GitHub. [Online]. Available:

https://github.com/Kasun88/JQA.

40

[26] T. Kolajo et al., “Trends and Technologies in Big Data Analytics: A Review,”

Confluence Journal of Pure and Applied Sciences (CJPAS), vol. 1, no. 1, Nov.

2017.

[27] M. D. Assunção et al., “Big Data computing and clouds: Trends and future

directions,” Journal of Parallel and Distributed Computing, vol. 79-80, pp. 3–

15, 2015.

[28] M. M. Alani et al., APPLICATIONS OF BIG DATA ANALYTICS: Trends,

Issues and Challenges. S.l.: SPRINGER NATURE, 2018.

[29] A. Londhe and P. P. Rao, “Platforms for big data analytics: Trend towards

hybrid era,” 2017 International Conference on Energy, Communication, Data

Analytics and Soft Computing (ICECDS), 2017.

[30] E. Bourdy et al., “Big Data: An incoming challenge for vehicular ad-hoc

networking,” Internet Technology Letters, vol. 2, no. 2, Apr. 2018.

[31] A. Rahaman et al., “Challenging tools on Research Issues in Big Data

Analytics,” International Journal of Engineering Development and Research

(IJEDR), vol. 6, no. 1, 2018.

[32] D. Sullivan, “Overview of Google Cloud Platform,” Google Cloud Certified

Associate Cloud Engineer Study Guide, pp. 1–14, 2019.

[33] I. Shabani and A. K. A. A. Dika, “The Benefits of Using Google Cloud

Computing for Developing Distributed Applications,” Journal of Mathematics

and System Science, vol. 5, no. 4, 2015.

[34] “Apache Spark™ - Unified Analytics Engine for Big Data,” Apache Spark™.

[Online]. Available: https://spark.apache.org/. [Accessed: 20-Jan-2018].

[35] “Stateful Computations over Data Streams,” Apache Flink. [Online].

Available: https://flink.apache.org/. [Accessed: 30-Dec-2019].

[36] “Apache Beam,” Brand. [Online]. Available: https://beam.apache.org/.

[Accessed: 30-Dec-2019].

41

[37] S. Kempe, “Data as a Service 101: The Basics and Why They Matter,”

DATAVERSITY, 20-Nov-2013. [Online]. Available:

https://www.dataversity.net/data-as-a-service-101-the-basics-and-why-they-

matter/. [Accessed: 24-May-2020].

[38] “Data as a Service,” MongoDB. [Online]. Available:

https://www.mongodb.com/initiatives/data-as-a-service. [Accessed: 24-May-

2020].

[39] “Data Services - Meet the Demand for Faster, More Agile Integration.,” Talend

Real-Time Open Source Data Integration Software, 24-Mar-2020. [Online].

Available: https://www.talend.com/solutions/information-technology/service-

oriented-architecture/?type=solutionpage. [Accessed: 24-May-2020].

