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Abstract 

Model-Driven Engineering (MDE) is used in the Software Industry which enables 

level to level transformation until the final system is created. This concept helps to 

ensure the bridging of gaps between the problem domain and the solution scope of a 

software system. A software system with a lesser number of software defects or zero 

defects will be successful software. Earlier the defects are identified it reduces the 

cost in terms of effort, time, and human resources, rather fixes that defect in a later 

stage of the software development life cycle. The development of defect prediction 

models and the efficient usage will prevent unnecessary defect fixing efforts later.  

Unified Modelling Language (UML) provides certain notations to create models in 

different aspects. UML Class diagram is very widely used in identifying and 

evolving business entities. UML Class diagrams as entities can be mapped with 

Database Management Systems and propagate the business entities. 

Every business must deal with the inevitable truth of change. To survive in a 

competitive market, business functions, and business directions are under the 

freedom of change at any moment. Stable business solutions are the compulsory 

components of successful businesses.  

Applying changes to Software makes them fragile when they are not done properly. 

The phase where adding changes or in the maintenance mode, and the most 

important stage of the business, must be well away from defects. 

This thesis covers a defect predictive approach that can be applied at the UML class 

diagram models that are created at the beginning of the Software solution, however, 

the defect prevention applies to the maintenance or in the most vital stage of the 

business.  

This thesis discusses the possible defect prediction models that can be used in MDE 

to facilitate fast and efficient software development. At the end of the thesis, it will 

discuss the approach that has taken to introduce a defect prediction strategy to the 

Model-Driven Engineering its evaluation and the contributions to the research 

community 
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