

Govinnage Rasika Perera

(168250J)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2020

2

Govinnage Rasika Perera

(168250J)

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2020

3

Declaration

I declare that this is my own work and this dissertation does not
incorporate without acknowledgement any material previously submitted
for degree or Diploma in any other University or institute of higher
learning and to the best of my knowledge and belief it does not contain any
material previously published or written by another per-son except where
the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to
reproduce and distribute my dissertation, in whole or in part in print,
electronic or other medium. I retain the right to use this content in whole
or part in future works (such as articles or books).

Signature: ……………… Date: ……………….
Name: G R Perera

The supervisor/s should certify the thesis/dissertation with the following
declaration.
I certify that the declaration above by the candidate is true to the best of
my knowledge and that this report is acceptable for evaluation for the MSc
Research Thesis.

Signature of the supervisor: ………………………. Date: ………………..
Name: Dr. Indika Perera

4

Acknowledgement

I would like to place record my deepest gratitude to Dr. Indika Perera in
Department of Computer Science and Engineering, University of
Moratuwa for the generous and invaluable guidance, suggestions and help
provided to fulfil this research. Allowing me to experiment and explore my
own and steps are altered whenever needed is a great fortunate I received.
Thus, I would like to appreciate the guidance and allocating his precious
time for my research throughout the whole time.

Also, I would like to thank Dr. Charith Chitraranjan, Department of
Computer Science and Engineering, University of Moratuwa for co-
ordinating the research and allocating his time for these works.

Last, but definitely not the least I wish to extend my sincere appreciation
to Mrs. D. N. Perera (My Wife) for her inspiration and inputs for this
research and all the hardships she went through to make this research a
success. I have no valuable words to express my thanks for the all those
people who helped me in this research in various aspects to make this
dissertation possible.

5

Table of Contents

6

7

8

9

10

11

1. INTRODUCTION

Contracts have been existed from the day humankind began selling goods
and services. A common definition for a contract is “a promise or set of
promises for the breach of which the law gives a remedy or the performance
of which law in some way recognizes as a duty” [1]. It is a legal bond amidst
two or more parties. Even in a single contract, there might be several
agreements and transactions associated with it.

Due to the industrial revolution and globalization, contracts are getting
smart. Conventional methods of dealing with business contracts have been
changed enormously. One such technological enhancement is known as
blockchain based smart contracts. Blockchain is a disrupting technology
that enforces a record-keeping convention. Further, it can be perceived as
a huge ledger for the financial transactions which majority agrees.
Blockchains can be utilized as a ledger to record anything in the form of
digital data which considered to be valuable and significant to the parties
involved.

On the other hand, smart contracts are structured and developed to be
executed on top of the blockchains. Thus, smart contracts inherit most
properties and behaviours from the blockchain. In particular, properties
such as immutability and distributed storage signifiers the uniqueness
compared to traditional business contracts [2]. These features permit
smart contracts to be comparatively significant in credible means when
performing business contracts and business transactions out of it.

Smart contracts are perfectly matched for the enterprise domains such as
banking, insurance, logistics, properties and fleet management…etc. in
which the contracts can be automated using a sequence of specific set of
rules and quantifiable terms [3] with the self-executable and self-
enforceable features.

Further, smart-contracts have become a trending technology and most
organizations are evaluating the use of smart-contracts to automate their
business transactions which also provides openness to its stakeholders.
These virtual agreements can be used in terms of exchanging valuable
items such as money, content, shares, properties or any other significant
material. The provided algorithm for the smart contracts works in a logical

12

way ensuring that all the terms and conditions are satisfied. When
considering the implementation, most common way of writing smart
contracts is using the Solidity programming language. Solidity is a
contract-oriented programming language that allows writing smart
contracts for the blockchains [4].

There are noticeable inefficiencies when comparing traditional business
transactions with the smart contracts. One such major issue is the
intervention of an external third-party entity in the business operations. A
trusted third party is required to impose the settlements and a cost is
associated with such an involvement. Other limitations are such as delays
in payments from other parties, difficulty in monitoring and managing
each and every transaction in reality. Due to these inefficiencies,
organizations are trying to move away from the traditional transactions.

However, it is worth to mention that even though there’s a significant
motivation of using smart contracts instead of traditional contracts there’s
limiting factors of this movement due to the nature of the contracts. In
reality, there can be practical issues of applying such smart contracts and
there can be situations that still requires a third-party to satisfy legal
requirements [5].

Business Process Modelling Notation (BPMN) is a modelling technique to
model a sequence of steps of a well-defined process. BPMN allows
illustrating a set of business transactions and its associated flows of
information in a graphical way. Moreover, this provides ability to perceive
all business processes and represent their business procedures in a
graphical and standard manner. Further, BPMN has a standardized
specification and can be utilized as a bridge which connects the process
motive and process development providing supplementary information and
explicitness for the use of business process engineering [6]. Thus, it is
evident that the BPMN is a useful notation in planning the business
contracts and standardizing the business processes associated with it.

13

On the other hand, smart contracts implementation using Solidity requires
a significant knowledge in Solidity programming language. If there’s a
possibility or a tool for converting outcome of the BPMN diagrams into
Solidity smart contracts it will be truly beneficial for the business and
community as well. Introduction of a such a translator will inherit the
translation complexity as much as possible in order to provide a smooth
experience in generating Solidity based smart contracts. Thus, a user with
average knowledge in programming should be able to implement smart
contracts with the help of a such BPMN process models to Solidity
translator.

Therefore, major significance of this study is to evaluating the possibility
of generating Solidity smart contracts from the outcome of a given BPMN
diagram with the least expertise in Solidity programming language.

1.1. Problem Statement

Most of the available translators (or equivalent systems) addresses merely
a subsection of BPMN elements or attempts to provide extensions for the
already existing BPMN standard specifications [7]. Therefore, the users
are not being able to convert process models in BPMN into Solidity smart
contracts in a reliable manner.

Therefore, the main problem addressed in this research is defined as “lack
of an efficient translator to reliably convert business process models defined
in BPMN into Solidity smart contracts”.

Translator should be comparatively efficient when converting the BPMN
diagrams into Solidity smart contracts. In other terms, a minimum usage
of Ethereum gas and time units are being considered and it requires a
simplified yet minimum number of lines of code as well.

An accurate translator must produce an executable Solidity code for a
provided BPMN illustration of a valid business logic. Generated Solidity
should be able to compile and deploy into the blockchain network with no
compilation errors.

However, most of the existing solutions are considering a simplicity and
ease of the process modelling task (design phase of the contracts) and very
few has paid attention on reducing the cost of the generated contracts
(deployment phase of the contracts). The deployment cost of the

14

transaction is measured in Ethereum gas. For instance, the standard cost
a transaction is 10gwei which is equivalent to 0.031USD in mainnet1
network of Ethereum as of 08-12-2019.

Moreover, the readability of the Solidity code generated by already existing
systems is quite law since it is difficult to associate and traceback the code
blocks generated for particular business process elements.

In order to solve this problem, research question of this research is
formulated as “what would be the efficiency of a translation of business
process models defined in BPMN in to Solidity smart contract code,
produced by a drag-and-drop icon-based translator?”

1.2. Goals and Objectives

The main goal of the research is “to develop an efficient drag-and-drop icon-
based translator to convert business process models defined in BPMN into
Solidity smart contracts”.

In order to achieve this goal following objectives are defined;

1. Select a standard set of BPMN process elements that covers
majority of business transactions

2. Map outcome of the (1) the selected BPMN process elements into
Solidity language constructs

3. Develop the BPMN-to-Solidity translator from the outcome of (2)
4. Evaluate the efficiency and correctness of translation of the BPMN

to Solidity smart contract code
5. Compare the translator with the existing systems

1.3. Scope and Limitations

The business process modelling technique being considered here, Business
Process Modelling Notation (BPMN) has several versions and for the

1 The cost of a standard transaction in Etherium mainnet is 10 gwei costing around
0.031USD https://ethgasstation.info/ online, accessed 08.12.2019.

15

simplicity BPMN version 2.0 which is managed by OMG group is
considered.

A particular business process model defined in BPMN is assumed to be
convertible if and only if the diagram is prepared using a valid set of BPMN
elements defined in BPMN 2.0 specification with a valid business logic.

Another such assumption is that the user of this translator has an average
knowledge in programming and BPMN. All the business process elements
defined in BPMN 2.0 specification is not handled and it assumed that it
covers basic control flow patterns which is sufficiently covers majority of
the business use cases.

A translator will only cover the generation of the Solidity code and
deployment of such Solidity smart contracts requires manual processes.
Primary goal of the study is to construct a translator to assist creating
smart contracts and does not substitute the manual process of generating
smart contracts and is not targeted to be used as a non-technical material
for creating such contracts. Performance and security requirements of the
generated code still requires manual inspection.

1.4. Research Contributions

Following are the major contributions of this research.

i. A comprehensive study on related work and state-of-the-art
techniques

ii. A collection of mapping principles and concepts that guides the
translation of a business process models defined in BPMN to Solidity
smart contracts

iii. A BPMN XML to Solidity smart contracts translator

16

2. LITERATURE REVIEW
In the introduction chapter, the research problem and significance of the
research discussed. In this chapter, a comprehensive study focuses on
identifying the key business process modelling techniques and tools which
facilitates them are evaluated. It also provides an extensive review on
already existing translators (or similar systems) for the BPMN to Solidity
smart contracts translation. In addition, brief introduction to the smart
contracts and BPMN 2.0 specification and Solidity language constructs
discussed (Figure 2.1).

Figure 2.1: Structure of the literature review

2.1. A brief introduction to the Smart Contracts

Smart contracts are considered as virtual contracts with self-executing and
self-enforcing features managed by a specific set of terms and conditions
defined. These contracts can be used in terms of exchanging valuable items
such as currency, content & media, shares, properties or any other
significant material. An example of an application of a smart contract is
crowd sale. A person who is willing to start a new business can request
capital in small amounts through a smart contract. Another example is
trade receivable to trade payable contract. A particular transaction will
check the balance of the trade receivable, if there is sufficient balance deal
happens, or else the transaction block is invalidated. In this case,
agreement of the contract is whether the trade receivable has sufficient
money.

The obligations of the smart contracts are enforced automatically when the
defined agreements are fulfilled. Once deployed, smart contracts could be

Literature
Review

Smart Contracts
Business Process

Modelling
Techniques

Business Process
Modelling Tools

Analysis of BPMN
and Solidity

Analysis of BPMN
2.0 specification

Analysis of
Solidity Lang
Constructs

Exisiting Systems

17

performed absence of any person’s intervention by gaining time and any
extra effort [8]. When considering the applicability of smart-contracts, any
field driven through the data such as insurance, logistics, banking, real-
estate and fleet management…etc can be benefitted from self-executable
nature of these smart contracts [3].

Business logic or the rules set which governs the business contract is
encoded into smart contract with a programming language such as Solidity
programming language. Upon deployment of the contract, these business
rules are embedded into blockchain as machine instructions and are
executed whenever a transaction occurs for the contract [9].

2.2. Business Process Modelling (BPM) Techniques Analysis

The comparative analysis of the business process modelling techniques is
depicted in Table 2.1. Out of other techniques, Business Process Modelling

18

Notation is selected since it provides better readability and well-defined by
the BPMN specification maintained by OMG group.

19

Table 2.1: Business Modeling Techniques (BPM) Comparison [10]

20

21

22

2.3. Analysis of Modeling Tools & Plugins for BPMN

Once BPMN was selected as business process modelling technique for the
study, a comparative analysis is done on the tools and plugins available for
the BPMN. The Table 2.2 depicts the analysis and the criterion are derived
from an analysis by R. Koncevičs, et al. [11]. As per the analysis ‘Eclipse
BPMN2.0 Modeler’ plugin for the Eclipse IDE is selected as the modeling
tool for this research.

Table 2.2: BPMN Modelling Tools & Plugins Comparison [11]

23

The chosen Eclipse BPMN 2.0 Modeler plugin is a free and open-source
plugin and consists of a graphical user interface (GUI) and assist all the
notations available in BPMN 2.0 specification. The plugin allows
publishing diagrams as a MS Word, images (jpg, png, gif) or web
content(html) and export & import formats such as BPMN and XML are
supported. In-tool verification of BPMN notations is an added advantage.

2.4. Analysis of BPMN 2.0 Specification and Solidity Language

Upon selection of the tool for BPMN, an in-depth analysis of BPMN 2.0
specification is performed to determine the all existing business process
modelling notations in BPMN.

Solidity is a contract-oriented high-level programming language [12].
Latest version is 0.5.92 and documentation is available through their
website. It is constructed to execute on-top of an Ethereum Virtual
Machine (EVM).

2 Documentation for the latest version of Solidity is available in
https://solidity.readthedocs.io/en/v0.5.9/index.html

24

2.5. Existing Systems

2.6.1. Caterpillar

Caterpillar [13] [14] is an open-source business process execution engine
for the Ethereum blockchain. Process modeling tool provides ability to
formulate process models using BPMN process elements. Also consists of
an execution panel to create new instances and monitor state of the process
model.

Caterpillar specializes in work-flows of the process models and provides a
rich set of restful APIs to create, view, update and remove process models.
Diagram elements provides an abstract view of the process model and
lower details such as variable declarations require annotating the diagram
elements [13]. Once process model is created, execution panel provides
ability to create new process instances on the blockchain and state or hand-
offs between multiple parties are visually represented in the execution
panel. Further all the functionalities of the execution panel exposed
through the APIs as well.

Figure 2.2: A Process Model Example in Caterpillar [13]

2.6.2. Unibright

Unibright [15] is a commercial unified framework for blockchain based
integrations. Unibright provides a template based visual experience for the
process integration. Automated smart contract generation can be done for
the diagrams and workflows created using Business Workflow Designer
component. Secondly, generated code can be deployed into blockchain
using ‘Contract Lifecycle Manager’ component which is responsible in
creating, viewing, updating and deleting contracts.

Most of the development information are not accessible to the public hence
it is a commercial solution. However, only a public demo is available in

25

unibright.io3 website. As per the demo, only a multi-party approval
template is available with a limited set of process elements (only ‘approver’
and ‘feedback’). A multi-party approval example is depicted in Figure 2.3.
However, the support for the BPMN notations cannot be verified with the
limited information available.

Figure 2.3: Multiparty Approval Example using Unibright

2.6.3. Petri-Nets Translation and Reduction Approach

García-Bañuelos et. al [16] proposes a Petri-Nets translation and reduction
based approach that make use of Petri-Nets as an intermediate
representation when converting BPMN process models into Solidity
language. This process has several reduction phases using data conditions
as explained in [16]. Figure 2.4 explains the reduction and translation
process of a BPMN diagram with this approach.

As per the authors, gas consumption is minimized by a special process that
encodes current state of the process in a space optimized bit-array data
structure. Further, overhead is minimized by the use of “factory” and
“instances” pattern for deploying multiple instances of the same process
model. These changes are done on top of its previous versions and the
results has shown significant improvement in gas consumption.

3 A demo example of the Unibright is available in https://authentication.unibright.io/ online, accessed
18-01-2020.

26

Figure 2.4: An example of PetriNets Translation and Reduction Approach [16]

2.6.4. Choreography Diagrams Method

Another method is to use Choreography diagrams [17] defined in BPMN
2.0 to create process models for the blockchains. Figure 2.5 depicts a
sample process model using choreography diagrams for a supply chain
example.

Figure 2.5: A Supply Chain Example using Choreography Based Approach [17]

In order to follow up of state of the process instance, a sequence of storage
variables is used. In the code generation algorithm, BPMN Tasks and
AND-join gateways are mapped into functions. The first task is triggered
by ‘Init()’ function and other tasks are invoked by the triggers defined as

27

‘Taski()’. function ‘JoinGatewayi()’ is invoked internally whenever
controlling the process flow is required. These triggers are being executed
in runtime with the API calls from the C-Monitor (Choreography Monitor);
a web-based process execution panel [18].

2.6.5. Extended Choreography Diagrams Approach

Figure 2.6: A Rental Agreement Example [7] using Extended Choreography

Diagrams

28

3. RESEARCH METHODOLOGY

The literature review chapter provided a theoretical base exploring various
business process modelling techniques, process modelling tools & plugins
and evaluating the state-of-the-art related work. Research methodology
provides clear step-by-step road to solve the research problem. In this
chapter, a suitable research methodology will be proposed in order to
achieve proposed goals and objectives.

3.1. High Level Steps of the Research Methodology

Below Figure 3.1 depicts the high-level steps and phases followed for the
research.

Figure 3.1: High level view of the Research Methodology

From the ‘3.2: Data Collection’ phase, all the pending steps have been
discussed in great details.

29

3.2. Data Collection

In the data collection phase, mainly two types of data have been collected,
(1) Smart contract implementations in Solidity code and (2) business
contracts. For the smart contract implementations, online repositories
such as GitHub, GitLab and blog articles such as Medium have been
analyzed. More than sixty (60) contracts from various domains such as
insurance, banking & finance, shipping & logistics were collected. Initial
filtering was done using the ability to deploy the contracts in the
blockchain. In Figure 11, a Solidity smart contract example called
‘Crowdsale’ is depicted. Crowdsale allows collecting of capital for a new
business venture in small amounts from a large number of participants.

Figure 3.2: Crowdsale Solidity Smart Contract4

Further, more than twenty (20) smart contracts which covers business
scenarios such as e-voting, loan-process, rental-payments, crowd-
funding…etc. have been further analysed for the business use case. As the
first steps, sequence diagrams are used to derive the business ue case.
Figure 3.3 depicts the sequence diagram for the same Crowdsale example
in Figure 3.2.

4 Solidity smart contract implementation for Crowdsale is available in
https://github.com/ethereum/ethereum-
org/blob/983ce0b84dbb4008bbd78c9cf5d0e563a619aaae/dist/crowdsale.html online, accessed 19-11-
2019

30

Figure 3.3: Sequence Diagram Representation of Crowd Sale Example

3.3. Implementation of the Translator

The outcome of the concept mapping between BPMN and Solidity in section
3.4 (page 36) is the main input for the development of this translator. The
two key components of implementation of this translator are listed as
below;

(1) BPMN Modeler Integration
(2) BPMN to Solidity Translation

31

3.3.1. BPMN Modeler Integration

The topmost layer of the translator. In theory, BPMN Modeler can be any
tool that can support BPMN 2.0 specification. Facilitating a graphical user
interface (GUI) to manipulate the BPMN process elements of the process
model is the main functionality of this layer. In addition, XSD verification
against the BPMN specification provides instant error reporting to the user
to alter the process model whenever needed.

As per analysis of BPMN modelling tools & plugins in section 2.3 (page 22),
Eclipse BPMN 2.0 Modeler plugin5 is selected as the modelling tool for this
purpose. Further this allows most advanced features such as ‘I/O
Specification of Tasks’ to define input and output for a particular task.

3.3.2. BPMN to Solidity Translation

This layer is responsible for the BPMN 2.0 Abstract Syntax Tree (AST)
validation and Solidity smart contract code generation. Validation of the
process model is done is two phases. Firstly, using XSD validation of the
BPMN XML provided by OMG group. Secondly, using AST validation
consists of a set of custom rules defined before and after AST generation.

High level steps followed to implement BPMN to Solidity translator is
listed below;

5 BPMN2 Modeler Plugin is a free and open source BPMN plugin for Eclipse IDE and it
is available in https://www.eclipse.org/bpmn2-modeler online, accessed 02-03-2020

32

Figure 3.4: Top Level View of BPMN to Solidity Translator

Step I: ANLRv4 Parser Generation for BPMN XML

Once the user model the process model using BPMN modelling tool it can
be exported into a BPMN XML file named as “<filename>.bpmn”. This
XML file contains the meta data of all BPMN elements used and their
relationships between each other.

First step of generating BPMN AST is to parse the BPMN XML. A BPMN
XML is structured with two main parts;

1. Process Elements: Definitions of the BPMN nodes and their
properties and relationships.

2. BPMN Diagram Elements: Contains all graphical information of
the BPMN nodes such as their location, colours…etc.

For this research, we are only interested in ‘Process Elements’ to generate
the BPMN AST and ‘BPMN Diagram Elements’ are simply ignored. BPMN
ANTLR g4 grammar files are generated with adding few modifications for
the already existing XML ANTLR g4 grammar file6 which is available
online. The BPMN grammar and lexer files are depicted in
Figure 3.6 and Figure 3.7.

It is important to point out that the parser generation step is one-time task
(unless there’s modification to the grammar files) and translation events
are being handled by the BPMN parser listener implementation for the
generated parser.

6 The sample ANTLRv4 XML grammar file used is available in https://github.com/antlr/grammars-
v4/blob/master/xml/XMLParser.g4 online, accessed 13-11-2019

33

Figure 3.5: ANLRv4 Parser Generation for BPMN XML

Figure 3.6: BPMN ANTLR g4 Grammar

34

Figure 3.7: BPMN ANTLR g4 Lexer

35

Step II: Implement XML Schema Definition Validator for BPMN

An accumulated version of the BPMN XSDs available online7 are being
used for the validation of the input BPMN XML files. This step makes sure
that the input process model is verified and valid for the further steps.

Step III: BPMN Abstract Syntax Tree (AST) Generation

Step IV: Solidity Abstract Syntax Tree (AST) Generation

In order to generate Solidity Abstract Syntax Tree (AST), BPMN AST is
used as an input. This AST transformation is driven by the BPMN to
Solidity concept mapping formulated in section 3.4(page 36). Secondary
validation of the translator is executed during this phase.

Step V: Solidity Code Generation

As the last step of the translator, Solidity code is generated using a tree
visitor named as ‘Solidity Codegen Tree Visitor’ on top of the Solidity
Abstract Syntax Tree (AST).

7 A set of BPMN XML Schema Definitions are available in
https://www.omg.org/spec/BPMN/2.0/About-BPMN/ online, accessed 21-12-2019

36

3.4. BPMN-to-Solidity Abstract Syntax Tree (AST) Transformation

Abstract Syntax Tree transformation from BPMN AST to Solidity AST is
elaborated in this section. The concepts (or XML nodes) in BPMN XML file
are being mapped from BPMN to Solidity smart contract language
constructs. The outcome of this transformation rules set is being used as
an input for translator implementation. In brief, AST transformation
covered in three key aspects,

Example: Hello World

Hello World example exhibits how a simple process model in BPMN is
being translated into a Solidity smart contract. For the simplicity, let’s
assume that the expected code (refer Figure 3.8) of the contract is known
in advance and it needs to return a ‘hello world’ text phrase upon a trigger.
It is noteworthy that the source BPMN XML depicted in Figure 3.11 is the
generated from the BPMN process modeling tool with the process model
defined in BPMN(refer Figure 3.9).

Figure 3.8: Hello-World Example

Example: Hello World – BPMN Process Model

A BPMN process model is created using process modelling tool as the
initial step (refer Figure 3.9). The BPMN process elements used for this
example are namely a Pool (or Participant), a Start Event, a Task and an
End Event. Additionally, need to configure a I/O output for the Task to
represent the return value (refer Figure 3.10).

37

Figure 3.9: BPMN Process Model for the Hello-World Example

Figure 3.10: Configure A Return Text for the Hello-World Task

Example: Hello World – BPMN XML

After completing the process model, generated XML can be retrieved in
source view of the modelling tool. For instance, BPMN 2.0 Modeler
provides switching source view on-top of the process model diagram. For
the above ‘Hello World’ example, generated XML is listed in Figure 3.11.

38

Figure 3.11: An Excerpt of Hello-World Example’s BPMN XML

In order to generate expected Solidity smart contract code in Figure 3.8,
Translator first parses the BPMN XML file in Figure 3.11. Depicted in
hen the BPMN AST is generated as Figure 3.12. The outcome of the AST
Transformation is the Solidity AST which is depicted in Figure 3.13.

39

Figure 3.12: HelloWorld example’s BPMN AST

Figure 3.13: HelloWorld example’s Solidity AST

Below section explains how BPMN XML nodes are being mapped into
Solidity language constructs in great details.

3.4.1. BPMN Sub-Models to Solidity Mapping

Sub models are the diagram types available in BPMN specification. Three
(3) main sub-models are defined in BPMN 2.0 specification as listed below;

40

1. Processes (Orchestration)

It is worth noting that this ‘public’ and ‘private’ process concepts are
being used with same semantic meaning when translating into
functions of the Solidity smart contract code.

Figure 3.14: BPMN private process example

Figure 3.15: BPMN public process example

2. Choreographies

Choreographies defined a different set of diagram elements in BPMN
specification. Usually these diagrams are existing between interacting
participants.

Since it more focused in communication between multiple parties and
non-existence of data structures such as data objects in combination
with the scope and time limitations of the study, these types of
diagrams are not supported by the translator.

3. Collaborations

Collaborations are the combination of participants and processes and
other diagram types. A collaboration contains two or more participants
exchanging messages between each other.

41

When mapping the process model into Solidity language constructs, the
name of the pool (or participant) become the name of the contract. For
instance, in Figure 3.16 (page 41), the pool name ‘Hello World’ will
generate a smart contract with the name ‘hello World’. Since other
dummy pool has no BPMN elements it won’t create any smart contracts.
Further, any task available will be mapped into functions. Any task
which interacts with an external participant will become public,
otherwise it will be private.

3.4.2. BPMN Elements to Solidity Mapping

BPMN elements in the specification are listed below in the order of
importance;

(i) BPMN Events

1. BPMN Start Event and End Event

As depicted in Figure 3.16, the boundary line of the function is defined
between a ‘Start Event’ and an ‘End Event’. There can be multiple ‘Start
Events’ but only single triggered event for a ‘Participant’. Further, there
can be multiple ‘End Events’ but only single ‘End event’ for a given
request flow of a ‘Participant’.

Figure 3.16: An Example for Start Events and End Events

Above process model defined in BPMN (Figure 3.16) will generate the
below Solidity code depicted in

42

Figure 3.17.

Generated Solidity Code

Figure 3.17: Solidity Code for Start Event and End Event Example

2. BPMN Conditional Start Event

The use of these types of Start Event is a common pattern in BPMN
diagrams. These ‘Conditional Start Events’ will be mapped into user
defined ‘modifiers’ in Solidity language. Further, All the connecting
‘Tasks’ will contain the inline modifier name in the function signature
and the implementation of the modifier will be added as a top-level
construct to the smart contract implementation.

Figure 3.18: Configuring Conditional Start Event

43

Figure 3.19: An Example for the Conditional Start Events

Above process model defined in BPMN (Figure 3.19) will generate the
below Solidity code depicted in Figure 3.20;

Generated Solidity Code

Figure 3.20: Solidity Code for the Conditional Start Event Example

3. BPMN Throw Event with the Escalation Event Definition

Another common pattern of halting business process is the use of
‘Throw Events’. Throw Events in BPMN will be mapped into revert
instruction in Solidity language. Additional information for the error

44

can be provided in the Escalation Code configuration will be used as the
revert message.

Figure 3.21: Configuring Message for Escalation Event

Figure 3.22: Throw Event with Escalation Event Definition Example

Above process model defined in BPMN (Figure 3.22) will generate the
below Solidity code depicted in

Figure 3.23;

45

46

Generated Solidity Code

Figure 3.23: Soldity Code for the Throw Event with Escalation Event Definition

(ii) BPMN Tasks

1. BPMN Tasks (Generic, Manual, User, Business, Service Tasks)
All the BPMN tasks (except ‘Script’, ‘Send’ and ‘Receive’ Tasks)
shares the same functionality when generating Solidity code. There
can be multiple Tasks added in a single request flow chain, the name
of the function will be the first name of the first Task of the request
flow chain. The first Task that apprears after the ‘Start Event’ is
named as Top-Level Task for the internal references.

Figure 3.24: Generic Tasks Example

47

Figure 3.25: Configuring Documentation for BPMN Elements

Generated Solidity Code

Figure 3.26: Solidity Code for Tasks Example

2. BPMN Script Task
Code generation for the Script Task is same as the Generic Tasks.
Only difference is that the body of the generated function is
appended with the ‘script value’ of the Script Task.

48

Figure 3.27: Example for Script Task

Figure 3.28: Configuring Script Value of the Script Task

49

Above process model defined in BPMN (Figure 3.27) will generate the below Solidity
code depicted in

Figure 3.29;

50

Generated Solidity Code

Figure 3.29: Solidity Code for Script Task

3. BPMN Send Task

Send Tasks in BPMN is being used for sending messages. When
generating Solidity code, Send Tasks are mapped into notifications
in Solidity. All the input parameters for the BPMN Message element
will be used for the event definition and parameter values will be
used for the ‘emit’ instruction in Solidity.

Figure 3.30: Example for Send Task

51

Figure 3.31: Configuring Input Data Mapping for Send Task

Above process model defined in BPMN (Figure 3.30) will generate
the below Solidity code depicted in Figure 3.32;

Generated Solidity Code

Figure 3.32: Solidity Code for Send Task Example

4. BPMN Receive Task
Receive Task in BPMN is used to receive incoming messages from
the external parties. When generating Solidity code for the Receive

52

Tasks are mapped into an API call for an oracle node off the chain.
Potential uses of these API calls are to retrieve the latest currency
exchange rates, latest fuel prices…etc. In the implementation level,
Oraclize library is used to perform these operations.

Figure 3.33: Configuring Incoming Message for Receive Task

Figure 3.34: Example for Receive Task

Above process model defined in BPMN (Figure 3.33) will generate
the below Solidity code depicted in Figure 3.35;

Generated Solidity Code

53

Figure 3.35: Solidity Code for the Receive Task

(iii) BPMN Data Objects

54

Figure 3.36: Data Objects and Data Store References Example

Above process model defined in BPMN (Figure 3.36) will generate
the below Solidity code depicted in Figure 3.37.

 Generated Solidity Code

Figure 3.37: Solidity Code for Data Objects and Data Store References Example

3.4.3. BPMN Representation of Solidity Top Level Constructs

55

Figure 3.38: Solidity Top-Level Constructs Example

Figure 3.39: Solidity Code for the Top-Level Constructs Example

(i) Solidity Contract

In order to represent a Contract in BPMN, A single Participant (or
Pool) can be utilized. Pre-processed name of the participant will be
mapped as the name of the contract. For the pre-processing, all
whitespaces are removed and words are joined with camel-case.

56

However, the name of the participant should not be prefixed with
the ‘Library’ or ‘Interface’ as they are already reserved words.

(ii) Solidity Interface / Library

Interface or library in Solidity will be represented as a Participant
in BPMN with name prefixed by ‘Library’ or ‘Interface’ accordingly.

(iii) Solidity State Variables

State variables can be public or private. If it is a public state
variable, Data Stores in BPMN can be used to represent it. By
nature, Data Stores is accessible by any process. On the other hand,
a non-public state variable can be represented using Data Objects.
By nature, Data Objects has the life span of a particular process that
it resides.

(iv) Solidity Functions

(v) Solidity Function Modifiers

Any number of pre-defined function modifiers can be added into the
function-signature by adding ‘:<modifier>’ after the function-name.
A custom function modifier is also possible with the Conditional
Start Events. In this case, an implementation of the custom modifier

57

will be added into top-level of the contract and modifier will be added
into any immediate Tasks after the event.

(vi) Solidity Events
Event notifications in Solidity can be represented as a Send Task in
BPMN. Input data mapping configurations can be used to define the
event structure of the even-definition and event parameters for the
‘emit’ Solidity instruction as well.

(vii) Solidity Structs
Structs can be represented as Data Stores and Data Objects with
one or more Data Inputs associated as fields of the struct. Public
Structs can be represented as Data Stores and non-public structs
can be represented in Data Objects.

58

4. EVALUATION AND RESULTS

4.1. Translator Evaluation

A translator which converts one source language in to another source
language is called a Transpiler. Evaluating transpilers is challenging and
tedious task. The evaluation of the translator is performed in two
approaches (1) Matching a set of abstract features in BPMN and Solidity,
(2) Conducting a survey for a selected user group of expertise.

4.1.1. Abstract Features Matching in BPMN and Solidity

Related work in the same domain [19] [17] has used similar approaches for
the evaluation of the translation. A collection of abstract features is
compared against the input and output source languages.

In the data collection phase of this study, a sequence of smart contracts
written in Solidity language was gathered. These are mapped into business
process models using selected BPMN process modeler, Eclipse BPMN 2.0
plugin. Resulting process models could be transformed in back to the
Solidity smart contracts with a minimum effort and this enables
minimizing the effect of transferability factor from the process models.

Figure 4.1: BPMN to Solidity Translator Evaluation Using Abstract Features

Thereafter, BPMN process models created from the early process is fed into
the translator to produce Solidity smart contracts. Subsequent, generated
Solidity smart contracts and process models defined in BPMN XML are
matched against a set of abstract features as depicted in Figure 4.1. A list
of abstract features and meaning of each feature in BPMN and Solidity
language is listed in Table 4.1.

59

Table 4.1: A List of Abstract Features in BPMN and Solidity

As per the literature review, a similar evaluation approaches are being
used for the evaluation of the similar systems [19] [17]. For the purpose of
evaluation, Weber, Ingo et. al exploits a sequence of permissible execution
traces for each process model. The expected outcome of the BPMN-to-Java
transformer in [19] uses a sequence of defective instances as for example
zero errors, incomplete diagrams, element misses and isolated elements for
the evaluation.

Results of the abstract feature matching in BPMN and Solidity is
summarized in Table 4.2. Six (6) different process models and respective
regenerated Solidity code in different domains and scales are tested
against sixty distinct process model permutations (6 x 10 alterations).
Impacts and existence of the abstract features in each case is manually
verified.

Table 4.2: Summary of Abstract Feature Matching in BPMN XML and Solidity

60

4.1.2. Conducting a Survey for a Selected User Group

A survey was conducted to measure the level of accuracy of the BPMN-to-
Solidity translator for a selected user group of expertise. The survey is
prepared with an online questionnaire8 with two main sections; 1) Details
of the Participant (refer Table 4.3) and 2) Examples Input and Output of
the Translator (refer Table 4.4). The reason for selecting Likert-Scale items
for the correctness of the translation is that there’s no single ‘Yes/No’
answer for them since it is a language translation from a source language
(BPMN XML) to another target language (Solidity language).

Table 4.3: Details of the Participant

Question Answer Type

1. Your Name? Free Text

2. Your Workplace / Academic Institution? Free Text

3. Your Current Position / Profession? Free Text

4. Rate Your knowledge on BPMN? 5-level Likert Item*

5. Rate Your knowledge on Programming Skills? 5-level Likert Item*

6. Rate Your knowledge on Solidity Language? 5-level Likert Item*
* 5-level Likert scale included ‘Excellent’, ‘Good’, ‘Average’, ‘Poor’, ‘Very Poor’.

Table 4.4: Example Input and Output of the Translator

8 The online questionnaire used to collect responses is available in
https://forms.gle/jG4yAc8uBRq2ZgVQ8

61

The participants of the Survey include different categories such as
Business Analysts, Technical Specialists, Software Engineer, Masters
Graduates, Lecturer, and Ph.D. Students. Even though the sample size is
quite low(N=7), it serves the goal of the study as to get the feedback of an
expertise user group. Thus, the reliability of the feedback is believed to be
increased.

1. Rate your knowledge on BPMN?

The summarized results for this question are depicted in Figure 4.2. More
than 86% percent has BPMN knowledge and only 14% has ‘Poor’
knowledge in BPMN.

Figure 4.2: Summary of the BPMN Knowledge Ratings

2. Rate your knowledge on Programming Skills?
The summarized results for this question are depicted in Figure 4.3. As per
the results all participants have ‘Average’, ‘Good’ and ‘Excellent’
programming skills. No ratings for ‘Poor’ or the ‘Very Poor’ level of
knowledge.

Figure 4.3: Summary of the Programming Skills Ratings

3. Rate your knowledge on Solidity Language?

Excellent
0%

Good
29%

Average
57%

Poor
14%

Very Poor
0%

Excellent
29%

Good
14%

Average
57%

Poor
0% Very Poor

0%

62

The summarized results for this question are depicted in Figure 4.4. As per
the results 29% of the participants are ‘Very Poor’ in Solidity language. It
is also important to highlight that there are no participants with the
‘Excellent’ and ‘Good’ in knowledge. This is expectable since smart-contract
development is a new area for the most of the Developers.

Figure 4.4: Summary of the Solidity Language Ratings

Following are the overall summary of the results for the four questions
provided.

4. Your score for the Readability of the input Diagram?

In Figure 4.5, 88% (24+35+29) of the participants agrees that the input
BPMN diagram notations are sufficient and only 12% claims it is ‘Poor’ and
need to be improved. However, there are no participants with ‘Very Poor’
status.

Figure 4.5: Summary of the Readability of the Input Diagram

Some of the free-text feedback received for this question includes below;

Excellent
0%

Good
0%

Average
14%

Poor
57%

Very Poor
29%

Excellent
29%

Good
35%

Average
24%

Poor
12% Very Poor

0%

63

- “The language used for defining objects is understandable”
- “Quiet clear and relationships are well illustrated”
- “Isolated notations, unnamed relationships”
- “Its similar to a flow diagram?”
- “what is pool 1?”

5. Your score for the Correctness of the Business Logic of the BPMN-to-
Solidity Translation?

In Figure 4.6, 24% of the participants believes that the business logic of
the translation is ‘Excellent’ and 90% (40+26+24) of the participants
agrees that the business logics of the translation is sufficiently accurate.
Only 10% mentions the translation is ‘Poor’ and need improvements.
However, there’s none for the ‘Very Poor’.

Figure 4.6: Summary of the Correctness of the Business Logic

Some of the free-text feedback received for this question includes below;

- “State transitions are correctly stated”
- “Number of logics aligns with the diagram”
- “couldn’t figure out the construct”
- “I think the mapping almost covered the given scenarios”
- “Good conversion. Small gaps in readability”
- “Decision point can be improved”
- “The hidden details of BPMN is clearly expressed in the code.”

6. Your Score for the Correctness of the State Transitions of the BPMN-
to-Solidity Translation?

Excellent
24%

Good
26%

Average
40%

Poor
10% Very Poor

0%

64

In Figure 4.7, none of participants rated ‘Very Poor’ for the correctness of
the State Transitions. 19% stated as ‘Excellent’ and 74% (26+29+19) of
the participants are satisfied by the correctness of the translation.

Figure 4.7: Summary of the Correctness of the State Transitions

Some of the free-text feedback received for this question includes below;

- “Good translation - e.g. variable names”
- “State transitions have been correctly modeled”
- “I can identify the mapping of variables and methods between
BPMN-to-Solidity to a greater extent”
- “Most of the state transitions are captured, yet can improve”
- “No clear enough representations”
- “state transition is not playing major part in the diagram or in
the code in this scenario”
- “program doesn’t depend much on state transition”

7. Your Score for the Correctness of the Entry Points of the BPMN-to-
Solidity Translation?

In Figure 4.8, none of participants rated, ‘Very Poor’. 14% stated as
‘Excellent’ and 83% (29+40+14) of participants are satisfied with the
correctness of the entry points of the translation.

Excellent
19%

Good
29%

Average
26%

Poor
26%

Very Poor
0%

65

Figure 4.8: Summary of the Correctness of the Entry Points

Some of the free-text feedback received for this question includes below;

- “public methods are properly defined in BPMN as well as in Solidity.”
- “Clearly marked in both BPMN and Solidity”
- “Got the logic”
- “All entry points are represented in the translation”
- “not much familiar”
- “Can be identified to some extent, but I feel the diagram should be more
detailed”
- “Function wise decoupling has achieved this.”
- “Could improve the representations of the entry points”

Further, the detailed responses for the survey can be found in Appendix
E in page 150. These results suggest that the translator was able to
translate the BPMN diagram XML to Solidity smart contracts in a
satisfactory level.

Excellent
14%

Good
40%

Average
29%

Poor
17%

Very Poor
0%

66

4.2. Re-generated Solidity Smart Contract Code Evaluation

Truffle9 is a framework that provides a development environment for
building, testing and deploying applications on blockchains using
Etherium Virtual Machine (EVM). Re-generated Solidity smart contracts
were tested using tests written in Truffle framework. Tests are written for
a selected set of smart contracts namely, ‘Lottery’, ‘Marriage-Wedding
Gifts’, ‘Basic Token’ which covers most frequent set of BPMN elements [20].
Input process models defined in BPMN and generated Solidity code is
available in section Error! Reference source not found. (page Error!
Bookmark not defined.). Additional configurations performed for the test
framework is listed below;

migrations/deploy_contracts.js

truffle-config.js

A sample test written in truffle is listed below. Truffle tests for the other
selected smart contracts is available Appendix D (page 147).

tests/BasicToken.test.js

9 Truffle development environment and test framework is available in
https://www.trufflesuite.com/docs/truffle/testing/testing-your-contracts online, accessed 19-01-2020.

67

68

69

Figure 4.9: Test Execution Output of the Tests Written in Truffle

BPMN elements covered in each process model of the contracts is listed in
Error! Reference source not found.. Basic control patterns and most
frequent BPMN elements are covered as in [20].

70

4.3. Analysis of the Available Systems

4.3.1. Caterpillar

71

Figure 4.10: Annotating Solidity Variables in BPMN Diagram in Caterpillar

4.3.2. Unibright

.

72

73

74

75

76

77

78

79

80

81

.

82

83

84

85

86

87

.

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

representations of the ASTs can be found in Figure 3.12 and Figure 3.13 in
page 39.

109

For the evaluation of the Solidity codes generated by the XML
representation of the BPMN diagrams, six use cases of different
complexities from different domains has been selected. Thus, the
generalizability of the BPMN-to-Solidity translator introduced in this
research is limited to the scope of the use cases provided in page Error!
Bookmark not defined.. BPMN elements coverage for contracts are listed
in Error! Reference source not found. in page Error! Bookmark not defined..
However, in theory; once the BPMN-to-Solidity translator supports all
elements listed in BPMN2.0 specification; it should be able to produce a
valid Solidity smart contract code for any given BPMN XML.

Writing tests to verify the business logic also requires a significant effort.
Thus, as a future work, the translator should be able to generate the test
templates for the generated contracts minimizing this tedious effort.
Integrating a test-framework such as Truffle will provide a runtime for the
contracts and allow the translator to deploy the contracts & tests in the
test networks as well.

The participation count of the qualitative survey is very limited (N=7). In
the future, participant count can be increased to get a rich feedback.
However, one advantage of this limited participation is the chance of
getting feedback considering the quality over quantity.

110

In addition, the feedback received through the qualitative survey study
(refer Appendix E, page 150) signifies that there are several improvements
needs to be done. There’s a room for the improvement in the representation
for the complex diagrams. Also, the state management of the generated
contract is need to be improved without depending on the process designer
to implement the additional checks. Moreover, as per the feedback
traceability and readability of the generated code can be further improved
by adding compiler generated comments.

A limited support available for the reusability of the same code-blocks
across the multiple contracts. This is allowed through sharing the Tasks
across multiple Pools in BPMN terms. However, still the translator
supports single file generation as an output. Thus, sharable code-blocks are
limited to the scope of a single file.

111

References

[1] A. J. Bellia, “Promises, Trust, and Contract Law,” 47 AM.J.JURIS., vol. 25, pp.

25-26, 2002.
[2] G. Valentina, L. Fabrizio, D. Claudio, P. Chiara and S. Víctor, “Blockchain and

Smart Contracts for Insurance: Is the Technology Mature Enough?,” MDPI,
Basel, Switzerland, 2018.

[3] ChainTrade, “10 Advantages of Using Smart Contracts,” Medium, 27 Dec
2017. [Online]. Available: https://medium.com/@ChainTrade/10-advantages-
of-using-smart-contracts-bc29c508691a. [Accessed 25 June 2018].

[4] “Solidity,” 2018. [Online]. Available:
https://solidity.readthedocs.io/en/v0.4.25/. [Accessed 26 11 2018].

[5] A. C. Paulus, “Implementation of Blockchain Powered Smart Contracts in
Governmental Services,” Delft University of Technology, 2018.

[6] Lucid Software Inc., “What is Business Process Modeling Notation,”
Lucidchart, 2019. [Online]. Available:
https://www.lucidchart.com/pages/bpmn. [Accessed 1 June 2019].

[7] J. Ladleif, M. Weske and I. Weber, “Modeling and Enforcing Blockchain-
Based Choreographies,” BPM 2019, vol. 11675, no. Lecture Notes in
Computer Science, pp. 69-85, 2019.

[8] L. Severeijns, “What is blockchain? How is it going to affect Business?,” Vrije
Universiteit , Amsterdam, 2017.

[9] ISCA, “Blockchain: Re-imagining Multi-Party Transactions for Businesses,”
Institute of Singapore Chartered Accountants, Singapore , 2017 .

[10] L. Aldin and S. d. Cesare, “A Comparative Analysis Of Business Process
Modelling Techniques,” in U.K. Academy for Information Systems (UKAIS
2009), 14th Annual Conference, UK, 2009.

[11] R. Koncevičs, L. Peņicina, A. Gaidukovs, M. Darģis, R. Burbo and A. Auziņš,
“Comparative Analysis of Business Process Modelling Tools for Compliance
Management Support,” The Journal of Riga Technical University, vol. 21, pp.
22-27, 2017.

[12] T. K. Sharma, “WHAT IS SOLIDITY, PROGRAMMING LANGUAGE FOR
ETHEREUM SMART CONTRACTS?,” Blockchain Council, 2 September
2017. [Online]. Available: https://www.blockchain-council.org/ethereum/what-
is-solidity-programming-language-for-ethereum-smart-contracts/. [Accessed 2
June 2019].

[13] O. López-Pintado, B. García-Bañuelos, M. Dumas and I. Weber, “Caterpillar:
A Blockchain-Based BusinessProcess Management System,” in Proceedings of
the BPM Demo Track and BPM Dissertation Award co-locatedwith 15th
International Conference on Business Process Modeling (BPM 2017),,
Barcelona, Spain, eptember 13, 2017..

112

[14] O. López-Pintado, L. García-Bañuelos, M. Dumas and I. Weber,
“CATERPILLAR: A Business Process Execution Engine on the Ethereum
Block,” Software: Practice and Experience, no. 00, pp. 01-45, 2018.

[15] S. Schmidt and M. Jung, “The unified framework for blockchain based
business integration,” Unibright, 2018.

[16] L. García-Bañuelos, A. Ponomarev, M. Dumas and I. Weber, “Optimized
Execution of Business Processes on Blockchain,” in Business Process
Management: 15th International Conference, Barcelona, Spain, 2017.

[17] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev and J. Mendling,
“Untrusted Business Process Monitoring and Execution Using Blockchain,” in
BPM 2016, Rio de Janeiro, Brazil, Springer, Cham, Sept. 2016, pp. 329-347.

[18] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev and J. Mendling,
“Using Blockchain to Enable Untrusted Business Process Monitoring and
Execution, Technical Report UNSW-CSE-TR-201609,” University of New
South Wales, 2016.

[19] “The usage of BPMN library to define workflow,” 03 01 2017. [Online].
Available: https://dspace.cvut.cz/bitstream/handle/10467/66832/F3-BP-2017-
Brichkova-Evgeniya-The_usage_of_BPMN_library_to_define_workflow.pdf.
[Accessed 20 04 2019].

[20] M. Muehlen zur and J. Recker, “How Much Language is Enough? Theoretical
and Practical Use of the Business Process Modeling Notation.,” in In Proc.
CAiSE, 2008.

[21] P. Hegedűs, “Towards Analyzing the Complexity Landscape of Solidity Based
Ethereum Smart Contracts,” MTA-SZTE Research Group on Artificial
Intelligence, vol. 7, no. 1, p. 6, 2019.

[22] L. M. Laird and M. C. Brennan, “ Cyclomatic Complexity,” in Software
Measurement and Estimation: A Practical Approach, New Jersey, A John
Wiley & Sons, Inc., 2006, pp. 58-62.

[23] S. J. Naqvi, “Converting a Property Rental Paper Contract into a Smart
Contract,” Medium, 24 April 2017. [Online]. Available:
https://medium.com/@naqvi.jafar91/converting-a-property-rental-paper-
contract-into-a-smart-contract-daa054fdf8a7. [Accessed 1 June 2019].

[24] Q. Fang, “shares-contract,” Github, 23 April 2018. [Online]. Available:
https://github.com/qimingfang/shares-contract. [Accessed 1 May 2019].

[25] P. Brudny, “learning-solidity-2018,” Medium, 1 August 2018. [Online].
Available: https://github.com/pbrudny/learning-solidity-2018. [Accessed 4
April 2019].

[26] “Multi Party Settlement,” Merit Systems Private Limited, [Online]. Available:
http://meritsystems.com/multi-party-settlement/. [Accessed 26 June 2018].

[27] A. Awaysheh and R. D. Klassen, “The impact of supply chain structure on the
use of supplier socially responsible practices,” International Journal of
Operations & Production Management, vol. 30, no. 12, pp. 1246-1268, 2010.

[28] K. Francisco and D. Swanson, “The Supply Chain Has No Clothes:
Technology Adoption of Blockchain for Supply Chain Transparency,”

113

Department of Marketing & Logistics, University of North Florida,
Jacksonville, 2018.

[29] A. Wright and P. De Filippi, “Decentralized Blockchain Technology and the
Rise of Lex Cryptographia,” p. 58, 10 March 2015.

[30] S. Seebacher and R. Schuritz, “Blockchain Technology as an Enabler of
Service Systems: A Structured Literature Review,” in The International
Conference on Exploring Services Science, Rome, 2017.

[31] G. V. Research, “Blockchain Technology Market Size, Share & Trends
Analysis Report By Type (Public, Private, Hybrid), By Application (Financial
Services, Consumer Products, Technology, Telecom), And Segment Forecasts,
2018 - 2024,” San Francisco, United States, 2018.

[32] V. Buterin, “Ethereum White Paper : A NEXT GENERATION SMART
CONTRACT & DECENTRALIZED APPLICATION PLATFORM,” 2014.

[33] Object Management Group (OMG), “Business Process Model and Notation
(BPMN),” OMG, 2013.

114

5. Appendices

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

Appendix E: Detailed Responses of the Survey
Table 5.1: Detailed Responses for the Survey Study

Exam
ple Question

Answers (%)
Free Text Feedback Exc. Good Avg. Poor Very

Poor

Re
nt

al
 A

gr
ee

m
en

t

1. Your Score for the
Readability of the input
Diagram

14.3 57.1 28.6 0 0 - Based on the knowledge
- The language used for defining objects is

understandable
- Consists the logical expressions in illustration well
- understood the logic
- Quite clear and relationships are well illustrated
- Isolated notations, unnamed relationships
- Its similar to a flow diagram

2. Your Score for the
Correctness of the
Business Logic of the
BPMN-to-Solidity
Translation

14.3 28.6 42.9 14.3 0 - Seems to cover all the scenarios in the diagram
- I think you have used modifiers in Solidity to

represent if-else branching in BPMN. However, it's
somewhat difficult for me to understand.

- The diagram is directly converted. However the flow
is not represented in the code.

- not much familiar
- State transitions are correctly stated
- Number of logic aligns with the diagram
- couldnt figure out the construct

3. Your Score for the
Correctness of the State
Transitions of the

28.6 28.6 0 42.8 0 - i hardly notice the state transition is implemented
- I can identify the mapping of variables and methods

between BPMN-to-Solidity to a greater extent
- All objects are properly transmitted.

152

BPMN-to-Solidity
Translation

- Not using for the current job role
- State transitions have been correctly modeled
- Good translation - e.g. variable names
- We required to know the formal definition in order

to verify

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

28.6 42.8 28.6 0 0 - Seems to cover all the scenarios in the diagram
- Public methods are properly defined in BPMN as

well as in Solidity.
- Clearly marked in both BPMN and Solidity
- Got the logic
- Most of the entry points are well stated
- correct translation
- We required We required to know the formal

definition in order to verify

M
ar

ri
ag

e:
 W

ed
di

ng
 G

ift

1. Your Score for the
Readability of the input
Diagram

14.3 57.1 14.3 14.3 0 - This is seems to be fuzzy to me
- Difficult to figure out the exact scenario
- Connection of the variables is not represented. The

connection between Marriage and account balances
is confusing as well.

- Got the logic
- Quiet clear and readable
- what is pool1?
- simple scenario

2. Your Score for the
Correctness of the
Business Logic of the

14.3 28.6 42.8 14.3 0 - Seems to me i am lost hr
- Difficult to identify the if-else portion in the diagram
- The hidden details of BPMN is clearly expressed in

the code.

153

BPMN-to-Solidity
Translation

- Not much familiar
- Decision point can be improved
- unable to determine - no if statements
- since its a simple scenario, its easy to verify

3. Your Score for the
Correctness of the State
Transitions of the
BPMN-to-Solidity
Translation

0 42.8 28.6 28.6 0 - Seems to me i am lost hr
- No clear enough representations
- Balance state transitions is clearly mentioned
- Not much familiar
- State transitions are well illustrated
- good translation
- since its a simple scenario, its easy to verify

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

14.3 28.6 42.8 14.3 0 - Seems to me i am lost hr
- Can be identified to a some extent, but I feel the

diagram should be more detailed
- Function wise decoupling has achieved this.
- not much familiar
- Could improve the representations of the entry

points
- all covered
- since its a simple scenario, its easy to verify

Se
lla

bl
e 1. Your Score for the

Readability of the input
Diagram

42.8 14.3 42.8 0 0 - Input is true to the scenario
- Objects are properly defined and can easily be

understood
- Not Clear
- Got the logic
- Quiet clear and meaningful
- readable - no tangling items

154

- Complex scenario

2. Your Score for the
Correctness of the
Business Logic of the
BPMN-to-Solidity
Translation

14.3 28.6 28.6 28.6 0 - cover all the scenarios in the diagram
- I couldn't properly find if-else tags
- The BPMN flows are correctly visible
- not much familiar
- Business logic are correctly captured and modeled
- unable to determine
- Complex scenario

3. Your Score for the
Correctness of the State
Transitions of the
BPMN-to-Solidity
Translation

28.6 28.6 28.6 14.3 0 - state transition is covers as to the scenario
- They can properly be identified within the diagram

and mapped Solidity code
- Catches the states of the respective objects
- not much familiar
- Most of the state transitions are captured, yet can

improve
- good
- Complex scenario

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

28.6 42.8 14.3 14.3 0 - cover all the scenarios in the diagram
- Can easily be identified
- not much familiar
- Almost all of the entry points are clearly identified
- good
- Complex scenario

Lo
tt

e
ry

 1. Your Score for the
Readability of the input
Diagram

14.3 28.6 57.1 0 0 - covers all the scenarios
- Given business logic is properly mapped into the

diagram

155

- All representations are better
- got the logic
- Generated code is quiet clear
- what is pool 1
- Complex scenario

2. Your Score for the
Correctness of the
Business Logic of the
BPMN-to-Solidity
Translation

28.6 28.6 28.6 14.3 0 - covers all the scenarios to best of my knowledge
- I think the mapping almost covered the given

scenarios
- Translation is correct and readable
- not much familiar
- All the business logic are captured
- all covered
- Complex scenario

3. Your Score for the
Correctness of the State
Transitions of the
BPMN-to-Solidity
Translation

0 57.1 28.6 14.3 0 - program dose't depend much on state transition
- The data objects in storing variables can't be seen in

this diagram as opposed to the previous diagrams
- All elements are captured
- not much familiar
- State transitions of the objects are correctly

identified
- mostly covered
- Complex scenario

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

57.1 14.3 14.3 14.3 0 - it has all the entry points that are in the diagram
- Those are properly defined; therefore, can easily be

identified
- All elements are captured
- not much familiar
- All the entry points are correctly captured
- good job

156

- Complex scenario

Ba
si

c T
ok

en

1. Your Score for the
Readability of the input
Diagram

28.6 14.3 42.8 14.3 0 - covers all the scenarios
- It's hard for me to identify the scenario from the

given diagram
- All cases captured
- Got the idea
- All the points are clearly identified and included in

the code
- isolated items
- Complex scenario

2. Your Score for the
Correctness of the
Business Logic of the
BPMN-to-Solidity
Translation

14.3 28.6 28.6 28.6 0 - covers all the scenarios to best of my knowledge
- Same as above
- Good coversion. Small gaps in readability
- not much familiar
- Business logic are clearly depicted
- unable to determine
- Complex scenario

3. Your Score for the
Correctness of the State
Transitions of the
BPMN-to-Solidity
Translation

14.3 42.8 14.3 28.6 0 - covers all the scenarios to best of my knowledge
- Same as above
- Translation is to the point
- not much familiar
- All the state transitions are well captured and

demonstrated
- all covered
- Complex scenario

157

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

28.6 28.6 14.3 28.6 0 - covers all the scenarios to best of my knowledge
- Same as above
- All entry points are shown correctly
- not much familiar
- All the entry points are captured
- good
- Complex scenario

Cr
ow

d
Sa

le

1. Your Score for the
Readability of the input
Diagram

28.6 14.3 42.8 14.3 0 - Covers the explained scenario
- My score would be 50% for this diagram and I feel

we need to have the detailed business logic to make
a more accurate comment

- Complex usecase nicely illustrated in diagram
- Got the idea
- Well structured and clear
- pool 1, tangling items, isolated items
- Complex scenario

2. Your Score for the
Correctness of the
Business Logic of the
BPMN-to-Solidity
Translation

14.3 28.6 28.6 28.6 0 - correct based on my knowledge
- Same as above
- Captures all the cases
- not much familiar
- All the business logic are captured
- good
- Complex scenario

3. Your Score for the
Correctness of the State
Transitions of the

14.3 28.6 42.9 14.3 0 - state transition is not playing major part in the
diagram or in the code in this scenario

- Same as above
- Transitions are capture well

158

BPMN-to-Solidity
Translation

- not much familiar
- State transitions are well identified
- good
- Complex scenario

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

28.6 28.6 28.6 28.6 0 - correct based on my knowledge
- Same as above
- All entry points are represented in the translation
- not much familiar
- Most of the entry points are captured
- all covered
- Complex scenario

