A TOKEN BASED TRANSLATOR TO CONVERT
BPMN TO SOLIDITY SMART CONTRACTS

Govinnage Rasika Perera

(1682507)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sr1 Lanka

April 2020

A TOKEN BASED TRANSLATOR TO CONVERT
BPMN TO SOLIDITY SMART CONTRACTS

Govinnage Rasika Perera

(1682507)

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sr1 Lanka

April 2020

Declaration

I declare that this is my own work and this dissertation does not
incorporate without acknowledgement any material previously submitted
for degree or Diploma in any other University or institute of higher
learning and to the best of my knowledge and belief it does not contain any
material previously published or written by another per-son except where

the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to
reproduce and distribute my dissertation, in whole or in part in print,
electronic or other medium. I retain the right to use this content in whole

or part in future works (such as articles or books).

Signature: | DF21 < M

Name: G R Perera

The supervisor/s should certify the thesis/dissertation with the following
declaration.

I certify that the declaration above by the candidate is true to the best of
my knowledge and that this report is acceptable for evaluation for the MSc

Research Thesis.

Signature of the SUPervisor:ccoeevveeevieennnnn. Date: ovvvvviininninnn.

Name: Dr. Indika Perera

Acknowledgement

I would like to place record my deepest gratitude to Dr. Indika Perera in
Department of Computer Science and Engineering, University of
Moratuwa for the generous and invaluable guidance, suggestions and help
provided to fulfil this research. Allowing me to experiment and explore my
own and steps are altered whenever needed is a great fortunate I received.
Thus, I would like to appreciate the guidance and allocating his precious
time for my research throughout the whole time.

Also, I would like to thank Dr. Charith Chitraranjan, Department of
Computer Science and Engineering, University of Moratuwa for co-
ordinating the research and allocating his time for these works.

Last, but definitely not the least I wish to extend my sincere appreciation
to Mrs. D. N. Perera (My Wife) for her inspiration and inputs for this
research and all the hardships she went through to make this research a
success. I have no valuable words to express my thanks for the all those
people who helped me in this research in various aspects to make this
dissertation possible.

Table of Contents

Deeclaration 3
Abstyget ... 4
Acknowledgement . . = =~ o o 6
TableofContents~ v
Bastof Migliee . = . 9
listofdablee. 11
Iistof Abbreviations. = L 12
listol Appendices 12
1. INIRODUCTION - - . . 13
1.1. Problem Statement........c.ccccoeeeiiiiieieiiiececeeece e e 15
12 GoalsandObjecaves.. 16
138 PScopeandlimitations. . . 16
14 Research Contributions.... ..., . . i 17

2 LITERATURERENVIEW. 18
2.1. A brief introduction to the Smart Contracts.........cccoeeveveerreveecereecrevennene. 18
2.2. Analysis of Business Process Modelling (BPM) Techniques 19
2.3. Analysis of Modeling Tools & Plugins for BPMN.........cccccccceiiiiiirennnene 24
2.4. Analysis of BPMN 2.0 Specification and Solidity Language.................. 25
2.5. EXIStING SYSLEIMIS ..ccouviieiiiecietiser ettt et 26
2.6.1. Caterpillar .. .0 0 26
2.6.2. Unibmght - = 26
2.6.3. Petri-Nets Translation and Reduction Approach.........cccccevvevineveeveeiccnnee. 27
2.6.4. Choreography Diagrams Approach..........cocccceeverrerenerenenesenisenenesesse e 28
2.6.5. Extended Choreography Diagrams Approachccoceceveveeenreeeneesreeenenn 29

89 RESEARCHMEFTHODOIOGY = @ .- - 30
3.1. High Level Steps of the Research Methodology........c.ccccevveerrrerrenerennne. 30
832 DataCollection. 31
3.3. Implementation of the Translator.........cccccovieeeeiieiicieececieceecceeee e, 32
3.3.1. BPMN Modeler Integration..........ccccceveuevieiieesseeneseeieseseseeeeeeese e ssessenens 33
3.3.2. BPMN to Solidity Translation............cccceveeeeeereeeveneseeieneeeeseeeeseseeeseseseseseens 33

3.4. BPMN-to-Solidity Abstract Syntax Tree (AST) Transformation 38
3.4.1. BPMN Sub-Models to Solidity Mapping........cccceceevueeereeresresesrereesseseseeenens 41
3.4.2. BPMN Elements to Solidity Mappingcccceceeveveresreereeeiesieeerereeeseseseeseens 43
3.4.3. BPMN Representation of Solidity Top Level Constructs........cocececvevveenee 56

4 BVAILATIONANDRESULTS . - - 60

41 . TranslatorBvaluation..... 60

4.1.1. Abstract Features Matching in BPMN and Soliditycccccevevevereecineene. 60
4.1.2. Conducting a Survey for a Selected User Group........ccccceeevereeeeveererenereennnns 62
4.2. Re-generated Solidity Smart Contract Code Evaluation....................... 68
4.3. Comparative Analysis with the Existing Systemscccccecevvvvercerernnnee. 72
4.3.1. Caterpillar . © ... 72
4.3.2. Unibright .. o 73
4.3.3. Petri-Nets Translation and Reduction Approach.........cccceeeeeverveveriesnennenns 75
4.3.4. Choreography Diagrams Approach..........ccecuevevernnieesenineniseieneneseseseenenens 76
4.3.5. Extended Choreography Diagrams Approachcccceceveevevereveneneneecereenenn 77
4.3.6. Comparative Analysis of the Diagramscoececeeererrecerennresenerenseseneennens 80
4.3.7. Comparative Analysis of the Generated Solidity Codes..........cccceevvrrrnennene 86
4.4. Input BPMN Diagrams and Re-generated Solidity Codes 92
4.4.1. Rental Agreement 92
4.4.2. Marriage: Wedding Gift..........cccoevueueerireriseieseesieeieeesese e sesseessesanens 95
4.4.3. Sellable..” . - 95
4.4.4. Lotlery.. 97
4.4.5. BagicToken ... = o oG 99
4.4.6. CrowdSale o 100
4.5. Gap Analysis of the Supported BPMN 2.0 Constructs...........ccceeuuuunee. 103
4.6. Gap Analysis of the Supported Solidity Constructs.........cccecverveevenennen. 104
4.6. BPMN 2.0 Modelling Recommendations.........cccccceeveveenreveeseereeseesrenneenens 106
4.7. Chapter ConclUuSION........cccecieeeeiiiecieeee ettt ae e enaeneas 107
5 ConclusionandPutirve Work~ 108
Bl Conclusion.... ... 108
5.2. Limitation and Future Work..........cccccoouimeiinicieiieeceetesieeee e 110
Refevenees. 112
6. Appendices _ . . - 115
Al. Unibright Workflow Designer generated Solidity Code for the Demo
WOrKflow EXAMPIEccoviiiiieececiiiiiececenessessessissesessmisassse sisiissssssssessasssssssssssassssssse 115
B1. Process Model XML Source for the Loan Assessment Example Using
Caterpillar v3.0 .. . 121
B2. Process Model XML Source for the Loan Assessment Example Using
Pioposed Approach. = @ 128
C1. Generated Smart Contract for Loan Assessment Example Using
Caterpillar. o L 137
C2. Generated Smart Contract for Loan Assessment Example Using Proposed
Apprpach 148
D1: Truffle Test Written for Invoice Handling Smart Contract....................... 150
D2: Truffle Test Written for Lottery Smart Contract..........cccecvvrevvevenrenrenenen. 151

D3: Truffle Test Written for Marriage Smart Contractcccceevvecercvvrernenenen. 151
List of Figures
Figure 2.1: Structure of the literature review...........ccccccevvevereciecenecreceeenee 18
Figure 2.2: A Process Model Example in Caterpillar [13].........cccccccevevenneee. 26
Figure 2.3: Multiparty Approval Example using Unibright........................ 27
Figure 2.4: An example of PetriNets Translation and Reduction Approach
&/ = = - . . 28
Figure 2.5: A Supply Chain Example using Choreography Based
Abptoacb i@t~ .~ . . - 28
Figure 2.6: A Rental Agreement Example [7] using Extended
Choreographyliageams.. . . .~ . . . - . . 29
Figure 3.1: High level view of the Research Methodology 30
Figure 3.2: Crowdsale Solidity Smart Contractcceceevvecveveneeceeceeeenne 31
Figure 3.3: Sequence Diagram Representation of Crowd Sale Example.. 32
Figure 3.4: Top Level View of BPMN to Solidity Translator....................... 34
Figure 3.5: ANLRv4 Parser Generation for BPMN XML............ccccocvunennee. 35
Hieuve 56: BPNIN ANTIRda Gvavgar = .~ ... 35
igine 37 BENIN ANTI Rodlexer. = .. . = - . . . 36
Higure 3.8 HelloWorld Example & & 38
Figure 3.9: BPMN Process Model for the Hello-World Example................ 39
Figure 3.10: Configure A Return Text for the Hello-World Task............... 39
Figure 3.11: An Excerpt of Hello-World Example’s BPMN XML............... 40
Figure 3.12: HelloWorld example’s BPMN AST ... 41
Figure 3.13: HelloWorld example’s Solidity ASTcccoeeveiieeieeeceeeeiee, 41
Figure 3.14: BPMN private process €Xample..........cccccovuveeeeeeeirreeeeeeeeienneeeeeeneeeeeenn 42
Tigure 3 15 BEMN publicprocessexample = .. . 42
Figure 3.16: An Example for Start Events and End Events........................ 43
Figure 3.17: Solidity Code for Start Event and End Event Example........ 44
Figuyve 8 18: Conbguring Conditional Start Event: ...~ ... 44
Figure 3.19: An Example for the Conditional Start Events 45
Figure 3.20: Solidity Code for the Conditional Start Event Example........ 45
Figure 3.21: Configuring Message for Escalation Event.............................. 46

Figure 3.22
Figure 3.23

: Throw Event with Escalation Event Definition Example 46
: Soldity Code for the Throw Event with Escalation Event

Delimifion ..« . 48
Pigurte 374 Generic IlasksExample 48
Figure 3.25: Configuring Documentation for BPMN Elements.............cccccceveeeuennnns 49
Figure 3.26: Solidity Code for Tasks Example..........cccccoovirrrvrcrenecrecreerenens 49
Hhemed 2 Exampleforsenpt 128k = .~ . @ . = 50
Figure 3.28: Configuring Script Value of the Script Task.........cccceeueeuennnne 50
Figurve 3.29: Sohdity ¢ 'ode for Seript taek . . . 52
Higive 3 30 Kxaniple forpend Tagk = = o 52
Figure 3.31: Configuring Input Data Mapping for Send Task.................... 23

Figure 3.32: Solidity Code for Send Task Example...........cccoevvvvvevereenennnnn. 53

Figure 3.33: Configuring Incoming Message for Receive Task.................... 54
Higure 3 34: Esample for Receive Fask = . . . 54
Figure 3.35: Solidity Code for the Receive TaskK.........cccecveevveereeeecreecneennne. 59
Figure 3.36: Data Objects and Data Store References Example................. 56
Figure 3.37: Solidity Code for Data Objects and Data Store References
Wxample.. @ 56
Figure 3.38: Solidity Top-Level Constructs Example...........cccccovvvvennennenee. 57
Figure 3.39: Solidity Code for the Top-Level Constructs Example............ 57
Figure 4.1: BPMN to Solidity Translator Evaluation Using Abstract
Realures... 60
Figure 4.2: Summary of the BPMN Knowledge Ratings...........cccccveuennenene. 63
Figure 4.3: Summary of the Programming Skills Ratings...........c.c........... 63
Figure 4.4: Summary of the Solidity Language Ratingsc..ccceuvene.... 64
Figure 4.5: Summary of the Readability of the Input Diagram.................. 64
Figure 4.6: Summary of the Correctness of the Business Logic 65
Figure 4.7: Summary of the Correctness of the State Transitions............. 66
Figure 4.8: Summary of the Correctness of the Entry Points 67
Figure 4.9: Truffle Test Written for the Basic Token Smart Contract...... 70
Figure 4.10: Test Execution Output of the Tests Written in Truffle......... 71
Figure 4.11: Annotating Solidity Variables in BPMN Diagram in
Caterplle~ 73
Figure 4.12: Unibright excerpt code for the multi-party approval template example
(complete code is available in Appendix A, page 115) ..c.ccveeeeneeeeiieeeeceeeeeee e 75
Figure 4.13: An Excerpt of the Generated Solidity Code in [16] 76
Figure 4.14: Process Instance Contract Implementation Templating
Alsorithm 48 - . = 76
Figure 4.15: Code of the Generated Common Interface (excerpt) 77
Figure 4.16: BPMN Diagram of the Loan Assessment Process Model
uemeCaterpillar 181 =~ =~ = = o . = = = = = 81
Figure 4.17: Solidity Annotations Required for the Global Process Level
mmCaterpillae . . 81
Figure 4.18: Solidity Annotations Required for the ‘Enter Loan
Apphieation Tasgk 0 Caterpilln @ 82
Figure 4.19: Solidity Annotation Syntax for the Tasks in Caterpillar [13]
.. 82
Figure 4.20: BPMN Diagram of the Loan Assessment Process using the
ryoposed Apprésgaech 82
Figure 4.21: Summary of Metrics Results of the Total Solidity Contract
Complexity. =~ = 90
Figure 4.22: Summary of the Average Metrics Results of Solidity Contract
Complexitsy 90

Figure 4.23: Truffle Framework Output of the Deployment of Contracts 91

Figure 4.24: BPMN Diagram for the Rental Agreement Business Contract

.. 93
Figure 4.25: Re-generated Solidity Code for the Rental Agreement
Bueiness Confrget 94
Figure 4.26: BPMN Diagram for the Marriage_Wedding Gift Business
¢ontpgiet. = 95
Figure 4.27: Re-generated Solidity Code for the Marriage. Wedding Gift
Business Contrget 95
Figure 4.28: BPMN Diagram for the Sellable Business Contract.............. 96
Figure 4.29: Re-generated Solidity Code for the Sellable Business
Confract .. .~ 97
Figure 4.30: BPMN Diagram for the Lottery Business Contract............... 98
Figure 4.31: Re-generated Solidity Code for the Lottery Business
tonfrgget. 99

Figure 4.32: BPMN Diagram for the Basic Token Business Contract.... 100
Figure 4.33: Re-generated Solidity Code for the Basic Token Business

confrgget 100
Figure 4.34: BPMN Diagram for the Crowd Sale Business Contract 101
Figure 4.35: Re-generated Solidity Code for the Crowd Sale Business
Confrglet = 103
Figure 4.36: Abstract BPMN Diagram for the Crowd Sale........................ 106
List of Tables

Table 2.1: Criterion for the Business Process Modelling Techniques
Comparicon l1ol> -~ . -~ -~ .~ . 19
Table 2.2: Business Modeling Techniques (BPM) Comparison [10] 2]
Table 2.3: BPMN Modelling Tools & Plugins Comparison [11].................. 24
Table 4.1: A List of Abstract Features in BPMN and Solidity.................... 61
Table 4.2: Summary of Abstract Feature Matching in BPMN XML and
Sohdity . .~ 61
Table 4 3= Detallsotthe Participant.. = -~ ..~ = . . . 62
Table 4.4: Example Input and Output of the Translatorccc..c.......... 62
Table 4.5: Sample Contracts against Covered BMPN Elements................ 72
Table 4 6: Suniinary of the Similar 1ranglatoee. . . = = 78
Table 4.7: Loan Assessment Steps Comparisoncccccceeeeveeeeeeeeeseeseeenenne 83
Table 4.8: Solidity Source Code Metrics for Smart Contracts [21]............. 86
Table 4.9: Cyclomatic Complexity Recommendations [22]ccccocoue..... 88
Table 4.10: Generated Solidity Code Complexity Analysis Metrics Results
.. 89
Table 4.11: Deployment Gas consumption Identification 92
Table 4.12: Gap Analysis of the Supported BPMN 2.0 Constructs.......... 103
Table 4.13: Gap Analysis of the Solidity Language Constructs Supported
.. 104
Table 6.1: Detailed Responses for the Survey Study........ccccceovvevrecreeenennnn. 152

List of Abbreviations

BPM : Business Process Model

BPMN : Business Process Modelling Notation
XML : Extensible Markup Language

XSD : XML Schema Definition

AST : Abstract Syntax Tree

PoC : Proof Of Concept

SLOC : Source Lines of Code

LLOC : Logic Lines of Code

List of Appendices

Appendix A: Unibright Workflow Designer Generated Solidity Code....115
Appendix B: Diagram Source for the Loan Assessment Example using

Caterpillar and Proposed Approach........ccceeeveiuiiiniiiiiniiiinininnenennnen.. 121
Appendix C: Generated Solidity Code for the Loan Assessment Example

using Caterpillar and Proposed Approach..........cccevvviiiiiiiiiiiininennnnen. 137
Appendix D: Truffle Test Cases for the Generated Code..................... 150
Appendix E: Detailed Responses of the Survey........cccccoevviviiinenienenn.. 152

10

1. INTRODUCTION

Contracts have been existed from the day humankind began selling goods
and services. A common definition for a contract is “a promise or set of
promises for the breach of which the law gives a remedy or the performance
of which law in some way recognizes as a duty” [1]. It is a legal bond amidst
two or more parties. Even in a single contract, there might be several
agreements and transactions associated with it.

Due to the industrial revolution and globalization, contracts are getting
smart. Conventional methods of dealing with business contracts have been
changed enormously. One such technological enhancement is known as
blockchain based smart contracts. Blockchain is a disrupting technology
that enforces a record-keeping convention. Further, it can be perceived as
a huge ledger for the financial transactions which majority agrees.
Blockchains can be utilized as a ledger to record anything in the form of
digital data which considered to be valuable and significant to the parties
involved.

On the other hand, smart contracts are structured and developed to be
executed on top of the blockchains. Thus, smart contracts inherit most
properties and behaviours from the blockchain. In particular, properties
such as immutability and distributed storage signifiers the uniqueness
compared to traditional business contracts [2]. These features permit
smart contracts to be comparatively significant in credible means when
performing business contracts and business transactions out of it.

Smart contracts are perfectly matched for the enterprise domains such as
banking, insurance, logistics, properties and fleet management...etc. in
which the contracts can be automated using a sequence of specific set of
rules and quantifiable terms [3] with the self-executable and self-
enforceable features.

Further, smart-contracts have become a trending technology and most
organizations are evaluating the use of smart-contracts to automate their
business transactions which also provides openness to its stakeholders.
These virtual agreements can be used in terms of exchanging valuable
items such as money, content, shares, properties or any other significant
material. The provided algorithm for the smart contracts works in a logical

11

way ensuring that all the terms and conditions are satisfied. When
considering the implementation, most common way of writing smart
contracts is using the Solidity programming language. Solidity is a
contract-oriented programming language that allows writing smart
contracts for the blockchains [4].

There are noticeable inefficiencies when comparing traditional business
transactions with the smart contracts. One such major issue is the
intervention of an external third-party entity in the business operations. A
trusted third party is required to impose the settlements and a cost is
associated with such an involvement. Other limitations are such as delays
in payments from other parties, difficulty in monitoring and managing
each and every transaction in reality. Due to these inefficiencies,
organizations are trying to move away from the traditional transactions.

However, it is worth to mention that even though there’s a significant
motivation of using smart contracts instead of traditional contracts there’s
limiting factors of this movement due to the nature of the contracts. In
reality, there can be practical issues of applying such smart contracts and
there can be situations that still requires a third-party to satisfy legal
requirements [5].

Business Process Modelling Notation (BPMN) is a modelling technique to
model a sequence of steps of a well-defined process. BPMN allows
illustrating a set of business transactions and its associated flows of
information in a graphical way. Moreover, this provides ability to perceive
all business processes and represent their business procedures in a
graphical and standard manner. Further, BPMN has a standardized
specification and can be utilized as a bridge which connects the process
motive and process development providing supplementary information and
explicitness for the use of business process engineering [6]. Thus, it is
evident that the BPMN 1is a useful notation in planning the business
contracts and standardizing the business processes associated with it.

12

On the other hand, smart contracts implementation using Solidity requires
a significant knowledge in Solidity programming language. If there’s a
possibility or a tool for converting outcome of the BPMN diagrams into
Solidity smart contracts it will be truly beneficial for the business and
community as well. Introduction of a such a translator will inherit the
translation complexity as much as possible in order to provide a smooth
experience in generating Solidity based smart contracts. Thus, a user with
average knowledge in programming should be able to implement smart
contracts with the help of a such BPMN process models to Solidity
translator.

Therefore, major significance of this study is to evaluating the possibility
of generating Solidity smart contracts from the outcome of a given BPMN
diagram with the least expertise in Solidity programming language.

1.1. Problem Statement

Most of the available translators (or equivalent systems) addresses merely
a subsection of BPMN elements or attempts to provide extensions for the
already existing BPMN standard specifications [7]. Therefore, the users
are not being able to convert process models in BPMN into Solidity smart
contracts in a reliable manner.

Therefore, the main problem addressed in this research is defined as “lack
of an efficient translator to reliably convert business process models defined
in BPMN into Solidity smart contracts”.

Translator should be comparatively efficient when converting the BPMN
diagrams into Solidity smart contracts. In other terms, a minimum usage
of Ethereum gas and time units are being considered and it requires a
simplified yet minimum number of lines of code as well.

An accurate translator must produce an executable Solidity code for a
provided BPMN illustration of a valid business logic. Generated Solidity
should be able to compile and deploy into the blockchain network with no
compilation errors.

However, most of the existing solutions are considering a simplicity and
ease of the process modelling task (design phase of the contracts) and very
few has paid attention on reducing the cost of the generated contracts
(deployment phase of the contracts). The deployment cost of the

13

transaction is measured in Ethereum gas. For instance, the standard cost
a transaction is 10gwel which is equivalent to 0.031USD in mainnet!
network of Ethereum as of 08-12-2019.

Moreover, the readability of the Solidity code generated by already existing
systems 1s quite law since it 1s difficult to associate and traceback the code
blocks generated for particular business process elements.

In order to solve this problem, research question of this research is
formulated as “what would be the efficiency of a translation of business
process models defined in BPMN in to Solidity smart contract code,
produced by a drag-and-drop icon-based translator?”

1.2. Goals and Objectives

The main goal of the research is “to develop an efficient drag-and-drop icon-
based translator to convert business process models defined in BPMN into
Solidity smart contracts’.

In order to achieve this goal following objectives are defined;

1. Select a standard set of BPMN process elements that covers
majority of business transactions

2. Map outcome of the (1) the selected BPMN process elements into
Solidity language constructs

3. Develop the BPMN-to-Solidity translator from the outcome of (2)

4. Evaluate the efficiency and correctness of translation of the BPMN
to Solidity smart contract code

5. Compare the translator with the existing systems

1.3. Scope and Limitations

Developing a translator to convert business process models defined in
BPMN into Solidity smart contracts is the main focus of this research. Due
to the time limitations, scope has been narrowed down and few
assumptions are made.

The business process modelling technique being considered here, Business
Process Modelling Notation (BPMN) has several versions and for the

' The cost of a standard transaction in Etherium mainnet is 10 gwei costing around
0.031USD https://ethgasstation.info/ online, accessed 08.12.2019.

14

simplicity BPMN version 2.0 which is managed by OMG group is
considered.

A particular business process model defined in BPMN is assumed to be
convertible if and only if the diagram is prepared using a valid set of BPMN
elements defined in BPMN 2.0 specification with a valid business logic.

Another such assumption is that the user of this translator has an average
knowledge in programming and BPMN. All the business process elements
defined in BPMN 2.0 specification is not handled and it assumed that it
covers basic control flow patterns which is sufficiently covers majority of
the business use cases.

A translator will only cover the generation of the Solidity code and
deployment of such Solidity smart contracts requires manual processes.
Primary goal of the study is to construct a translator to assist creating
smart contracts and does not substitute the manual process of generating
smart contracts and is not targeted to be used as a non-technical material
for creating such contracts. Performance and security requirements of the
generated code still requires manual inspection.

1.4. Research Contributions
Following are the major contributions of this research.

1. A comprehensive study on related work and state-of-the-art
techniques
1. A collection of mapping principles and concepts that guides the
translation of a business process models defined in BPMN to Solidity
smart contracts
1. A BPMN XML to Solidity smart contracts translator

15

2. LITERATURE REVIEW

In the introduction chapter, the research problem and significance of the
research discussed. In this chapter, a comprehensive study focuses on
identifying the key business process modelling techniques and tools which
facilitates them are evaluated. It also provides an extensive review on
already existing translators (or similar systems) for the BPMN to Solidity
smart contracts translation. In addition, brief introduction to the smart
contracts and BPMN 2.0 specification and Solidity language constructs
discussed (Figure 2.1).

VN
Literature
Review
/J\ Busi@cess Busir@cess AnaI@PMN /J\
Smart Contracts TMcohdneillmgs Modelling Tools and Solidity Exisiting Systems
N 9 N N N

Analysis of BPMN
2.0 specification

N—

alysis of
Solidity Lang
CQnstrugts

Figure 2.1: Structure of the literature review

2.1. A brief introduction to the Smart Contracts

Smart contracts are considered as virtual contracts with self-executing and
self-enforcing features managed by a specific set of terms and conditions
defined. These contracts can be used in terms of exchanging valuable items
such as currency, content & media, shares, properties or any other
significant material. An example of an application of a smart contract is
crowd sale. A person who is willing to start a new business can request
capital in small amounts through a smart contract. Another example is
trade receivable to trade payable contract. A particular transaction will
check the balance of the trade receivable, if there 1s sufficient balance deal
happens, or else the transaction block i1s invalidated. In this case,
agreement of the contract is whether the trade receivable has sufficient
money.

The obligations of the smart contracts are enforced automatically when the
defined agreements are fulfilled. Once deployed, smart contracts could be

16

performed absence of any person’s intervention by gaining time and any
extra effort [8]. When considering the applicability of smart-contracts, any
field driven through the data such as insurance, logistics, banking, real-
estate and fleet management...etc can be benefitted from self-executable
nature of these smart contracts [3].

Business logic or the rules set which governs the business contract is
encoded into smart contract with a programming language such as Solidity
programming language. Upon deployment of the contract, these business
rules are embedded into blockchain as machine instructions and are
executed whenever a transaction occurs for the contract [9].

2.2. Business Process Modelling (BPM) Techniques Analysis

In this analysis, seven most common business process modelling
techniques have been compared and analysed for the purpose of this
research. Namely, (i) Business Use Cases (i) Role Activity Diagrams
(RAD) (iii) Data-Flow Diagrams (DFD) (iv) Flow Charts (v) Business
Process Modelling Notation (BPMN) (vi) Petri Nets and (vii) Business
Object Interaction (BOID) diagrams are evaluated.

The criterion used for the analysis is depicted in Table 2.1. These criterions
were selected from a research by L. Aldin|and S. de Cesare [10].

Table 2.1: Criterion for the Business Process Modelling Techniques Comparison [10]

Criteria Description

Flexibility The extent to which changes can be applied to a business
process, only to those parts that need to be changed
without replacing it completely.

Ease of Use The extent to which how this technique can be applied
without a specialized knowledge.

Understandability | The extent to which the technique can be understood by
the users without having a specialized knowledge of it.

Simulation The extent to which the technique is capable of
dynamically simulating a business process.

Scope The extent to which the process modelling elements are
defined.

The comparative analysis of the business process modelling techniques is
depicted in Table 2.1. Out of other techniques, Business Process Modelling

17

Notation is selected since it provides better readability and well-defined by
the BPMN specification maintained by OMG group.

18

Table 2.1: Business Modeling Techniques (BPM) Comparison [10]

Flexibility Ease of Use Understandability Simulation Scope
Flow Simple to update Easy to learn e Kasy to To build active Use as a
Charts Easy to modify Easy to use understand flow charts, technique to
Do not possess a Limited set of e (lear semantics many model processes
sophisticated symbols of the constructs commercial Does not have
mechanism for simulation tools the means to
modularising or are available explicitly
packaging that adopt flow represent
diagrams; hence charts as the services, events
invoking other underlying and rules
processes from technique (e.g.
flow charts can iGrafx)
be problematic
Petri Nets Graphical and Small number of | ¢ Require a certain Use for The concepts of
precise modelling level of expertise transforming service, goal and
mathematical elements to to model static process role are not
notations construct a models into explicitly
Suitable for the model dynamic supported
analysis and Limited explicit simulation
reengineering of expressivity — models
business process (non user- Enables an
models oriented inexperienced
technique) user to monitor

difficult to adopt

how processes
are executed

19

Flexibility Ease of Use Understandability Simulation Scope
Data Flow Multiple levels of Small number of Easy to Not a technique Use four (4) basic
Diagrams representation elements require understand that can easily elements for
Can modularise to construct a Easy to draw, support modelling
the model improve and simulation business
representation of The expressivity amend processes:;
the process of the modelling process, data
elements store,
facilitates the terminators and
construction of a flow
DFD model for
inexperienced
users
Role Processes can be Set of symbols to Useful for large Supports Each role has
Activity refined and describe systems with simulation by attributes that
Diagrams improved processes many enabling detailed govern its
(RAD) Easy to use participants inspections of behaviour
Easy to specific parts of
understand the process
Business Modularity and Expertise Knowledge of Suitable to run Sequence
Object focused knowledge is object- simulations of diagrams do not
Interaction responsibility required in orientation is business strictly support
diagrams are available mastering object- required processes the concepts of

orientation when
modelling
business
processes

process and
activity

20

Flexibility Ease of Use Understandability Simulation Scope

Business Well-structured Easy to use e All the users can | e Support the Support all of the
Process technique to Different kinds understand the construction of business process
Modelling model different of flow of control notations easily simulation modelling
Notation types of and sequences models elements
(BPMN) processes Complex o Ability to test

Allow the diagramming and visualize

representation of technique processes before

extended models implement

for each process

Enable flexible

changes or

improvement of

any process in

the extended

model without

affecting the

original model
Business These are Textual e Business use ¢ Do not directly Support all of the
Use Cases textual narratives, hence cases are support business process

descriptions of can be learned straight forward simulation modelling

organisational quickly therefore, easy to elements

processes:; hence
the narrative can
be easily
modified.

But this can be
led to
ambiguities and
inconsistencies

understand

21

2.3. Analysis of Modeling Tools & Plugins for BPMN

Once BPMN was selected as business process modelling technique for the
study, a comparative analysis is done on the tools and plugins available for
the BPMN. The Table 2.2 depicts the analysis and the criterion are derived
from an analysis by R. Konceviés, et al. [11]. As per the analysis ‘Eclipse
BPMN2.0 Modeler’ plugin for the Eclipse IDE is selected as the modeling
tool for this research.

Table 2.2: BPMN Modelling Tools & Plugins Comparison [11]

sl le] (2] [s
g a | §|® g
By e |[& 4|2 g
A % | A ﬁ ale | A
3 Bb « [} % o e
) clg| 8|05 |
s, ﬁ gl 8|8 |@|w| 3
Q . = = b o
R A|R|[S|&|EB|S |8
Graphical user interface (GUI) x | x| x| x| x| x| x| x
Supported notations
BPMN | x X X X X X X
BPEL X
UML X X
Other X X | x
Publishing formats
Image | x X X X X X X
Ms Word | x X
PDF | x X X X
Web | x X X X X X
Export
BPEL X X
BPMN | x X X X X
XPDL X X X
XML | x X X X X
Import
BPEL X X
BPMN | x X X X X
XPDL X X
XML X X X X
Open-Source X X
Ability to implement user-defined
. . X X | x| x| x| x| x| X
reusable functionality
Change management of models X | x | x | x| x X | x
In-tool verification of notation X || B | I X | IS |
Ability to configure pre-defined
. . X PR | I S R | RS | S | 5
objects in model

22

The chosen Eclipse BPMN 2.0 Modeler plugin is a free and open-source
plugin and consists of a graphical user interface (GUI) and assist all the
notations available in BPMN 2.0 specification. The plugin allows
publishing diagrams as a MS Word, images (jpg, png, gif) or web
content(html) and export & import formats such as BPMN and XML are
supported. In-tool verification of BPMN notations is an added advantage.

2.4. Analysis of BPMN 2.0 Specification and Solidity Language

Upon selection of the tool for BPMN, an in-depth analysis of BPMN 2.0
specification is performed to determine the all existing business process
modelling notations in BPMN.

Business process modelling diagrams being used to communicate to a
broad audience. The Object Management Group (OMG) is publishing and
maintaining BPMN specifications. BPMN version 2.02 is the latest
specification and it provides an XML notation which describes a set of rules
for the BPMN notations.

Solidity is a contract-oriented high-level programming language [12].
Latest version is 0.5.92 and documentation is available through their
website. It is constructed to execute on-top of an Ethereum Virtual
Machine (EVM).

2 Documentation for the latest version of Solidity is available in
https'//solidity.readthedocs.io/en/v0.5.9/index.html

23

2.5. Existing Systems

2.6.1. Caterpillar

Caterpillar [13] [14] is an open-source business process execution engine
for the Ethereum blockchain. Process modeling tool provides ability to
formulate process models using BPMN process elements. Also consists of
an execution panel to create new instances and monitor state of the process
model.

Caterpillar specializes in work-flows of the process models and provides a
rich set of restful APIs to create, view, update and remove process models.
Diagram elements provides an abstract view of the process model and
lower details such as variable declarations require annotating the diagram
elements [13]. Once process model is created, execution panel provides
ability to create new process instances on the blockchain and state or hand-
offs between multiple parties are visually represented in the execution
panel. Further all the functionalities of the execution panel exposed

through the APIs as well.
-

Loan app rejected

)

Assess Loan
Risk

Confirmation
request sent

~

Assess
Elegibility

"Enter Loan
Application

)

Appraise
Property

Figure 2.2: A Process Model Example in Caterpillar [13]
2.6.2. Unibright

Unibright [15] is a commercial unified framework for blockchain based
integrations. Unibright provides a template based visual experience for the
process integration. Automated smart contract generation can be done for
the diagrams and workflows created using Business Workflow Designer
component. Secondly, generated code can be deployed into blockchain
using ‘Contract Lifecycle Manager’ component which is responsible in
creating, viewing, updating and deleting contracts.

Most of the development information are not accessible to the public hence
it is a commercial solution. However, only a public demo is available in

24

unibright.io® website. As per the demo, only a multi-party approval
template is available with a limited set of process elements (only ‘approver’
and ‘feedback’). A multi-party approval example is depicted in Figure 2.3.
However, the support for the BPMN notations cannot be verified with the
limited information available.

lB UNIBRIGHT Workflow Designer Contract Lifecycle Manager Explorer

Paul likes
Design?

Approver

Feedback

Quality OK?

—m

Jon likes
Design?

Figure 2.3: Multiparty Approval Example using Unibright

2.6.3. Petri-Nets Translation and Reduction Approach

Garcia-Batiuelos et. al [16] proposes a Petri-Nets translation and reduction
based approach that make use of Petri-Nets as an intermediate
representation when converting BPMN process models into Solidity
language. This process has several reduction phases using data conditions
as explained in [16]. Figure 2.4 explains the reduction and translation
process of a BPMN diagram with this approach.

As per the authors, gas consumption is minimized by a special process that
encodes current state of the process in a space optimized bit-array data
structure. Further, overhead is minimized by the use of “factory” and
“instances” pattern for deploying multiple instances of the same process
model. These changes are done on top of its previous versions and the
results has shown significant improvement in gas consumption.

3 A demo example of the Unibright is available in https://authentication.unibright.io/ online, accessed
18-01-2020.

25

Application
disqualified

Check cradit

New loan
application

(c) Final net [(PAQ]
Figure 2.4: An example of PetriNets Translation and Reduction Approach [16]

2.6.4. Choreography Diagrams Method

Another method is to use Choreography diagrams [17] defined in BPMN
2.0 to create process models for the blockchains. Figure 2.5 depicts a
sample process model using choreography diagrams for a supply chain

example.
Middleman
Forward order for
supplies S
Bulk Buyer Manufacturer Special carrier
Supplier
Place order for)
/‘>—- Order goods ace ‘e Request details
N\ supplies
Middleman
Manufacturer Middleman Supplier
Place order for
transport
ecial carrier
Manufacturer Manufacturer Special carrier Supplier Supplier
" Report start of)) .) .
Oo— Deliver goods [+ P R e— Deliver supplies [*—{ Sendwaybill [« Provide details
production
Bulk Buyer Bulk Buyer Manufacturer Special carrier ecial carrier

Figure 2.5: A Supply Chain Example using Choreography Based Approach [17]

In order to follow up of state of the process instance, a sequence of storage
variables is used. In the code generation algorithm, BPMN Tasks and
AND-join gateways are mapped into functions. The first task is triggered
by ‘Init()’ function and other tasks are invoked by the triggers defined as

26

‘Taski(). function ‘JoinGatewayi()’ is invoked internally whenever
controlling the process flow is required. These triggers are being executed
in runtime with the API calls from the C-Monitor (Choreography Monitor);
a web-based process execution panel [18].

2.6.5. Extended Choreography Diagrams Approach

Ladleif et al. [7], suggests a backward compatible extended version of
BPMN choreography diagrams to generate the Solidity smart contracts. As
per the Figure 2.6; an interaction between an initiated and a respondent is
represented as a choreography task (marked in rounded rectangles). An
interaction is depicted in shaded background.

start external

Tenant
Tenant
file dispute —0@ regular rent payments
reject
i RBO
agreement Y e Landlord — ntReceipt
2 file claim @] transferDetails iy
Tenant for bond disputeNo 4
RBO — e — ra—
pay bond Tenant RBO Tenant
transfer bond pay rent
R8O acceptclaim (=¥ 45 tandlord —’O
RBO Landlord (_Landlord)
@ transferDetails
Tenant Tenant
tenancyAgreement ’:‘1‘;:"«"? Landlord RBO "m“y:"me"' end tenancy »—’O
>l release refund bond
[+] bond | 7| totenant e
Landlord R0 Tenant Landlord

(a) Top level root choreography of Rental Agreement (b) expanded sub choreography

Figure 2.6: A Rental Agreement Example [7] using Extended Choreography
Diagrams

An envelope depicts an initiating message and Shaded envelope denotes
the response. Authors claims that there are two main limiting factors in
choreography diagrams defined in BPMN specification, (1) ownership that
enforces which elements (2) observability that enforces who knows what.
Another major limitation is the absence of data structures which are
already available in other sub models [7]. Due to these limitations, authors
are proposing a backward compatible extension for the BPMN
choreography diagrams.

27

3. RESEARCH METHODOLOGY

The literature review chapter provided a theoretical base exploring various
business process modelling techniques, process modelling tools & plugins
and evaluating the state-of-the-art related work. Research methodology
provides clear step-by-step road to solve the research problem. In this
chapter, a suitable research methodology will be proposed in order to
achieve proposed goals and objectives.

3.1. High Level Steps of the Research Methodology

Below Figure 3.1 depicts the high-level steps and phases followed for the
research.

Identification of
Research Problem

Formulate Research
Question

Extensive Literaure
Review

Data Collection

Concept Mapping

Concept Mappings between BPMN and

Solidity
Implementation of
Translator 1 Al Al —
BPMN 4 ﬁg”‘?”i ¢
XML ranslator olidity
Code

Testing and Evaluation

Comparison against

Similar Systems

Results and Discussion
Identify Futre Work

Figure 3.1: High level view of the Research Methodology

From the ‘3.2 Data Collection’ phase, all the pending steps have been
discussed in great details.

28

3.2. Data Collection

In the data collection phase, mainly two types of data have been collected,
(1) Smart contract implementations in Solidity code and (2) business
contracts. For the smart contract implementations, online repositories
such as GitHub, GitLab and blog articles such as Medium have been
analyzed. More than sixty (60) contracts from various domains such as
insurance, banking & finance, shipping & logistics were collected. Initial
filtering was done using the ability to deploy the contracts in the
blockchain. In Figure 11, a Solidity smart contract example called
‘Crowdsale’ is depicted. Crowdsale allows collecting of capital for a new
business venture in small amounts from a large number of participants.

pragma solidity "0.4.18;

interface token {
function transfer(address receiver, uint amount) external;

}

contract Crowdsale {
address public beneficiary;
uint public fundingGoal;
uint public amountRaised;
uint public deadline;
uint public price;
token public tokenReward;
mapping(address => uint256) public balanceOf;
bool fundingGoalReached = false;
bool crowdsaleClosed = false;

event GoalReached(address recipient, uint totalAmountRaised);
event FundTransfer (address backer, uint amount, bool isContribution);

[*%*
* Constructor function
*
* Setup the owner
*/
function Crowdsale(
address ifSuccessfulSendTo,

Figure 3.2: Crowdsale Solidity Smart Contract4

Further, more than twenty (20) smart contracts which covers business
scenarios such as e-voting, loan-process, rental-payments, crowd-
funding...etc. have been further analysed for the business use case. As the
first steps, sequence diagrams are used to derive the business ue case.
Figure 3.3 depicts the sequence diagram for the same Crowdsale example
in Figure 3.2.

4 Solidity smart contract implementation for Crowdsale is available in
https://github.com/ethereum/ethereum-
org/blob/983¢ce0b84dbb4008bbd78c9cf5d0e563a619%aaac/dist/crowdsale.html online, accessed 19-11-
2019

29

Beneficiary Contract

Deploy/Submit Proposal

Send Funds

Check Crowd Sale Closed?

Increase Token Rewards

U

Fund Transfer Notification

Check Goal Reached

Check After Deadline and Funding Goal Reached?

Goal Reached Notification

| R i s ates eI 0
Safe Withdrawal
Check After Deadline and Funding Goal Reached?
Transfer Funds
....... Satilloblictbiopiiill
opt [if NOT Funding Goal Reached]
Safe Withdrawal
Transfer Funds
..... e
Beneficiary Contract

Figure 3.3: Sequence Diagram Representation of Crowd Sale Example

3.3. Implementation of the Translator

The outcome of the concept mapping between BPMN and Solidity in section
3.4 (page 36) is the main input for the development of this translator. The
two key components of implementation of this translator are listed as

below;

(1) BPMN Modeler Integration
(2) BPMN to Solidity Translation

30

3.3.1. BPMN Modeler Integration

The topmost layer of the translator. In theory, BPMN Modeler can be any
tool that can support BPMN 2.0 specification. Facilitating a graphical user
interface (GUI) to manipulate the BPMN process elements of the process
model is the main functionality of this layer. In addition, XSD verification
against the BPMN specification provides instant error reporting to the user
to alter the process model whenever needed.

As per analysis of BPMN modelling tools & plugins in section 2.3 (page 22),
Eclipse BPMN 2.0 Modeler plugin® is selected as the modelling tool for this
purpose. Further this allows most advanced features such as ‘T/0O
Specification of Tasks’ to define input and output for a particular task.

3.3.2. BPMN to Solidity Translation

This layer is responsible for the BPMN 2.0 Abstract Syntax Tree (AST)
validation and Solidity smart contract code generation. Validation of the
process model is done is two phases. Firstly, using XSD validation of the
BPMN XML provided by OMG group. Secondly, using AST validation
consists of a set of custom rules defined before and after AST generation.

High level steps followed to implement BPMN to Solidity translator is
listed below;

Step I: ANTLRv4| Parser Generation for BPMN XML

Step II: Implement XML Schema Definition Validator for BPMN
Step III: BPMN Abstract Syntax Tree (AST) Generation

Step IV: Solidity Abstract Syntax Tree (AST) Generation

Step V: Solidity Code Generation

5 BPMN2 Modeler Plugin is a free and open source BPMN plugin for Eclipse IDE and it
1s available in https://www.eclipse.org/bpmn2-modeler online, accessed 02-03-2020

31

BPMN-to-Solidity Translator oo

d Qo)
H == BPMN20) | &, A Solidity
1 'y XML Parser === 7\ Codegen

BPMN 2.0 XML

3
% AST
Transformation

| Solidity Codegen Validator
. BPMN 2.0 XSD Validator

Figure 3.4: Top Level View of BPMN to Solidity Translator

Step I: ANLRv4 Parser Generation for BPMN XML

Once the user model the process model using BPMN modelling tool it can
be exported into a BPMN XML file named as “<filename>.bpmn’. This
XML file contains the meta data of all BPMN elements used and their
relationships between each other.

First step of generating BPMN AST is to parse the BPMN XML. A BPMN
XML is structured with two main parts;

1. Process Elements: Definitions of the BPMN nodes and their
properties and relationships.

2. BPMN Diagram Elements: Contains all graphical information of
the BPMN nodes such as their location, colours...etc.

For this research, we are only interested in ‘Process Elements’ to generate
the BPMN AST and ‘BPMN Diagram Elements’ are simply ignored. BPMN
ANTLR g4 grammar files are generated with adding few modifications for
the already existing XML ANTLR g4 grammar file® which is available
online. The BPMN grammar and lexer files are depicted in

Figure 3.6 and Figure 3.7.

It is important to point out that the parser generation step is one-time task
(unless there’s modification to the grammar files) and translation events
are being handled by the BPMN parser listener implementation for the
generated parser.

¢ The sample ANTLRv4 XML grammar file used is available in https://github.com/antlr/grammars-
v4/blob/master/xml/XML Parser.g4 online, accessed 13-11-2019

32

Parser Generation using ANTLR pm———————

lI
: {
H |
H]
H]
H]
H]
i
: ANTLRv4 Q ANTLR :
H grammar Generator !
1 files
i .
, :
H]
H |
H |
H]
y]
|

:
E Event
y Listener |
i Interface |
B '

Event
Listener

Generated
Recognize
r files

. AST
,] ANTLR Runtime

BPMN 2.0 Parser Runtime

N -

Figure 3.5: ANLRv4 Parser Generation for BPMN XML

----------------’

parser grammar BPMN2;
options { tokenVocab=BPMN2Lexer; }
document : prolog? misc* element misc*;

prolog

XMLDeclOpen attribute* SPECIAL CLOSE ;

chardata?
((element | reference | CDATA | PI |

content

~

COMMENT) chardata?)*

selfClosingElement : '<' Name attributex '/>';
blockElement : '<' Name attribute* '>' content '<' '/' Name
l>l;
element : selfClosingElement
blockElement

H
reference : EntityRef | CharRef ;
attribute : Name '=' STRING ; // Our STRING is

AttValue in spec

/** “"All text that is not markup constitutes the character data
of
* the document. '

*/
chardata : TEXT | SEA WS ;
misc : COMMENT | PI | SEA WS ;

Figure 3.6: BPMN ANTLR g4 Grammar

33

/** XML lexer derived from ANTLR v4 ref guide book example */
lexer grammar BPMN2Lexer;

// Default "mode": Everything OUTSIDE of a tag

COMMENT : '<la==' (%2 o>,

CDATA : "<![CDATA[' .*? ']1>' ;

/** Scarf all DTD stuff, Entity Declarations like <!ENTITY ...>,
* and Notation Declarations <!NOTATION ...>

*x/
DTD : < G B -> skip ;
EntityRef : '&"' Name ';' ;
CharRef B ‘&$' DIGIT+ ';'
'&#x' HEXDIGIT+ ';'
H
SEA_WS : ¢ PNET N2 A E
OPEN : el -> pushMode (INSIDE) ;
XMLDeclOpen : '<?xml' S -> pushMode (INSIDE) ;
SPECIAL_OPEN: '<?' Name -> more, pushMode(PROC_INSTR) ;
TEXT : ~[<&]+ ; // match any 16 bit char other than < and &
[/ mmm— e Everything INSIDE of a tag —-—=——=—=——=———ememe———— e
mode INSIDE;
CLOSE s o -> popMode ;
SPECIAL CLOSE: '?>' -> popMode ; // close <?xml...?>
SLASH CLOSE : > -> popMode ;
SLASH : /Al
EQUALS s ‘="',
STRING : R PL L
SRR PIE TR
H
Name s NamespacePrefix? NameChar+ ;
S $ [\t\r\n] -> skip ;
fragment
HEXDIGIT : [a-fA-F0-9] ;
fragment
DIGIT H [0-9] ;
fragment
NameChar s [a-zA-2Z
r_l l |—| I ' E ' I DIGIT
H
fragment
NamespacePrefix : [a-2zA-Z0-9]* [:];
/] —mmmmm e Handle <? ... 2> —cmemmmm e

mode PROC_INSTR;

PI : 2> -> popMode ; // close <?...2>
IGNORE : . => more ;

Figure 3.7: BPMN ANTLR g4 Lexer

34

Step II: Implement XML Schema Definition Validator for BPMN

An accumulated version of the BPMN XSDs available online” are being
used for the validation of the input BPMN XML files. This step makes sure
that the input process model is verified and valid for the further steps.

Step III: BPMN Abstract Syntax Tree (AST) Generation

Whenever parsing an input file, BPMN Parser Listener’ will receive events
from the BPMN parser. The listener builds the BPMN AST with the events
it receives. The BPMN Abstract Syntax Tree (AST) contains information
such as node type, node name, attributes and child nodes.

Step IV: Solidity Abstract Syntax Tree (AST) Generation

In order to generate Solidity Abstract Syntax Tree (AST), BPMN AST is
used as an input. This AST transformation is driven by the BPMN to
Solidity concept mapping formulated in section 3.4(page 36). Secondary
validation of the translator is executed during this phase.

Step V: Solidity Code Generation

As the last step of the translator, Solidity code is generated using a tree
visitor named as ‘Solidity Codegen Tree Visitor’ on top of the Solidity
Abstract Syntax Tree (AST).

7 A set of BPMN XML Schema Definitions are available in
https!//www.omg.org/spec/BPMN/2.0/About-BPMN/ online, accessed 21-12-2019

35

3.4. BPMN-to-Solidity Abstract Syntax Tree (AST) Transformation

Abstract Syntax Tree transformation from BPMN AST to Solidity AST is
elaborated in this section. The concepts (or XML nodes) in BPMN XML file
are being mapped from BPMN to Solidity smart contract language
constructs. The outcome of this transformation rules set is being used as
an input for translator implementation. In brief, AST transformation
covered in three key aspects,

1. BPMN Sub-Models to Solidity Mapping
2. BPMN Elements to Solidity Mapping
3. BPMN Representation of Solidity Top Level Constructs

Example: Hello World

Hello World example exhibits how a simple process model in BPMN is
being translated into a Solidity smart contract. For the simplicity, let’s
assume that the expected code (refer Figure 3.8) of the contract is known
in advance and it needs to return a ‘hello world’ text phrase upon a trigger.
It is noteworthy that the source BPMN XML depicted in Figure 3.11 is the
generated from the BPMN process modeling tool with the process model
defined in BPMN ((refer Figure 3.9).

contract HelloWorld {
function renderHelloWorld() public pure returns string {
return 'hello world'";

j

1
S

Figure 3.8: Hello-World Example

Example: Hello World — BPMN Process Model

A BPMN process model is created using process modelling tool as the
initial step (refer Figure 3.9). The BPMN process elements used for this
example are namely a Pool (or Participant), a Start Event, a Task and an
End Event. Additionally, need to configure a I/O output for the Task to
represent the return value (refer Figure 3.10).

36

Pool 2

Render Hello World : pure

Start Event 1 End Event 1

Hello World

Figure 3.9: BPMN Process Model for the Hello-World Example

e o Edit Task
- . - - o)
v Output Data Mapping + R / Output Data Mapping Details .ﬁj
From To Is Collection From
return_____|"return ‘hello wo... false _______||
Name return /
Is Collection
Data Type &+
1 Data State B -~
i To
1 Data Item

Transformation
© expression

Assignments |

v Expression

Script Language B +
return "hello world'; @
Script
solidity:striny < 5
| Data Type idity:string + /

| @ Cancel [ok] |
Figure 3.10: Configure A Return Text for the Hello-World Task

Example: Hello World — BPMN XML

After completing the process model, generated XML can be retrieved in
source view of the modelling tool. For instance, BPMN 2.0 Modeler
provides switching source view on-top of the process model diagram. For
the above ‘Hello World’ example, generated XML is listed in Figure 3.11.

<?xml version="1.0" encoding="UTF-8"?>

<!-- origin at X=0.0 Y=0.0 -->

<bpmn2:definitions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI1"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" id="Definitions 1"
exporter="org.eclipse.bpmn2.modeler.core" exporterVersion="1.4.3.Final-

37

v20180418-1358-B1">
<bpmn2:itemDefinition id="ItemDefinition 1090" isCollection="false"
structureRef="solidity:string"/>
<bpmn2:collaboration id="Collaboration 1" name="Collaboration 1">
<bpmn2:participant id="Participant_1" name="Hello World"
processRef="Process_1"/>
<bpmn2:participant id="Participant 2" name="Pool 2"/>
<bpmn2:messageFlow id="MessageFlow 1" sourceRef="Participant 2"
targetRef="Task_2"/>
<bpmn2:messageFlow id="MessageFlow 2" sourceRef="Task 2"
targetRef="Participant 2"/>
</bpmn2:collaboration>
<bpmn2:process id="Process_1" name="Hello World Process"
definitionalCollaborationRef="Collaboration 1" isExecutable="false">
<bpmn2:startEvent id="StartEvent_ 1" name="Start Event 1">
<bpmn2:outgoing>SequenceFlow 1</bpmn2:outgoing>
</bpmn2:startEvent>
<bpmn2:endEvent id="EndEvent_ 1" name="End Event 1">
<bpmn2:incoming>SequenceFlow_2</bpmn2 :incoming>
</bpmn2:endEvent>
<bpmn2:sequenceFlow id="SequenceFlow 1" sourceRef="StartEvent 1"
targetRef="Task 2" />
<bpmn2:sequenceFlow id="SequenceFlow 2" sourceRef="Task 2"
targetRef="EndEvent_1"/>
<bpmn2:task id="Task_ 2" name="Render Hello World : pure">
<bpmn2:incoming>SequenceF low_1</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_2</bpmn2:outgoing>
<bpmn2:ioSpecification id="InputOutputSpecification 7">
<bpmn2:dataOutput id="DataOutput 1" name="return"/>
<bpmn2:inputSet id="InputSet_ 7" name="Input Set 7"/>
<bpmn2:outputSet id="OutputSet_7" name="Output Set 7">
<bpmn2:dataOutputRefs>DataOutput_1</bpmn2:dataOutputRefs>
</bpmn2:outputSet>
</bpmn2:ioSpecification>
<bpmn2:dataOutputAssociation id="DataOutputAssociation 1">
<bpmn2:sourceRef>DataOutput_1</bpmn2:sourceRef>
<bpmn2:assignment id="Assignment_ 1">
<bpmn2:from xsi:type="bpmn2:tFormalExpression"
id="FormalExpression_1l">DataOutput_1</bpmn2:from>
<bpmn2:to xsi:type="bpmn2:tFormalExpression"
id="FormalExpression 3" evaluatesToTypeRef="ItemDefinition 1090">return
'hello world';</bpmn2:to>
</bpmn2:assignment>
</bpmn2:dataOutputAssociation>
</bpmn2:task>
</bpmn2:process>
<bpmndi:BPMNDiagram id="BPMNDiagram 1">
<!—Omitted for the simplicity-->
</bpmndi :BPMNDiagram>
</bpmn2:definitions>

Figure 3.11: An Excerpt of Hello-World Example’s BPMN XML

In order to generate expected Solidity smart contract code in Figure 3.8,

Translator first parses the BPMN XML file in Figure 3.11. Depicted in

hen the BPMN AST is generated as Figure 3.12. The outcome of the AST

Transformation is the Solidity AST which is depicted in Figure 3.13.

38

DocumentNode
topLev:aINodes
CoIIabloration
partic:pants
Partitl:ipant
name Process
Hello |World startElvents
StartEvent Participant
name nextlltems Participant nal’ne
Start Elvent 1 Talsk nalrne deflault
name nextltems Pol)l 2
Render Hellct| World : pure Talsk
name nextltems
Task 1 EndEvent
nal‘ne
End Elvent 1
Figure 3.12: HelloWorld example’s BPMN AST
SolidityCode
topLevcleINodes
contlracts
Conltract
Hello |World Fun(l:tion
name modifiers parlams returnType body
I — | | I
renderHelloWorld modifier modifier param string return 'hello world'
pulljlic pulre

Figure 3.13: HelloWorld example’s Solidity AST

Below section explains how BPMN XML nodes are being mapped into

Solidity language constructs in great details.

3.4.1. BPMN Sub-Models to Solidity Mapping

Sub models are the diagram types available in BPMN specification. Three
(3) main sub-models are defined in BPMN 2.0 specification as listed below;

39

1. Processes (Orchestration)

Processes are the sequence of activities in an organization with the
objective of carrying out a work. By default, processes are private.
Whenever a process communicates with another process or participant,
the process becomes a public process.

It i1s worth noting that this ‘public’ and ‘private’ process concepts are
being used with same semantic meaning when translating into
functions of the Solidity smart contract code.

Execute
‘ Task

Figure 3.14: BPMN private process example

CLIENT

Execute
Task

Figure 3.15: BPMN public process example

2. Choreographies

Choreographies defined a different set of diagram elements in BPMN
specification. Usually these diagrams are existing between interacting
participants.

Since it more focused in communication between multiple parties and
non-existence of data structures such as data objects in combination
with the scope and time limitations of the study, these types of
diagrams are not supported by the translator.

3. Collaborations

Collaborations are the combination of participants and processes and
other diagram types. A collaboration contains two or more participants
exchanging messages between each other.

40

When mapping the process model into Solidity language constructs, the
name of the pool (or participant) become the name of the contract. For
instance, in Figure 3.16 (page 41), the pool name ‘Hello World’ will
generate a smart contract with the name ‘hello World’. Since other
dummy pool has no BPMN elements it won’t create any smart contracts.
Further, any task available will be mapped into functions. Any task
which interacts with an external participant will become public,
otherwise 1t will be private.

3.4.2. BPMN Elements to Solidity Mapping

BPMN elements in the specification are listed below in the order of
importance;

(1) BPMN Events

1. BPMN Start Event and End Event

As depicted in Figure 3.16, the boundary line of the function is defined
between a ‘Start Event’ and an ‘End Event’. There can be multiple ‘Start
Events’ but only single triggered event for a ‘Participant’. Further, there
can be multiple ‘End Events’ but only single ‘End event’ for a given
request flow of a ‘Participant’.

Pool 5

End Event 1

Start Event 1
Event Based Task 1
Gateway 1
End Event 2

Figure 3.16: An Example for Start Events and End Events

Hello World 2

Above process model defined in BPMN (Figure 3.16) will generate the
below Solidity code depicted in

contract HelloWorld2 {
function renderHelloWorld() public pure returns string {
return 'hello world'";
1
5
function task1() {

}

1
S

41

Figure 3.17.

contract HelloWorld2 {
function renderHelloWorld() public pure returns string {
return 'hello world'";
H
function task1() {
H

}

Generated Solidity Code

contract HelloWorld2 {
function renderHelloWorld() public pure returns string {
return 'hello world'";
H
function task10 {
H

}

Figure 3.17: Solidity Code for Start Event and End Event Example

. BPMN Conditional Start Event

The use of these types of Start Event is a common pattern in BPMN
diagrams. These ‘Conditional Start Events’ will be mapped into user
defined ‘modifiers’ in Solidity language. Further, All the connecting
‘Tasks’ will contain the inline modifier name in the function signature
and the implementation of the modifier will be added as a top-level
construct to the smart contract implementation.

® O Edit Start Event
| General m
i
~ Event Definitions |4+ ¥ Conditional Event Definition Details
Event Type Event Details Script Language a]
if (now >= deadlin...| |
if (now >= deadline) _; [
Script
Data Type E .
v Output Parameters &
®@ cancel (TN

V Figure 3.18: Configuring Conditional Start Event

42

Pool 1

End Event 1

After D%ad Line ><>
Parallel y 1
‘\
Task 2
End Event 2

Q ‘
Start Event 1 End Event 3

Figure 3.19: An Example for the Conditional Start Events

Hello World

Above process model defined in BPMN (Figure 3.19) will generate the
below Solidity code depicted in Figure 3.20;

Generated Solidity Code

contract HelloWorld {
function task1() public afterDeadLine {

}

function task2() public afterDeadLine {
}

function task3({
}

modifier afterDeadLine() {
if (now >= deadline) _;

}

}

Figure 3.20: Solidity Code for the Conditional Start Event Example

3. BPMN Throw Event with the Escalation Event Definition

Another common pattern of halting business process is the use of
‘Throw Events’. Throw Events in BPMN will be mapped into revert
instruction in Solidity language. Additional information for the error

43

can be provided in the Escalation Code configuration will be used as the
revert message.

General

~ Event Definitions + R / Escalation Event Definition Details ‘_j

Event Type Event Details Escalation Escalation 1 C |4 /

Escalation Escalation 1

e o Edit Escalation
(UED Escalation |
v Input Parameters v Attributes
Escalation Code | Error{
Name
Escalation_1_Input DataType solidity:string + /
|+ Properties List
®@
'! —- |
® concel (D
Figure 3.21: Configuring Message for Escalation Event
w
°
<}
(T
P Y
I 1
Task 1
= Start Event 1 End Event 1
S
H
L&
©
a2
Task 2
Intermediate
Throw Event 1

Figure 3.22: Throw Event with Escalation Event Definition Example

Above process model defined in BPMN (Figure 3.22) will generate the
below Solidity code depicted in
contract HelloWorld3 {

function task1() public {
)

function task2() {
revert(“Error!”);
}

Figure 3.23;

44

["contract HelloWorld3 {
function task1() public {

}

function task2({
revert(“Error!”);
}

45

Generated Solidity Code

contract HelloWorld3 {

function task1() public {
}

function task2({
revert(“Error!”);
}

Figure 3.23: Soldity Code for the Throw Event with Escalation Event Definition

(i) BPMN Tasks

1. BPMN Tasks (Generic, Manual, User, Business, Service Tasks)
All the BPMN tasks (except ‘Script’, ‘Send’ and ‘Receive’ Tasks)
shares the same functionality when generating Solidity code. There
can be multiple Tasks added in a single request flow chain, the name
of the function will be the first name of the first Task of the request
flow chain. The first Task that apprears after the ‘Start Event’ is
named as Top-Level Task for the internal references.

Pool 5

7
RN
q---O

End Event 1

name s
R — Q
Start _vent:1

age

salaryPerDay

Hello World
=
o
Z|
=
«Q
[w]
Y]
2
¢ H

empAge

Figure 3.24: Generic Tasks Example

46

[Documentation

This function will return the calculated salary

Cancel “
B e 4 55 a e st e
'f s a
>—> Calculate Salary o _>O ‘
évené ‘ N End Event 1 ‘
- 2038 > |

Figure 3.25: éonﬁguring Documentation for BPMN Elements

Generated Solidity Code

contract HelloWorld ({

string public empName;
uint public empAge;

constructor (string name, uint age) {
empName = name;
empAge = age;

}

/** This function will return the calculated salary */
function calculateSalary(uint workingDays, string salaryPerDay)
public returns uint {
return workingDays * salaryPerDay;

}

Figure 3.26: Solidity Code for Tasks Example

2. BPMN Script Task

Code generation for the Script Task is same as the Generic Tasks.

Only difference is that the body of the generated function is
appended with the ‘script value’ of the Script Task.

47

w
3
o
EL 30
T . bl
H QY
name s
sussassssnsusessssduuuEEEE Calculate Salary
=5 D £
Start Bvent 1 End Event 1
s s P =>n i1 [3H
g S
° s
% workingDays salaryPerDay
: empName
empAge
Figure 3.27: Example for Script Task
[JON |

Edit Script Task

General Script Task I/O Parameters

v Attributes

Script Format

uinta = 10;
uint b = 20;
uintc=a+b)
Script

Is For Compensation

Loop Characteristics: ° None Standard Multi-Instance

v Properties List

+ %

Name Data Type

@

cancel (TN

Figure 3.28: Configuring Script Value of the Script Task

48

Above process model defined in BPMN (Figure 3.27) will generate the below Solidity

code depicted

contract HelloWorld {

string public empName;
uint public empAge;

constructor (string name, uint age) {
empName = name;
empAge = age;

}

/** This function will return the calculated salary */.
function calculateSalary() returns uint {

uint a = 10;
uint b = 20;
uint ¢ = a + b;
return workingDays * salaryPerDay;
}
}
Figure 3.29;

contract HelloWorld {

string public empName;
uint public empAge;

constructor (string name, uint age) {
empName = name;
empAge = age;

}

/** This function will return the calculated salary */.
function calculateSalary() returns uint {

uint a = 10;

uint b 20;

uint ¢ a + b;

return workingDays * salaryPerDay;

n

49

Generated Solidity Code

contract HelloWorld {

string public empName;
uint public empAge;

constructor (string name, uint age) {
empName = name;
empAge = age;

}

/** This function will return the calculated salary */.
function calculateSalary() returns uint {

uint a = 10;
uint b = 20;
uint ¢ = a + b;

return workingDays * salaryPerDay;

Figure 3.29: Solidity Code for Script Task
3. BPMN Send Task

Send Tasks in BPMN 1is being used for sending messages. When
generating Solidity code, Send Tasks are mapped into notifications
in Solidity. All the input parameters for the BPMN Message element
will be used for the event definition and parameter values will be
used for the ‘emit’ instruction in Solidity.

Pool 5

R £y
o
- Q ’{gCII(SI HSI Calculated
PRS- - alculate Salary alaryCalculate:
I:b Start Evenﬁ /\ A /\ /z\ End Event 1
% v LR NG

—_

_ workingDays salaryPerDay

Hello World

empAge

Figure 3.30: Example for Send Task

50

© @ Edit Send Task

General Send Task RUONEIE LGl

v Input Sets % |

Name Input Data Optional Inputs Evaluated While Executin
Input Set 13 input1, input2

|
v Input Data Mapping o= |
|
From To Is Collection 1
empAge input1 false |
empName input2 false i
J
i
v Output Sets +* |
1
©) cancel (TN |
|

Figure 3.31: Configuring Input Data Mapping for Send Task

Above process model defined in BPMN (Figure 3.30) will generate
the below Solidity code depicted in Figure 3.32;

Generated Solidity Code

contract HelloWorld {

string public empName;
string public empAge;

event SalaryCalculated(string empName, uint empAge);

constructor (string name, uint age) {
empName = name;
empAge = age;

}

/** This function will return the calculated salary */
function calculateSalary() public returns uint {

uint a 10;

uint b 20;

uint ¢ = a + b;

emit SalaryCalculated(empName, empAge);

return workingDays * salaryPerDay;

Figure 3.32: Solidity Code for Send Task Example

4. BPMN Receive Task

Receive Task in BPMN is used to receive incoming messages from
the external parties. When generating Solidity code for the Receive

51

Tasks are mapped into an API call for an oracle node off the chain.
Potential uses of these API calls are to retrieve the latest currency
exchange rates, latest fuel prices...etc. In the implementation level,

Oraclize library is used to perform these operations.

General 1/O Parameters
v Attributes
Implementation Oraclize ¢ | /
O i Interface 1/0 1 $ |4 /
Message USORate S ([/
e o Edit Operation
Map Incoming Message Data To: General o rtl]

* Data Item ~ Attributes

Transformati
ansformation Interface Name Interface 1
Expression

Interface i J io/latest?

[+ Select
i Marquee
= Profiles
(> Connectors
(> Swim Lanes
> Tasks
(> Gateways

Assignments B

Operation Implementation .rates.USD
Target usdRate

In Message USDRate

Instantiate Out Message
Is For Compensation

Error Refs
Loop Characteristics: * None Standar

v Properties List
Name

@

A\

JSD,GBP) / Browse..

/ Browse..
B +|/ |
B |+
|

7 |

concel (TSNS

Figure 3.33: Configuring Incoming Message for Receive Task

Pool 5

R N

Y

AR

v >0 i [9h
= g S

age

Hello World

empName

empAge

@)
= =
sesssssssssssssssasunnnnnn - Calculate Salary Receive USD Rate
Start Event 1 End Event 1

| :
- workingDays salaryPerDay \/

% usdRate

Figure 3.34: Example for Receive Task

Above process model defined in BPMN (Figure 3.33) will generate

the below Solidity code depicted in Figure 3.35;

Generated Solidity Code

52

import "github.com/oraclize/ethereum-api/oraclizeAPI.sol";
contract HelloWorld is usingOraclize {

string public empName;
string public empAge;
string public usdRate;

constructor (string name, uint age) {
empName = name;
empAge = age;

}

/** This function will return the calculated salary */
function calculateSalary() public returns uint {

uint a = 10;
uint b = 20;
uint ¢ = a + b;

oraclize query("URL",
'json(https://api.exchangeratesapi.io/latest?symbols=USD,GBP).rates.USD"');
return workingDays * salaryPerDay;

}

function ___callback(bytes32 _myid, string memory _result) public {
require(msg.sender == oraclize_cbAddress());
usdRate = _result;

Figure 3.35: Solidity Code for the Receive Task
(i) BPMN Data Objects

Another set of important BPMN elements are ‘Data Objects’ and
‘Data Store References’. When mapping into the Solidity code, ‘Data
Objects’ are mapped into private state variables and ‘Data Store
References’ are mapped into public state variables. If a ‘Data Object’
or ‘Data Store Reference’ has one or more ‘Data Inputs’ it will be
mapped as a struct in Solidi)ty language.

53

=)=

empName

empAge weight voted weight voted

Hello World

Figure 3.36: Data Objects and Data Store References Example

Above process model defined in BPMN (Figure 3.36) will generate
the below Solidity code depicted in Figure 3.37.

Generated Solidity Code

contract HelloWorld {
struct Voter2 public {
uint weight;
bool voted;
}
struct Voter {
bool voted;
uint weight;
}
string public empName;
string public empAge;

}

Figure 3.37: Solidity Code for Data Objects and Data Store References Example

3.4.3. BPMN Representation of Solidity Top Level Constructs

In this analysis, Solidity code express-ability using BPMN notations is
evaluated. An example of using top-level constructs in Solidity is depicted
in Figure 3.38. The genereted Solidity code for the business process model
is in Figure 3.39.

54

Pool 5

)

/!
.............................. . ’ I
\VA®)
name g
....... Calculate Salary SalaryCalculated
2D : :
............ 3 Start Event 1 * EndEvent1
i S A :
age .:3 AN ‘ ,23 AN :
% 3’”9.’.“.".‘99?)’.5. T salaryRerDay

Hello World

empAge

empRole
["'manager"]

@ + Approve Letter .—O
isManager End Event 1

Figure 3.38: Solidity Top-Level Constructs Example

contract HelloWorld {
string public empName;
string public empAge;
string empRole = “manager”;
event SalaryCalculated(string empName, uint empAge);
constructor (string name, uint age) {
empName = name;
empAge = age;

function approveLetter() isManager {

}
modifier isManager() {

if (empRole == “manager”) _
}

/** This function will return the calculated salary */
function calculateSalary() public returns uint {

uint a = 10;

uint b 20;

uint c a + b;

emit SalaryCalculated(empName, empAge);

return workingDays * salaryPerDay;

}

Figure 3.39: Solidity Code for the Top-Level Constructs Example
(i) Solidity Contract

In order to represent a Contract in BPMN, A single Participant (or
Pool) can be utilized. Pre-processed name of the participant will be
mapped as the name of the contract. For the pre-processing, all
whitespaces are removed and words are joined with camel-case.

55

(i)

(iii)

Gv)

)

However, the name of the participant should not be prefixed with
the ‘Library’ or ‘Interface’ as they are already reserved words.

Solidity Interface / Library

Interface or library in Solidity will be represented as a Participant
in BPMN with name prefixed by ‘Library’ or ‘Interface’ accordingly.

Solidity State Variables

State variables can be public or private. If it is a public state
variable, Data Stores in BPMN can be used to represent it. By
nature, Data Stores is accessible by any process. On the other hand,
a non-public state variable can be represented using Data Objects.
By nature, Data Objects has the life span of a particular process that
it resides.

Solidity Functions

Solidity functions can be represented as Tasks. In generic, top-level
Tasks (which are first task in a single request flow chain) are
mapped into functions. Pre-processed name of the top-level task will
be mapped into function-name. Any documentation provided in top-
level task will be added a code-documentation for the particular
function. Data Inputs with data associations will be mapped as
parameters of the function-signature. Statements for the function-
body is generated by traversing through the sequence flows outgoing
through the top-level task, and whenever there’s an output mapping
with the reserved keyword ‘return’ it will re-ordered into bottom of
the function body. Whenever, there’s an explicit ‘return’, Data Type
of the output mapping is used as the return-type of the function-
signature. If nothing specified, return type will be ‘void’ by default.
Further, adding “<modifier>" in function name will be added as a
modifier in the function-signature. For instance, a Task with the
name ‘Task1|: pure’ will result a function with the name ‘task1()’
and also an inline modifier ‘pure’ will be added into the function-
signature.

Solidity Function Modifiers

Any number of pre-defined function modifiers can be added into the
function-signature by adding “<modifier>" after the function-name.
A custom function modifier is also possible with the Conditional
Start Events. In this case, an implementation of the custom modifier

56

(vi)

(vii)

(viii)

(ix)

will be added into top-level of the contract and modifier will be added
into any immediate Tasks after the event.

Solidity Events

Event notifications in Solidity can be represented as a Send Task in
BPMN. Input data mapping configurations can be used to define the
event structure of the even-definition and event parameters for the
‘emit’ Solidity instruction as well.

Solidity Structs

Structs can be represented as Data Stores and Data Objects with
one or more Data Inputs associated as fields of the struct. Public
Structs can be represented as Data Stores and non-public structs
can be represented in Data Objects.

Solidity Enums

Enums can be represented as a Data Type of the Data Object and

Data Stores. Enum value constants can be defined in the Data State
of the Data Object of Data Store.

Solidity Code Documentation

Code documentation for a particular Solidity struct is represented
using the ‘documentation’ attribute of the respective BPMN
element.

57

4. EVALUATION AND RESULTS

4.1. Translator Evaluation

A translator which converts one source language in to another source
language is called a Transpiler. Evaluating transpilers is challenging and
tedious task. The evaluation of the translator is performed in two
approaches (1) Matching a set of abstract features in BPMN and Solidity,
(2) Conducting a survey for a selected user group of expertise.

4.1.1. Abstract Features Matching in BPMN and Solidity

Related work in the same domain [19] [17] has used similar approaches for
the evaluation of the translation. A collection of abstract features is
compared against the input and output source languages.

In the data collection phase of this study, a sequence of smart contracts
written in Solidity language was gathered. These are mapped into business
process models using selected BPMN process modeler, Eclipse BPMN 2.0
plugin. Resulting process models could be transformed in back to the
Solidity smart contracts with a minimum effort and this enables
minimizing the effect of transferability factor from the process models.

2 Modeling BPMN-to-Solidity
Smart - :> BPMN
Contracts :> BPMN Diagrams XML |:> O Translator :>
in Solidity
o
’D\ Compare -y
Abstract Features

Figure 4.1: BPMN to Solidity Translator Evaluation Using Abstract Features

Regenerat
ed Smart
Contracts
in Solidity

Thereafter, BPMN process models created from the early process is fed into
the translator to produce Solidity smart contracts. Subsequent, generated
Solidity smart contracts and process models defined in BPMN XML are
matched against a set of abstract features as depicted in Figure 4.1. A list
of abstract features and meaning of each feature in BPMN and Solidity
language is listed in Table 4.1.

58

Table 4.1: A List of Abstract Features in BPMN and Solidity

Abstract Features BPMN XML Solidity Code

The top-level BPMN Tasks | Function definitions
of the BPMN Processes
The locations in the BPMN | The ‘If conditions
process where alternatives | reside within the

1. Entry Points

. Exclusive Branch are based on the conditions | body of the Solidity
2 Points within the outgoing Function

sequence flows and only

one alternative is chosen
3. Persistent Points BPMN Data Stores The State Variables

As per the literature review, a similar evaluation approaches are being
used for the evaluation of the similar systems [19] [17]. For the purpose of
evaluation, Weber, Ingo et. al exploits a sequence of permissible execution
traces for each process model. The expected outcome of the BPMN-to-Java
transformer in [19] uses a sequence of defective instances as for example
zero errors, incomplete diagrams, element misses and isolated elements for
the evaluation.

Results of the abstract feature matching in BPMN and Solidity is
summarized in Table 4.2. Six (6) different process models and respective
regenerated Solidity code in different domains and scales are tested
against sixty distinct process model permutations (6 x 10 alterations).
Impacts and existence of the abstract features in each case is manually
verified.

Table 4.2: Summary of Abstract Feature Matching in BPMN XML and Solidity

BPMN Diagrams
(same values for the re-generated Solidity
Contract Name codes) Trspsform
St g T Time (ms)
. . ersist.
Entry Points | Branch Points Points
Jental 3 0 9 272ms
greement
Wedding Gift 2 0 3 221ms
Sellable 4 0 4 283ms
Lottery) 1 3 257ms
Basic Token 2 0 2 247ms
Crowd Sale 3 6 5 304ms

59

4.1.2. Conducting a Survey for a Selected User Group

A survey was conducted to measure the level of accuracy of the BPMN-to-
Solidity translator for a selected user group of expertise. The survey is
prepared with an online questionnaire8 with two main sections; 1) Details
of the Participant (refer Table 4.3) and 2) Examples Input and Output of
the Translator (refer Table 4.4). The reason for selecting Likert-Scale items
for the correctness of the translation is that there’s no single ‘Yes/No’
answer for them since it is a language translation from a source language
(BPMN XML) to another target language (Solidity language).
Table 4.3: Details of the Participant

Question Answer Type
1. Your Name? Free Text
2. Your Workplace / Academic Institution? Free Text
3. Your Current Position / Profession? Free Text
4. Rate Your knowledge on BPMN? 5-level Likert Item*
5. Rate Your knowledge on Programming Skills? 5-level Likert Item*
6. Rate Your knowledge on Solidity Language? 5-level Likert Item*

* 5-level Likert scale included ‘Excellent’, ‘Good’, ‘Average’, ‘Poor’, ‘Very Poor’.

Table 4.4: Example Input and Output of the Translator

Question Answer Type
1. Your Score for the Readability of the input Diagram? 5-level Likert Item*

2. Please state the reason for the above score? Free Text

3. Your Score for the Correctness of the Business Logic of

- 3 *
the BPMN-to-Solidity Translation? s L

4. Please state the reason for the above score? Free Text

5. Your Score for the Correctness of the State
Transitions of the BPMN-to-Solidity Translation?

6. Please state the reason for the above score? Free Text

5-level Likert Item*

7. Your Score for the Correctness of the Entry Points of
the BPMN-to-Solidity Translation?

8. Please state the reason for the above score? Free Text

5-level Likert Item*

* 5-level Likert scale included ‘Excellent’, ‘Good’, ‘Average’, ‘Poor’, ‘Very Poor’.
** Above questions are repeated for the ‘Rental Agreement’, ‘Marriage: Wedding Gift’, ‘Sellable’, ‘Lottery’,
‘Basic Token’, and 'Crowd Sale’ examples.

8 The online questionnaire used to collect responses is available in
https://forms.gle/jG4yAc8uBRq2Z2VQ8

60

The participants of the Survey include different categories such as
Business Analysts, Technical Specialists, Software Engineer, Masters
Graduates, Lecturer, and Ph.D. Students. Even though the sample size is
quite low(N=7), it serves the goal of the study as to get the feedback of an
expertise user group. Thus, the reliability of the feedback is believed to be
increased.

1. Rate your knowledge on BPMN?

The summarized results for this question are depicted in Figure 4.2. More
than 86% percent has BPMN knowledge and only 14% has ‘Poor’
knowledge in BPMN.

Very Poor
0% Excellent

P i s - 0%
Poor
14% / Good

\ Average T
. 57%

\o
AN

s

Figure 4.2: Summary of the BPMN Knowledge Ratings

2. Rate your knowledge on Programming Skills?
The summarized results for this question are depicted in Figure 4.3. As per

the results all participants have °‘Average’, ‘Good’ and ‘Excellent’
programming skills. No ratings for ‘Poor’ or the ‘Very Poor’ level of
knowledge.

Poor
0%

Very Poor
0%

Excellent
29%

Average
57% Good

14% 7/

Figure 4.3: Summary of the Programming Skills Ratings

3. Rate your knowledge on Solidity Language?

61

The summarized results for this question are depicted in Figure 4.4. As per
the results 29% of the participants are ‘Very Poor’ in Solidity language. It
1s also important to highlight that there are no participants with the
‘Excellent’ and ‘Good’ in knowledge. This is expectable since smart-contract
development is a new area for the most of the Developers.

Excellent Good

Figure 4.4: Summary of the Solidity Language Ratings

Following are the overall summary of the results for the four questions
provided.

4. Your score for the Readability of the input Diagram?

In Figure 4.5, 88% (24+35+29) of the participants agrees that the input
BPMN diagram notations are sufficient and only 12% claims it is ‘Poor’ and
need to be improved. However, there are no participants with ‘Very Poor’
status.

Poor

2% \ Very Poor

0%

Excellent
29%

Average

24%

Figure 4.5: Summary of the Readability of the Input Diagram

Some of the free-text feedback received for this question includes below;

62

- “The language used for defining objects is understandable”
- “Quiet clear and relationships are well illustrated”

- “Isolated notations, unnamed relationships”

- “Its similar to a flow diagram?”

- “what 1is pool 1?”

5. Your score for the Correctness of the Business Logic of the BPMN-to-
Solidity Translation?

In Figure 4.6, 24% of the participants believes that the business logic of
the translation is ‘Excellent’ and 90% (40+26+24) of the participants

agrees that the business logics of the translation is sufficiently accurate.

Only 10% mentions the translation is ‘Poor’ and need improvements.
However, there’s none for the ‘Very Poor’.

Very Poor

0%
/ Excellent
24%

\ Average
\ 40% Good
\ 26%
N
N
\

Figure 4.6: Summary of the Correctness of the Business Logic

Some of the free-text feedback received for this question includes below;

- “State transitions are correctly stated”

- “Number of logics aligns with the diagram”

- “couldn’t figure out the construct”

- “I think the mapping almost covered the given scenarios”

- “Good conversion. Small gaps in readability”

- “Decision point can be improved”

- “The hidden details of BPMN is clearly expressed in the code.”

6. Your Score for the Correctness of the State Transitions of the BPMN-
to-Solidity Translation?

63

In Figure 4.7, none of participants rated ‘Very Poor’ for the correctness of
the State Transitions. 19% stated as ‘Excellent’ and 74% (26+29+19) of
the participants are satisfied by the correctness of the translation.

Very Poor
0%

Excellent
19%

Average :\‘ Good
26% { 29%

Figure 4.7: Summary of the Correctness of the State Transitions

Some of the free-text feedback received for this question includes below;

- “Good translation - e.g. variable names”

- “State transitions have been correctly modeled”

- “I can identify the mapping of variables and methods between
BPMN-to-Solidity to a greater extent”

- “Most of the state transitions are captured, yet can improve”

- “No clear enough representations”

- “state transition is not playing major part in the diagram or in
the code in this scenario”

- “program doesn’t depend much on state transition”

7. Your Score for the Correctness of the Entry Points of the BPMN-to-
Solidity Translation?

In Figure 4.8, none of participants rated, ‘Very Poor’. 14% stated as
‘Excellent’ and 83% (29+40+14) of participants are satisfied with the
correctness of the entry points of the translation.

64

Very Poor
0%

Excellent
14%

Average
29%

Figure 4.8: Summary of the Correctness of the Entry Points

Some of the free-text feedback received for this question includes below;

- “public methods are properly defined in BPMN as well as in Solidity.”

- “Clearly marked in both BPMN and Solidity”

- “Got the logic”

- “All entry points are represented in the translation”

- “not much familiar”

- “Can be identified to some extent, but I feel the diagram should be more
detailed”

- “Function wise decoupling has achieved this.”

- “Could improve the representations of the entry points”

Further, the detailed responses for the survey can be found in Appendix
E in page 150. These results suggest that the translator was able to
translate the BPMN diagram XML to Solidity smart contracts in a
satisfactory level.

65

4.2. Re-generated Solidity Smart Contract Code Evaluation

Truffle® is a framework that provides a development environment for
building, testing and deploying applications on blockchains using
Etherium Virtual Machine (EVM). Re-generated Solidity smart contracts
were tested using tests written in Truffle framework. Tests are written for
a selected set of smart contracts namely, ‘Lottery’, ‘Marriage-Wedding
Gifts’, ‘Basic Token’ which covers most frequent set of BPMN elements [20].
Input process models defined in BPMN and generated Solidity code is
available in section Error! Reference source not found. (page Error!
Bookmark not defined.). Additional configurations performed for the test
framework is listed below;

migrations/deploy_contracts.js

const BasicToken = artifacts.require("BasicToken");
const Marriage = artifacts.require("Marriage");

const LotterylOUsers = artifacts.require("LotterylOUsers");

module.exports = function(deployer, networks, accounts) {
deployer.deploy(LotterylOUsers);
deployer.deploy(BasicToken, 1000);
deployer.deploy(Marriage, accounts[2], accounts[3]);

}i
truffle-config.js

mocha: {
// timeout: 100000
reporter: 'eth-gas-reporter’

Y,

A sample test written in truffle is listed below. Truffle tests for the other
selected smart contracts is available Appendix D (page 147).

tests/BasicToken.test.js

° Truffle development environment and test framework is available in
https://www.trufflesuite.com/docs/truffle/testing/testing-your-contracts online, accessed 19-01-2020.

66

// build up and tear down a new BasicToken contract before each test
beforeEach(async () => {
basicToken = await BasicToken.new(initialSupply, { from: ownerAccount });

}):

it("should equal the initial supply", async () => {
let amount = await basicToken.initialSupply({ from: otherAccount });
assert.equal(amount, initialSupply);

})i:

it("should provide balance of the owner", async () => {
let amount = await basicToken.balanceOf (ownerAccount, { from: otherAccount

i
assert.equal(amount, initialSupply);
}i
it("should provide balance of zero for the other account", async () => {
let amount = await basicToken.balanceOf (otherAccount, { from: otherAccount
i

assert.equal(amount, 0);

})i

it("should provide balance of 200 for the other account after transfer", async
0 =>{
await basicToken.transfer(otherAccount, 1, { from: ownerAccount});
let amount = await basicToken.balanceOf (otherAccount, { from: otherAccount
i
assert.equal(amount, 1);
}i
})i

67

// build up and tear down a new BasicToken contract before each test
beforeEach(async () => {
basicToken = await BasicToken.new(initialSupply, { from: ownerAccount });

})i

it("should equal the initial supply", async () => {
let amount = await basicToken.initialSupply({ from: otherAccount });
assert.equal(amount, initialSupply);

})i

it("should provide balance of the owner", async () => {

let amount = await basicToken.balanceOf (ownerAccount, { from: otherAccount

i
assert.equal(amount, initialSupply);
}i
it("should provide balance of zero for the other account", async () => {
let amount = await basicToken.balanceOf (otherAccount, { from: otherAccount
i

assert.equal(amount, 0);

})i

it("should provide balance of 200 for the other account after transfer", async
0 =>{
await basicToken.transfer(otherAccount, 1, { from: ownerAccount});
let amount = await basicToken.balanceOf (otherAccount, { from: otherAccount
i
assert.equal(amount, 1);
i
})i

Figure 4.9: Truffle Test Written for the Basic Token Smart Contract

68

Execution output of truffle test cases for the selected smart contracts is
depicted in Figure 4.10.

Compiling your contracts...

> Compiling ./contracts/BasicToken.sol

> Compiling ./contracts/Crowdsale.sol

> Compiling ./contracts/Lotteryl@Users.sol
> Compiling ./contracts/Marriage.sol

> Compiling ./contracts/Migrations.sol

Contract: BasicToken
v should equal the initial supply
should provide balance of the owner
should provide balance of zero for the other account
should provide balance of 200 for the other account after transfer (49763 gas)

NN

Contract: Lotteryl@Users
v should revert join when no value provided (21505 gas)
v should accept join when 0.1 ether value provided (66711 gas)
v should accept join more 9 members (482137 gas)
v should one member win the jackpot

Contract: Marriage
v should be equal the wifeAccount and the initial balance
v should be equal the husbandAccount and the initial balance
v should reduce contributor balance after contribution (89808 gas)

: | | | :
| Solc version: 0.5.8+commit.23d335f2 - Optimizer enabled: false - Runs: 200 - Block limit: 6721975 gas |

i..gé;'.";&; | é.(:,“.’/é;}éé;..[............. I iéé:éé.él.“:)éér;..A....i

i. .é(;l;i;;;; I. .'.1;;'.“.)& |. .I;li;] !. .r:“;;(........ [. ./.x\.’é é.;;ii; é;‘;‘. i;\.,éi . .i

I.ééS;cT[‘)ker‘] Itran;fer | _.I _l 4é7sé| 1 004|

i. .L(.);t.:él.-;iél.‘l;é’.—; J.é]..l:\ | éi%ii. . I éé;;é. .! 5%ééi. . I ié. . | é'é;l. .i

I.Harrlag.]e lethdraw | ‘.I —[...... 2760é| 1| 002|

i.’:‘;g;ééi(;;]; |..Sé{é'.)r;]éié;éd....| ;.I ;..l Z%ééé..l é..| é.éé..i

I.Bépioyrhenés | | I l ';;fiimit‘.‘.i

i . .éé;;éT.-(.)'.(ér.‘ | é;aééé é;‘;ééa. . ! é;‘;ééé. . | é.é.q.b. . | é‘éé. .i

i..l.-siéé;‘;iél:';é’:; | ;..I ;..! ‘.‘iéééi.Al é:é.q.o..l é.éé..i

i..ﬁ;;;—;;éé | ;..I—..! éééié]....l é.é.a.b..l é‘éé”i

i..':h..é;_;£;6r.1; : ;..: ;..{ éé]..ééé...: é:é.;ﬁ...: é:éé..i

11 passing (4s)

Figure 4.9: Test Execution Output of the Tests Written in Truffle

BPMN elements covered in each process model of the contracts is listed in
Error! Reference source not found.. Basic control patterns and most
frequent BPMN elements are covered as in [20].

69

Table 4.5: Sample Contracts against Covered BMPN Elements

Contract Name

BPMN Elements Used

1. Basic Token

Collaboration, Participant, DataOutput, Task,
SequenceFlow, IntermediateCatchEvent, Process,
MessageFlow, EventBasedGateway, Datalnput,
DataStoreReference, DataObject, DataStore,
StartEvent, EndEvent

Collaboration, Participant, DataOutput, Task,
SequenceFlow, IntermediateCatchEvent, Process,

2. Lottery MessageFlow, EventBasedGateway, ExclusiveGateway,
ScriptTask, DataObject, DataStore, StartEvent,
EndEvent
Collaboration, Participant, EventBasedGateway, Task,
3. Marriage ScriptTask, DataObject, SequenceFlow, StartEvent,

EndEvent, Process, MessageFlow

4.3. Analysis of the Available Systems

4.3.1. Caterpillar

Caterpillar [13] [14] is an opensource blockchain based BPMN execution
engine. One of the main limitations is the defining meta data such as
variable declarations requires annotating ‘documentation’ attribute of the
BPMN Element (please refer Figure 4.11). Due to this limitation, the
diagrams drawn using the Caterpillar are abstract and does not encompass
the complete image of the contract. In contrast, the proposed approach
allows user to define Data Objects which is clearly visible in the BPMN

diagram.

70

vvvvvvv

® 00

-+

Figure 4.10: Annotating Solidity Variables in BPMN Diagram in Caterpillar

In addition, it is apparent that the Caterpillar heavily depends on the
‘documentation’ attribute of the BPMN elements and it is overly used for
Solidity annotations. In contrast, the proposed approach purely depends on
the real essence of the BPM notations and the ‘documentation’attribute is
being used for the code documentations.

4.3.2. Unibright

Compared to the proposed approach, Unibright focuses on the work-flow
modelling and uses custom notations for the modelling. In contrast, this
research avoided introducing entirely new modelling elements. Instead,
standard BPMN 2.0 specification is supported in favour of faster
community adoption and short learning curve.

Figure 4.12 illustrates an excerpt of the generated code of the workflow
example in Figure 2.3(page 27). Complete code generated by Unibright
Workflow Designer is available in Appendix A (page 115). Most of the name
tags of the approval phases and conditional checks are persisted off the
chain. While it improves the efficiency of the resource consumption; it
reduces the readability & trust of the on-chain business model.

Compared to the proposed approach which is freely available in Github

under Apache2 opensource license, Unibright is a commercial offering, and
a high cost is involved and minimal customizations can be done.

71

pragma solidity 70.4.24;
import "./UnibrightContract.sol";
contract MultiPartyApproval is UnibrightContract {

// the status of the whole approval process
Status public approvalStatus;

// holds the timestamp of the last update
uint public lastUpdate;

// states the contract and the feedbacks of the approvers can be in
enum Status { UNDEFINED, NEEDSWORK, APPROVED }

// uuid of the end node
bytesl6 private endId;

// map of uuids to approvers, filled during the deployment
mapping(bytesl6é => Approver) private approvers;

// map of uuids to feedbacks, filled during the deployment
mapping(bytesl6é => Feedback) private feedbacks;

// map of addresses to uuids, filled during the setup phase
mapping(address => bytesl6) private addresses;

// Approver holds information about an Approver
struct Approver {

Status status; // the status of the approval
string comment; // a description related to the approval status
uint approvalDate; // time at which the approver gave his approval

uint feedbacksNeeded; // remaining number of feedbacks needed for this
approver to give his approval

bytesl6 feedbackId; // the id of the feedback object attached to this
approver

bool exists; // required to check if mapping exists

// Feedback holds information about the feedback given by an group of
approvers
struct Feedback {
Status status; // the status of the feedback node
uint approvalsGiven; // number of approvals given for this feedback node
uint approvalsNeeded; // number of approvals needed for this feedback
node to set its status
bytesl6([] approverlds;// ids of successor approvers attached to the
feedback
bool exists; // required to check if mapping exists

constructor() public {
approvalStatus = Status.UNDEFINED;
publish();
start();

/] eas

function publish() public onlyBy(owner) {
super.publish();
lastUpdate = now;

addApprover(0xf621af583a18c245b20571c400222fbf,
0x13587eef37d21840a982743534ffdf9a, 0);
addApprover(0x5484342aa23f9a46aa631e626b3a3480,

72

}
/] eas

}

0x0ebf120626a889409228a3b88128020e, 1);
addEndNode (0x98cb347699cccf42bed4ad42b55b91d5, 1);
addApprover(0xd30chdf@e7ca5f47acb9168910bd8c09,
0x13587eef37d21840a982743534ffdf9a, 0);
addApprover(0x5b0fe707b73889448efc9c514c9dd881,
0x13587eef37d21840a982743534ffdf9a, 0);

bytes16[] memory approverListl = new bytesl6[](1);
approverList1[0] = 0x5484342aa23f9a46aa631e626b3a3480;
addFeedback(0@x13587eef37d21840a982743534ffdf9a, 1, approverListl);
bytes16[] memory approverList3 = new bytesl6[](1);
approverList3[0] = 0x98cbh347699cccf42bed44ad42b55b91d5;
addFeedback(0x0ebf120626a889409228a3b88128020e, 1, approverList3);

Figure 4.12: Unibright excerpt code for the multi-party approval template example

(complete code is available in Appendix A, page 115)

4.3.3. Petri-Nets Translation and Reduction Approach

Compared to the proposed approach, BPMN to the

Petri-Nets

transformation, is supporting only a limited subset of BPMN elements. An
excerpt of the generated solidity code derived from [16] is shown in Figure
4.13. As per the figure, traceability of the BPMN core elements in
generated code is comparatively lower than the proposed approach due to
additional overhead added to the contracts. However, the proposed
approach contains minimum overhead and the possible optimizations are
out of scope for our research.

1 contract BPMNContract {

3
4

vint marking = 1;

uint predicates = 0;

function CheckApplication(- input params -) returns (bool) {
if (marking & 2 == 2) { // is there a token in placep, ?

// Task B’s script goes here, e.g. copy value of input params to contract variables
uint tmpPreds = 0;

if (—evalP -) tmpPreds |= 1; //is loan application complete?

if (—evalQ -) tmpPreds |= 2; // is the property pledged?

step (
marking & wintf~2) | 12, // New marking

predicates & uwint(~3) | tmpPreds // New evaluation for “predicates”
return true;
return false ;

function AppraiseProperty(uint tmpMarking) internal returns (uwint) {

73

19 // Task E's script goes here

20 return tmpMarking & uint(~8) | 32;

22 %unction step (uint tmpMarking, uint tmpPredicates) internal {
2 if (tmpMarking == 0) { marking = 0; return; } // Reached a process end event!
B2 bool done = false;

25 while (!done) {

26 // does ps have a token and does P A Q hold?

27 if (tmpMarking & 8 == 8 &% tmpPredicates & 3 == 3) {
28 tmpMarking = AppraiseProperty(tmpMarking);

29 continue;

30 }

3 // does p, have a token and does P A —~Q hold?

32 if (tmpMarking & 8 == 8 &% tmpPredicates & 3 == 2) {
33 tmpMarking = tmpMarking & uint(~8) | 32;

£ continue;

35

36

a7 done = true;

as

39 marking = tmpMarking; predicates = tmpPredicates;

40 }

Figure 4.13: An Excerpt of the Generated Solidity Code in [16]

4.3.3. Choreography Diagrams Approach

In this research, BPMN 2.0 choreography diagrams to model business
processes targeting blockchains. The Solidity code generation process
algorithm for the business contracts is listed in Figure 4.14.

: Bool T'ask, Activated + false
: Bool Task, Activated + false
: Bool JoinGateway, Incoming, Activated « false

: Bool JoinGateway, Incoming,, Activated < false
: Bool JoinGateway,, Incoming, Activated « false

e s Wy

10: Bool JoinGateway,, Incoming, Activated + false
12: Bool TerminationActivated « false

14: function INIT()

15: Task, Activated + true

16: end function

18: function TAsK; ()

20: end function

22: function TASK,()

24: TerminationActivated + true
25: end function

27: function JOINGATEWAY ()
29: end function
31: function JOINGATEWAY,,()

33: end function

Figure 4.14: Process Instance Contract Implementation Templating Algorithm [18]

74

Opposed to the proposed approach, this approach has considered only a
limited set of BPMN elements including ‘7Task, Sequence Flow’, ‘Start
FEvent, ‘End Event, ‘Parallel Gateway’ and ‘Data-based XOR Gateway’
which claimed to be sufficiently covers the basic control-flow patterns of
the process modelling [17]. Nevertheless, our goal was to cover BPMN
elements of the standard specification as much as possible in order to
minimize the drawing effort and make the diagram more intuitive. An
extensive gap analysis is done in section 7.4.7 (page 92) to identify which
elements are to be supported as the future directives.

4.3.3. Extended Choreography Diagrams Approach

For this research, suggested an extended version of the BPMN 2.0
choreography diagrams [7] to generate the Solidity code. An excerpt
generated code of a common interface can be found in Figure 4.15. The
complete code for the Rental Agreement example can be found in their
online appendix !1.

1| pragma solidity "0.4.23;

2| interface Choreography { /.../

3 function start() external;

4 function sendRequest(uint8 task, bytes message) external;
5 function sendResponse(uint8 task, bytes message) external;
6| }

Figure 4.15: Code of the Generated Common Interface (excerpt)

Compared to the proposed approach, current research avoided introducing
entirely new modelling elements and extensions to the standard BPMN 2.0
specification. Instead, available BPMN 2.0 process elements were opted to |
reuse. On the other hand, choreography diagrams by nature, only explains
the messaging between multiple parties but not their internal states. In
contrast, BPMN 2.0 process model & collaborations diagrams in our
approach represents the entire communication between multiple parties
and their state changes.

The below Table 4.6 compares the main features of the similar translators.

! Generated code for the rental agreement choreography diagram example can be found in
https://github.com/jan-ladleif/bpm19-blockchain-based-
choreographies/tree/5785682668176f€931338e50c3df01b3518faf5c/contracts/rental-agreement
online, accessed 26-11-2019

75

Table 4.6: Summary of the Similar Translators

Backword Diagram support | Public availability
BPMN 2.0 Traceability of for the complex of the .
Approach Support modelling elements transactions Implementation License
in code

Unibright [15] A template based, | No, uses a | Comparatively Comparatively No, only a try-out | Commercial
visual definition | custom set of | LOW. Templates | LOW. Modelling | demo is available
of business | notations based. Uses off- | elements available
integration provided by | chain meta data to | are not sufficient*.
workflows templates maintain name

tags.

Caterpillar [13] | Assumes a| Yes Comparatively Comparatively Yes, in Github!? BSD 3-
Solidity LOW. Templates LOW. Solidity Clause
annotated BPMN based. annotations are License
diagram required for the

diagram

BPMN and | BPMN Yes Comparatively Comparatively No N/A

PetriNets transformed into LOW. Additional | LOW. Petri net

reductions [16] | PetriNets. After overhead is added | supports only a
reductions, to the contracts. limited subset of
transformed into BPMN elements
Solidity.

Choreography BPMN 2.0 | Yes Comparatively Comparatively No N/A

diagrams [17] choreography LOW. LOW. Only limited
diagrams to set of BPMN

13 Caterpillar implementation is available in https://github.com/orlenyslp/Caterpillar online, accessed 18-11-2019

76

Backword Diagram support | Public availability
BPMN 2.0 Traceability of for the complex of the .
ApproaCh Support modelling elements transactions Implementation License
in code

model business elements

processes supported
Extended An extended | No, Extended | Comparatively Similar, Provides | No N/A
Choreography version of the | version of BPMN | LOW. similar set of
diagrams [7] BPMN 2.0 | choreography BPMN elements

choreography diagrams used through BPMN

diagrams extensions
Proposed Uses code | Yes Comparatively Comparatively Yes, In Github4 Apache2
Approach generation HIGH due to well | HIGH** due to

approach via defined one-to-one | extensive coverage

token-based AST BPMN-to-Solidity | of the BPMN

translation mapping elements.

*Only available public template for the Unibright is multi approval template
** Similar only to the extended choreography diagrams in [7] which provides similar set of elements.

14 Proposed approach’s implementation is available in https://github.com/rasika/bpmn-to-solidity online, accessed 08-12-2019

77

4.3.3. Comparative Analysis of the Diagrams

A process modelling diagram and the generated Solidity code for a generic
example (i.e. Loan assessment process) is compared against the Caterpillar
system [13] [14] and the Proposed approach.

It is worth to note that only Caterpillar and Unibright implementations
are available to the public. However, the Unibright does not allow to draw
the complete diagram, as the limited nodes are freely available (merely the
approval process is available). Therefore, a complete diagram for the loan
assessment process could not been drawn. Therefore, the only the
Caterpillar was evaluated against the proposed approach.

Example used is derived from the Caterpillar v1.0 implementation!!, which
is a simplified loan assessment process that accepts ‘cost’, ‘monthly
revenue’ and ‘loan amount’ as inputs. Loan risk and property appraisal
verification is done via external API calls for the Oracle nodes. Upon both
successes results from the oracle nodes, in order to accept the loan
application, the final confirmation need to be sent.

Caterpillar v3.0

The diagram from Caterpillar v1.0 has been slightly modified to work with
Caterpillar v3.0. Changes are done for the document attribute of the
BPMN elements using Solidity annotations specification. The BPMN XML
for the modified diagram is available in Appendix B: B1 (page 121). Figure
4.16 shows the process model diagram.

! The example source BPMN file of the Caterpillar is available in
https://github.com/orlenyslp/Caterpillar/blob/f4789f2a708627135e55eb972a0f3c9ed8edcc71/v1.0/cat

erpillar-core/demo_running_example.bpmn online, accessed 02-12-2019

78

~

=3

~ Enter Loan

Assess

Application Elegibility

Loan app rejected

Figure 4.16: BPMN Diagram of the Loan Assessment Process Model using
Caterpillar [13]

In here, few state level variables have been defined in documentation of
the global process level (refer Figure 4.17).

<bpmn:process id="BPM17_Running_Example" name="BPM17_Running_Example" isExecutable=
"false">

<bpmn:documentation>
<! [CDATA[bool applicantEligible;
uint monthlyRevenue;
uint loanAmount;
uint cost;
uint appraisePropertyResult;
uint assessLoanRiskResult;
11>

</bpmn:documentation>

</bpmn:process>
Figure 4.17: Solidity Annotations Required for the Global Process Level in
Caterpillar

Tasks need to be annotated with Solidity annotations. For instance, ‘Enter
Loan Application’ task contains the below Solidity annotations (refer
Figure 4.18);

<bpmn:userTask id="Task_06xlgcp" name="Enter Loan Application">
<bpmn:documentation>

<![CDATA[@ Manager @

() : (uint _monthlyRevenue, uint _loanAmount, uint _cost) -

> monthlyRevenue = _monthlyRevenue; loanAmount = _loanAmount; cost = _cost;]]>

</bpmn:documentation>

</bpmn:userTask>

79

[<@ role_name @>] (data_to_export) : (data_to_import) ->
{Operations_to_perform}

Figure 4.18: Solidity Annotations Required for the ‘Enter Loan Application’ Task in
Caterpillar

Solidity annotation syntax for the BPMN documentation element is
shown in Figure 4.19.

[<@ role_name @>] (data_to_export) : (data_to_import) ->
{Operations_to_perform}

Figure 4.19: Solidity Annotation Syntax for the Tasks in Caterpillar [13]

Proposed Approach

BPMN diagram using the proposed approach is portrayed in Figure 4.20.
Inputs for the diagram is clearly visible and persistence of the variables
are in BPMN elements rather than Solidity annotations. The diagram of
the proposed approach is more verbose and provides the complete picture
and solely compliant with the BPMN 2.0 specification. The BPMN XML
code for the diagram can be found in Appendix B, B2 (page 128).

Loan Approval

Loan app rejected

Y

>
Sonfrmaton

it
Y® Loan app accepted

Loan app rejected

Figure 4.20: BPMN Diagram of the Loan Assessment Process using the Proposed
Approach

80

Table 4.7 compares BPMN representations between the Caterpillar and
the Proposed approach step-by-step using the loan assessment example.

81

Table 4.7: Loan Assessment Steps Comparison

Process Model Step BPMN Representation in Caterpillar BPMN Representation in Proposed Approach
(1) A loan application | A UserTask with the ‘documentation’ attribute | A StartEvent with Datalnputs and associated
contract is started with | containing variable definitions; ‘loan amount’, | DataObjects for the variables ‘loan amount’,
providing ‘loan amount’, | ‘monthly revenue’ and ‘cost’. ‘monthly revenue’ and ‘cost’(A StartEvent with
‘monthly revenue’ and inputs represents a parameterized Solidity
the' ‘eost’ " of . the Constructor.)
institution.
Enter Loan : or
Appllcatlon loanAmount
... ‘ 6
= By
................. >*N*_'/'
(2) Need to evaluate the | Two ServiceTasks combined by ParallelGateways | Two ReceiveTasks combined by ParallelGateways

‘loan risk’ and ‘appraise
the property provided’
using external API calls
off-the-chain.

for the ‘risk assessment’ and ‘property appraisal’.

External API calls and outputs of the oracle nodes
are mapped into two local variables defined in
‘documentation’ attribute of each ServiceTask.

*Mapped variables are not visible in the graphical
diagram.

for the ‘risk assessment’ and ‘property appraisal’.

External API calls are defined in the interface
details of the respective ReceiveTasks. Outputs of
the oracle nodes are mapped into two local
variables using DataObjects ‘loanRisk’ and
‘appraiseProperty’.

82

Process Model Step

BPMN Representation in Caterpillar

BPMN Representation in Proposed Approach

©

Assess Loan
Risk

@

Appraise
Property

loanRisk
[0)

appraiseProperty
[0]

()

Assess the eligibility.
The Eligibility meets
when risk of the loan is
less than or equal to the
cost appraisal.

A ScriptTask contains the comparison logic.

©
Assess Loan
» Risk
—/ g
: Assess
Elegibility
©
» Appraise

Property
———

An ExclusiveGateway with a conditional
SequenceFlow is used. The comparison logic is
clearly visible to the modeler.

loanRisk >=
appraiseProperty

83

Process Model Step

BPMN Representation in Caterpillar

BPMN Representation in Proposed Approach

1 I eligible, send | ConfirmationRequest MessageEvent sends the EndEvent with a MessageEvent sends the
confirmation event | notification. notification.
notification. Or else,
send loan application
rejected notification. appraiseProperty
Confirmation event
sent
Loan app rejected
(5) Loan application | A UserTask with the ‘documentation’ attribute A UserTask with Datalnput ‘_confirmation’

approved notification is
sent upon confirmation.

Or else, send loan
application rejected
notification.

containing variable ‘_confirmation’ retrieves the
input.

*The input variable is not visible through the
diagram.

Confirmation
request sent

retrieves the input.

Y

Confirm Acceptance o

=

confirmation

84

4.3.3. Comparative Analysis of the Generated Solidity Codes

Comparative analysis of the generated Solidity code is twofold.

1. Static Analysis of the Generated Solidity Source Code
2. Blockchain Deployment Analysis of the Generated Code

Static Analysis of the Generated Solidity Source Code

Hegedis P. [21] has conducted a research to analyse the code complexity
of Solidity based smart contracts. The proposed source code metrics for the
Solidity language are listed in Table 4.8.

Table 4.8: Solidity Source Code Metrics for Smart Contracts [21]

Metric Description Explanation
1. SLOC Source Lines = Number of source Lower the better.
of Code code lines When SLOC increases
the readability is
decreased.
2. LLOC Logic Lines of Number of logical = Lower the better.
Code code lines (empty =~ When LLOC increases
and comment lines the complexity is
are ignored) increased, thus lower
the readability.
3. CLOC Comment Number of Higher the better.
Lines of Code comment lines When CLOC increases
the readability is
increased.
4. NF Number of Number of Lower the better.
Functions functions When NF increases,
lowers the traceability
of the human.
5. WMC Weighted The sum of Lower the better.
McCabe’s McCabe's style When WMC increases
Complexity complexity over the the complexity is
functions of a increased
contract
6. NL Nesting Level The sum of the Lower the better,
deepest nesting When NL increases
level of the control the complexity is
structures increased
7. NLE Nesting Level Number of nesting Lower the better,
else-if level else-if When NLE increases
the complexity is
increased

85

8. NUMPAR Number of Number of Lower the better,
Parameters parameters over When NUMPAR

the functions increases the
complexity is
increased
9. NOS Number of Number of Lower the better,
Statements statements When NOS increases
the complexity is
increased
10. NOA Number of Number of Lower the better,
Ancestors different direct or When NOA increases
transitive the complexity is
ancestors increased
11. NA Number of Number of state Lower the better,
Attributes variables When NA increases
the complexity is
increased
12. NOI Number of Number of Lower the better,
Outgoing different function When NOI increases
Invocations invocations within the complexity is
functions increased

In order to calculate these metrics, the author has implemented a
prototype tool called SolMet!!l. SolMet is able to parse Solidity source files
and calculate source code metrics listed in above Table 4.8. Accordingly,
same tool has been used to analyze the generated Solidity source code for
the loan assessment example against publicly available BPMN-to-Solidity
translator system (i.e. Caterpillar).

Results from the SolMet tool against the generated source code is depicted
in Table 4.10. According to the metrics results, there is a significant gap
between the numbers. The reason for this difference is that Caterpillar
generates contract templates which has substantial amount of lines of code
and logical lines.

For instance, in order to deploy the loan assessment example, Caterpillar
first requires a process registry (114 lines). Then the drawn process model
can be deployed. For the process model, Caterpillar deploys a BPMN
Interpreter (341 lines), an IFlow template (147 lines) and a Factory
template (7 lines). For the Caterpillar, all required contract source files of
the loan assessment example are listed in Table 4.10. The primitive way of
comparing the complexity is the lines of code. Accordingly, Caterpillar has

11 The SolMet tool is available on https://github.com/chicxurug/SolMet-Solidity-parser online,
accessed 17-12-2019

86

a total of 762 lines of code. In contrast, the Proposed Approach only
requires a single file of 58 lines of code (refer Appendix C, page 137).

When analyzing the metrics, it is apparent that the average SLOC, LLOC,
CLOC per contract are higher compared to the proposed approach. Higher
SLOC and LLOC increases complexity of the code. However, CLOC is
comparatively low in the proposed approach and it is satisfactory since low
number of lines appear in the code. The number of functions (denoted as
NF) for the Caterpillar is 104 and average of 10.4 per contract. In contrast,
proposed approach has two (2), namely ‘confirmAcceptanceé and
‘_callback’. Moreover, as per the [22], WMC for the proposed approach is

rated as ‘Low’ level risk, compared to the Caterpillar WMC for individual
source files is between ‘Moderate’, ‘High’ and ‘Very High’ risk levels.

Table 4.9: Cyclomatic Complexity Recommendations [22]

CC Type of Procedure Risk
1to4 A simple procedure Low
5to 10 A well-structured and stable procedure Low
11 to 20 A more complex procedure Moderate
21 to 50 A complex procedure, worrisome High
> 50 An error-prone, extremely troublesome, Vgry
untestable procedure high

Further, the deepest nesting level (denoted as NL) and else-if nesting levels
(denoted as NLE) for the Caterpillar is comparatively high. Number of
parameters (denoted as NUMPAR) and number of state variables (denoted
as NOS) is also comparatively high. Increase of these numbers believed to
be increasing the complexity of the code [22]. Number of direct and
transitive ancestors are same for the both approaches. Moreover, average
number of state variables (denoted as NA) and average number of function
invocations in function definitions (denoted as NOI) are also higher in
Caterpillar compared to proposed approach.

87

Table 4.10: Generated Solidity Code Complexity Analysis Metrics Results

g =

*qmi Solidity Files Contract Names (N) CSD Q § &) E 8 g =

@ 5 3|8|8|8|8|5 AEAEAR:
Cv3 IFlow.sol IFlowImpl 121| 81 9| 18| 24 5 5/ 21| 34 0o 11 4
Cv3 ' IFlow 26| 19 3| 18| 18 0 0| 21 0 0 0 0
Cv3) ProcessRegist 105| 83 0| 15| 19 4 4| 24| 42 0 8| 14
Cva | ProcessRegistry.sol p v S 9| 7] 2| 5| 5| o] o] 5| o] o] o] o
Cv3 IInterpreter 4 3 0 2 2 0 0 2 0 0 0 0
Cv3 | IData.sol IData 18| 17 0| 15| 15 0 0| 14 0 0 0 0
Cv3 IDatalmp 73| 53 0| 14| 14 0 0| 13| 18 0 7 4

BPM17_Runnin BPM17_Runnin
Cv3 ExampleFactoryg.gol ExampleFactoryg_ 7 3 0 1 1 0 0 0 1 0 0 1
Cv3 | BPMNInterpreter.sol | BPMNInterpreter 341 | 206| 78| 10| 57| 25| 19| 18| 164 0 0| 87
Cv3 | IFactory.sol IFactory 3 2 0 1 1 0 0 0 0 0 0 0
BPM17_Runnin BPM17_Runnin
Cv3 ExampleData.sogl ExampleData - 56| 46 0 5 13 4 3| 101 26 1 6 7
TOTAL 762 | 520| 92| 104 | 169| 38| 31| 128 | 285 1| 32| 117
AVERAGE (TOTAL /N = 10) 76.2| 52| 9.2|10.4|16.9| 3.8| 3.1|12.8|28.,5| 0.1 3.2| 11.7
PrA | LoanApproval.sol | LoanApproval 58 | 44 2 2 5 2 2 3| 22 1 6 2
TOTAL 58| 44 2 2 5 2 2 3| 22 1 6 2
AVERAGE (TOTAL/N=1) 58| 44| 2 2 5] 2| 2 S 22 A G 2
N = Number of Contracts Cv3 = Caterpillar v3.0, PrA = Proposed Approach

88

Figure 4.21 depicts the summary of metrics results of the total generated
Solidity code complexity.

32
762| 15201 gy |104| [169| |38 |31 [128] [285] [117

Veal Uaa’ booaod | VA7 799 7 ’ fjsf';
58 ~ ‘44 7 2 YA | bz | b S 7 % 2 7 7 27 e /227 22 b

SLOC LLOC cCLoC NF WMC NL NLE NUMPAR NOS NOA NA NOI

Proposed Approach [Caterpillar
Figure 4.21: Summary of Metrics Results of the Total Solidity Contract Complexity

Figure 4.22 depicts the summary of metrics results of the average Solidity
code complexity per contract. Average values are derived from the results
of the Figure 4.21, divided by the number of contracts(N) in total.

2 762

Horizontal (Category) Axis Major Gridlines

0
wn

Y 44

Z

ey

7
./,
ZA ..
B
B
7
7
,
7

ol
el
< —t
; ~ S
a o -
7 —
; 2 VIR B PRI B S
7227 74| A) e A) VA

SLOC LLOC CLOC NF wMC NL NLE NUMPAR NOS
Proposed Approach £ Caterpillar

Figure 4.22: Summary of the Average Metrics Results of Solidity Contract
Complexity

In overall, results demonstrate that the Caterpillar generates a substantial
amount of lines of code (762 lines) for the loan assessment example
whereas the proposed approach generates a minimum number of lines of
code (58 lines). Other metrics, prove that the complexity of the total
generated code and the average complexity per contract is comparatively
high for the Caterpillar.

&9

Blockchain Deployment Analysis of the Generated Solidity Code

Every operation made on Ethereum, requires gas as the execution fee!l. In
order to analyse the gas consumption and the deployment ability without
any errors, the generated code from the Caterpillar and the proposed
approach has been deployed in a blockchain test network using Truffle!2
test framework for Solidity. In order to retrieve gas details, a JavaScript
plugin; eth-gas-reporter!3 installed and configured into truffle-config file.

uffle test framework.

Below Figure 4.23 depicts the output of the tr
: |

| Solc version: 0.4.25+commit.59dbf8f1 - Optimizer enabled: false - Runs: 200 - Block limit: 6721975 gas |
... l..¢.........................I.............|...........4.................
| Methods |
...................... I....I..Illl
| Contract + Method + Min - Max - Avg .+ # calls - eur (avg) |
...................... I.....I..Illl
| Deployments . + % of limit - |
... |..............|.............I.............I...........4..|..............
| BPM17_Running_ExampleFactory . - - 934730 - 13.9 % - -
... I...III....I
| BPMNInterpreter - - - 4837796 72 % - -
... I..............I.............I.............|..............l..............
| LoanApproval - - 1252037 18.6 % - -
... I...Ill..l
| Migrations . - - - - 277462 - 4.1% - -
... I..¢...........I.............I.............|.........4....|..............
| ProcessRegistry . - - 1414790 - 21 % -

| | | |

Figure 4.23: Truffle Framework Output of the Deployment of Contracts

Below Table 4.11 derived from output of the truffle framework in Figure
4.23. Solidity code generation time is calculated by adding console logs to

the Caterpillar source code and the proposed approach required no changes
since it is already logging time consumed.

Table 4.11: Deployment Gas consumption Identification

Generation Gas Total Gas

System Contracts Generated Time Consumed Consumed
Caterpillar Process Registry 1,414,790

BPMN Interpreter 4,837,796

BPM17_Running_Exampl ~20ms 934,730 7,187,316

eFactory
Proposed Loan Approval ~263ms 1,252,037 1,252,037
Approach

90

According to the Table 4.11, Solidity source code generation time for the
proposed approach is comparatively high compared to Caterpillar. One
reason for this delay is due to Java implementation of the PoC, whereas
the Caterpillar was implemented as a web application using TypeScript.
Further, in terms of total gas consumption, Caterpillar requires a
substantial amount of gas compared to the Proposed System. This is
mainly due to high number of lines of code.

4.4. Input BPMN Diagrams and Re-generated Solidity Codes

This section demonstrates the completed BPMN diagrams for different
business use cases such as; Rental agreement, Marriage: wedding gift,
Sellable, Lottery, Basic token and Crowd sale, which were drawn using
BPMNZ2.0 modeler and their respective re-generated Solidity codes using
the proposed approach.

4.4.1. Rental Agreement

Rental agreement is a contract between a landlord and tenant. The purpose
of the contract is to make sure that rent is paid on time. This contract is
obtained from [23].

e e

paidrents createdPipestamp i\t house landioard

Swe s} tegyt
[Croated e s - FagRen
Started. H 5 C Eat
= - (5 vaioe

Send AgreementConfirmed|

entalAgroement

End Event 1

Pay Rent : public F Send PaldRent]—»mn Payment to L nn::\nndm
nS: s onlyTenant uire(msg.val End Event 3
tarted) == rent
7>_>7mmmxn Contract pub«r.}—» Send ContractTerminated l—»&om Payment to ;;wmac_..o
niyLandlord End Event 2

Figure 4.24: BPMN Diagram for the Rental Agreement Business Contract

91

pragma solidity >=0.4.0 <0.7.0;
contract RentalAgreement {

struct PaidRent {
uint id;
uint value;

PaidRent public paidrents;

uint public createdTimestamp;

uint public rent;

string public house;

address public landloard;

State public state;

address public tenant;

enum public State {Created, Started, Terminated};

event AgreementConfirmed();
event ContractTerminated();
event PaidRent();

constructor (uint _rent, string _house){
rent = _rent;
house = _house;
landloard = msg.sender;
createdTimestamp = block.timestamp;

modifier inState(State.Created) {
if (state == _state) _;

modifier onlyLandlord {
if (msg.sender != tenant) _;

}

modifier inState(State.Started) {
if (state == _state) _;

}

modifier onlyTenant {
if (msg.sender == tenant) _

/%% Confirm the lease agreement as tenant x/
function confirmAgreement() public inState(State.Created) require(msg.sender !=
landlord) {
emit AgreementConfirmed();

/** Terminate the contract so the tenant can’t pay rent anymore, and the contract is
terminated */
function terminateContract() public onlyLandlord {
emit ContractTerminated();
landlord.send(this.balance);
state = State.Terminated;

function payRent() public inState(State.Started) onlyTenant require(msg.value == rent)

emit PaidRent();
landlord.send(msg.value);
paidrents.push(PaidRent ({
id : paidrents.length + 1,
value : msg.value

b))

Figure 4.25: Re-generated Solidity Code for the Rental Agreement Business
Contract

92

4.3.3. Marriage: Wedding Gift

balances wife husband
[0] [1
@ () : payable Update Balances
2 : End Event 1
1
1
1
1
1
Start Event 1 :
1
i =1
. withdraw
1
1
: ya\ End Event 2
°
&

Figure 4.26: BPMN Diagram for the Marriage_Wedding Gift Business Contract

pragma solidity >=0.4.0 <0.7.0;

contract Marriage {
mapping (address => uint) balances;
address wife = address(0);
address husband = address(1);

function withdraw () {
uint amount = balances([msg.sender];
balances [msg.sender] = 0;
msg.sender.transfer(amount);

function () payable {
balances [wife] += msg.value / 2;
balances [husband] += msg.value / 2;

}

b5
Figure 4.27: Re-generated Solidity Code for the Marriage_Wedding Gift Business
Contract

4.3.4. Sellable

In this contract there are three participants; owner, buyer and the contract.
Therefore, this contract elaborates a sales transaction occur among these
three parties. This contract is obtained from [24].

93

Transaction Cleanup Send Transter

Figure 4.28: BPMN Diagram for the Sellable Business Contract

pragma solidity >=0.4.0 <0.7.0;
contract Sellable {

// The owner of the contract
address public owner;

// Current sale status
bool public selling = false;

// Who is the selected buyer, if any.
address public sellingTo;

// How much ether (wei) the seller has asked the buyer to send
uint public askingPrice;

event Transfer(uint _saleDate, address _from, address _to, uint _salePrice);

constructor ()({
owner = msg.sender;
emit Transfer(_saleDate, _from, _to, _salePrice);

}

modifier onlyOwner {
require(msg.sender == owner);

-

}

function initiateSale(uint _price, address _to) public onlyOwner ({
require(_to != address(this) && _to != owner);
require(!selling);
selling = true;
sellingTo = _to;
askingPrice = _price;

}

function cancelSale() onlyOwner public {
require(selling);
resetSale();

}

function completeSale() public payable {
require(selling);

require(msg.sender != owner);
require(msg.sender == sellingTo || sellingTo == address(0));
require(msg.value == askingPrice);

address prevOwner = owner;

94

address newOwner = msg.sender;
uint salePrice = askingPrice;

owner = newOwner;
resetSale();
prevOwner.transfer(salePrice);

Transfer (now, prevOwner,newOwner,salePrice);

}

function resetSale() internal onlyOwner {
selling = false;
sellingTo = address(0);
askingPrice = 0;

Figure 4.29: Re-generated Solidity Code for the Sellable Business Contract

4.3.3. Lottery

The business logic of the lottery contract is explained below. This contract

is obtained from [25].
e Limit is 10 users
e User has to pay 0.1 ether to join the lottery
e Same user can join once
e Owner of the contract can join the lottery
e When 10 users join then the winner is picked
e Winner receives all the money
e New lottery starts when the winner is picked

95

participants participantsCount randNonce
10 0 0
I @_.O
End
i
participantsCount

Start
Increase Participants

§ ’
e value i
> ==0.1ethery equire(particibants oo imeg sende
g Count < 10); et
L
%im Already private:
view
nd
p [F——
@ Seloct Winner: private
require(participants A Eod
Count == 10)
'
nd
10
2
o

Figure 4.30: BPMN Diagram for the Lottery Business Contract

pragma solidity >=0.4.0 <0.7.0;

contract Lotteryl@Users {

address[10] participants;
uint8 participantsCount = 0;
uint randNonce = 0;

function join() public payable {
require(msg.value == 0.1 ether, "Must send 0.1 ether");

require(participantsCount < 10, "User limit reached");
require(joinedAlready(msg.sender) == false, "User already joined");
participants[participantsCount] = msg.sender;
participantsCount++;
if (participantsCount == 10) {

selectWinner();

}

function joinedAlready(address _participant) private view returns(bool) {
bool containsParticipant = false;
for(uint i = 0; i < 10; i++) {
if (participants([i] == _participant) {
containsParticipant = true;

}

return containsParticipant;

function selectWinner() private returns(address) {
require(participantsCount == 10, "Waiting for more users");
address winner = participants[randomNumber()];
winner.transfer(address(this).balance);
delete participants;
participantsCount = 0;

96

return winner;

function randomNumber() private returns(uint) {
uint rand = uint(keccak256(abi.encodePacked(now, msg.sender, randNonce))) % 10;
randNonce++;
return rand;

Figure 4.31: Re-generated Solidity Code for the Lottery Business Contract

4.3.3. Basic Token

The business logic of the Basic Token contract is explained below. This

contract is obtained from [25].
e [Initial supply of tokens is set on creation
e Contract creator gets initial tokens
e Tokens can be transferred to any account
e There is a protection from overflow
e Everyone can check balances

97

— = =

initialﬁ_\{pply balances _recb.pient r.amount

Update Balances

Transfer

require(_recipient !
msg.sender] >= = msg.sender)

req r
ecipient] + _amount
>

_amount)

———

Basic Token

balances|_recipient
n

Balance Of: view

_initialSupply

O ————————— = R

]
]
1
1
]
]
]
1
1
]
]

A

@)

Pool 4

Figure 4.32: BPMN Diagram for the Basic Token Business Contract

pragma solidity >=0.4.0 <0.7.0;

contract BasicToken {
uint public initialSupply;

mapping(address=>uint) balances;
constructor(uint _initialSupply) public {

initialSupply = _initialSupply;
balances[msg.sender] = _initialSupply;

function transfer(address _recipient, uint _amount) public {
require(balances[msg.sender] >= _amount, "Not enough funds");

require(_recipient != msg.sender, "No need to send tokens to yourself");
require(balances[_recipient] + _amount > balances[_recipient]);
balances [msg.sender] -= _amount;

balances|[_recipient] += _amount;

b

function balanceOf(address _owner) public view returns (uint) {
return balances[_owner];

Figure 4.33: Re-generated Solidity Code for the Basic Token Business Contract

4.3.3. Crowd Sale|

Crowd sale is a process of collecting small amounts of capital from a large
number of individuals to finance a new business venture or project. This
contract elaborates how the funds been transferred among the beneficiary,
backer and contract. This is the most complex diagram (Figure 4.34) which
is drawn using the proposed system up to now.

98

AN
= >

fundinggoallnEt)
hdrs ifSuccessfulSendTo

= =

Pool 4

herCpstOfE ; durationinMinutes
achTbken H

: o
H i |
: § JRLCITITEE 1 g .
: g |i | (:payable FundTransfer _>e
TokdnU A N
ewargl : (=)
. Y Y @ End Event 2

S'hvnjnt 1
§. b checkGoalReached
S e

afterDeadline

b "crowdsaleClosed
Reached
Ifaleal [Faise]

Y

%\dingsoalRead\ed = GoalReached crowdsaleClosed = true
amountRaised = true

fundingGoal

FundTransfer

FundTransfer

gffer.send
ampunt)

beneficigry.send(

aln i
ed && beneficiary

== msg.sender

beneficiary

Contract Crowdsale
1 4
£

deadline

- %

fundingGoal

End Event 6

%eneaof[msgsenuer] =
amount

Script Task 6

>N [
racq.vfr amq‘:mt
\ 2

transfer:external

interface token

Start Event 3 - End Event 3

Figure 4.34: BPMN Diagram for the Crowd Sale Business Contract

pragma solidity >=0.4.0 <0.7.0;
contract Crowdsale {

address public beneficiary;

uint public deadline;

token public tokenReward;

uint public price;

uint public fundingGoal;

bool crowdsaleClosed = false;
bool fundingGoalReached = false;

event FundTransfer(address beneficiary, uint amountRaised, bool fundingGoalReached);
event GoalReached(uint beneficiary, uint amountRaised);

constructor (address ifSuccessfulSendTo, uint fundingGoalInEthers, address
addressOfTokenUsedAsReward, uint durationInMinutes, uint etherCostOfEachToken) {
beneficiary = ifSuccessfulSendTo;
fundingGoal = fundingGoalInEthers * 1 ether;
deadline = now + durationInMinutes * 1 minutes;
price = etherCostOfEachToken * 1 ether;
tokenReward = token(addressOfTokenUsedAsReward);

}

modifier afterDeadline() {
if (now >= deadline) _;

}

function() public payable {
require(!crowdsaleClosed);
uint amount = msg.value;
balanceOf [msg.sender] += amount;
amountRaised += amount;
tokenReward.transfer(msg.sender, amount / price);
emit FundTransfer(beneficiary, amountRaised, false);

}

function safeWithdrawal() public {
if (!fundingGoalReached) {
uint amount = balanceOf[msg.sender];
balanceOf [msg.sender] = 0;
if (amount > @) {
if (msg.sender.send(amount)) {
emit FundTransfer(beneficiary, amountRaised, false);
} else {
balance0Of [msg.sender] = amount;

}
}
}
if (fundingGoalReached && beneficiary == msg.sender) {
if (beneficiary.send(amountRaised)) {
emit FundTransfer(beneficiary, amountRaised, false);
} else {
fundingGoalReached = true;
}

b

function checkGoalReached() public afterDeadline {
if (amountRaised >= fundingGoal) {
fundingGoalReached = true

emit GoalReached(beneficiary, amountRaised);

crowdsaleClosed = true;

}

interface token {

100

function transfer(address receiver, uint amount) external;

Figure 4.35: Re-generated Solidity Code for the Crowd Sale Business Contract

4.4. Gap Analysis of the Supported BPMN 2.0 Constructs

A detailed analysis on BPMN 2.0 specification is done to identify the
available BPMN 2.0 elements.

Table 4.12: Gap Analysis of the Supported BPMN 2.0 Constructs

BPMN Construct Description A?r:ﬂg(l))ll':? Remarks
Event Start Event Yes
Intermediate Event Yes
End Event Yes
Message, Timer,
Error, Escalation, Onl
Event Type g?)rr;lc;;,nsation Yes sur;)gorted
Conditional, Link, Conditional,
b . Timer
Signal, Terminate,
Multiple
All Activities
Task, Sub-Process, should be
Activity Call Activity, Global Yes available in
Task the same
diagram
User, Manual,
Task Bus.iness Rl%le, Yes
Script, Service,
Send, Receive
Exclusive, Inclusive,
Gateway Parallel, Complex, Yes
Event Based
Normal,
Uncontrolled,
Sequence Flow Conditional, Default, Yes Except .
Fiicaotion: Compensation
Compensation
Message Flow Yes
Association Yes
Pool Yes
Multiple lanes
Lane No not suI;)ported
i Data Object, Data
Data Object Input, DJata Qutput Yes
Data Store Yes
Message Yes
Fork Yes

101

Join Yes
Branching Point g:(szgas’lfg(’:lﬁ‘s’f‘g Yes
Merging Yes
Activity, Sub-
Looping Process, Sequence No
Flow
Multiple Instances No
Only with
Process Break Yes conditional
event catchers
Transaction No
Group No
Text Annotation Yes rnc e
comments

4.5. Gap Analysis of the Supported Solidity Constructs

The Table 4.13 depicts which Solidity constructs are supported by the
Translator when converting from the BPMN 2.0.

Table 4.13: Gap Analysis of the Solidity Language Constructs Supported

Cionlgﬁy ot Description Supported? Remarks
Partially supported.
Supported static version
Pragma - pragma will be added by the
Translator.
I Not available through BPMN
mports No
constructs.
. Available through Data
S Yauable - Objects and Data Stores
Functions Yes Available through Tasks
Function Yes Available through
Contract Modifiers Confhtlonal Event Definitions
Definitions Events Yes Available through SendTask
Available through Data
Struct Types Yes Stores and Data Input
Objects
Available through DataType
Enum Types Yes metadata in Data Items.
Boolean,
Integer, Fixed
Point Numbers, Available through DataType
Value Types Address, Yes metadata in Data Items.
Arrays,
Rational,

102

String,

Hexadecimal
Function No
Types
Available through
Arrays Yes isCollection and DataType
Reference metadata in Data Items
Types Available through Data
Structs Yes Stores and Data Input
Objects
Mapping Yes Available through DataType
Types metadata in Data Items
aias Exte.r nal, Derived from the name of the |
Visibility public, ;
and Getters | internal . Lok N
: ’ ‘<TaskName>[:visiblityMod]’
private
Libraries Derived from the Pool Name.
Inte rface:,s Yes ‘Interface <PoolName>’ or
‘Library <PoolName>’
Error Yo Partially supported. ‘require’
Handling is supported.
Control Yes Partially supported. Looping
Structures constructs yet to support.

103

4.6. BPMN 2.0 Modelling Recommendations
Granularity of the diagrams should be taken into the account when

modelling the diagram. It is important to notice that the BPMN ‘Script
Task’ can be used] to add a Task written in a given language (e.g. Java). For
instance, BPMN diagram drew in Figure 4.34 in page 101, can be re-drawn
as below (Figure 4.36);

104

=

funding&oallnEt

hers

etherCpstOfE &

achTbken

=

ifSuccessfulSendTo

=

durationinMinutes

Pool 4

addressQ Fl'okd:wu

sedAsReward

Contract Crowdsale

tokenReward

beneficiary

» >

deadline

-

fundingGoal

afterDeadline

B i el L e ©

<
g

():payable

B e s O

¢
Y

checkGoalReached

Reached

faleal [false]

“'crowdsaleClosed

interface token

recejver

Start Event 3

transfer:external

ﬁ

amgunt

End Event 3

Figure 4.12: Abstract BPMN Diagram for the Crowd Sale

In other words, this is an abstract diagram of the Figure 4.34. Translation
of the Figure 4.36, still generates the same Solidity code. However, the
readability of the diagram is bit less due to fact that ScriptTasks have

replaced all the Gateways that was available in Figure 4.34.

While the ScriptTasks provides an easy way to hide the complexity of the
diagram, we recommend to un-hide the decision paths (Exclusive
Gateways) from the diagram.

105

4.4. Chapter Conclusion

This chapter describes the testing and evaluations which were conducted
in this research. Results of the developed BPMN-to-Solidity translator and
sample BPMN diagrams and the re-generated Solidity codes are included
in this chapter. In addition, a detail discussion on gap analysis of the
supported BPMN2.0 constructs and Solidity constructs are included.

106

5. Conclusion and Future Work

5.1. Conclusion

This research addressed the problem of lack of an efficient translator to
reliably convert business process models defined in BPMN into Solidity
smart condracts. Most significant contributions of this research are the
mapping rules of the BPMN 2.0 to Solidity language, A Proof-of-Concept
(PoC) implementation to prove the derived work and the extensive
literature survey on the state-of-the-art related work. The implementation
details are freely available in GitHub!! under the Apache2 opensource-
friendly license.

In the literature review chapter, Smart contracts and its applications are
discussed. Then Business Process Modelling Notation (BPMN) modelling
technique was selected from the various Business Process Modelling (BPM)
techniques among Flow Charts, Petri Nets, Data Flow Diagrams (DFDs),
Role Activity Diagrams (RADs) as it serves the purpose of this research.
'Eclipse BPMN2.0 Modeller’ has been used as the business process
modelling tool as part of analysis of the Tools & Plugins for BPMN.
Further, detailed analysis on the BPMNZ2.0 specification and the Solidity
language documentation is done.

The main goal of this research is “to develop an efficient drag-and-drop
icon-based translator to convert business process models defined in BPMN
into Solidity smart contracts”. The Research Methodology chapter
discusses the research approach and steps taken. For the data-collection,
primarily, smart contract implementations written in Solidity language
were collected and derived the business use cases using BPMN diagrams.

The development of the research consists two main components, (1) BPMN
Modeler and (2) BPMN-to-Solidity Translator. For the BPMN Modeler,
‘BPMN2 Modeler’ Plugin for Eclipse IDE is integrated. For the BPMN-to-
Solidity Translator, an ANTLR based compiler is written from the scratch.
Input for the compiler is the XML representation of the BPMN diagram
and the output is a generated Solidity language contract. Steps followed
for the implementation are described in-detail in the Development of the
Translator section in page 32. Abstract Syntax Tree (AST) representations
for the BPMN and Solidity is introduced to translate a BPMN AST into a
Solidity AST, and then finally generate the Solidity code. The diagram

107

representations of the ASTs can be found in Figure 3.12 and Figure 3.13 in
page 39.

A particular business transaction can be converted into a smart contract,
if and only if that contract can be mapped using the notations in BPMN 2.0
specification and the diagram should be a valid BPMN diagram as the
specification. In other words, any business transaction drawn as per the
BPMN-to-Solidity mapping specification using a BPMN2 modelling tool
can be converted into Solidity code. Incomplete diagrams or diagrams with
the incorrect syntaxes will get appropriate error messages.

Further the results of the qualitative survey study suggest that the BPMN-
to-Solidity translation is at the satisfactory level. A detailed analysis on
this feedback of the study can be found in page 62. Further, the evaluation
results of the process model suggest that PoC handles erroneous cases as
expected and sufficiently flexible to draw complex diagrams such as
‘CrowdSale’ example. Moreover, evaluation of the translation verified with
the pre-identified abstract features, ‘Entry Points’, ‘Branch Points’ and
‘Persistent Points’.

Correctness and efficiency are validated with the Truffle tests running on
a blockchain test network (refer page 68). In addition, currently available
systems are compared against the proposed approach. A Comparative
analysis between the Caterpillar and the Proposed approach (in page 72)
shows that the proposed approach is generating solidity code that has the
minimum lines of code (58 lines) and minimum gas consumption
(1,252,037) with a satisfactory code generation time(~263ms). Thus,
results of the experiments suggest that the proposed approach is more
efficient in converting BPMN to Solidity.

Thus, the goal of this research, to develop an efficient drag-and-drop icon-
based translator to convert business process models defined in BPMN into
Solidity smart contracts is achieved.

108

5.1. Limitation and Future Work

Current implementation of the BPMN-to-Solidity translator is still in the
PoC (Proof-Of-Concept) level and does not address the user-experience
aspect in a great extent. Certain steps remain disconnected while
translating the BPMN XML file into Solidity code. As the future work of
this research, it is expected to develop a tool with attractive user-friendly
interfaces to convert business contracts which are drawn using BPMN2.0
to Solidity smart contracts addressing aforementioned issues.

For the evaluation of the Solidity codes generated by the XML
representation of the BPMN diagrams, six use cases of different
complexities from different domains has been selected. Thus, the
generalizability of the BPMN-to-Solidity translator introduced in this
research 1is limited to the scope of the use cases provided in page Error!
Bookmark not defined.. BPMN elements coverage for contracts are listed
in Error! Reference source not found. in page Error! Bookmark not defined..
However, in theory; once the BPMN-to-Solidity translator supports all
elements listed in BPMNZ2.0 specification; it should be able to produce a
valid Solidity smart contract code for any given BPMN XML.

Moreover, the current study only focused on basic control-flow patterns and
not all the elements in BPMN 2.0 specification are covered. Thus, need to
cover the full BPMN2.0 specification to proclaim the full BMPN2.0
support. The gap analysis done in section 4.4 (page 92) clearly identifies
the pending BPMN elements. Nevertheless, the available BPMN elements
sufficiently covers the basic control-flow patterns of the process modelling
[17].

Writing tests to verify the business logic also requires a significant effort.
Thus, as a future work, the translator should be able to generate the test
templates for the generated contracts minimizing this tedious effort.
Integrating a test-framework such as Truffle will provide a runtime for the
contracts and allow the translator to deploy the contracts & tests in the
test networks as well.

The participation count of the qualitative survey is very limited (N=7). In
the future, participant count can be increased to get a rich feedback.
However, one advantage of this limited participation is the chance of
getting feedback considering the quality over quantity.

109

In addition, the feedback received through the qualitative survey study
(refer Appendix E, page 150) signifies that there are several improvements
needs to be done. There’s a room for the improvement in the representation
for the complex diagrams. Also, the state management of the generated
contract is need to be improved without depending on the process designer
to implement the additional checks. Moreover, as per the feedback
traceability and readability of the generated code can be further improved
by adding compiler generated comments.

A limited support available for the reusability of the same code-blocks
across the multiple contracts. This is allowed through sharing the Tasks
across multiple Pools in BPMN terms. However, still the translator
supports single file generation as an output. Thus, sharable code-blocks are
limited to the scope of a single file.

Furthermore, when comparing with the existing systems such as
Caterpillar, the comparisons are not straight forward since the purpose
and the audience of these tools and systems are different. For instance,
Caterpillar is a BPMN execution engine and provides state monitoring and
other value-added features in addition. Compared to the proposed
approach, it provides the raw Solidity code contract that needs to be
deployed in any blockchain of the users need. Nevertheless, since
Caterpillar is also an opensource BPMN execution engine, In the future,
we might be able to integrate the proposed BPMN-to-Soldity translator as
a core-component to Caterpillar execution engine to enhance their
processes.

110

References

[1] A.]J. Bellia, “Promises, Trust, and Contract Law,” 47 AM.J.JURIS., vol. 25, pp.
25-26, 2002.

[2] G. Valentina, L. Fabrizio, D. Claudio, P. Chiara and S. Victor, “Blockchain and
Smart Contracts for Insurance: Is the Technology Mature Enough?,” MDPI,
Basel, Switzerland, 2018.

[3] ChainTrade, “10 Advantages of Using Smart Contracts,” Medium, 27 Dec
2017. [Online]. Available: https://medium.com/@ChainTrade/10-advantages-
of-using-smart-contracts-bc29¢508691a. [Accessed 25 June 2018].

[4] “Solidity,” 2018. [Online]. Available:
https://solidity.readthedocs.io/en/v0.4.25/. [Accessed 26 11 2018].

[5] A. C. Paulus, “Implementation of Blockchain Powered Smart Contracts in
Governmental Services,” Delft University of Technology, 2018.

[6] Lucid Software Inc., “What is Business Process Modeling Notation,”
Lucidchart, 2019. [Online]. Available:
https://www.lucidchart.com/pages/bpmn. [Accessed 1 June 2019].

[7] J. Ladleif, M. Weske and I. Weber, “Modeling and Enforcing Blockchain-
Based Choreographies,” BPM 2019, vol. 11675, no. Lecture Notes in
Computer Science, pp. 69-85, 2019.

[8] L. Severeijns, “What is blockchain? How is it going to affect Business?,” Vrije
Universiteit , Amsterdam, 2017.

[9] ISCA, “Blockchain: Re-imagining Multi-Party Transactions for Businesses,”
Institute of Singapore Chartered Accountants, Singapore , 2017 .

[10] L. Aldin and S. d. Cesare, “A Comparative Analysis Of Business Process
Modelling Techniques,” in U.K. Academy for Information Systems (UKAIS
2009), 14th Annual Conference, UK, 2009.

[11] R. Koncevi€s, L. Penicina, A. Gaidukovs, M. Dargis, R. Burbo and A. Auzins,
“Comparative Analysis of Business Process Modelling Tools for Compliance

Management Support,” The Journal of Riga Technical University, vol. 21, pp.
22-27,2017.

[12] T. K. Sharma, “WHAT IS SOLIDITY, PROGRAMMING LANGUAGE FOR
ETHEREUM SMART CONTRACTS?,” Blockchain Council, 2 September
2017. [Online]. Available: https://www.blockchain-council.org/ethereum/what-
is-solidity-programming-language-for-ethereum-smart-contracts/. [Accessed 2
June 2019].

[13] O. Lopez-Pintado, B. Garcia-Bafiuelos, M. Dumas and 1. Weber, “Caterpillar:
A Blockchain-Based BusinessProcess Management System,” in Proceedings of
the BPM Demo Track and BPM Dissertation Award co-locatedwith 15th
International Conference on Business Process Modeling (BPM 2017),,
Barcelona, Spain, eptember 13, 2017..

111

[14] O. Lopez-Pintado, L. Garcia-Bafiuelos, M. Dumas and 1. Weber,
“CATERPILLAR: A Business Process Execution Engine on the Ethereum
Block,” Software: Practice and Experience, no. 00, pp. 01-45, 2018.

[15] S. Schmidt and M. Jung, “The unified framework for blockchain based
business integration,” Unibright, 2018.

[16] L. Garcia-Bafiuelos, A. Ponomarev, M. Dumas and I. Weber, “Optimized
Execution of Business Processes on Blockchain,” in Business Process
Management: 15th International Conference, Barcelona, Spain, 2017.

[17] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev and J. Mendling,
“Untrusted Business Process Monitoring and Execution Using Blockchain,” in
BPM 2016, Rio de Janeiro, Brazil, Springer, Cham, Sept. 2016, pp. 329-347.

[18] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev and J. Mendling,
“Using Blockchain to Enable Untrusted Business Process Monitoring and
Execution, Technical Report UNSW-CSE-TR-201609,” University of New
South Wales, 2016.

[19] “The usage of BPMN library to define workflow,” 03 01 2017. [Online].
Available: https://dspace.cvut.cz/bitstream/handle/10467/66832/F3-BP-2017-
Brichkova-Evgeniya-The usage of BPMN library to define workflow.pdf.
[Accessed 20 04 2019].

[20] M. Muehlen zur and J. Recker, “How Much Language is Enough? Theoretical
and Practical Use of the Business Process Modeling Notation.,” in In Proc.
CAiSE, 2008.

[21] P. Hegedis, “Towards Analyzing the Complexity Landscape of Solidity Based
Ethereum Smart Contracts,” MTA-SZTE Research Group on Artificial
Intelligence, vol. 7, no. 1, p. 6, 2019.

[22] L. M. Laird and M. C. Brennan, “ Cyclomatic Complexity,” in Software
Measurement and Estimation: A Practical Approach, New Jersey, A John
Wiley & Sons, Inc., 2006, pp. 58-62.

[23] S. J. Naqvi, “Converting a Property Rental Paper Contract into a Smart
Contract,” Medium, 24 April 2017. [Online]. Available:
https://medium.com/@naqvi.jafar91/converting-a-property-rental-paper-
contract-into-a-smart-contract-daa054fdf8a7. [Accessed 1 June 2019].

[24] Q. Fang, “shares-contract,” Github, 23 April 2018. [Online]. Available:
https://github.com/qimingfang/shares-contract. [Accessed 1 May 2019].

[25] P. Brudny, “learning-solidity-2018,” Medium, 1 August 2018. [Online].
Available: https://github.com/pbrudny/learning-solidity-2018. [Accessed 4
April 2019].

[26] “Multi Party Settlement,” Merit Systems Private Limited, [Online]. Available:
http://meritsystems.com/multi-party-settlement/. [Accessed 26 June 2018].

[27] A. Awaysheh and R. D. Klassen, “The impact of supply chain structure on the
use of supplier socially responsible practices,” International Journal of
Operations & Production Management, vol. 30, no. 12, pp. 1246-1268, 2010.

[28] K. Francisco and D. Swanson, “The Supply Chain Has No Clothes:
Technology Adoption of Blockchain for Supply Chain Transparency,”

112

Department of Marketing & Logistics, University of North Florida,
Jacksonville, 2018.

[29] A. Wright and P. De Filippi, “Decentralized Blockchain Technology and the
Rise of Lex Cryptographia,” p. 58, 10 March 2015.

[30] S. Seebacher and R. Schuritz, “Blockchain Technology as an Enabler of
Service Systems: A Structured Literature Review,” in The International
Conference on Exploring Services Science, Rome, 2017.

[31] G. V. Research, “Blockchain Technology Market Size, Share & Trends
Analysis Report By Type (Public, Private, Hybrid), By Application (Financial
Services, Consumer Products, Technology, Telecom), And Segment Forecasts,
2018 - 2024,” San Francisco, United States, 2018.

[32] V. Buterin, “Ethereum White Paper : A NEXT GENERATION SMART
CONTRACT & DECENTRALIZED APPLICATION PLATFORM,” 2014.

[33] Object Management Group (OMG), “Business Process Model and Notation
(BPMN),” OMG, 2013.

113

5. Appendices

Appendix A: Unibright Workflow Designer Generated Solidity Code

Al. Unibright Workflow Designer generated Solidity Code for the
Demo Workflow Example

pragma solidity 70.4.24;

// Represents the base of a unibright contract
contract UnibrightContract {

// the owner of the contract
address public owner;

// state of the contract
ContractState public contractState;

// states the contract can be in
enum ContractState { CREATED, PUBLISHED, RUNNING, CANCELLED, FINISHED }

// A modifier that can limit the execution of a function to a specific

114

address
modifier onlyBy(address _account) {
require(msg.sender == _account, "Not allowed");

}

// A modifier that can limit the execution of a function to a specific
contract state
modifier onlyInState(ContractState state) {
require(contractState == state, string(abi.encodePacked("Only allowed
when contract is in state ", state)));

g B

constructor() public {
owner = msg.sender;

¥

// publish is called by the owner of the contract to progress to the state
PUBLISHED
function publish() public onlyBy(owner) {
contractState = ContractState.PUBLISHED;
}

// start is called by the owner of the contract to progress to the state
RUNNING
function start() public onlyBy(owner) {
contractState = ContractState.RUNNING;
}

// cancel 1is called by the owner of the contract to progress to the state
cancelled
function cancel() public onlyBy(owner) {
contractState = ContractState.CANCELLED;
¥

// finish is called to progress to the state FINISHED
function finish() private {
contractState = ContractState.FINISHED;
}
pragma solidity "0.4.24;
import "./UnibrightContract.sol";
contract MultiPartyApproval is UnibrightContract {

// the status of the whole approval process
Status public approvalStatus;

// holds the timestamp of the last update
uint public lastUpdate;

// states the contract and the feedbacks of the approvers can be in
enum Status { UNDEFINED, NEEDSWORK, APPROVED }

// uuid of the end node
bytesl6é private endId;

// map of uuids to approvers, filled during the deployment
mapping (bytes16 => Approver) private approvers;

// map of uulds to feedbacks, filled during the deployment
mapping(bytesl6é => Feedback) private feedbacks;

// map of addresses to uuids, filled during the setup phase

115

mapping(address => bytesl16) private addresses;

// Approver holds information about an Approver
struct Approver {

Status status; // the status of the approval
string comment; // a description related to the approval status
uint approvalDate; // time at which the approver gave his approval

uint feedbacksNeeded; // remaining number of feedbacks needed for this

approver to give his approval

bytesl6 feedbackId; // the id of the feedback object attached to this

approver

bool exists; // required to check if mapping exists

// Feedback holds information about the feedback given by an group of

approvers
struct Feedback {
Status status; // the status of the feedback node
uint approvalsGiven; // number of approvals given for this feedback
node

uint approvalsNeeded; // number of approvals needed for this feedback
node to set its status

bytes16[] approverlds; // ids of successor approvers attached to the
feedback

bool exists; // required to check if mapping exists

}

constructor() public {
approvalStatus = Status.UNDEFINED;
publish();

start();

// Adds the Approver node to the MPA network that represents the end of the
process
function addEndNode (bytesl6 endNodeId, uint feedbacksNeeded) public
onlyBy (owner) onlyInState(ContractState.PUBLISHED) {
addApprover(endNodeId, 0, feedbacksNeeded);
endId = endNodeld;
}

// Add an approver to the MPA network

function addApprover(bytesl6 approverId, byteslé feedbackId, uint
feedbacksNeeded) public

onlyBy(owner) onlyInState(ContractState.PUBLISHED) {

require('approvers[approverId].exists, "approver already exists");

Approver memory approver = Approver({
status: Status.UNDEFINED,
comment: "
approvalDate: 0,
feedbackId: feedbacklId,
feedbacksNeeded: feedbacksNeeded,
exists: true
});

approvers[approverId] = approver;

// Set the address for an approver
function setApproverAddress(address approverAddress, bytesl6é approverld)

116

public onlyBy(owner) onlyInState(ContractState.PUBLISHED) {
require(approvers [approverId].exists, "no approver with given id found");
addresses [approverAddress] = approverld;

// returns the approver for a given uuid
function getApprover(bytesl6é id) public view returns (Status, string, uint,
uint, bytesl6) {
Approver memory approver = approvers [id];
require(approver.exists, "this approver does not exist.");
return (
approver.status,
approver.comment,
approver.approvalDate,
approver.feedbacksNeeded,
approver.feedbackId
);
}

// Add a feedback node to the MPA network

function addFeedback(bytesl6 feedbackId, uint approvalsNeeded, bytesl16[]
approverIds) public

onlyBy(owner) onlyInState(ContractState.PUBLISHED) {

require(! feedbacks [feedbackId].exists, "a feedback object with this id
already exists");

Feedback memory feedback = Feedback({
status: Status.UNDEFINED,
approvalsGiven: 0,
approvalsNeeded: approvalsNeeded,
approverIds: approverlds,
exists: true
1)

feedbacks [feedbackId] = feedback;

// returns the feedback note for the given uuid
function getFeedback(bytesl6 id) public view returns (Status, uint, uint,
bytes16[]) {
require(feedbacks[id].exists, "this feedbackId does not exist.");
return (feedbacks[id].status, feedbacks[id].approvalsGiven,
feed?acks[id].approvalsNeeded, feedbacks [id] .approverIds);

// the actual method called by the approvers to give their feedback
function giveFeedback(Status status, string comment) public
onlyInState(ContractState.RUNNING) {

Approver storage approver = approvers[addresses[msg.sender]];

require(approver.exists, "not allowed to provide feedback");

require(approver.feedbacksNeeded == @, "not allowed to provide approval
yet");

require(status != Status.UNDEFINED, "approval status cannot be set to
undefined");

require(approver.status == Status.UNDEFINED, "approval already
submitted");

Feedback storage feedback = feedbacks[approver.feedbackId];

require(feedback.status != Status.NEEDSWORK, "feedback already set");

require(feedback.approvalsGiven < feedback.approvalsNeeded, "feedback
already set");

approver.status = status;
approver.comment = comment;

117

approver.approvalDate = now;
lastUpdate = now;

// 1if any approver gives the state NEEDSWORK the contract is finished
if (status == Status.NEEDSWORK) {

feedback.status = status;

approvalStatus = status;

finish();

return;

}
feedback.approvalsGiven++;

// 1f enough approvals have been given for this feedback, reduce the
feedbacksNeeded counter further down the MPANet
if (feedback.approvalsGiven == feedback.approvalsNeeded) {
feedback.status = status;

for (uint i = 0; i < feedback.approverIds.length; i++) {
bytesl6 id = feedback.approverIds[i];
approvers [id].feedbacksNeeded—-;

}

// 1f all feedbacks attached to the end node are set, finish the contract
if (approvers[endId].feedbacksNeeded == 0) {
approvalStatus = status;

finish();
}
}
function publish() public onlyBy(owner) {
super.publish();

lastUpdate = now;

addApprover(0xf621af583a18c245b20571c400222fbf,
0x13587eef37d21840a982743534ffdf9a, 0);

addApprover(0x5484342aa23f9ad46aa631e626b3a3480,
0x0ebf120626a889409228a3b88128020e, 1);

addEndNode (0x98cb347699cccf42bed4ad42b55b91d5, 1);

addApprover(0xd30cbdf@e7ca5f47acb9168910bd8c09,
0x13587eef37d21840a982743534ffdf9a, 0);

addApprover(0x5b0fe707b73889448efc9c514c9dd881,
0x13587eef37d21840a982743534ffdf9a, 0);

bytes16[] memory approverListl = new bytesl16[](1);
approverList1[0] = 0x5484342aa23f9a46aa631e626b3a3480;
addFeedback(0x13587eef37d21840a982743534ffdf9%9a, 1, approverListl);
bytes16[] memory approverList3 = new bytesl6[](1);
approverList3[0] = 0x98cb347699cccf42bedd4ad42b55b91d5;
addFeedback(0x0ebf120626a889409228a3b88128020e, 1, approverList3);

}

function start() public onlyBy(owner) onlyInState(ContractState.PUBLISHED) {
super.start();
lastUpdate = now;

/ /°%°%sCODEGENERATED_IN_PROGRESS®%
}

function cancel() public onlyBy(owner) onlyInState(ContractState.RUNNING) {
super.cancel();
lastUpdate = now;

118

/ /%°%sCODEGENERATED_ABORT®%

function finish() private onlyInState(ContractState.RUNNING) {
contractState = ContractState.FINISHED;
lastUpdate = now;

/ /%°%CODEGENERATED_FINISH®%

119

Appendix B: Process Model XML Source for the Loan
Assessment Example using Caterpillar and Proposed Approach

B1. Process Model XML Source for the Loan Assessment Example
Using Caterpillar v3.0

Example from Caterpillar v1.0 GitHub!! has been slightly modified to
work with Caterpillar v3.0. Changes are done for the document attribute
of the BPMN elements using Solidity annotations specification.

<?xml version="1.0" encoding="UTF-8"7>
<bpmn:definitions xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:
bpmndi="http://www.omg.org/spec/BPMN/20100524/DI" xmlns:di="http://www.omg.org/sp
ec/DD/20100524/DI" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC" xmlns:camund
a="http://camunda.org/schema/1.0/bpmn" xmlns:xsi="http://www.w3.0rg/2001/XMLSchem
a-
instance" id="Definitions_1" targetNamespace="http://bpmn.io/schema/bpmn" exporte
r="Camunda Modeler" exporterVersion="1.6.0">
<bpmn:process id="BPM17_Running_Example" name="BPM17_Running_Example" isExecuta

ble="false">

<bpmn:documentation><! [CDATA[bool applicantEligible;
uint monthlyRevenue;
uint loanAmount;
uint cost;
uint appraisePropertyResult;
uint assessLoanRiskResult;
]11></bpmn:documentation>

<bpmn:startEvent id="StartEvent_1">

<bpmn:outgoing>SequenceF low_16ew9vc</bpmn:outgoing>

</bpmn:startEvent>

<bpmn:sequenceFlow id="SequenceFlow_16ew9vc" sourceRef="StartEvent_1" targetR
ef="Task_06xlgcp" />

<bpmn:userTask id="Task_06xlgcp" name="Enter Loan Application">

<bpmn:documentation><! [CDATA[@ Manager @

120

() : (uint _monthlyRevenue, uint _loanAmount, uint _cost) -
> monthlyRevenue = _monthlyRevenue; loanAmount = _loanAmount; cost = _cost;]]></b
pmn:documentation>
<bpmn:incoming>SequenceFlow_16ew9vc</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_1jygpfu</bpmn:outgoing>
</bpmn:userTask>
<bpmn:serviceTask id="Task_laqv42f" name="Assess Loan Risk" camunda:expressio
n="uint monthlyRevenue, uint loadAmount">
<bpmn:documentation><![CDATA[@ Oracle @
() : (uint _assesslLoanRiskResult) -
> assessLoanRiskResult = _assessLoanRiskResult;]]></bpmn:documentation>
<bpmn:extensionElements>
<camunda: inputOutput>
<camunda: inputParameter name="Input_2k32dal">{name:Assess_Loan_Risk}</c
amunda:inputParameter>
<camunda:outputParameter name="Output_284ft88" />
</camunda: inputOutput>
</bpmn:extensionElements>
<bpmn:incoming>SequenceFlow_0b6dfgq</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_1splpa9</bpmn:outgoing>
</bpmn:serviceTask>
<bpmn:sequenceFlow id="SequenceFlow_1splpa9" sourceRef="Task_laqv42f" targetR
ef="ExclusiveGateway_18cl1flo" />
<bpmn:scriptTask id="Task_1ggq6sf" name="Assess Elegibility">
<bpmn:incoming>SequenceFlow_1kpgxh8</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_0ensspb</bpmn:outgoing>
<bpmn:script><![CDATA[if (assessLoanRiskResult >= appraisePropertyResult)
applicantEligible = true;
else
applicantEligible = false;]]></bpmn:script>
</bpmn:scriptTask>
<bpmn:exclusiveGateway id="ExclusiveGateway_06dboho" default="SequenceFlow_0v
bi21ly">
<bpmn:incoming>SequenceFlow_@ensspb</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_069rxq2</bpmn:outgoing>
<bpmn:outgoing>SequenceFlow_0vbi21ly</bpmn:outgoing>
</bpmn:exclusiveGateway>
<bpmn:sequenceFlow id="SequenceFlow_0ensspb" sourceRef="Task_1ggq6sf" targetR
ef="ExclusiveGateway_06dboho" />
<bpmn:sequenceFlow id="SequenceFlow_069rxq2" sourceRef="ExclusiveGateway_06db
oho" targetRef="IntermediateThrowEvent_0k5v13c">
<bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">applicantEligib
le</bpmn:conditionExpression>
</bpmn: sequenceF low>
<bpmn:endEvent id="EndEvent_19xiayo" name='"Loan app accepted">
<bpmn:incoming>SequenceFlow_0jigqn5</bpmn:incoming>
<bpmn:messageEventDefinition />
</bpmn:endEvent>
<bpmn:sequenceFlow id="SequenceFlow_0vbi2ly" sourceRef="ExclusiveGateway_06db
oho" targetRef="EndEvent_lubxmre" />
<bpmn:endEvent id="EndEvent_lubxmre'" name="Loan app rejected">

121

<bpmn:incoming>SequenceFlow_@vbi21ly</bpmn:incoming>
<bpmn:incoming>SequenceFlow_04n15rk</bpmn:incoming>
<bpmn:messageEventDefinition />
</bpmn:endEvent>
<bpmn:sequenceFlow id="SequenceFlow_1jygpfu" sourceRef="Task_06xlgcp" targetR
ef="ExclusiveGateway_0o04nv8y" />
<bpmn:sequenceFlow id="SequenceFlow_0b6dfgq" sourceRef="ExclusiveGateway_0o04n
v8y" targetRef="Task_laqv42f" />
<bpmn:sequenceFlow id="SequenceFlow_1lkpgxh8" sourceRef="ExclusiveGateway_ 18cl
flo" targetRef="Task_1lggq6sf" />
<bpmn:parallelGateway id="ExclusiveGateway_004nv8y">
<bpmn:incoming>SequenceFlow_1jygpfu</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_0b6dfgq</bpmn:outgoing>
<bpmn:outgoing>SequenceFlow_1pmllpg</bpmn:outgoing>
</bpmn:parallelGateway>
<bpmn:parallelGateway id="ExclusiveGateway_18clflo">
<bpmn:incoming>SequenceFlow_1lsplpa9</bpmn:incoming>
<bpmn:incoming>SequenceFlow_05u8ux5</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_1lkpgxh8</bpmn:outgoing>
</bpmn:parallelGateway>
<bpmn:sequenceFlow id="SequenceFlow_1pmllpg" sourceRef="ExclusiveGateway_0o04n
v8y" targetRef="Task_1n2glih" />
<bpmn:sequenceFlow id="SequenceFlow_05u8ux5" sourceRef="Task_1n2glih" targetR
ef="ExclusiveGateway_18cl1flo" />
<bpmn:serviceTask id="Task_1n2glih" name="Appraise Property" camunda:expressi
on="a = 3">
<bpmn:documentation><! [CDATA[@ Oracle @
(): (uint _appraisePropertyResult) -
> appraisePropertyResult = _appraisePropertyResult;]]></bpmn:documentation>
<bpmn:extensionElements>
<camunda:inputOutput>
<camunda: inputParameter name="Input_26401ln8">{name:Appraise_Property}</
camunda:inputParameter>
</camunda:inputOutput>
</bpmn:extensionElements>
<bpmn:incoming>SequenceFlow_1pmllpg</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_05u8ux5</bpmn:outgoing>
</bpmn:serviceTask>
<bpmn:sequenceFlow id="SequenceFlow_1pxsdl6" sourceRef="Task_151faes" targetR
ef="ExclusiveGateway_@ga7pl7" />
<bpmn:userTask id="Task_151faes" name="Confirm Acceptance'>
<bpmn:documentation><![CDATA[@ Manager @
() : (bool _confirmation) -
> applicantEligible = _confirmation;]]></bpmn:documentation>
<bpmn:incoming>SequenceFlow_1l4exagm</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_1pxsd16</bpmn:outgoing>
</bpmn:userTask>
<bpmn:exclusiveGateway id="ExclusiveGateway_ 0ga7pl7" default="SequenceFlow_04
nl5rk">
<bpmn:incoming>SequenceFlow_1lpxsd1l6</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_0jiggn5</bpmn:outgoing>

122

<bpmn:outgoing>SequenceFlow_04n15rk</bpmn:outgoing>
</bpmn:exclusiveGateway>
<bpmn:sequenceFlow id="SequenceFlow_0jigqn5" sourceRef="ExclusiveGateway_0ga7
pl7" targetRef="EndEvent_19xiayo">
<bpmn:conditionExpression xsi:type="bpmn:tFormalExpression">applicantEligib
le</bpmn:conditionExpression>
</bpmn: sequenceFlow>
<bpmn:sequenceFlow id="SequenceFlow_04n15rk" sourceRef="ExclusiveGateway_0ga7
pl7" targetRef="EndEvent_lubxmre" />
<bpmn:sequenceFlow id="SequenceFlow_14exagm" sourceRef="IntermediateThrowEven
t_0k5v13c" targetRef="Task_151faes" />
<bpmn:intermediateThrowEvent id="IntermediateThrowEvent_0k5v13c" name="Confir
mation request sent'>
<bpmn:incoming>SequenceFlow_069rxq2</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_1l4exagm</bpmn:outgoing>
<bpmn:messageEventDefinition />
</bpmn: intermediateThrowEvent>
</bpmn:process>
<bpmndi:BPMNDiagram id="BPMNDiagram_1">
<bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="BPM17_Running_Example'>
<bpmndi:BPMNShape id="_BPMNShape_StartEvent_2" bpmnElement="StartEvent_1">
<dc:Bounds x="132" y="218" width="36" height="36" />
<bpmndi:BPMNLabel>
<dc:Bounds x="105" y="254" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_16ew9vc_di" bpmnElement="SequenceFlow_16e
w9vc''>
<di:waypoint xsi:type="dc:Point" x="168" y="236" />
<di:waypoint xsi:type="dc:Point" x="196" y="236" />
<bpmndi:BPMNLabel>
<dc:Bounds x="137" y="221" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="UserTask_0g4b87e_di" bpmnElement="Task_06x1lgcp">
<dc:Bounds x="196" y="196" width="100" height="80" />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ServiceTask_1rwb825_di" bpmnElement="Task_laqv42f">
<dc:Bounds x="383" y="142" width="100" height="80" />
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_1splpa9_di" bpmnElement="SequenceFlow_1sp
1pa9">
<di:waypoint xsi:type="dc:Point" x="483" y="182" />
<di:waypoint xsi:type="dc:Point" x="523" y="182" />
<di:waypoint xsi:type="dc:Point" x="523" y="211" />
<bpmndi:BPMNLabel>
<dc:Bounds x="458" y="167" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="ScriptTask_0jlspho_di" bpmnElement="Task_1ggq6sf">
<dc:Bounds x="583" y="196" width="100" height="80" />

123

</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ExclusiveGateway_@6dboho_di'" bpmnElement="ExclusiveGa
teway_06dboho" isMarkerVisible="true">
<dc:Bounds x="721" y="211" width="50" height="50" />
<bpmndi:BPMNLabel>
<dc:Bounds x="701" y="261" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_0@ensspb_di" bpmnElement="SequenceFlow_0en
sspb">
<di:waypoint xsi:type="dc:Point" x="683" y="236" />
<di:waypoint xsi:type="dc:Point" x="721" y="236" />
<bpmndi:BPMNLabel>
<dc:Bounds x="657" y="221" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_069rxq2_di" bpmnElement="SequenceFlow_069
rxq2">
<di:waypoint xsi:type="dc:Point" x="746" y="211" />
<di:waypoint xsi:type="dc:Point" x="746" y="160" />
<di:waypoint xsi:type="dc:Point" x="774" y="160" />
<bpmndi:BPMNLabel>
<dc:Bounds x="716" y="185.5" width="90" height="0" />
</bpmndi:BPMNLabe 1>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="EndEvent_0f5ggdp_di" bpmnElement="EndEvent_19xiayo'">
<dc:Bounds x="1046" y="142" width="36" height="36" />
<bpmndi:BPMNLabel>
<dc:Bounds x="1019" y="178" width="90@" height="25" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_0vbi2ly_di" bpmnElement="SequenceFlow_0vb
i21y">
<di:waypoint xsi:type="dc:Point" x="746" y="261" />
<di:waypoint xsi:type="dc:Point" x="746" y="302" />
<di:waypoint xsi:type="dc:Point" x="968" y="302" />
<bpmndi:BPMNLabel>
<dc:Bounds x="716" y="281.5" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="EndEvent_1lhyovvg_di" bpmnElement="EndEvent_lubxmre'>
<dc:Bounds x="968" y="284" width="36" height="36" />
<bpmndi:BPMNLabel>
<dc:Bounds x="941" y="320" width="90" height="13" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_1jygpfu_di" bpmnElement="SequenceFlow_1jy
gpfu">
<di:waypoint xsi:type="dc:Point" x="296" y="236" />
<di:waypoint xsi:type="dc:Point" x="321" y="236" />
<bpmndi:BPMNLabel>

124

<dc:Bounds x="263.5" y="221" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_0b6dfgq_di" bpmnElement="SequenceFlow_0b6
dfgq">
<di:waypoint xsi:type="dc:Point" x="346" y="211" />
<di:waypoint xsi:type="dc:Point" x="346" y="182" />
<di:waypoint xsi:type="dc:Point" x="383" y="182" />
<bpmndi:BPMNLabel>
<dc:Bounds x="316" y="196.5" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_1kpqxh8_di" bpmnElement="SequenceFlow_1kp
qxh8">
<di:waypoint xsi:type="dc:Point" x="548" y="236" />
<di:waypoint xsi:type="dc:Point" x="583" y="236" />
<bpmndi:BPMNLabel>
<dc:Bounds x="520.5" y="221" width="90" height="0" />
</bpmndi:BPMNLabe 1>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="ParallelGateway_1567msb_di" bpmnElement="ExclusiveGat
eway_0o04nv8y">
<dc:Bounds x="321" y="211" width="50" height="50" />
<bpmndi:BPMNLabel>
<dc:Bounds x="301" y="261" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ParallelGateway_046yig@_di" bpmnElement="ExclusiveGat
eway_18clflo">
<dc:Bounds x="498" y="211" width="50" height="50" />
<bpmndi:BPMNLabel>
<dc:Bounds x="478" y="261" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_1pmllpg_di" bpmnElement="SequenceFlow_1pm
1lpg">
<di:waypoint xsi:type="dc:Point" x="346" y="261" />
<di:waypoint xsi:type="dc:Point" x="346" y="291" />
<di:waypoint xsi:type="dc:Point" x="383" y="291" />
<bpmndi:BPMNLabel>
<dc:Bounds x="316" y="276" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_05u8ux5_di" bpmnElement="SequenceFlow_05u
8ux5">
<di:waypoint xsi:type="dc:Point" x="483" y="291" />
<di:waypoint xsi:type="dc:Point" x="523" y="291" />
<di:waypoint xsi:type="dc:Point" x="523" y="261" />
<bpmndi:BPMNLabel>
<dc:Bounds x="458" y="276" width="90" height="0" />
</bpmndi:BPMNLabel>

125

</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="ServiceTask_11t@vxh_di" bpmnElement="Task_1n2glih">
<dc:Bounds x="383" y="251" width="100" height="80" />
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_1pxsdl6_di" bpmnElement="SequenceFlow_1px
sd16">
<di:waypoint xsi:type="dc:Point" x="936" y="160" />
<di:waypoint xsi:type="dc:Point" x="961" y="160" />
<bpmndi:BPMNLabel>
<dc:Bounds x="903.5" y="145" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="UserTask_047vhgl_di" bpmnElement="Task_151faes">
<dc:Bounds x="836" y="120" width="100" height="80" />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ExclusiveGateway_0ga7pl7_di" bpmnElement="ExclusiveGa
teway_0ga7pl7" isMarkerVisible="true">
<dc:Bounds x="961" y="135" width="50" height="50" />
<bpmndi:BPMNLabel>
<dc:Bounds x="941" y="185" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_0jigqn5_di" bpmnElement="SequenceFlow_0ji
ggn5"'>
<di:waypoint xsi:type="dc:Point" x="1011" y="160" />
<di:waypoint xsi:type="dc:Point" x="1046" y="160" />
<bpmndi:BPMNLabel>
<dc:Bounds x="983.5" y="145" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_04nl5rk_di" bpmnElement="SequenceFlow_04n
15rk">
<di:waypoint xsi:type="dc:Point" x="986" y="185" />
<di:waypoint xsi:type="dc:Point" x="986" y="239" />
<di:waypoint xsi:type="dc:Point" x="986" y="239" />
<di:waypoint xsi:type="dc:Point" x="986" y="284" />
<bpmndi:BPMNLabel>
<dc:Bounds x="956" y="239" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_14exagm_di" bpmnElement="SequenceFlow_14e
xagm'>
<di:waypoint xsi:type="dc:Point" x="810" y="160" />
<di:waypoint xsi:type="dc:Point" x="836" y="160" />
<bpmndi:BPMNLabel>
<dc:Bounds x="778" y="145" width="90" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="IntermediateThrowEvent_1lxnsxmp_di" bpmnElement="Inter
mediateThrowEvent_0k5v13c">
<dc:Bounds x="774" y="142" width="36" height="36" />

126

<bpmndi:BPMNLabel>
<dc:Bounds x="747" y="178" width="90" height="25" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
</bpmndi:BPMNPlane>
</bpmndi: BPMNDiagram>
</bpmn:definitions>

B2. Process Model XML Source for the Loan Assessment Example
Using Proposed Approach

<?xml version="1.0" encoding="UTF-8"7>
<!-- origin at X=0.0 Y=0.0 ——>
<bpmn:definitions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524 /MODEL"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:camunda="http://camunda.org/schema/1.0/bpmn"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI" xmlns:ext="http://org.eclipse.bpmn2/ext"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" id="Definitions_1"
exporter="org.eclipse.bpmn2.modeler.core" exporterVersion="1.5.0.Final-v20180515-1642-B1"
targetNamespace="http://bpmn.io/schema/bpmn">
<bpmn:itemDefinition id="ItemDefinition_19" isCollection="false"
structureRef="solidity:uint"/>
<bpmn:itemDefinition id="ItemDefinition_1433" isCollection="false"
structureRef="solidity:bool"/>
<bpmn:message id="Message_l1" name='"LoanAssess'>
<bpmn:extensionElements>
<ext:style/>
</bpmn:extensionElements>
</bpmn:message>
<bpmn:message id="Message_2" itemRef="ItemDefinition_19" name="AppraiseProperty">
<bpmn:extensionElements>
<ext:style/>
</bpmn:extensionElements>
</bpmn:message>
<bpmn:message id="Message_3" name="LoanAccepted">
<bpmn:extensionElements>
<ext:style/>
</bpmn:extensionElements>
</bpmn:message>
<bpmn:message id="Message_4" name="LoanRejected">
<bpmn:extensionElements>
<ext:style/>
</bpmn:extensionElements>
</bpmn:message>
<bpmn:message id="Message_5" name="ConfirmationSent">
<bpmn:extensionElements>
<ext:style/>
</bpmn:extensionElements>
</bpmn:message>
<bpmn:dataStore id="DataStore_4" name="cost"/>
<bpmn:dataStore id="DataStore_6" itemSubjectRef="ItemDefinition_19" name="loanAmount"/>
<bpmn:dataStore id="DataStore_8" itemSubjectRef="ItemDefinition_19"
name="monthlyRevenue"/>
<bpmn:interface id="Interface_1" implementationRef="json(https://assess.loan.risk.url)"
name="Interface 1">
<bpmn:operation id="Operation_1" implementationRef=".result" name="Operation 1">
<bpmn:inMessageRef>Message_1</bpmn:inMessageRef>
</bpmn:operation>
</bpmn:interface>
<bpmn:interface id="Interface_2" implementationRef="json(https://appraise.property.url)"
name="Interface 2">
<bpmn:operation id="Operation_2" implementationRef=".result" name="Operation 2">
<bpmn:inMessageRef>Message_2</bpmn:inMessageRef>
</bpmn:operation>
</bpmn:interface>
<bpmn:collaboration id="Collaboration_1" name="Collaboration 1">

127

<bpmn:participant id="Participant_1" name="Loan Approval" processRef="Process_1"/>
<bpmn:participant id="Participant_2" name="BPM17_Running_Example Pool"
processRef="BPM17_Running_Example">
<bpmn:extensionElements>
<ext:style/>
</bpmn:extensionElements>
</bpmn:participant>
</bpmn:collaboration>
<bpmn:process id="BPM17_Running_Example" name="BPM17_Running_Example"
isExecutable="false">
<bpmn:documentation id="Documentation_1">bpmn:documentation>
<bpmn:ioSpecification id="InputOutputSpecification_11">
<bpmn:inputSet id="InputSet_11" name="Input Set 11"/>
<bpmn:outputSet id="OutputSet_11" name="Output Set 11"/>
</bpmn:ioSpecification>

<bpmn:association id="Association_4" sourceRef="DataInput_1" targetRef="StartEvent_1"/>
<bpmn:association id="Association_5" sourceRef="DataInput_2" targetRef="StartEvent_1"/>
<bpmn:association id="Association_6" sourceRef="DataInput_3" targetRef="StartEvent_l1"/>

</bpmn:process>
<bpmn:process id="Process_l1" name="Loan Approval Process"
definitionalCollaborationRef="Collaboration_1" isExecutable="false">
<bpmn:ioSpecification id="InputOutputSpecification_2">
<bpmn:dataInput id="DataInput_4" itemSubjectRef="ItemDefinition_1433"
name="_confirmation"/>
<bpmn:dataInput id="Datalnput_3" itemSubjectRef="ItemDefinition_19"
name="_loanAmount" />
<bpmn:dataInput id="DataInput_2" itemSubjectRef="ItemDefinition_19"
name="_monthlyRevenue"/>
<bpmn:dataInput id="DataInput_l1" itemSubjectRef="ItemDefinition_19" name="_cost"/>
<bpmn:inputSet id="InputSet_2" name="Input Set 2"/>
<bpmn:outputSet id="OutputSet_2" name="Output Set 2"/>
</bpmn:ioSpecification>
<bpmn:dataObject id="DataObject_8" name="loanRisk" itemSubjectRef="ItemDefinition_19">
<bpmn:dataState id="DataState_5" name="0"/>
</bpmn:dataObject>
<bpmn:dataObject id="DataObject_ 10" name="appraiseProperty"
itemSubjectRef="ItemDefinition_19">
<bpmn:dataState id="DataState_6" name="0"/>
</bpmn:dataObject>
<bpmn:dataStoreReference id="DataStoreReference_3" name="cost"
itemSubjectRef="ItemDefinition_19" dataStoreRef="DataStore_4">
<bpmn:dataState id="DataState_16"/>
</bpmn:dataStoreReference>
<bpmn:dataStoreReference id="DataStoreReference_4" name="loanAmount"
itemSubjectRef="ItemDefinition_19" dataStoreRef="DataStore_6">
<bpmn:dataState id="DataState_17"/>
</bpmn:dataStoreReference>
<bpmn:dataStoreReference id="DataStoreReference_5" name="monthlyRevenue"
itemSubjectRef="ItemDefinition_19" dataStoreRef="DataStore_8">
<bpmn:dataState id="DataState_18"/>
</bpmn:dataStoreReference>
<bpmn:endEvent id="EndEvent_3" name="Confirmation event sent">
<bpmn:incoming>SequenceFlow_11</bpmn:incoming>
<bpmn:dataInput id="DataInput_9" name="Message_6_Input"/>
<bpmn:dataInputAssociation id="DatalnputAssociation_5">
<bpmn:targetRef>Datalnput_9</bpmn:targetRef>
</bpmn:dataInputAssociation>
<bpmn:inputSet id="InputSet_6" name="Input Set 6">
<bpmn:dataInputRefs>DataInput_9</bpmn:dataInputRefs>
</bpmn:inputSet>
<bpmn:messageEventDefinition id="MessageEventDefinition_6" messageRef="Message_ 5"/>
</bpmn:endEvent>
<bpmn:parallelGateway id="ExclusiveGateway_0od4nv8y" gatewayDirection="Diverging">
<bpmn:incoming>SequenceFlow_12</bpmn:incoming>
<bpmn :outgoing>SequenceF low_2</bpmn:outgoing>
<bpmn :outgoing>SequenceF low_4</bpmn:outgoing>
</bpmn:parallelGateway>
<bpmn:sequenceFlow id="SequenceFlow_2" sourceRef="ExclusiveGateway_0o4nv8y"
targetRef="ReceiveTask_1"/>
<bpmn:sequenceFlow id="SequenceFlow_4" sourceRef="ExclusiveGateway_0o4nv8y"
targetRef="ReceiveTask_2"/>
<bpmn:endEvent id="EndEvent_lubxmre" name='"Loan app rejected">
<bpmn:incoming>SequenceF low_0vbi2ly</bpmn:incoming>
<bpmn:dataInput id="DataInput 7" name="Message 2 Input'/>

128

<bpmn:dataInputAssociation id="DatalnputAssociation_3">
<bpmn:targetRef>Datalnput_7</bpmn:targetRef>

</bpmn:dataInputAssociation>

<bpmn:inputSet id="InputSet_3" name="Input Set 3">
<bpmn:dataInputRefs>Datalnput_7</bpmn:dataInputRefs>

</bpmn:inputSet>

<bpmn:messageEventDefinition id="MessageEventDefinition_2" messageRef="Message_4"/>

</bpmn:endEvent>
<bpmn:exclusiveGateway id="ExclusiveGateway_ 1" gatewayDirection="Diverging'>
<bpmn:incoming>SequenceFlow_8</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_9</bpmn:outgoing>
<bpmn:outgoing>SequenceFlow_10</bpmn:outgoing>
</bpmn:exclusiveGateway>
<bpmn:sequenceFlow id="SequenceFlow_9" name="_confirmation == true"
sourceRef="ExclusiveGateway_1" targetRef="EndEvent_2">
<bpmn:conditionExpression xsi:type="bpmn:tFormalExpression"
id="FormalExpression_3">_confirmation == true</bpmn:conditionExpression>
</bpmn:sequenceFlow>
<bpmn:sequenceFlow id="SequenceFlow_10" sourceRef="ExclusiveGateway 1"
targetRef="EndEvent_1"/>
<bpmn:task id="Task_1" name="Confirm Acceptance
<bpmn:incoming>SequenceFlow_13</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_8</bpmn:outgoing>
<bpmn:ioSpecification id="InputOutputSpecification_4">
<bpmn:dataInput id="DataInput_5" itemSubjectRef="ItemDefinition_1433"
_confirmation"/>
<bpmn:inputSet id="InputSet_4" name="Input Set 4">
<bpmn:dataInputRefs>Datalnput_5</bpmn:dataInputRefs>
</bpmn:inputSet>
<bpmn:outputSet id="OutputSet_4" name="Output Set 4"/>
</bpmn:ioSpecification>
<bpmn:dataInputAssociation id="DataInputAssociation_1">
<bpmn:sourceRef>DataInput_4</bpmn:sourceRef>
<bpmn:targetRef>DataInput_5</bpmn:targetRef>
</bpmn:datalnputAssociation>
</bpmn:task>
<bpmn:sequenceFlow id="SequenceFlow_8" sourceRef="Task_1"
targetRef="ExclusiveGateway_1"/>
<bpmn:eventBasedGateway id="EventBasedGateway_ 1" gatewayDirection="Diverging">
<bpmn:incoming>SequenceFlow_14</bpmn:incoming>
<bpmn :outgoing>SequenceFlow_12</bpmn:outgoing>
<bpmn:outgoing>SequenceF low_13</bpmn:outgoing>
</bpmn:eventBasedGateway>
<bpmn:sequenceFlow id="SequenceFlow_12" sourceRef="EventBasedGateway_ 1"
targetRef="ExclusiveGateway_0o04nv8y" />
<bpmn:sequenceFlow id="SequenceFlow_13" sourceRef="EventBasedGateway_ 1"
targetRef="Task_1"/>
<bpmn:exclusiveGateway id="ExclusiveGateway_06dboho" gatewayDirection="Diverging">
<bpmn:incoming>SequenceF low_6</bpmn:incoming>
<bpmn:outgoing>SequenceF low_0vbi2ly</bpmn:outgoing>
<bpmn:outgoing>SequenceFlow_11</bpmn:outgoing>
</bpmn:exclusiveGateway>
<bpmn:sequenceFlow id="SequenceFlow_0vbi2ly" sourceRef="ExclusiveGateway 06dboho"
targetRef="EndEvent_lubxmre"/>
<bpmn:sequenceFlow id="SequenceFlow_11" name="loanRisk >= appraiseProperty"
sourceRef="ExclusiveGateway_06dboho" targetRef="EndEvent_3">
<bpmn:conditionExpression xsi:type="bpmn:tFormalExpression"
id="FormalExpression_1">loanRisk >= appraiseProperty</bpmn:conditionExpression>
</bpmn:sequenceFlow>

(S

<bpmn:receiveTask id="ReceiveTask_1" name="Assess Loan Risk" messageRef="Message_l1"

operationRef="Operation_1">
<bpmn:incoming>SequenceFlow_2</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_3</bpmn:outgoing>
<bpmn:ioSpecification id="InputOutputSpecification_24">
<bpmn:dataInput id="DataInput_22" itemSubjectRef="ItemDefinition_19"
name="monthlyRevenue"/>
<bpmn:dataInput id="DataInput_23" itemSubjectRef="ItemDefinition_19"
name=""1loanAmount"/>
<bpmn:dataOutput id="DataOutput_7" itemSubjectRef="ItemDefinition_19"
name="outputl"/>
<bpmn:inputSet id="InputSet_24" name="Input Set 24">
<bpmn:dataInputRefs>Datalnput_22</bpmn:dataInputRefs>
<bpmn:dataInputRefs>Datalnput_23</bpmn:datalnputRefs>
</bpmn:inputSet>

129

<bpmn:outputSet id="OutputSet_25" name="Output Set 25">
<bpmn:dataOutputRefs>DataOutput_7</bpmn:dataOutputRefs>
</bpmn:outputSet>
</bpmn:ioSpecification>
<bpmn:dataInputAssociation id="DataInputAssociation_15">
<bpmn:sourceRef>DataStoreReference_5</bpmn:sourceRef>
<bpmn:targetRef>Datalnput_22</bpmn:targetRef>
</bpmn:dataInputAssociation>
<bpmn:dataInputAssociation id="DataInputAssociation_16">
<bpmn:sourceRef>DataStoreReference_4</bpmn:sourceRef>
<bpmn:targetRef>DataInput_23</bpmn:targetRef>
</bpmn:dataInputAssociation>
<bpmn:dataOutputAssociation id="DataOutputAssociation_7">
<bpmn:sourceRef>DataOutput_7</bpmn:sourceRef>
<bpmn:targetRef>DataObject_8</bpmn:targetRef>
</bpmn:dataOutputAssociation>
</bpmn:receiveTask>
<bpmn:sequenceFlow id="SequenceFlow_3" sourceRef="ReceiveTask_1"
targetRef="ExclusiveGateway_18clflo"/>
<bpmn:endEvent id="EndEvent_l1" name="Loan app rejected">
<bpmn:incoming>SequenceFlow_10</bpmn:incoming>
<bpmn:dataInput id="DataInput_8" name="Message_4_Input"/>
<bpmn:dataInputAssociation id="DataInputAssociation_4">
<bpmn:targetRef>DataInput_8</bpmn:targetRef>
</bpmn:dataInputAssociation>
<bpmn:inputSet id="InputSet_5" name="Input Set 5">
<bpmn:dataInputRefs>Datalnput_8</bpmn:datalnputRefs>
</bpmn:inputSet>
<bpmn:messageEventDefinition id="MessageEventDefinition_4" messageRef="Message_4"/>
</bpmn:endEvent>
<bpmn:endEvent id="EndEvent_2" name='"Loan app accepted">
<bpmn:incoming>SequenceFlow_9</bpmn:incoming>
<bpmn:dataInput id="DataInput_6" name="Message_5_Input"/>
<bpmn:dataInputAssociation id="DatalnputAssociation_2">
<bpmn:targetRef>DataInput_6</bpmn:targetRef>
</bpmn:dataInputAssociation>
<bpmn:inputSet id="InputSet_l1" name="Input Set 1">
<bpmn:dataInputRefs>Datalnput_6</bpmn:dataInputRefs>
</bpmn:inputSet>
<bpmn:messageEventDefinition id="MessageEventDefinition_5" messageRef="Message_3"/>
</bpmn:endEvent>
<bpmn:receiveTask id="ReceiveTask_2" name="Appraise Prpoerty" messageRef="Message_ 2"
operationRef="0Operation_2">
<bpmn:incoming>SequenceFlow_4</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_5</bpmn:outgoing>
<bpmn:ioSpecification id="InputOutputSpecification_34">
<bpmn:dataInput id="DataInput_24" itemSubjectRef="ItemDefinition_19" name="cost"/>
<bpmn:dataOutput id="DataOutput_8" itemSubjectRef="ItemDefinition_19"
name="outputl"/>
<bpmn:dataOutput id="DataOutput_9" itemSubjectRef="ItemDefinition_19"
name="output2"/>
<bpmn:inputSet id="InputSet_34" name="Input Set 34">
<bpmn:dataInputRefs>Datalnput_24</bpmn:dataInputRefs>
</bpmn:inputSet>
<bpmn:outputSet id="OutputSet_35" name="Output Set 35">
<bpmn:dataOutputRefs>DataOutput_8</bpmn:dataOutputRefs>
<bpmn:dataOutputRefs>DataOutput_9</bpmn:dataOutputRefs>
</bpmn:outputSet>
</bpmn:ioSpecification>
<bpmn:dataInputAssociation id="DatalnputAssociation_17">
<bpmn:sourceRef>DataStoreReference_3</bpmn:sourceRef>
<bpmn:targetRef>Datalnput_24</bpmn:targetRef>
</bpmn:dataInputAssociation>
<bpmn:dataOutputAssociation id="DataOutputAssociation_6">
<bpmn:sourceRef>DataOutput_8</bpmn:sourceRef>
<bpmn:targetRef>DataObject_10</bpmn:targetRef>
</bpmn:dataOutputAssociation>
</bpmn:receiveTask>
<bpmn:sequenceFlow id="SequenceFlow_5" sourceRef="ReceiveTask_2"
targetRef="ExclusiveGateway_18clflo"/>
<bpmn:startEvent id="StartEvent_l1" name="Start'">
<bpmn:outgoing>SequenceFlow_14</bpmn:outgoing>
<bpmn:dataOutput id="DataOutput_1" itemSubjectRef="ItemDefinition_19" name="_cost"/>
<bpmn:dataQutput id="DataOutput 2" itemSubjectRef="ItemDefinition_ 19"

130

name="_loanAmount" />
<bpmn:dataOutput id="DataOutput_3" itemSubjectRef="ItemDefinition_19"
name="_monthlyRevenue" />
<bpmn:dataOutputAssociation id="DataOutputAssociation_2">
<bpmn:sourceRef>DataQutput_2</bpmn:sourceRef>
<bpmn:targetRef>DataStoreReference_4</bpmn:targetRef>
</bpmn:dataOutputAssociation>
<bpmn:dataOutputAssociation id="DataOutputAssociation_23">
<bpmn:sourceRef>DataQutput_1</bpmn:sourceRef>
<bpmn:targetRef>DataStoreReference_3</bpmn:targetRef>
</bpmn:dataOutputAssociation>
<bpmn:dataOutputAssociation id="DataOutputAssociation_24">
<bpmn:sourceRef>DataOutput_3</bpmn:sourceRef>
<bpmn:targetRef>DataStoreReference_5</bpmn:targetRef>
</bpmn:dataOutputAssociation>
<bpmn:outputSet id="OutputSet_12" name="Output Set 12">
<bpmn:dataOutputRefs>DataOutput_1</bpmn:dataOutputRefs>
<bpmn:dataOutputRefs>Datalutput_2</bpmn:dataOutputRefs>
<bpmn:dataOutputRefs>DataOutput_3</bpmn:dataOutputRefs>
</bpmn:outputSet>
</bpmn:startEvent>
<bpmn:sequenceFlow id="SequenceFlow_14" sourceRef="StartEvent_1"
targetRef="EventBasedGateway_1"/>
<bpmn:parallelGateway id="ExclusiveGateway 18clflo" gatewayDirection="Converging">
<bpmn:incoming>SequenceFlow_3</bpmn:incoming>
<bpmn:incoming>SequenceF low_5</bpmn:incoming>
<bpmn:outgoing>SequenceF low_6</bpmn:outgoing>
</bpmn:parallelGateway>
<bpmn:sequenceFlow id="SequenceFlow_6" sourceRef="ExclusiveGateway_18clflo"
targetRef="ExclusiveGateway_06dboho" />
</bpmn:process>
<bpmndi:BPMNDiagram id="BPMNDiagram_1">
<bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="Collaboration_1">
<bpmndi:BPMNShape id="BPMNShape_Participant_1" bpmnElement="Participant_1"
isHorizontal="true">
<dc:Bounds height="491.0" width="929.0" x="0.0" y="160.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_51" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="58.0" width="11.0" x="6.0" y="376.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="_BPMNShape_StartEvent_2" bpmnElement="StartEvent_1">
<dc:Bounds height="36.0" width="36.0" x="137.0" y="344.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_ 1" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="20.0" x="145.0" y="380.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ExclusiveGateway_06dboho_di"
bpmnElement="ExclusiveGateway_06dboho" isMarkerVisible="true">
<dc:Bounds height="50.0" width="50.0" x="688.0" y="337.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_4" labelStyle="BPMNLabelStyle_1"/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="EndEvent_lhyovvg_di" bpmnElement="EndEvent_lubxmre">
<dc:Bounds height="36.0" width="36.0" x="848.0" y="411.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_9" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="73.0" x="830.0" y="447.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ParallelGateway_ 1567msb_di"
bpmnElement="ExclusiveGateway_0o4nv8y" isMarkerVisible="true">
<dc:Bounds height="50.0" width="50.0" x="385.0" y="337.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_13" labelStyle="BPMNLabelStyle_1"/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ParallelGateway_ 046yig0_di"
bpmnElement="ExclusiveGateway_18clflo" isMarkerVisible="true">
<dc:Bounds height="50.0" width="50.0" x="562.0" y="337.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_14" labelStyle="BPMNLabelStyle_1"/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_DataInput_l1" bpmnElement="DataInput_1">
<dc:Bounds height="50.0" width="36.0" x="51.0" y="262.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_31">
<dc:Bounds height="11.0" width="22.0" x="58.0" y="312.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_DataInput_2" bpmnElement="Datalnput_2">

131

<dc:Bounds height="50.0" width="36.0" x="52.0" y="337.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_32">
<dc:Bounds height="11.0" width="73.0" x="34.0" y="387.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_DataInput_3" bpmnElement="DataInput_3">
<dc:Bounds height="50.0" width="36.0" x="51.0" y="411.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_33">
<dc:Bounds height="11.0" width="54.0" x="42.0" y="461.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_ReceiveTask_1" bpmnElement="ReceiveTask_1"
isExpanded="true">
<dc:Bounds height="50.0" width="110.0" x="442.0" y="269.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_40" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="72.0" x="461.0" y="288.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_DataObject_4" bpmnElement="DataObject_8">
<dc:Bounds height="50.0" width="36.0" x="598.0" y="261.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_41" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="22.0" width="35.0" x="598.0" y="311.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_ReceiveTask_2" bpmnElement="ReceiveTask_2"
isExpanded="true">
<dc:Bounds height="50.0" width="110.0" x="442.0" y="411.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_ 45" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="73.0" x="460.0" y="430.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_DataObject_5" bpmnElement="DataObject_10">
<dc:Bounds height="50.0" width="36.0" x="598.0" y="419.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_46" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="22.0" width="69.0" x="582.0" y="469.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_EndEvent_1" bpmnElement="EndEvent_1">
<dc:Bounds height="36.0" width="36.0" x="850.0" y="587.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_2" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="73.0" x="832.0" y="623.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_Datalnput_4" bpmnElement="Datalnput_4">
<dc:Bounds height="50.0" width="36.0" x="479.0" y="580.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_3">
<dc:Bounds height="11.0" width="55.0" x="470.0" y="630.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_EndEvent_2" bpmnElement="EndEvent_2">
<dc:Bounds height="36.0" width="36.0" x="849.0" y="512.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_ 12" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="77.0" x="829.0" y="548.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_ExclusiveGateway_ 1" bpmnElement="ExclusiveGateway_ 1"
isMarkerVisible="true">
<dc:Bounds height="50.0" width="50.0" x="688.0" y="505.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_ 15" labelStyle="BPMNLabelStyle_1"/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_EndEvent_3" bpmnElement="EndEvent_3">
<dc:Bounds height="36.0" width="36.0" x="848.0" y="344.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_ 25" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="22.0" width="80.0" x="826.0" y="380.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_EventBasedGateway_ 1"
bpmnElement="EventBasedGateway 1" isMarkerVisible="true">
<dc:Bounds height="50.0" width="50.0" x="270.0" y="337.0"/>
<bpmndi:BPMNLabel id="BPMNLabel 5" labelStyle="BPMNLabelStyle_1"/>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_Task_1" bpmnElement="Task_1">
<dc:Bounds height="50.0" width="110.0" x="442.0" y="505.0"/>
<bpmndi:BPMNLabel id="BPMNLabel 11" labelStyle="BPMNLabelStyle 1">

132

<dc:Bounds height="11.0" width="84.0" x="455.0" y="524.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_DataStoreReference_3"
bpmnElement="DataStoreReference_3">
<dc:Bounds height="50.0" width="50.0" x="230.0" y="411.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_26" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="17.0" x="246.0" y="461.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_ DataStoreReference_4"
bpmnElement="DataStoreReference_4">
<dc:Bounds height="50.0" width="50.0" x="230.0" y="261.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_47" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="49.0" x="230.0" y="311.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_DataStoreReference_5"
bpmnElement="DataStoreReference_5">
<dc:Bounds height="50.0" width="50.0" x="230.0" y="180.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_53" labelStyle="BPMNLabelStyle_1">
<dc:Bounds height="11.0" width="68.0" x="221.0" y="230.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_0vbi2ly di" bpmnElement="SequenceFlow_0vbi2ly"
sourceElement="ExclusiveGateway_06dboho_di" targetElement="EndEvent_lhyovvg_di">
<di:waypoint xsi:type="dc:Point" x="713.0" y="387.0"/>
<di:waypoint xsi:type="dc:Point" x="713.0" y="429.0"/>
<di:waypoint xsi:type="dc:Point" x="848.0" y="429.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_8"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_Association_4" bpmnElement="Association_4"
sourceElement="BPMNShape_DataInput_l1" targetElement="_BPMNShape_StartEvent_2">
<di:waypoint xsi:type="dc:Point" x="87.0" y="287.0"/>
<di:waypoint xsi:type="dc:Point" x="112.0" y="287.0"/>
<di:waypoint xsi:type="dc:Point" x="112.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="137.0" y="362.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_34"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_Association_5" bpmnElement="Association_5"
sourceElement="BPMNShape_DataInput_2" targetElement="_BPMNShape_StartEvent_2">
<di:waypoint xsi:type="dc:Point" x="88.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="112.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="137.0" y="362.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_35"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_Association_6" bpmnElement="Association_6"
sourceElement="BPMNShape_DataInput_3" targetElement="_BPMNShape_StartEvent_2">
<di:waypoint xsi:type="dc:Point" x="87.0" y="436.0"/>
<di:waypoint xsi:type="dc:Point" x="128.0" y="436.0"/>
<di:waypoint xsi:type="dc:Point" x="128.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="137.0" y="362.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_36"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_DataOutputAssociation_2"
bpmnElement="DataOutputAssociation_2" sourceElement="_BPMNShape_StartEvent_2">
<di:waypoint xsi:type="dc:Point" x="155.0" y="344.0"/>
<di:waypoint xsi:type="dc:Point" x="155.0" y="286.0"/>
<di:waypoint xsi:type="dc:Point" x="230.0" y="286.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_38"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_2" bpmnElement="SequenceFlow_2"
sourceElement="ParallelGateway_1567msb_di" targetElement="BPMNShape_ReceiveTask_1">
<di:waypoint xsi:type="dc:Point" x="410.0" y="337.0"/>
<di:waypoint xsi:type="dc:Point" x="410.0" y="306.0"/>
<di:waypoint xsi:type="dc:Point" x="442.0" y="306.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_42"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_DataOutputAssociation_4"
bpmnElement="DataOutputAssociation_7" sourceElement="BPMNShape_ReceiveTask_ 1"
targetElement="BPMNShape_DataObject_4">
<di:waypoint xsi:type="dc:Point" x="552.0" y="285.0"/>
<di:waypoint xsi:type="dc:Point" x="585.0" y="285.0"/>
<di:waypoint xsi:type="dc:Point" x="585.0" y="286.0"/>

133

<di:waypoint xsi:type="dc:Point" x="598.0" y="286.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_43"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_3" bpmnElement="SequenceFlow_3"
sourceElement="BPMNShape_ReceiveTask_1" targetElement="ParallelGateway_ 046yig0_di">
<di:waypoint xsi:type="dc:Point" x="552.0" y="294.0"/>
<di:waypoint xsi:type="dc:Point" x="587.0" y="294.0"/>
<di:waypoint xsi:type="dc:Point" x="587.0" y="334.0"/>
<di:waypoint xsi:type="dc:Point" x="587.0" y="337.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_44"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_4" bpmnElement="SequenceFlow_4"
sourceElement="ParallelGateway_1567msh_di" targetElement="BPMNShape_ReceiveTask_2">
<di:waypoint xsi:type="dc:Point" x="435.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="497.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="497.0" y="411.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_48"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_5" bpmnElement="SequenceFlow_5"
sourceElement="BPMNShape_ReceiveTask_2" targetElement="ParallelGateway_046yig0_di">
<di:waypoint xsi:type="dc:Point" x="552.0" y="427.0"/>
<di:waypoint xsi:type="dc:Point" x="587.0" y="427.0"/>
<di:waypoint xsi:type="dc:Point" x="587.0" y="387.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_49"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_6" bpmnElement="SequenceFlow_6"
sourceElement="ParallelGateway_046yig0_di" targetElement="ExclusiveGateway_06dboho_di">
<di:waypoint xsi:type="dc:Point" x="612.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="650.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="688.0" y="362.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_50"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_DataInputAssociation_1"
bpmnElement="DataInputAssociation_l1" sourceElement="BPMNShape_DataInput_4">
<di:waypoint xsi:type="dc:Point" x="497.0" y="580.0"/>
<di:waypoint xsi:type="dc:Point" x="497.0" y="568.0"/>
<di:waypoint xsi:type="dc:Point" x="497.0" y="555.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_10"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_8" bpmnElement="SequenceFlow_8"
sourceElement="BPMNShape_Task_1" targetElement="BPMNShape_ExclusiveGateway_ 1">
<di:waypoint xsi:type="dc:Point" x="552.0" y="530.0"/>
<di:waypoint xsi:type="dc:Point" x="620.0" y="530.0"/>
<di:waypoint xsi:type="dc:Point" x="688.0" y="530.0"/>
<bpmndi:BPMNLabel id="BPMNLabel 16"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_9" bpmnElement="SequenceFlow_9"
sourceElement="BPMNShape_ExclusiveGateway_1" targetElement="BPMNShape_EndEvent_2">
<di:waypoint xsi:type="dc:Point" x="738.0" y="530.0"/>
<di:waypoint xsi:type="dc:Point" x="793.0" y="530.0"/>
<di:waypoint xsi:type="dc:Point" x="849.0" y="530.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_23">
<dc:Bounds height="22.0" width="64.0" x="763.0" y="531.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_10" bpmnElement="SequenceFlow_10"
sourceElement="BPMNShape_ExclusiveGateway_1" targetElement="BPMNShape_EndEvent_1">
<di:waypoint xsi:type="dc:Point" x="713.0" y="555.0"/>
<di:waypoint xsi:type="dc:Point" x="713.0" y="605.0"/>
<di:waypoint xsi:type="dc:Point" x="850.0" y="605.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_24"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_11" bpmnElement="SequenceFlow_11"
sourceElement="ExclusiveGateway_06dboho_di" targetElement="BPMNShape_EndEvent_3">
<di:waypoint xsi:type="dc:Point" x="738.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="793.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="848.0" y="362.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_52">
<dc:Bounds height="22.0" width="73.0" x="757.0" y="363.0"/>
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_12" bpmnElement="SequenceFlow_12"
sourceElement="BPMNShape_EventBasedGateway_1" targetElement="ParallelGateway_1567msb_di">
<di:waypoint xsi:type="dc:Point" x="320.0" y="362.0"/>

134

<di:waypoint xsi:type="dc:Point" x="352.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="385.0" y="362.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_7"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_13" bpmnElement="SequenceFlow_13"
sourceElement="BPMNShape_EventBasedGateway_1" targetElement="BPMNShape_Task_1">
<di:waypoint xsi:type="dc:Point" x="295.0" y="387.0"/>
<di:waypoint xsi:type="dc:Point" x="295.0" y="530.0"/>
<di:waypoint xsi:type="dc:Point" x="442.0" y="530.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_17"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_ SequenceFlow_14" bpmnElement="SequenceFlow_14"
sourceElement="_BPMNShape_StartEvent_2" targetElement="BPMNShape_EventBasedGateway 1">
<di:waypoint xsi:type="dc:Point" x="173.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="221.0" y="362.0"/>
<di:waypoint xsi:type="dc:Point" x="270.0" y="362.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_18"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_DataOutputAssociation_7"
bpmnElement="DataOutputAssociation_6" sourceElement="BPMNShape_ReceiveTask_2"
targetElement="BPMNShape_DataObject_5">
<di:waypoint xsi:type="dc:Point" x="552.0" y="444.0"/>
<di:waypoint xsi:type="dc:Point" x="575.0" y="444.0"/>
<di:waypoint xsi:type="dc:Point" x="598.0" y="444.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_19"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_DataOutputAssociation_15"
bpmnElement="DataOutputAssociation_23" sourceElement="_BPMNShape_ StartEvent_2"
targetElement="BPMNShape_DataStoreReference_3">
<di:waypoint xsi:type="dc:Point" x="155.0" y="380.0"/>
<di:waypoint xsi:type="dc:Point" x="155.0" y="436.0"/>
<di:waypoint xsi:type="dc:Point" x="230.0" y="436.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_30"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_ DataOutputAssociation_16"
bpmnElement="DataOutputAssociation_24" sourceElement="_BPMNShape_StartEvent_2"
targetElement="BPMNShape_DataStoreReference_5">
<di:waypoint xsi:type="dc:Point" x="155.0" y="344.0"/>
<di:waypoint xsi:type="dc:Point" x="155.0" y="205.0"/>
<di:waypoint xsi:type="dc:Point" x="230.0" y="205.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_54"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge DataInputAssociation_6"
bpmnElement="DatalnputAssociation_15" sourceElement="BPMNShape_DataStoreReference_5"
targetElement="BPMNShape_ReceiveTask_1">
<di:waypoint xsi:type="dc:Point" x="280.0" y="205.0"/>
<di:waypoint xsi:type="dc:Point" x="478.0" y="205.0"/>
<di:waypoint xsi:type="dc:Point" x="478.0" y="269.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_55"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_ DataInputAssociation_7"
bpmnElement="DataInputAssociation_16" sourceElement="BPMNShape_DataStoreReference_4"
targetElement="BPMNShape_ReceiveTask_1">
<di:waypoint xsi:type="dc:Point" x="280.0" y="286.0"/>
<di:waypoint xsi:type="dc:Point" x="361.0" y="286.0"/>
<di:waypoint xsi:type="dc:Point" x="442.0" y="285.0"/>
<bpmndi:BPMNLabel id="BPMNLabel_56"/>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_DataInputAssociation_8"
bpmnElement="DatalnputAssociation_17" sourceElement="BPMNShape_DataStoreReference_3"
targetElement="BPMNShape_ReceiveTask_2">
<di:waypoint xsi:type="dc:Point" x="280.0" y="436.0"/>
<di:waypoint xsi:type="dc:Point" x="326.0" y="436.0"/>
<di:waypoint xsi:type="dc:Point" x="384.0" y="436.0"/>
<di:waypoint xsi:type="dc:Point" x="442.0" y="436.0"/>
<bpmndi:BPMNLabel id="BPMNLabel 57"/>
</bpmndi:BPMNEdge>
</bpmndi:BPMNPlane>
<bpmndi:BPMNLabelStyle id="BPMNLabelStyle_1">
<dc:Font name="arial" size="9.0"/>
</bpmndi:BPMNLabelStyle>
</bpmndi:BPMNDiagram>
</bpmn:definitions>

135

Appendix C: Generated Smart Contract for the Loan

Assessment Example using Caterpillar and Proposed Approach

C1. Generated Smart Contract for Loan Assessment Example
Using Caterpillar

BPM17_Running_ExampleData contract

pragma solidity 70.4.25;
import 'IData’;

contract BPM17_Running_ExampleData is IDataImp {
bool applicantEligible;
uint monthlyRevenue;
uint loanAmount;
uint cost;
uint appraisePropertyResult;
uint assessLoanRiskResult;

function executeScript(uint eInd) public returns(uint) {
if (eInd == 4) {
if (assessLoanRiskResult >= appraisePropertyResult)
applicantEligible = true;
else
applicantEligible = false;
return 8;

¥
if (eInd == 5) {
if (applicantEligible)
return 16;
¥
if (eInd == 12) {
if (applicantEligible)
return 4096;

I

function checkIn(uint eInd, uint il, uint i2, uint i3) public {
require (4 & (1 << elInd) !=0);
monthlyRevenue = i3; loanAmount = i2; cost = il;
continueExecution(eInd);

}

function checkIn(uint eInd, uint il) public {
require (1032 & (1 << eInd) != 0);

if (eInd == 3) {
assessLoanRiskResult = il;

}
else if (eInd == 10) {
appraisePropertyResult = il;

continueExecution(eInd);

b

function checkIn(uint eInd, bool il) public {
require (2048 & (1 << eInd) != 0);
applicantEligible = il;
continueExecution(eInd);

b

function checkOut(uint eInd) public view {
require (3084 & (1 << eInd) == 0);

136

}
ProcessRegistry Contract

pragma solidity 70.4.25;

contract IFunct {
// WorkList functions
function updateRuntimeRegistry(address _runtimeRegistry) public;
// Factory Functions
function setWorklist(address _worklist) public;
function startInstanceExecution(address processAddress) public;
function newInstance(address parent, address globalFactory) public
returns(address);
function findParent() public view returns(address);
}

contract ProcessRegistry {

mapping (bytes32 => mapping (uint => bytes32)) private
parent2ChildrenBundleld;

mapping (bytes32 => address) private factories;

mapping (bytes32 => bytes32) private policy;

mapping (bytes32 => bytes32) private taskRole;

mapping (address => bytes32) private instance2Bundle;
mapping (address => address) private instance2PolicyOp;
address[] private instances;

mapping (address => bytes32) private worklist2Bundle;
event NewInstanceCreatedFor(address parent, address processAddress);

function registerFactory(bytes32 bundleld, address factory) external {
factories[bundleld] = factory;
}

function registerWorklist(bytes32 bundleId, address worklist) external {
address factory = factories[bundleld];
require(factory != address(0));
worklist2Bundle [worklist] = bundleld;
IFunct(factory).setWorklist(worklist);

: IFunct(worklist).updateRuntimeRegistry(this);

function findRuntimePolicy(address pCase) public view returns(address) {
return instance2PolicyOp[pCase];
}

function relateProcessToPolicy(bytes32 bundleld, bytes32 _policy, bytes32
_taskRole) external {
taskRole [bundleId] = _taskRole;
policy[bundleId] = _policy;

function addChildBundleId(bytes32 parentBundleld, bytes32 processBundleld,
uint nodeIndex) external {
parent2ChildrenBundleId[parentBundleId] [nodeIndex] = processBundleld;
}

function newInstanceFor (uint nodeIndex, address parent) public
returns(address) {
return
newBundleInstanceFor(parent2ChildrenBundleld [instance2Bundle([parent]] [nodeIndex],
parent, instance2PolicyOpl[parent]);

137

function newBundleInstanceFor(bytes32 bundleId, address parent, address

policyOpAddr) public returns(address) {
address factory = factories[bundleld];
require(factory != address(0));
address processAddress = IFunct(factory).newInstance(parent, this);
instance2Bundle [processAddress] = bundleld;
instance2PolicyOp[processAddress] = policyOpAddr;
instances.push(processAddress);
IFunct(factory).startInstanceExecution(processAddress);
emit NewInstanceCreatedFor(parent, processAddress);
return processAddress;

}

function alllnstances() external view returns(address([]) {
return instances;
}

function bindingPolicyFor(address procInstance) external view
returns(bytes32) {
bytes32 pId = instance2Bundle[procInstance];
address pAddr = procInstance;
while(policy[pId].length != 0) {
pAddr = IFunct(pAddr).findParent();
if(pAddr == 0)
break;
pId = instance2Bundle[pAddr];
}
return policy([pId];
}

function taskRoleMapFor(address procInstance) external view returns(bytes32)

bytes32 pId = instance2Bundle[procInstancel;
address pAddr = procInstance;
while(taskRole[pId].length '= @) {
pAddr = IFunct(pAddr).findParent();
if(pAddr == 0)
break;
" pId = instance2Bundle[pAddr];
return taskRole[pId];
}

function bindingPolicyFromId(bytes32 procId) external view returns(bytes32) {
return policy[procId]l;

function taskRoleMapFromId(bytes32 procId) external view returns(bytes32) {
return taskRole[procId];

function bundleFor(address processInstance) external view returns(bytes32) {
return instance2Bundle[processInstance];
}

function childrenFor(bytes32 parent, uint nodeInd) external view
returns(bytes32) {
return parent2ChildrenBundleId[parent] [nodeInd];

function worklistBundleFor(address worklist) external view returns(bytes32) {
return worklist2Bundle [worklist];
}
}

BPMNInterpreter Contract

138

pragma solidity 70.4.25;

import 'IData’;
import 'IFlow';
import 'IFactory’;

contract BPMNInterpreter {

event MessageSent(bytes32 messageBody) ;
event NewCaseCreated(address pCase);

/// Instantiation of Root-Process

function createInstance(address cFlow) public returns(address) {
address factory = IFlow(cFlow).getFactoryInst();
require(factory != address(0));

address pCase = IFactory(factory).newInstance();
IData(pCase).setParent(address(@), cFlow, 0);

emit NewCaseCreated(pCase);
executionRequired(cFlow, pCase);
}
/// Instantiation of a sub-process by its parent
function createInstance(uint eInd, address pCase) private returns(address) {

address pFlow = IData(pCase).getCFlowInst();
address cFlow = IFlow(pFlow).getSubProcInst(eInd);

address factory = IFlow(cFlow).getFactoryInst();
require(factory != address(0));

address cCase = IFactory(factory).newInstance();

IData(cCase).setParent(pCase, cFlow, eInd);
IData(pCase).addChild(eInd, cCase);

executionRequired(cFlow, cCase);

return cCase;

function executionRequired(address cFlow, address pCase) private {
uint eFirst = IFlow(cFlow).getFirstElement();
IData(pCase).setMarking(IFlow(cFlow).getPostCond(eFirst));

uint[] memory next = IFlow(cFlow).getAdyElements(eFirst);

if(next.length > 0)
executeElements(pCase, next[0]);

}
function throwEvent(address pCase, bytes32 evCode, uint evInfo) private {

/// This function only receive THROW EVENTS (throw event verification
made in function executeElement)

uint[2] memory pState;
pState[@] = IData(pCase).getMarking();
pState[1] = IData(pCase).getStartedActivities();

if(evInfo & 4096 == 4096)

/// Message (BIT 15), to publish a Message in the Ethereum Event Log
emit MessageSent(evCode);

if(evInfo & 5632 == 5632) {

139

/// 9- End, 10- Default, 12- Message
if(pState[0] | pStatel[l] == @) // If there are not tokens to consume
nor started activities in any subprocess
tryCatchEvent(pCase, evCode, evInfo, true); // Sub-process ended,
thus continue execution on parent
} else {
if(evInfo & 2048 == 2048)
/// Terminate Event (BIT 11), only END EVENT from standard,
killProcess(pCase); // Terminate the execution in the current
Sub-process and each children
tryCatchEvent(pCase, evCode, evInfo, pState[0] | pState[l] == 0); //
Continue the execution on parent

}
}

function tryCatchEvent(address pCase, bytes32 evCode, uint evInfo, bool
isInstCompl) private {

address catchCase = IData(pCase).getParent();
if(catchCase == address(0)) {
/// No Parent exist, root node
if(evIinfo & 8192 == 8192)
/// Error event (BIT 13), only END EVENT from standard, in the root
process.
killProcess(pCase);
return;

b
address cFlow = IData(catchCase).getCFlowInst();
uint[2] memory pState;

pState[0] = IData(catchCase).getMarking();
pState[1] = IData(catchCase).getStartedActivities();

uint subProcInd = IData(pCase).getIndexInParent();

uint runInstCount = isInstCompl ?
IData(catchCase) .decreaseInstanceCount(subProcInd)
: IData(catchCase).getInstanceCount(subProcInd);

if(runInstCount == 0)
/// Update the corresponding sub-process, call activity as completed
IData(catchCase).setActivityMarking(pState[1] & ~(1 << 1 <<
subProcInd));

uint subProcInfo = IFlow(cFlow).qgetTypeInfo(subProcInd);

if(evInfo & 7168 != 0) {
/// If receiving 10- Default, 11- Terminate or 12- Message
if(runInstCount == @ && subProcInfo & 4096 '= 4096) {
/// No Instances of the sub-process propagating the event and The
sub-process isn't an event-sub-process (BIT 12)
IData(catchCase).setMarking(pState[0] &
~IFlow(cFlow).getPostCond(subProcInd));
executeElements(catchCase,
IFlow(cFlow).getAdyElements (subProcInfo) [@]);
} else if(subProcInfo & 128 == 128) {
/// Multi-Instance Sequential (BIT 7), with pending instances to
be started.
createInstance(subProcInd, pCase);

}
} else {
/// Signal, Error or Escalation

/// Signals are only handled from the Root-Process by Broadcast, thus

140

the propagation must reach the Root-Process.
if(evInfo & 32768 == 32768) {
/// Propagating the Signal to the Root-Process
while(catchCase != address(0)) {
pCase = catchCase;
catchCase = IData(pCase).getParent();

broadcastSignal(pCase);
return;

¥
uint[] memory events = IFlow(cFlow).getEventList();

/// The event can be catched only once, unless it is a signal where a
broadcast must happen.

/// Precondition: Event-subprocess must appear before boundary events
on the event list.

for(uint i = 0; i < events.length; i++) {

if (IFlow(cFlow).getEventCode(events[i]) == evCode) {
/// Verifiying there is a match with the throw-cath events.

uint catchEvInfo = IFlow(cFlow).getTypeInfo(events([i]); //
Info of the candidate catching event
uint attachedTo = IFlow(cFlow).getAttachedTo(events([i]); //

if(catchEvInfo & 6 == 6) {
/// Start event-sub-process (BIT 6)
if(catchEvInfo & 16 == 16)
/// Interrupting (BIT 4 must be 1, @ if non-interrupting)
killProcess(catchCase); // Before starting the event
subprocess, the parent is killed

createInstance(attachedTo, pCase); // Starting event
sub-process

IData(catchCase).setActivityMarking(pState[1] | (1 <<
attachedTo)); // Marking the event-sub-process as started

return;

} else if(catchEvInfo & 256 == 256 && attachedTo ==

subProcInd) {

/// Boundary (BIT 6) of the subproces propagating the
event

if(catchEvInfo & 16 == 16)

/// Interrupting (BIT 4 must be 1, @ if non-interrupting)

killProcess(pCase); // The subprocess propagating

the event must be interrupted

IData(catchCase).setMarking(pState[0] &
~IFlow(cFlow) .getPostCond(events([i])); // Update the marking with the output of
the boundary event

executeElements(catchCase,
IFlow(cFlow).getAdyElements(events[i]) [0]); // Continue the execution of possible
internal elements

return;

}
}
/// If the event was not caught the propagation continues to the

parent unless it's the root process
throwEvent(catchCase, evCode, evInfo);

}

function killProcess(address pCase) private {
uint startedActivities = IData(pCase).getStartedActivities();
IData(pCase).setMarking(0);

141

IData(pCase).setActivityMarking(0);

uint[] memory children =
IFlow(IData(pCase).getCFlowInst()).getSubProcList();

for(uint i = 0; i < children.length; i++)
if(startedActivities & (1 << children[i]) != 0)
killProcess(IData(pCase).getChildProcInst(children([i]));
¥

function killProcess(address([] memory pCases) private {
for(uint i = 0; i < pCases.length; i++)
killProcess(pCases[i]);

function broadcastSignal(address pCase) private {
address cFlow = IData(pCase).getCFlowInst();
uint[] memory events = IFlow(cFlow).getEventList();

uint[2] memory pState;
pState[1] = IData(pCase).getStartedActivities();

for(uint i = 0; i < events.length; i++) {
uint evInfo = IFlow(cFlow).getTypeInfo(events([i]);

if(evInfo & 32780 == 32772) {
/// Event Catch Signal (BITs 2, 3 [0-catch, 1-throw], 15)

uint catchEvInfo = IFlow(cFlow).getTypeInfo(events[i]);
uint attachedTo = IFlow(cFlow).getAttachedTo(events[i]);

if(catchEvInfo & 6 == 6) {
/// Start event-sub-process (BIT 6)
if(catchEvInfo & 16 == 16)
/// Interrupting (BIT 4 must be 1, @ if non-interrupting)
killProcess(pCase); // Before starting the event
subprocess, the current process-instance is killed

createInstance(attachedTo, pCase); // Starting event sub-
process

IData(pCase).setActivityMarking(1l << attachedTo); // Marking
the event-sub-process as started

} else if(catchEvInfo & 256 == 256) {

/// Boundary (BIT 6) of the subproces propagating the event

if(catchEvInfo & 16 == 16)

/// Interrupting (BIT 4 must be 1, @ if non-interrupting)

killProcess(IData(pCase).getChildProcInst(attachedTo));

// The subprocess propagating the event must be interrupted

IData(pCase).setMarking(IData(pCase).getMarking() &
~IFlow(cFlow) .getPostCond(events[il)); // Update the marking with the output of
the boundary event

executeElements(pCase,
IFlow(cFlow).getAdyElements (events [i])[0]); // Continue the execution of possible
internal elements

} else if(evInfo & 160 == 160) {

/// Start (not Event Subprocess) OR Intermediate Event

IData(pCase).setMarking(IData(pCase).getMarking() &
~IFlow(cFlow).getPreCond(events[i]) | IFlow(cFlow).getPostCond(events[i]));

executeElements(pCase,
IFIow(cFlow).get?dyElements(events[i])[0]):

}

142

}

uint[] memory children =
IFlow(IData(pCase).getCFlowInst()).getSubProcList();
uint startedActivities = IData(pCase).getStartedActivities();

for(uint j = 0; j < children.length; j++)
if(startedActivities & (1 << children(j]) != 0)
broadcastSignal(IData(pCase).getChildProcInst(children[j]));
}

function broadcastSignal(address[] memory pCases) private {
for(uint i = 0; i < pCases.length; i++)
broadcastSignal(pCases[i]);

function executeElements(address pCase, uint eInd) public {
address cFlow = IData(pCase).getCFlowInst();
uint[] memory next;

/// Declared as an array and not as independent fields to avoid Stack Too
Deep- Compilation Error

/// 0- preC

/// 1- postC

/// 2- typeInfo
uint[3] memory lInfo;

/// 0- tokensOnEdges
/// 1- startedActivities
uint[2] memory pState;

pState[0]
pState[1]

IData(pCase).getMarking();
IData(pCase).getStartedActivities();

/// Execution queue and pointers to the first & last element (i.e. basic
circular queue implementation)

uint[100] memory queue;

uint i = 0; uint count = 0;

queue [count++] = elnd;
while (i < count) {
eInd = queue[i++];

(1Infol[@], 1Infol[1], 1Info[2], next) =
IFlow(cFlow).getElementInfo(eInd);
// (preC, postC, typeInfo, next) = IFlow(cFlow).getElementInfo(eInd);

/// Verifying Preconditions (i.e. Is the element enabled?)

if(lInfo[2] & 42 == 42) {
/// else if (AND Join)
if(pState[@] & lInfo[0] != lInfol[0])
continue;
pState[0] &= ~1Infol[0];
} else if(lInfo[2] & 74 == 74) {
/// else if (OR Join)
///// OR Join Implementation //////
} else if(lInfo[2] & 1 == 1 || (lInfo[2] & 4 == 4 && lInfo([2] & 640
'=0) || Unfol2] & 2 == 2) {
/// If (Activity || Intermediate/End Event || Gateway != AND/OR

Join)

143

if(pState[0] & lInfo[0] == 0)
continue;
pState[0] &= ~1lInfo[@]; // Removing tokens from input arcs
} else {
: continue;

/// Executing current element (If enabled)

if(lInfo[2] & 65 == 65) {
/// (0- Activity, 6- Parallel Multi-Instance)
uint cInst = IFlow(cFlow).getInstanceCount(eInd);
while(cInst-- > @)
createInstance(eInd, pCase);
pState[1l] |= (1 << eInd);
} else if(lInfo[2] & 129 == 129 || (1Info[2] & 1 == 1 && lInfol[2] &
48 '= 0 && lInfo[2] & 4096 == 0)) {
/// If (0- Activity, 7- Sequential Multi-Instance) ||
/// Sub-process(0- Activity, 5- Sub-process) or Call-Activity(0-
Activity, 4- Call-Activity)
/// but NOT Event Sub-process(12- Event Subprocess)
IData(createInstance(eInd, pCase)).setInstanceCount(eInd,
IFlow(cFlow).getInstanceCount(eInd));
pState[1l] |= (1 << eInd);
} else if(lInfo[2] & 4105 == 4105 || (lInfo[2] & 10 == 2 && lInfo[2]
& 80 '=10)) {
/// (0- Activity, 3- Task, 12- Script) ||
/// Exclusive(XOR) Split (1- Gateway, 3- Split(@), 4- Exclusive)
I
/// Inclusive(OR) Split (1- Gateway, 3- Split(@), 6- Inclusive)
IData(pCase) .executeScript(eInd);
pState[0] |= IData(pCase).executeScript(eInd);
; } else if ((lInfo[2] & 9 == 9 && 1Info[2] & 27657 != @) || lInfo[2] &
2 = 2)
/// If (User(11), Service(13), Receive(14) or Default(10) Task ||
Gateways(1) not XOR/OR Split)
/// The execution of User/Service/Receive is triggered off-chain,
/// Thus the starting point would be the data contract which
executes any script/data-update related to the task.
pState[0] |= 1Infoll];
} else if(lInfo[2] & 12 == 12) {
/// If (2- Event, 3- Throw(1))
IData(pCase).setMarking(pState[0]);
IData(pCase).setActivityMarking(pState([1]);
throwEvent(pCase, IFlow(cFlow).getEventCode(eInd), lInfo[2]);
if(IData(pCase).getMarking() |
IData(pCase).getStartedActivities() == 0)
/// By throwing the event, a kill was performed so the current
instance was terminated
return;
pState[0]

IData(pCase).getMarking();
pState[1]

IData(pCase).getStartedActivities();

if(lInfo[2] & 128 == 128)
/// If Intermediate event (BIT 7)
pState[0] |= 1lInfol1];

/// Adding the possible candidates to be executed to the queue.
/// The enablement of the element is checked at the moment it gets
out of the queue.
for(uint j = 0; j < next.length; j++) {

queue [count] = next[jl;

count = ++count % 100;

144

/// Updating the state (storage) after the execution of each internal
element.

IData(pCase).setMarking(pState[0]);

IData(pCase).setActivityMarking(pState[1]);

}
}
IFlow and IFlowImpl contracts

pragma solidity 70.4.25;
contract IFlow {

function getPreCond(uint eInd) public view returns(uint);

function getPostCond(uint eInd) public view returns(uint);

function getTypeInfo(uint eInd) public view returns(uint);

function getAdyElements(uint eInd) public view returns(uint[] memory);
function getEventCode(uint eInd) public view returns(bytes32);
function getAttachedTo(uint eInd) public view returns(uint);

function getElementInfo(uint eInd) public view returns(uint, uint, uint,
uint[] memory);
function getFirstElement() public view returns(uint);

function getEventList() public view returns(uint[] memory);
function getSubProcList() public view returns(uint([] memory);
function getSubProcInst(uint eInd) public view returns(address);
function getFactoryInst() public view returns(address);

function setFactoryInst(address _factory) public;

function getInstanceCount(uint eInd) public view returns(uint);

function getInterpreterInst() public view returns(address);
function setInterpreterInst(address _interpreter) public;

function setElement(uint eInd, uint preC, uint postC, uint typelnfo, bytes32
eCode, uint[] memory _nextElem) public;

function linkSubProcess(uint pInd, address cFlowInst, uint[] memory
attachedEvt, uint countInstances) public;

}

/// @title Control Flow Data Structure

/// @dev Tree mirroring the process hierarchy derived from a process model.
/// @dev This contract must be deployed/instantiated once per process model.
contract IFlowImpl {

uint private startEvt;
address private factory;
address private interpreter;

// elemIndex => [preC, postC, type]
mapping(uint => uint([3]) private condTable;

// Element Index => List of elements that can be enabled with the completion
of the key element
mapping (uint => uint[]) private nextElem;

// List of Indexes of the subprocesses
uint[] private subProcesses;

// List of Event Indexes defined in the current Subprocess
uint[] private events;

// Event Index => Index of the element where event is attachedTo
mapping(uint => uint) private attachedTo;

145

// Event Index => String representing the code to identify the event (for
catching)
mapping(uint => bytes32) private eventCode;

// Subprocess Index => Child Subproces address
mapping(uint => address) private pReferences;

// Subprocess Index => number of instances
mapping(uint => uint) private instanceCount;

function getPreCond(uint eInd) public view returns(uint) {
return condTable[eInd] [0];

function getPostCond(uint eInd) public view returns(uint) {
return condTable[eInd] [1];

function getTypeInfo(uint eInd) public view returns(uint) {
return condTable[eInd] [2];
}

function getFirstElement() public view returns(uint) {
return startEvt;

function getAdyElements(uint eInd) public view returns(uint[] memory) {
return nextElem[eInd];

function getElementInfo(uint eInd) public view returns(uint, uint, uint,
uint[] memory) {
return (condTable[eInd] [0], condTable[eInd] [1], condTable[eInd][2],
next;lem[elnd]);

function getSubProcList() public view returns(uint[] memory) {
return subProcesses;
}

function getInstanceCount(uint eInd) public view returns(uint) {
return instanceCount[eInd];

function getEventCode(uint eInd) public view returns(bytes32) {
return eventCode[eInd];
}

function getEventList() public view returns(uint[] memory) {
return events;
}

function getAttachedTo(uint eInd) public view returns(uint) {
return attachedTo[eInd];

function getSubProcInst(uint eInd) public view returns(address) {
return pReferences|[eInd];
}

function getFactoryInst() public view returns(address) {
return factory;
}

function setFactoryInst(address _factory) public {

146

factory = _factory;

function getInterpreterInst() public view returns(address) {
return interpreter;

function setInterpreterInst(address _interpreter) public {
interpreter = _interpreter;

function setElement (uint eInd, uint preC, uint postC, uint typeInfo, bytes32
eCode, uint[] memory _nextElem) public {
uint _typeInfo = condTable[eInd][2];
if (_typeInfo == 0) {
if (typeInfo & 4 == 4) {
events.push(elnd);
if (typelInfo & 36 == 36)
startEvt = elnd;
eventCode [eInd] = eCode;
} else if (typeInfo & 33 == 33)
subProcesses.push(elInd);
} else
require (_typeInfo == typelnfo);
condTable[eInd] = [preC, postC, typeInfol;
nextElem[eInd] = _nextElem;

}

function linkSubProcess(uint pInd, address cFlowInst, uint[] memory

attachedEvt, uint countInstances) public {

require(condTable[pInd][2] & 33 == 33); // BITs (0, 5) Veryfing the
subprocess to link is already in the data structure

pReferences[pInd] = cFlowInst;

for(uint i = 0; i < attachedEvt.length; i++)

if(condTable[attachedEvt([i]][2] & 4 == 4)
attachedTo[attachedEvt[i]] = pInd;
instanceCount[pInd] = countInstances;

BPM17_Running_ExampleFactory contract
pragma solidity 70.4.25;

import ‘BPM17_Running_ExampleData';
contract BPM17_Running_ExampleFactory {

function newInstance() public returns(address) {
return new BPM17_Running_ExampleData();
}

C2. Generated Smart Contract for Loan Assessment Example

Using Proposed Approach
pragma solidity >=0.4.0 <0.7.0;

import "github.com/oraclize/ethereum-api/oraclizeAPI.sol";

contract LoanApproval is usingOraclize {

147

mapping (bytes32 => uint) validIds;
uint public cost;

uint public loanAmount;

uint public monthlyRevenue;

uint loanRisk = 0;

uint appraiseProperty = 0;

event ConfirmationSent();
event LoanRejected();
event LoanAccepted();

constructor (uint _cost, uint _loanAmount, uint _monthlyRevenue) {
loanAmount = _loanAmount;
cost = _cost;
monthlyRevenue = _monthlyRevenue;
emit LoanRejected();

bytes32 _queryld = 1;

// bytes32 _queryId = oraclize_query("URL",
'json(https://assess.loan.risk.url).result');

validIds [_queryId] = 1;

// _queryId = oraclize_query("URL",
‘json(https://assess.loan.risk.url).result');

validIds [_queryId] = 2;

if (loanRisk >= appraiseProperty){
emit ConfirmationSent();

} else {
emit LoanRejected();

if (loanRisk >= appraiseProperty){
emit ConfirmationSent();

} else {
emit LoanRejected();

}
function confirmAcceptance(bool _confirmation) {
if (_confirmation == true){
emit LoanAccepted();
}
}
function _ callback(bytes32 _queryId, string memory _result) public {
require(msg.sender == oraclize_cbAddress());
if (validIds[_queryId] == 1) {
appraiseProperty = parselnt(_result);
delete validIds [_queryId];
}
if (validIds[_queryId] == 2) {
loanRisk = parseInt(_result);
delete validIds([_queryId];
}
}

148

Appendix D: Truffle Tests Written for the Re-generated
Solidity Code
D1: Truffle Test Written for Invoice Handling Smart Contract

const InvoiceHandling = artifacts.require('InvoiceHandling');

contract('InvoiceHandling', (accounts) => {
let invoiceHandling;
before(async () => {
invoiceHandling = await InvoiceHandling.new({ from: accounts[0] });

});

it("should be able to issue invoice", async () => {
await invoiceHandling.issueInvoice();

’
it("should be able to disapprove invoice", async () => {
await invoiceHandling.approveInvoice(false);

});

it("should be able to fixInvoice invoice", async () => {
await invoiceHandling.fixInvoice();
s

it("should be able to approve invoice", async () => {
await invoiceHandling.approveInvoice(true);
3
s

149

D2: Truffle Test Written for Lottery Smart Contract

const LotterylOUsers = artifacts.require('LotterylOUsers');
let catchRevert = require("./exceptions.js").catchRevert;
var BN = web3.utils.BN;

contract('LotterylOUsers', (accounts) => {
let lotteryl@Users;
let users = [];
before(async () => {
lotteryl@Users = await LotterylOUsers.new({ from: accounts[0] });
1)

it("should revert join when no value provided", async () => {
y await catchRevert(lotteryl@Users.join({ from: accounts([0] }));
)

it("should accept join when 0.1 ether value provided", async () => {
var amount = 0.1;
await lotteryl@Users.join({ value:
web3.utils.toBN(web3.utils. toWei(amount.toString(), 'ether')), from: accounts[0]

3
1)

it("should accept join more 9 members", async () => {
var amount = 0.1;
for (var i = 1; i < 10; i++) {
await lotteryl@Users.join({ value:
yebB.utils.toBN(web3.utils.toWei(amount.toString(), ‘ether')), from: accounts[i]
)3
}

1)

it ("should one member win the jackpot", async () => {

var foundWinner = false;

for (var i = 0; i < 10; i++) {
let balance = await web3.eth.getBalance(accounts[i]);
if (balance > 10000000000000000000) <

foundWinner = true;

}

}

assert.equal(foundWinner, true);
1)
});

D3: Truffle Test Written for Marriage Smart Contract

const Marriage = artifacts.require('Marriage’);

contract('Marriage', (accounts) => {
let marriage;
const contributor = accounts[1];
const wifeAccount = accounts([2];
const husbandAccount = accounts[3];

// build up and tear down a new BasicToken contract before each test
beforeEach(async () => {
marriage = await Marriage.new(wifeAccount, husbandAccount, { from:
contributor });
¥

it("should be equal the wifeAccount and the initial balance", async () => {
assert.equal (100000000000000000000, await
web3.eth.getBalance(wifeAccount));

150

Appendix E: Detailed Responses of the Survey

Table 5.1: Detailed Responses for the Survey Study

Answers (%)

fixam Question Exc. Good Avg. Poor Very Free Text Feedback
ple Poor
14.3 57.1 286 |0 0 Based on the knowledge
The language used for defining objects is
1. Your Score for the understandable
Readability of the input Consists the logical expressions in illustration well
Diagram understood the logic
Quite clear and relationships are well illustrated
Isolated notations, unnamed relationships
Its similar to a flow diagram
+
:1:) 14.3 | 28.6 | 429 143 |0 Seems to cover all the scenarios in the diagram
3 I think you have used modifiers in Solidity to
& represent if-else branching in BPMN. However, it's
f 2. Your Score for the somewhat difficult for me to understand.
8 Correctness of the The diagram is directly converted. However the flow
g Business Logic of the is not represented in the code.
| BPMN-to-Solidity not much familiar
Translation State transitions are correctly stated
Number of logic aligns with the diagram
couldnt figure out the construct
286 [286 |0 428 |0 1 hardly notice the state transition is implemented
3. Your Score for the
I can identify the mapping of variables and methods
Correctness of the State o
- between BPMN-to-Solidity to a greater extent
Transitions of the . .
All objects are properly transmitted.

151

BPMN-to-Solidity
Translation

Not using for the current job role

State transitions have been correctly modeled
Good translation - e.g. variable names

We required to know the formal definition in order
to verify

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

28.6

42.8

28.6

Seems to cover all the scenarios in the diagram
Public methods are properly defined in BPMN as
well as in Solidity.

Clearly marked in both BPMN and Solidity

Got the logic

Most of the entry points are well stated

correct translation

We required We required to know the formal
definition in order to verify

Marriage: Wedding Gift

1. Your Score for the
Readability of the input
Diagram

14.3

57.1

14.3

14.3

This is seems to be fuzzy to me

Difficult to figure out the exact scenario
Connection of the variables is not represented. The
connection between Marriage and account balances
1s confusing as well.

Got the logic

Quiet clear and readable

what is pool1?

simple scenario

2. Your Score for the
Correctness of the
Business Logic of the

14.3

28.6

42.8

14.3

Seems to me i am lost hr

Difficult to identify the if-else portion in the diagram
The hidden details of BPMN is clearly expressed in
the code.

152

BPMN-to-Solidity
Translation

Not much familiar

Decision point can be improved

unable to determine - no if statements
since its a simple scenario, its easy to verify

Sellable

0 42.8 | 28.6 |28.6 Seems to me i am lost hr
3. Your Score for the No clear enough representations
Correctness of the State Balance state transitions is clearly mentioned
Transitions of the Not much familiar
BPMN-to-Solidity State transitions are well illustrated
Translation good translation
since its a simple scenario, its easy to verify
14.3 | 28.6 |42.8 14.3 Seems to me i am lost hr
Can be identified to a some extent, but I feel the
4 Your Score for the d1agrqm shpuld be more detailed . .
Function wise decoupling has achieved this.
Correctness of the Entry o
5 not much familiar
Points of the BPMN-to- . .
. . Could improve the representations of the entry
Solidity Translation .
points
all covered
since its a simple scenario, its easy to verify
42.8 | 143 428 |0 Input is true to the scenario

1. Your Score for the
Readability of the input
Diagram

Objects are properly defined and can easily be
understood

Not Clear

Got the logic

Quiet clear and meaningful

readable - no tangling items

153

Complex scenario

Lotte
ry

14.3 | 28.6 | 286 |28.6 cover all the scenarios in the diagram
9 Vour Score for the I couldn't properly find if-else tagg
The BPMN flows are correctly visible
Correctness of the .
. . not much familiar
Business Logic of the Busi logic are correctly captured and modeled
BPMN-to-Solidity USINESS J0glC are y ¢ap
X unable to determine
Translation .
Complex scenario
28.6 |28.6 |28.6 14.3 state transition is covers as to the scenario
They can properly be identified within the diagram
3. Your Score for the and mapped Solidity code
Correctness of the State Catches the states of the respective objects
Transitions of the not much familiar
BPMN-to-Solidity Most of the state transitions are captured, yet can
Translation improve
good
Complex scenario
28.6 | 42.8 14.3 14.3 cover all the scenarios in the diagram
4. Your Score for the Can easily be identified
Correctness of the Entry not much familiar
Points of the BPMN-to- Almost all of the entry points are clearly identified
Solidity Translation good
Complex scenario
1. Your Score for the 14.3 | 28.6 |57.1 0 covers all the scenarios

Readability of the input
Diagram

Given business logic is properly mapped into the
diagram

154

All representations are better
got the logic

Generated code 1s quiet clear
what is pool 1

Complex scenario

28.6 |28.6 |28.6 14.3 covers all the scenarios to best of my knowledge
9 Vour Score for the I thmk the mapping almost covered the given
Correctness of the scenarios
. . Translation is correct and readable
Business Logic of the o1
.. not much familiar
BPMN-to-Solidity . .
X All the business logic are captured
Translation
all covered
Complex scenario
0 57.1 28.6 14.3 program dose't depend much on state transition
The data objects in storing variables can't be seen in
3. Your Score for the this diagram as opposed to the previous diagrams
Correctness of the State All elements are captured
Transitions of the not much familiar
BPMN-to-Solidity State transitions of the objects are correctly
Translation 1dentified
mostly covered
Complex scenario
57.1 14.3 14.3 14.3 it has all the entry points that are in the diagram

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

Those are properly defined; therefore, can easily be
identified

All elements are captured

not much familiar

All the entry points are correctly captured

good job

155

Complex scenario

Basic Token

28.6 14.3 | 42.8 14.3 covers all the scenarios
It's hard for me to identify the scenario from the
1. Your Score for the given diagram
Readability of the input All cases captured
Diaeram Got the idea
& All the points are clearly identified and included in
the code
isolated items
Complex scenario
14.3 | 28.6 | 286 |28.6 covers all the scenarios to best of my knowledge
2. Your Score for the Same as abqve . .
Good coversion. Small gaps in readability
Correctness of the .
. . not much familiar
Business Logic of the Busi logi learlv depicted
BPMN-to-Solidity usiness logic are clearly depicte
X unable to determine
Translation)
Complex scenario
14.3 | 42.8 14.3 28.6 covers all the scenarios to best of my knowledge

3. Your Score for the
Correctness of the State
Transitions of the
BPMN-to-Solidity
Translation

Same as above

Translation is to the point

not much familiar

All the state transitions are well captured and
demonstrated

all covered

Complex scenario

156

3. Your Score for the
Correctness of the State
Transitions of the

28.6 | 28.6 14.3 28.6 covers all the scenarios to best of my knowledge
Same as above
4. Your Score for the All entry points are shown correctly
Correctness of the Entry not much familiar
Points of the BPMN-to- .
Solidity Translation ?;1) ;;lhe entry points are captured
Complex scenario
28.6 14.3 | 42.8 14.3 Covers the explained scenario
My score would be 50% for this diagram and I feel
we need to have the detailed business logic to make
%{.ezg;f)i?iiorsffsﬁs?s ut a more accurate comment
Diaeram y P Complex usecase nicely illustrated in diagram
J Got the idea
Well structured and clear
pool 1, tangling items, isolated items
° Complex scenario
S
Z; 143 | 28.6 |286 |28.6 correct based on my knowledge
2
< 2. Your Score for the game as above
S aptures all the cases
Correctness of the not much familiar
Business Logic of the . .
BPMN-to-Solidity ?;1) ghe business logic are captured
T lati .
ranstation Complex scenario
14.3 28.6 42.9 14.3 state transition is not playing major part in the

diagram or in the code in this scenario
Same as above
Transitions are capture well

157

BPMN-to-Solidity
Translation

not much familiar

State transitions are well identified
good

Complex scenario

4. Your Score for the
Correctness of the Entry
Points of the BPMN-to-
Solidity Translation

28.6

28.6

28.6

28.6

correct based on my knowledge

Same as above

All entry points are represented in the translation
not much familiar

Most of the entry points are captured

all covered

Complex scenario

158

