
CONTENT EXTRACTION FROM PDF INVOICES

ON BUSINESS DOCUMENT ARCHIVES

R.M.C.V. Bandara

168208N

Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

January 2020

CONTENT EXTRACTION FROM PDF INVOICES

ON BUSINESS DOCUMENT ARCHIVES

R.M.C.V. Bandara

168208N

Thesis submitted in partial fulfilment of the requirements for the

Degree Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

January 2020

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works.

…………………………….. …………………………..

 R.M.C.V. Bandara Date

The above candidate has carried out research for the Master of Science in Computer

Science thesis under my supervision.

…………………………….. …………………………..

 Dr. Indika Perera Date

ii

Abstract

Archiving documents is a crucial part on information management, and it will give an

organization better control over their information processes. When a business expands, more

documents will be produced, and it needs to be carefully handled and tracked to make good
use of. Output management systems that are working with ERP systems contains thousands of

business documents and Portable document format (PDF) is the common output format for

these types of documents. These systems need to execute documents search operations
frequently. PDF documents Indexing is a critical part in this context. It will boost document

search engine efficiency by cutting search space. Content extraction from PDF documents

goes a step further and it will allow more structured search queries.

Extracting the document content from a PDF file is a very important. But this is a very

challenging task because PDF is a layout-based format that defines the fonts and locations of

the individual character as opposed to the semantic units of the text and their role within the
document. In this research I have developed a technique to extract content from a PDF file.

We can use it for allow more structured search queries on large document archives in output

management systems typically work with world leading ERP systems.

On this research mainly considered on four aspects which are correctly identifying words,

word order on a paragraph, clear separation of paragraph boundaries and semantic roles of

each word. After extracting content from the PDF file, extracted texts content written to an
xml document. XML file contains tags to recognize the pages and rotation angle and number

of images on each page. Sample set of PDF invoices extracted and calculated the extracted

word percentage to evaluate the accuracy of this technique. This tool hits 94.27% accuracy
rate according to the results.

iii

ACKNOWLEDGEMENT

First and foremost, I am deeply grateful for the continuous support, insight, and

patience of my supervisor, Dr. Indika Perera: without his invaluable support, this thesis

would not have been completsed.

I thank Mr. Ishara Yatawara - software architect at Creative Software, who provided

insight and expertise that greatly assisted the research.

Finally, I present my appreciation to my family and my friends who were behind me,

encouraging and directing me towards the success of my project.

iv

TABLE OF CONTENTS

DECLARATION .. i

Abstract ... ii

ACKNOWLEDGEMENT .. iii

TABLE OF CONTENTS ...iv

LIST OF FIGURES ...vi

LIST OF TABLES .. viii

1. INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Problem .. 3

1.3 Motivation .. 4

1.4 Objective .. 5

2. LITERATURE REVIEW .. 6

2.1 Automatic indexing of PDF documents with ontologies 6

2.2 Automatic Indexing of Scanned Documents - a Layout-based Approach 8

2.3 Content Extraction of PDF Documents ... 10

2.4 Diagram Extraction of PDF documents ... 14

2.5 Benchmark and Evaluation for Text Extraction from PDF 15

3. METHODOLOGY .. 19

3.1 PDF Components.. 19

3.1.1 Objects .. 22

3.1.2 File Structure ... 29

3.1.3 Document Structure ... 32

3.1.4 Content Stream .. 34

3.2 Text in a PDF file ... 34

v

3.3 Graphical effect on Text ... 36

3.4 Text state parameters and operators .. 38

3.5 Text Objects ... 42

3.6 Extraction of text content .. 43

4 IMPLEMENTATION .. 45

4.1 High level architecture .. 45

4.2 Getting the last cross reference table (xref) offset...................................... 46

4.3 Creating the cross-reference table ... 47

4.4 Finding the root and creating the page tree .. 47

4.5 Tokenizing ... 48

4.6 Token Handling .. 51

4.7 Object Builder .. 51

4.8 Reading the content objects .. 52

4.9 Character Mapping ... 52

4.10 Character Mapping ... 54

4.11 Creating Text Rendering Matrix (TRM) ... 54

4.12 Decomposing Text Rendering Matrix ... 55

4.13 Reading the virtual coordinate plane ... 55

4.14 Extracting text to an xml document ... 55

5 RESULTS AND EVALUATION .. 56

6 CONCLUSION ... 65

6.1 Summary .. 65

6.2 Future Works .. 68

6.3 Limitations ... 69

7 REFERENCES .. 70

APPENDIX .. 74

vi

LIST OF FIGURES

Figure 1: A sample business document ... 2

Figure 2: Typical page from a technical manual after AIDAS analysed it 7

Figure 3: Same template and nearly constant positions of index data 9

Figure 4: Extraction document through the information extraction system. 10

Figure 5: overview of the processing pipeline ... 11

Figure 6: System processing steps ... 12

Figure 7: The flowchart for text segmentation ... 13

Figure 8: An 8x8 SPAS structure for spatial indexing ... 15

Figure 9: Output file with 3 paragraphs and ground truth file with 1 paragraph 18

Figure 10: three assignments to evaluation criteria in order to assess O against G ... 18

Figure 11: PDF Components ... 19

Figure 12: Initial structure of a PDF document .. 29

Figure 13: Structure of a PDF document. .. 32

Figure 14: Glyphs painted in 50% gray ... 37

Figure 15: glyph outline treated as stroked path .. 38

Figure 16: Character spacing in horizontal writing .. 40

Figure 17: Word spacing in horizontal writing .. 40

Figure 18: Horizontal scaling .. 40

Figure 19: Leading .. 41

Figure 20: Text Rising .. 42

Figure 21: High level architecture ... 45

Figure 22: Flow Diagram .. 45

Figure 23: Getting the last cross reference table offset .. 46

Figure 24: Page Hierarchy .. 47

Figure 25: Tokenizers ... 48

Figure 26: Tokenizes the xref objects .. 49

Figure 27: Tokenizes the objects ... 49

Figure 28: Tokenizes the decoded texts ... 50

Figure 29: Tokenizes the Character mappings ... 50

https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614564
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614565
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614566
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614567
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614568
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614569
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614570
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614571
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614572
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614573
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614574
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614575
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614576
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614577
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614578
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614579
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614580
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614581
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614582
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614583
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614584
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614585
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614586
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614587
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614588
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614589
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614590
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614591
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614592

vii

Figure 30: Decoded stream ... 52

Figure 31: Decoded to Unicode stream ... 53

Figure 32: Coordinate plane .. 54

Figure 33: sample input 1.. 58

Figure 34: Extracted word percentage ... 64

https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614593
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614594
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614595
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614596
https://d.docs.live.net/8c409a5f6708d475/My%20Documents/MSc%20thesis/Final%20Thesis%20-%20168208N-CL-ChaturangaB.docx#_Toc39614597

viii

LIST OF TABLES

Table 1: White-Space characters ... 20

Table 2: Delimiter Characters ... 21

Table 3: Entries on stream dictionaries .. 27

Table 4: Entries in the file trailer dictionary. ... 31

Table 5: Text state parameters... 38

Table 6: Text state operators ... 39

Table 7: Text rendering modes .. 41

Table 8: Latin-text encoding ... 44

Table 9: Extracted word percentage .. 60

Table 10: Words precentage vs Number of files .. 63

1

1. INTRODUCTION

1.1 Overview

Portable Document Format (PDF) is a file format that based on PostScript language.

The significance of the PDF is it present documents that are independent from intended

document reader, hardware and type of operating system. “Each PDF file encapsulates

a complete description of a fixed-layout flat document, including the text, fonts, vector

graphics, raster images and other information needed to display it” [1].

“A PDF file is a "read only" document that cannot be altered without leaving an

electronic footprint. Furthermore, they can be signed electronically. The PDF is now

an open standard, maintained by the International Organization for Standardization

(ISO) [2].

In early times, business communication was limited to paperwork. But now PDF

documents heavily support business communication. Internal records is one of the

major category on business communication. Internal record is a record maintained by

a firm which consisting various documents. Almost all organization and business

firms are maintaining their record in PDF format. It provides speed and effeminacy in

providing information to the decision makers [3].

Most of the business applications including ERP systems generates its outputs as PDF

documents. ERP systems may contain millions of PDF documents on its databases.

These are can be invoices, receipts and other relevant documents.

2

PDF file format facilitate business applications to easily design and produce

documents, data or reports from their back-end business systems.

One of the main challenges is for PDF document management system is for querying

document based on key words. Document management systems may contain some

information about PDF documents but not data about its contents.

Figure 1: A sample business document

3

Users typically need to retrieve document archives by searching its contents. As an

example, user can search by client’s name, address, order details, etc. To support such

an operation document management system, have to index PDF document’s content.

Manual document content indexing is quite expensive. So, it is better to have a tool

that can extract PDF document’s contents [4].

1.2 Problem

World large ERP systems like Infor, produce millions of PDF documents as its outputs.

These are can be invoices, receipt, quotations or other business documents. Most of

the time these documents are saved on a relational database in binary format with

limited relation data like created date and time.

Since the large number of outputs generated by ERP system, managing output is an

extra effort. So, These ERP systems using third party output management systems to

manage those documents. Output management systems are import outputs that are

generated by ERP system. Users can manage millions of output records through this

system.

Most of the time users of the ERP system (or Output Management System) need to

retrieve archived business documents by searching its content. Output Management

Systems need to efficiently execute those queries and retrieve appropriate documents.

But one of the major problems facing by output management system is to querying

documents by its content. Because these systems have no idea about the contents of

documents. When documents generating, ERP system may produce some indexes, but

it is not enough to support advanced features in output management system.

Manually creating indexing for PDF business documents are time consuming task.

When it comes to ERP system generated outputs which are included thousands of PDF

documents, manual indexing is almost impossible. SO, we must find a solution for

create appropriate index entries for document archives automatically.

4

Typically, PDF document consists with encoded binary stream. When extracting data

within the PDF document we need to decode that data by considering font type, style,

orientation, etc…

There are few commercial tools available for automated indexing for PDF documents.

But some of them are not available on this region and others are quite expensive. It’s

better to have an in-house product to automatically extract PDF content and indexing

appropriately.

1.3 Motivation

The current move towards a paperless office through the digitalization of existing

paper records and the digital exchange of new records enables new ways of managing

and storing the wealth of information in businesses. The indexing of digital and

digitalised records plays a significant role in this area. Tagging a document using a

predefined vocabulary allows the grouping of document sets with similar

correspondence in smaller subsets. These subsets can be used to boost the efficiency

of document search engines by decreasing the search space.

Extracting information is more advanced feature. To extract a particular term from a

document, need more structured queries. If we are able to extract information from

documents automatic document processing becomes possible, like sending documents

to responsible persons.

5

1.4 Objective

• Extracting appropriate text content from the given PDF document.

The proposed tool can scan a given PDF document and extract its text content. This

content is typically in form of encoded binary stream. This tool can identify text

content in any format regardless of its font, colour, style or orientation.

Extracting text content form the PDF document is the main objective of this tool. I’m

planning to use Adobe specifications for PDF documents as primary guideline for this

project.

• Support for extensive querying on PDF content.

User can search a document by using key words. System can execute a query against

extracted data that are stored on a database.

6

2. LITERATURE REVIEW

2.1 Automatic indexing of PDF documents with ontologies

A paper published by Anjo Anjewierden and Suzanne Kabel in 2001 explains how

AIDAS tool splits PDF document into chunks automatically and how that chunks

indexes automatically and save them on a database for reuse [5]. They have used

automated document analysis combined with ontology indexing technique to divide

large bodies of data into reusable chunks. Then these documents support for efficient

and effective search results.

Authors distinguished four stages in document analysis and indexing process.

i. Interpreting PDF

Source is taken to be available in PDF format.

ii. Discovering the logical document structure

The segments to save correspond to the logical structure of the document. At

this stage, in order to discover the logical structure, the layout structure is

incrementally analysed.

iii. Indexing and fragmenting the logical structure

Indexing picture and text fragments using ontologies that are created by

document analysis.

iv. Storing the document in a multi-media database

Fragments saved with their indexes saved in a multimedia database.

Documents that are to be index need to discover their “document style” and for that

AIDAS can use its’ AI methods. As a first step PDF instructions transform to graphics,

image objects and text. Set of objects that created from this transform together to form

layout structure and that structure used by AIDAS. [6].

7

“Transforming a set of layout objects to a one hierarchical structure will referring as a

logical structure discovery. Physical structure of the document is represented by using

the set of layout objects and document organization illustrate by the logical structure.

“

Classify all layout objects is the first step AIDAS performs. This will take into account

every object and adds abstractions based on rules which depend on the document's

global characteristics.

The second step is to determine whether there is text in a layout object that can indicate

elements of the logical structure. This can be determined by an ontology which

generally maps concepts of a document onto the tokens in the text.

Take order into account is the final step. This is done by creating a grammar for all

potential elements of the logical structure. Before a conclusion is drawn, the grammars

limit the importance of the layout abstractions. To conclude, AIDAS uses

classification and grammars to identify specific characteristics of layout objects [5].

Figure 2: Typical ipage ifrom ia itechnical imanual iafter iAIDAS ianalysed iit

8

Indexing a document using various points of view is the main concept of this paper.

An ontology was established for each clearly defined perspective on the document’s

content:

• general iand isyntactical iviewpoint: ifragment iontology

• domain iviewpoint: idomain iontology

• semantic iviewpoint: idescription iontology

• instructional iviewpoint: iinstructional iontology

Indexing produces better search results is the expected advantage ” [7]. Except the

domain ontology, above mentioned all ontologies are generic.

Document analysis and the development of ontologies are two existing techniques.

This will used to index source data by various perspectives. Compared to standard

keyword search, they expected above two techniques will greatly increase the

efficiency of the search results.

2.2 Automatic Indexing of Scanned Documents - a Layout-based Approach

Daniel Esser, Daniel Schuster and Klemens Muthmann published a paper on 2012 by

describing a layout-based approach for automatic indexing of scanned documents [8].

They proposed a novel approach to capture index terms from the document by

considering positioning data.

Authors proposed a new graphical method by using index data locations to get quality

extraction from digitalized documents. Documents that are generated by template will

identify and indexing. Clusters are created based on them and new documents are

assigning to that clusters. Index data positions of cluster documents are used to capture

the data from new documents [8].

9

In this paper authors considered about…

• A itemplate iclustering iand idetection imethod ifor ilarge isets iof ibusiness

documents iable ito ibe itrained ifast iand icontinuously iby iordinary iusers.

• A irobust iand ifast idata iextraction ibased ion itemplate idetection ithat idelivers

even igood iresults iif idata isources iare ipotentially iincorrect idue ito iOCR

errors.

• Evaluation iresults ishowing ithe ieffects iof ithe iproposed imethod ion ia ilarge

corpus iof ibusiness idocuments.

Documents used on business domain typically have a pre-defined template. It is act as

a blueprint and describe characteristics of the layout. This template is filling with

relevant details [9].

 Followings are three documents generated on similar template. The frequency of

specific index data is almost constant, allowing for a layout-based extraction using its

position.

Figure 3: Same itemplate iand inearly iconstant ipositions iof iindex idata

10

To process a given document it will identify current documents that indexed and with

same template on the archive. Then using selected document, it will generate positional

extraction rules. Then it will calculate and apply to the extraction document [8].

2.3 Content Extraction of PDF Documents

To identify logical components of a PDF document, Hui Chao and Jian Fan published

a research paper in 2004 by developing techniques. Using these techniques, they tried

to extract contents, outlines and style attributes from the logical components and

expressed that extracted data in an XML format [1]. Such approaches may encourage

the modification and reuse of a PDF document page's layout and its content.

Researchers introduced techniques to automatically segment a PDF document into

separate logical structures. These structures are identified as text blocks, images

blocks, vector graphics blocks, and compound blocks and logical component of the

document are represented by them. Then they specified each component’s geometrical

outline, extracted the content and style attributes of each component.

Figure 4: Flow iof ian iextraction idocument ithrough ithe iinformation iextraction isystem

11

Content stream of a PDF document include all the page objects. Those are not present

the logical structure of a page. To identify the logical components, the layouts and

characteristics of the page objects were analysed and interpreted. Then they group

them into different logical components.

Above figure shows their processing pipeline. They have divided PDF page into layers

to prevent the overlay of logical component and the intervening within logical

components. There’re three different layers named text layer, image layer and vector

graphics layer. Every layer represented as separated document. “To specify the logical

structural component blocks in each layer, they transform the PDF files to bitmap

images, and do image segmentation. Or else they have directly analysed the three PDF

documents” [1]. Then they have extracted the content and style attributes of each

component.

Figure 5: overview of the processing pipeline

12

• Pre-processing

Page objects can be simple and can be compound types. All compound objects will

extract on this stage.

• Splitting the document

Document will split into text, image and vector graphic layers.

• Text segmentation and extraction

A PDF document provide information regarding text on the page such as characters

used in the text, their attributes and positions. Text segmentation was performed

directly on PDF document.

• Image Detection & Extraction Components

They have converted image only PDF to a bitmap image to detect images on the page.

• Vector Graphics Segmentation and Extraction

Researchers have applied a document image segmentation method to locate the regions

that defined various components. To find the path objects within each component on

the PDF page, the outline of each region was used and the SVG representation for the

logical component was generated with those path objects [1].

Figure 6: System processing steps

13

Figure 7: The flowchart for text segmentation

14

2.4 Diagram Extraction of PDF documents

“Robert P. Futrelle, Mingyan Shao, Chris Cieslik and Andrea Elaina Grimes presented

a paper on 2003 based on diagrams classification and extraction of PDF documents.

For a document management system, diagram analysis is an important feature.

Researchers investigate about vector images that are in research papers [10].

Analysis of the internal structure of the diagrams will be very useful in extracting its’

data and it will use to indexing for data retrieving [11]. Documents include images

with vector or raster format. Researchers focused only on vector-based diagram

classification.

For selected PDF documents, PDF commands are parsing to generate a vector of

graphics objects. Then those objects will transform to their own graphic object

definition. Below is a sample representation.

Which gives four GOs,

• m- icorresponding ito ia imove iof ithe idrawing iposition

• l- idrawing ia iline ifrom ithere ito ithe iposition igiven

• c- idrawing itwo icurved ilines iin isuccession

To detect pages with graphics, they have count the GOs. If the number of GOs are

more than 20, it is likely to be a diagram and was analysed further.

“A spatial index is used to analyse the spatial layout structure of the graphics in a page.

The one used is Spatially Associative Substrate (SPAS) that developed for diagram

parsing”” [12].

15

2.5 Benchmark and Evaluation for Text Extraction from PDF

“Extracting text from PDF file is a difficult task because PDF is a layout-based format

which specifies the fonts and positions of the individual character rather than the

semantic units of the text and their role in the document” [13]. There’re many content

extractions tools but their quality and functionality hard to determine.

“In 2017, Hannah Bast and Claudius Korzen presented a paper by showing how to

develop a good benchmark from TeX and PDF data. They established a set of

standards for a clean and independent evaluation of a given extraction tool’s semantic

abilities” [14].

They have investigated following semantic information in their paper to construct a

high-quality benchmark.

• Word identification

This is a very important for an application like search. Because if word is not identified

correctly that word is not found.

Figure 8: An i8x8 iSPAS istructure ifor ispatial iindexing

16

• Word order

This specify the correct order of words to read.

• Paragraph boundaries

This also important for reflow applications or for plain text reading. This specifies the

start and end of a paragraph.

• Semantic roles

This defines the deferent roles of the text appearing on the document. As an example,

text from the document body and the text from other document elements.

To construct the benchmark researchers used more than 12000 scientific articles. The

benchmark includes the PDF file and a ground truth file for each article. Ground truth

file contain article’s title, section titles and body text as a plain text.

Benchmark PDF files were processed by each tool in batches. After converting the

output to plain text, they have selected semantic parts that also appearing on the ground

truth file.

The main purpose of this evaluation is to use collection of easily interpretable and

independent metrics to compare output files form each tool with the ground truth files

[13].

17

• Establishing the evaluation criteria

They have specified four aspects for evaluating the quality of an output file.

i. paragraph boundaries

ii. distinction iof ibody itext iand inon-body itext

iii. reading order

iv. word boundaries

Three categories of metrics were defined that measure the differences between the

output file and the relevant ground truth file.

i. iNewline idifferences

ii. Paragraph differences

iii. Word differences

18

• iMeasuring the ievaluation icriteria

For a particular output file and a ground truth file may have many was to set values to

these criteria [13].

To solve that problem researchers introduced an equation to compute ‘Z’ which is

needed to minimize as much as possible.

‘c’ is defined to raise the weight for paragraph variation more than word or new line

variations.

Figure 9: An output file with 3 paragraphs and the ground truth file with 1 paragraph

Figure 10: three idifferent iassignments to the ievaluation icriteria in order to iassess O iagainst G

19

3. METHODOLOGY

The main goal of Portable Document Format is to support view and exchange e-

documents independent from the platform that they were created. PDF defines more

structured format to improve performance for interactive viewing. To achieve high

performance in interactive viewing PDF used optimized structured binary file format.

3.1 PDF Components

PDF consists with four components which are Object, File Structure, Document

Structure and Content Stream. Collection of data objects composing a data structure

as PDF document [15]. The way objects locating on a file determines by PDF file

structure. It describes how objects are updated and how objects are accessed.

Fundamental object types such as pages, fonts, annotations, and so forth are used to

represent components of a PDF document. The PDF document structure specifies how

they are doing that. Appearance of a page describe by sequence of instructions that are

includes on the Content stream [9].

Figure 11: PDF Components

20

Pdf file is a sequence of bytes that are grouped into tokens to form objects. That objects

are the fundamental data values used to construct a PDF document. If a PDF file is a

non-encrypted file, it can fully represent using byte values that are mapped with

characters defined with ‘ANSI X3.4 -1986’ and with white space characters. But PDF

is not only including ASCII characters, it can include arbitrary bytes also [16].

• PDF Characters

The PDF characters classified into three parts. Those are regular, delimiter and white-

space characters.

White space characters used to separate words. PDF treat those type of adjacent

characters as single character except in comment, string, and stream. White space

characters are shown on Table 1.

Table 1: White-Space characters

The delimiter characters used to delimit syntactic entities (names, arrays, comments,

etc.). These are allowed within the string scope if it is following the rule for composing

strings [17].

21

Table 2: Delimiter Characters

All characters are defined as regular characters except delimiter characters and white

space characters. A token comprises by a sequence of consecutive regular characters.

PDF is case sensitive and upper case and lower case shall be considered distinct.

Any ‘%’ sign that are placed outside of a string is represent a comment. All characters

that placed after the ‘%’ sign define as the comment. The PDF readers are considering

comments as one white space characters.

Example: Following PDF fragment equivalent to token cse and 456.

cse% comment (/%) something

456

22

PDF readers may not consider abouts comments, because comments have no

semantics.

3.1.1 Objects

PDF include following types of objects.

• Strings

• Numeric

• Names

• Boolean Values

• iArrays

• iDictionaries

• iStreams

• Null iObjects

Objects may be labelled and those are called as indirect objects. So that they can be

referred to by other objects.

• Strings Objects

A String objects consist with series of zeros or more bytes. More compact format used

to store string objects and string length may leads to implementation limits.

o Literal Strings

Literal string is a sequence of characters that are wrapped in quotation marks.

23

Example: (I am a string)

 (This string includes

A new line.)

(String can include balanced parenthesis () and

It may include special characters (!*&^}% and etc.).)

(below string is empty)

()

(string length is zero (0))

Arbitrary 8-bits values represent encrypted strings on encrypted documents values.

When encrypted string presented by literal string form, relevant application must

follow some rules. That is ‘\’ character must use as an escape to represent unbalanced

parenthesis or ‘\’ character itself. ‘\’ character may use to represent other arbitrary 8-

bits values.

o Hexadecimal strings

Hexadecimal strings are useful for use in a PDF file with arbitrary binary data. This is

provided as a series of hexadecimal digits within ‘< >’.

Example: <756e6976657273697479206f66206d6f726174757761>

One byte of the string is represented by pair of hexadecimal digits. White space

characters are ignored. If the hexadecimal string end digit is missing it is presumed to

be 0.

24

• Numeric Object

This type of objects representing as either integer or real numbers. An integer

represents by one or many decimal digits with a sign preceding it.

Example: 123 +54 -65 0

Real numbers should express as one or many decimal digits, with an optional sign and

a decimal point.

Example: 34.5 +52.5 -6.35 0.0

• Name Objects

Name object created with the same set of characters denoted the same object and it has

no internal structure. This is a unique symbol identified by a sequence of any other

characters other than null.

When writing name on a PDF file ‘/’ sign is used to start a name but it is not

representing the name. white spaces used as a segment of a name.

Example: /Name1 Name1

 /1.2 1.2

 /lime#20Green lime Green

25

Unlike keywords such as true, false and object, in PDF file literal names introduced

by the '/'. Typically name objects never treated as text but occasionally there’re

situations that is name objects are treat as text like when represent a font name or a

colorant name in a separation.

• Boolean Objects

The Boolean object represent true and false logical values. In a PDF file these are

represent by using keywords ‘true’ and ‘false’.

• Array Objects

This is a sequentially ordered, set of objects. These arrays may be heterogeneous

unlike many other computer languages. That mean these arrays can contain string,

numbers, dictionary or any other objects. Array may have a zero element.

Example: [123 /name (test1)]

These types of objects represent within a PDF document as a sequence of objects

enclosed within ‘[]’. PDF directly support only for one-dimensional array. Higher

dimensional arrays can construct by using nested arrays.

• Dictionary Objects

This is an associative table with couple of objects in it. First is key and second is value.

Key is the name, and any form of object can be value. There is no common key for

different entries in the same dictionary. Dictionaries represent within a PDF file by

sequence of key value pairs enclosed in ‘<< >>’

26

Example: << /Type /Example

 /Version 1.2

 /Subdictionary << >>

>>

these objects are the foundation of a PDF file. Typically, these are used to gather and

keep attributes of a specific entity.

• Stream Objects

This is a series of bytes, which can have an unlimited length stream. This object is like

string object, but string object may have implementation limit. Since stream may

contain data with unlimited length, large data objects representing as stream.

Stream objects consist with zero/more bytes within tags ‘stream’ and ‘endstream’

which are followed a dictionary.

Example: idictionary

 istream

 … izero / imore ibytes as the content …

 iendstream

27

Common properties for stream dictionaries are listed below.

Table 3: Entries on stream dictionaries

• Null Objects

Null objects contain a value and type that are not match with any other objects. These

objects referred by keyword ‘Null’ and there can be have only one object with type

null. An indirect object that is reference to non-existent object shall be treated like null

object. Defining the null object as a dictionary entry value will be the same as omitting

the entry completely.

28

• Indirect objects

All objects in a PDF file can be classified as indirect objects. That mean each object

has unique identifier so, other object can refer it. This compose with a object Number

and a generation number.

Indirect object can refer by using object number and generation number. Indirect

object appearing on a PDF file by proceeding object and generation number which is

divided by white space. And then there is an object value surrounding by ‘obj’ and

‘endobj’ tags.

Example: 12 0 obj

 (Brillig)

 endobj

any object can refer from elsewhere in the file by using object number, generation

number and ‘R’ (keyword) that are divided each part by using white space.

Example: 12 0 R

29

3.1.2 File Structure

File structure described how objects are arranged in a PDF file. Basically, a PDF file

created using four elements [18].

• A header includes the possible version

• A body with objects

• A cross reference table includes the information about indirect objects

• A trailer has the pointer to the cross-reference table

• File Header

Header is the first line of a PDF file with five characters %PDF- followed by a version

number (Example: %PDF-1.7).

Figure 12: Structure of a PDF document

30

if a PDF file contains binary data it will indicating just after the header line and using

that PDF reading application can determine whether file needed to treat like binary file

or text file.

• File Body

PDF file body containing sequence of indirect object which are represent the content

of PDF file. Objects which are represent component of the document like sampled

images, fonts and pages. Body may also include streams of objects which each contain

a sequence of indirect objects.

• Cross-reference Table

This include entries for indirect objects on a PDF file that are allow random access.

Since this table having information about those indirect objects it does not need to read

the entire file to locate a specific object. Every indirect object in this table represents

a single-line entry with byte offset of the object. This table is the only part with fixed

format on the PDF file which allows for random access to table entries [19].

A cross-reference table can include one or many sections. Every section will start by

line that contain ‘xref’ term. After that line there can be more ‘cross reference’ sub

sections.

Example: xref

 0 6

 0000000003 65535f

 0000000017 00000n

0000000081 00000n

0000000000 00007f

0000000331 00000n

0000000409 00000n

31

• File Trailer

PDF file trailer enables PDF reading app to locate ‘cross-reference table’ and special

objects quickly. Trailer section starting with the term ‘trailer’ and contain key-value

pairs whithin ‘<<’ and ‘>>’.

Example: trailer

 << Key1 Value1

 Key2 Value2

 …

 Keyn Valuen

 >>

Table 4: Entries in the file trailer dictionary.

32

3.1.3 Document Structure

A PDF document consists of object hierarchy found in a PDF file's body section. On

the root there is Catalog dictionary of the document [20].

A page object indicates a page of a PDF file. Page object is a dictionary which includes

a reference to the content of the page and to other attributes such as its thumbnail image

and associated annotation. Individual page objects bound in a structure called the page

tree.

Figure 13: Structure of a PDF document.

33

o Document Catalog

The catalog dictionary placed on the root of the PDF document. It contains the

references for other objects which define document’s content, outline and other

attributes. Also, it includes other information such as how the document needs to

display on the screen.

Example: following shows sample document catalog

o Page Tree

Page tree defining the order of pages in the PDF document. Using tree structure

applications can easily open a thousand-page text. The tree is composed of two node

forms.

▪ iIntermediate nodes: ipage treeinodes

▪ iLeaf node: ipageiobjects

The basic structure will contain one-page tree node with direct references to all page

objects. But a writer application can create trees of a particular type, known as

balanced tree, to optimize the performance of the application.

34

3.1.4 Content Stream

Content streams are the main element that defines the page's and other graphical

element's appearance. Resource dictionary contains information that are related to

content stream [21].

Every document page is defined by content streams. It is also used to bundle

instruction set as self-contained graphical elements like certain fonts, forms, patters

and annotation appearance.

3.2 Text in a PDF file

PDF having special facilities to working with text. Specially, defining character using

glyphs. It is a graphical element that can do any graphical processing like

transformation of coordinates. PDF offers high facilities for convenient and efficient

describe, selection and rendering of glyphs [22].

• Fonts

Fonts represent glyphs for the character set.

Example: A, A and A are glyphs for ‘A’.

Fonts are representing as a program so conforming reader can use that as a program.

Typically, font program represents as a separate file. This file can obtain from an

external source or may be contained in PDF document's stream object. Font program

consists with glyph definitions that generate glyphs.

35

A content stream paint glyph using a font dictionary.

Example: in this example text ‘XYZ’ is using 12-point Helvetica and locate 10 in

from bottom and 4 in from left.

BT

/F13 12 Tf

288 720 Td

(XYZ) Tj

ET

Following is the steps that describe above example.

• Begin Text.

• Set font & size to be used.

• Specify a page start location.

• Render the glyphs at that place for character start.

• End Text.

First content stream needs to detect the font that need to use. The operator 'Tf' will

define the name of a font resource. It placed on current resource dictionary as an entry

on font sub dictionary.

The font dictionary will itself include a definition of the font program. It defines the

externally recognized name of the font and some other details required to applications

to draw different glyphs.

36

Glyphs are defined in one standard size by a font. The default font size is then scaled

to be usable. Second operand is scale factor of the 'Tf' operator, so setting the parameter

'text font size' in the graphic state.

It can be used to paint glyphs after selected and scaled font. 'Td' operator adjusts the

Text Matrix translation component. 'Td' determines the text location in the current user

coordinate system when executing for the first time after 'BT.' This shows the place on

the page where glyphs are to start painting.

Using font and other parameters in the graphic state, ‘Tj’ paints the respective glyphs

after taking string operand. Operator ‘Tj’ treat every string element as a character code.

Glyph descriptions need to execute to render a glyph. This is the flow for simple fonts

but for composite fonts interpreting the string as a sequence of character code is more

complicated.

3.3 Graphical effect on Text

Typical use of 'Tj' and other operators allows painting of black filled glyphs. Font

operators and general graphic operators combine and provide other effects to a text.

Current colour in the graphic state use to pain glyphs. Based on the text rendering

mode it can be either stroking color and/or non-stroking color. Default colour is black

and to get other colours need to execute colour setting operator or operators before

generating the glyphs.

Example: following example use operator g and text rendering mode 0 to fill the

glyph in % grey.

37

Many graphic styles can be accomplished by using glyph outline as a path. Glyph

outline can fill, stroke, etc. and this will be defined in the graphics state by a text-

rendering mode parameter.

Example: On the following example text rendering mode limit to 1. Operator 'w'

limits the line width to 2 units. By using these parameters ‘Tr’ operator

stokes outlines of the glyph with 2 points thick line.

Figure 14: Glyphs painted in 50% gray

38

3.4 Text state parameters

Text state can contain 9 parameters.

Table 5: Text state parameters

Figure 15: glyph outline treated as stroked path

39

Values that set by text state operators are persisted in a single content stream across

text objects. These parameters initialize at start of the page to their default values like

other parameters in the graphics state.

Table 6: Text state operators

In this table state that some parameters defined in unscaled text space unit.

40

o Character Spacing

o Word Spacing

o Horizontal Scaling

Figure 16: Character spacing in horizontal writing

Figure 17: Word spacing in horizontal writing

Figure 18: Horizontal scaling

41

o Leading

o Text rendering mode

Table 7: Text rendering modes

Figure 19: Leading

42

o Text Rise

3.5 Text Objects

This will contain operators that are capable of displaying a text string, moving the

location, setting text state & some additional params. Other than that, inside the text

object it defined three parameters and it only within the object & not retained from one

to another.

• Tm:iTextimatrix

• Tlm:iTextilineimatrix

• Trm:iTextirenderingimatrix

BT operator defines start of the text object and ET operator defines end of it.

Figure 20: Text Rising

43

Example: iBT

 …iZero to many textioperators or other permittedioperators …

 iET

Following operators can include on a text object:

• Textistateioperators

• Textipositioningioperators

• Text showingioperators

Text space is the coordinate-system where text displayed that denoted by Tm. Text

state params (Tfs, Th and Trise) are decide the transformation from text space to user

space. The operators for text positioning shall appear only inside text objects. Text

showing operators will show text on the page.

In conceptual terms, a text rendering matrix, Trm, that reflect the text space to device

space transformation.

3.6 Extraction of text content

While extracting text from a PDF file, an app transform text to Unicode. To do that

application must detect font characters. This recognition will happen if the characters

in the font are defined by standard character names or the font uses CIDs in a well-

known collection.

44

A PDF reader can use following methods to map character code to Unicode value.

• If a ToUnicode CMap is contain on the font dictionary use CMap.

• If the font using predefined encodings;

a) Map character code to character name using following table & font’s

difference array.

Table 8: Latin-text encoding

b) To obtain the corresponding Unicode value check character name on

adobe glyph list.

45

4 IMPLEMENTATION

4.1 High level architecture

Figure 21: High level architecture

Figure 22: Flow Diagram

46

4.2 Getting the last cross reference table (xref) offset

The last xref offset is the starting offset of the last modified cross reference table. First,

I extracted the last xref offset in order to build the cross-reference table. This was

embedded at the end of the pdf in between “”startxref”” and “%%EOF”. There can be

spaces and carriage return in before, after or in between the above. I handled all those

cases and extracted the offset. After extracting the offset, we could read the xref

segment through a byte array segment reader.

Then implemented a tokenizer to tokenize the xref objects and through that the xref

was tokenized and the object ids and the relevant offsets were extracted for

implementing the cross reference table which contains the starting byte offset of each

and every object embedded in the pdf .

Figure 23: Getting the last cross reference table offset

47

4.3 Creating the cross-reference table

A Cross Reference Table contains all the object ids and their relevant offsets. To build

this I used the string tokens sent by the xref tokenizer and built the cross-reference

table using a dictionary with object id as the key and the offset as the value [24].

Whenever the pdf is updated or modified a new xref with only the changed object ids

and offsets is built. We can find the offset of the previous xref that was built before

the modification at the trailer the trailer entry as shown in the Figure 23. In such

instances all the xref tables are merged and the updated version of the cross-reference

table is built. Then that can be used to refer the offset whenever an object needed to be

read. This made it possible to read only the relevant section of the byte array rather

than reading the whole array.

4.4 Finding the root and creating the page tree

Figure 24: Page Hierarchy

48

Root object is the root of the pages tree which gives reference to a Pages object. To

build the pages tree I extracted the root object from the trailer. A page object may

contain references to other pages objects or page objects as shown in the above

diagram. A page object contains references to content objects where the text contents

are stored. By checking all those object references I created a tree data structure for

processing each page. In order to make sure the order of pages and contents I used

Depth First Traversal method to process the tree and built a list of content object ids

in the correct order for further processing.

4.5 Tokenizing

The only resource we had to deal with was the pdf byte array. But this is not

programmable. To make it programmable we had to tokenize the text stream of the

byte array into several tokens to match each object to a fixed pattern. I caught the starts

and ends using the delimiters and characters and using many regex tokenized them

into many tokens such as Begin text token, end text token, dictionary start token(<) ,

dictionary end token(>), numeric token, object reference token, offset token, stream

token, string token, trailer token, start object etc. For building these tokens I used many

tokenizers such and xref tokenizer to tokenize the xref objects, Object tokenizer to

tokenize object tokens, Text tokenizer to tokenize texts, Cmap tokenizer to tokenize

cmap streams [25].

Figure 25: Tokenizers

49

Figure 26: Tokenizes the xref objects

Figure 27: Tokenizes the objects

50

Figure 29: Tokenizes the Character mappings

Figure 28: Tokenizes the decoded texts

51

4.6 Token Handling

The binary code of a pdf is always object oriented. These objects needed to be

constructed. Problem was that binary code was not programmable and there wasn’t

any fixed pattern in the code. Hence, the need for tokenizer. Tokenizer was responsible

for providing predefined token by token, as for the need of token handler. The token

handler had to process the receiving tokens and use the object builder factory to

construct corresponding objects. For example, there may be arrays, dictionaries,

keywords, strings, numeric values etc. in a pdf object. The tokenizer can identify each

as a predefined token. The Token Handler will be asking for tokens for a specific object

starting from the “Start Object Token”. A start object token can be defined as a token

with the object id, generation number and “obj” keyword (1 0 obj). There are several

predefined tokens like the one mentioned. If the object contains a dictionary,

TokenHandler will identify the dictionary start by “DictionaryStartToken” which

appears like “<<”. An array start can be shown like “[”. A dictionary or an array may

contain a sub array or dictionary as well. Therefore, the implementation of

TokenHandler has a recursive approach.

4.7 Object Builder

As stated above, the pdf binary code is object oriented and these objects needed to be

constructed as per need of the pdf parser. “Factory method” is implemented for object

builder. There exists a builder factory for providing the specific object builder for

creating pdf objects. Token Handler was used by the object builders. Some objects of

a pdf can be listed as follows.

Catalog, Page, Pages, Stream, Font, XObject, etc. After the tokens are being handled,

the object builder class will analyze the token list and build the particular object by

using a builder of the Object Builder Factory.

52

4.8 Reading the content objects

To process content objects each content object is read using object reader by traversing

the page tree in depth first traversal methodology. Then the streams which are encoded

are tokenized and stored in stream tokens objects. Then they are decoded using the

relevant decoder. Some of the mostly used decoders are FlateDecode,

RunLengthDecode, ASCII85 Decode. In some cases, the same stream is encoded by

more than one encoder. In such instances they are decoded in the order of decoders

under the filter’s entry in the content object. After decoding the streams, the extracted

content is as below [26].

4.9 Character Mapping

The Figure 30 shows that a TJ entry may not provide only actual text. It could be

either hexadecimal string or octal string. These values need to be converted to actual

readable standard text.

Figure 30: Decoded stream

53

There are many ways in which these hexadecimal strings or octal strings can be

converted into Unicode text. It differs considering the font type and font dictionary

operations. For instance, if the font type is Type 0, the font program may contain a

ToUnicode entry. This entry will be directing towards a cmap; which is also encoded,

to map the characters. Or else, if the font is of type 1 or true type, the “Encoding” entry

will be referencing a predefined character map for the conversion.

Figure 31 shows a decoded Cmap where character mapping dictionaries are available.

The dictionaries may be in many forms. The diagram shows a single format, where

characters are mapped by “bfchar” dictionary. Here each hexadecimal string is coupled

with the adjacent unicode character in hexadecimal. In addition to bfchar dictionaries,

dictionary formats like bfrange, cid range could be available. A bfrange dictionary

differs from a bfchar dictionary only when the value of the dictionary is in the form of

an array. A mapper class is defined for this character mapping.

Figure 31: Decoded to Unicode stream

54

4.10 Character Mapping

After extracting glyphs and relevant coordinates we had to develop a virtual coordinate

plane to place them. For this I designed a custom data structure with linked lists where

a page is a node and I used glyph objects to store the glyph details and stored them in

a sorted dictionary where the y coordinate is the key and another sorted dictionary

with x coordinate as the key and the glyph object as the value as the value of the main

sorted dictionary [27].

4.11 Creating Text Rendering Matrix (TRM)

To find the coordinates of each glyph TRM for each glyph had to be calculated. For

this I used formulas stated in the adobe specification.

Figure 32: Coordinate plane

55

4.12 Decomposing Text Rendering Matrix

Some texts have a rotation and to find the rotation we had to decompose the TRM Text

Rendering Matrix) matrix. For that I decomposed the TRM matrix as Transition

matrix, Scale matrix and Rotation matrix. For the rotation I rounded off all the angles

in to four nearest angles as 0 degrees, 90 degrees, 180 degrees and 270 degrees. For

these four planes I built four separate sorted dictionaries and placed them in the virtual

coordinate plane.

4.13 Reading the virtual coordinate plane

Before extracting the actual text into a document, we had to read them to get the texts

in the correct order. For that I read the texts from top to bottom left to right and

separated them into lines as in the original pdf. I ensured every space as it is and

sometimes, we had to do a calculation to detect spaces between TJ s that cannot be

recognized by the reader itself and recognized them through a calculation and added

them to the extracted text.

4.14 Extracting text to an xml document

Finally, I wrote the extracted texts content to an xml document using xml writer. Here

I added tags to recognize the pages and rotation angle and no of images on each page

[28] [29].

56

5 RESULTS AND EVALUATION

When we evaluate a PDF extraction tool, we must focus about some properties of PDF

document. Detecting text from PDF file is difficult task. Because unlike other digital

documents, PDF is a layout-based format that defines the fonts and locations of the

individual characters instead of the text semantic units and their role in the file. As an

example, conforming PDF reader need to determine whether the given text is from

body or from footer of the PDF file.

In this evaluation I have primary focused about following semantic information for the

outputs that generated by proposed system.

• Word identification

This is a very crucial aspect for this application. Because this tool is extracting text

content for optimize search queries on ERP system’s document archives. If a word

does not detect accurately means it cannot find in searches.

• Word order

This means the right reading order of the words. In the future this tool planning to

integrate with document mapping tool. For that application word order is a very

important aspect.

• Paragraph boundaries

This means the ability to identify beginning and end of a paragraph. This feature is

also very important for the document mapping tool which is planning to develop in

near future.

57

• iSemanticiRoles

PDF file texts representing various semantic roles such as title, body text, formulas,

figures. For the search application this tool going to integrate, it might also be useful

to know whether a searched word occurs in the body text or in the caption of a figure

[30].

By considering above semantic information, to assess the output file on this tool I have

identified four aspects:

1. iParagraph boundaries

2. iDistinction of ibody text and inon-body text

3. iReading order

4. Word boundaries

After evaluating multiple output files against above four aspect, we can consider this

tool as a successful method to extract text content from a given PDF file.

58

Figure 33: sample input 1

59

<?xml version="1.0" encoding="utf-8"?>

<pages>

 <MetaData>

 No MetaData was found.

 </MetaData>

 <page pageNumber="1">

 <content contentId="11">

 <Section Rotation="0">

 Page1(1)

 Invoice

 Order no Invoice no

 Get the balance right

 1000031729 101904954

 Nudie Jeans is based on an idea. This idea is in turn

 Customer Order date

 composed of several concepts, beliefs, and a good portion of

 10000584 18-11-09

 old fashioned fighting spirit.

 10000584

 Gruene Wiese-Wittenbrink Pleus

 Gruene Wiese-Wittenbrink Pleus

 Sppiekerhof 29

 Sppiekerhof 29

 48143 MÜNSTER

 48143 MÜNSTER

 Reverse charge, intra-Community supply of goods.

 Invoice no Order no Customer Delivery no

 101904954 1000031729 10000584 1001025788

 Your order no Your reference Our reference Sales representative

 Simone Pleus 1744912 Mesut Anliacik

 Payment terms Delivery terms Delivery method Your VAT reg no

 30 Days net DAP 21

 Style no Name Qty PriceDiscountAmount

 131613 Daniel Logo Tee

 Taric Co 6109100010 Made in IN 00001 16,00 0,00 192,00

 XXS XS S M L XL XXL

 Turquoise 1 2 2 1

 Turmeric 1 2 2 1

 186,24

 -5,76

 VAT

 VAT codeDescription VAT (%) Tax basis Tax

 amount

 30 0,00 186,24

 TOTAL

 Item value 186,24

 TOTAL EUR 186,24

 Nudie Marketing Jeans AB Nudie Marketing Jeans AB IBAN: SWIFTCODE:

 Västra Hamngatan 6 Västra Hamngatan 6 SE89600000000000037561898 HANDSESS

 411 17GÖTEBORG 411 17GÖTEBORG Account no. VAT no

 Org no. Tel. +46 10 15 15 600 SE556628927701

 55662892 Email.info@nudiejeans.com BG

 </Section>

 <Section Rotation="90">

 </Section>

 <Image ImageNo="0">

 </Image>

 <Image ImageNo="1">

 </Image>

 </content>

 </page>

</pages>

60

I have extracted the contents of 100 sample pdf invoices to visualize the accuracy of

this tool. I have got word count from the base file and from the output file. Table 9

shows the word count comparison between the base file and output file.

Table 9: Extracted word percentage

File name

Base file word

count

Output file word

count

Extracted words

percentage

Sample File 001 140 133 95%

Sample File 002 142 129 91%

Sample File 003 279 265 95%

Sample File 004 468 429 92%

Sample File 005 372 372 100%

Sample File 006 178 174 98%

Sample File 007 145 131 90%

Sample File 008 172 157 91%

Sample File 009 165 153 93%

Sample File 010 374 369 99%

Sample File 011 686 678 99%

Sample File 012 206 199 97%

Sample File 013 133 128 96%

Sample File 014 102 97 95%

Sample File 015 159 157 99%

Sample File 016 335 322 96%

Sample File 017 267 240 90%

Sample File 018 212 191 90%

Sample File 019 336 336 100%

Sample File 020 156 145 93%

Sample File 021 418 376 90%

Sample File 022 134 129 96%

Sample File 023 260 252 97%

Sample File 024 249 244 98%

61

Sample File 025 404 368 91%

Sample File 026 384 342 89%

Sample File 027 413 396 96%

Sample File 028 154 136 88%

Sample File 029 357 332 93%

Sample File 030 214 201 94%

Sample File 031 175 165 94%

Sample File 032 111 103 93%

Sample File 033 376 372 99%

Sample File 034 351 351 100%

Sample File 035 382 363 95%

Sample File 036 389 350 90%

Sample File 037 249 244 98%

Sample File 038 342 318 93%

Sample File 039 162 159 98%

Sample File 040 184 164 89%

Sample File 041 340 313 92%

Sample File 042 208 187 90%

Sample File 043 396 368 93%

Sample File 044 192 182 95%

Sample File 045 220 220 100%

Sample File 046 324 295 91%

Sample File 047 169 162 96%

Sample File 048 268 261 97%

Sample File 049 395 356 90%

Sample File 050 185 179 97%

Sample File 051 382 336 88%

Sample File 052 398 366 92%

Sample File 053 298 289 97%

Sample File 054 134 134 100%

62

Sample File 055 206 192 93%

Sample File 056 397 361 91%

Sample File 057 139 128 92%

Sample File 058 269 247 92%

Sample File 059 286 269 94%

Sample File 060 254 249 98%

Sample File 061 215 194 90%

Sample File 062 331 328 99%

Sample File 063 402 366 91%

Sample File 064 348 317 91%

Sample File 065 127 112 88%

Sample File 066 115 104 90%

Sample File 067 401 357 89%

Sample File 068 365 336 92%

Sample File 069 193 176 91%

Sample File 070 284 273 96%

Sample File 071 367 330 90%

Sample File 072 345 335 97%

Sample File 073 194 164 85%

Sample File 074 331 301 91%

Sample File 075 406 361 89%

Sample File 076 415 369 89%

Sample File 077 140 132 94%

Sample File 078 373 358 96%

Sample File 079 418 397 95%

Sample File 080 207 203 98%

Sample File 081 311 292 94%

Sample File 082 210 197 94%

Sample File 083 273 265 97%

Sample File 084 270 251 93%

63

Sample File 085 341 324 95%

Sample File 086 246 244 99%

Sample File 087 279 257 92%

Sample File 088 168 161 96%

Sample File 089 401 389 97%

Sample File 090 261 258 99%

Sample File 091 251 238 95%

Sample File 092 182 175 96%

Sample File 093 199 181 91%

Sample File 094 130 129 99%

Sample File 095 234 232 99%

Sample File 096 223 207 93%

Sample File 097 419 373 89%

Sample File 098 338 328 97%

Sample File 099 276 271 98%

Sample File 100 120 109 91%

Table 10: Words precentage vs Number of files

Extracted words

percentage

Number of

Files

85 1

86 0

87 0

88 3

89 6

90 10

91 11

92 7

93 9

94 6

64

95 8

96 9

97 9

98 7

99 9

100 5

0

2

4

6

8

10

12

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

N
u

m
b
er

 o
f

F
il

es

Extracted words percentage

Figure 34: Extracted word percentage

65

6 CONCLUSION

6.1 Summary

A large number of communications between businesses currently using electronic

documents. Portable document format (PDF) is the mostly using format for electronic

documents. When dealing with PDF documents, indexing of documents is an

important feature in this domain. Using document tagging we can group document sets

in smaller subsets of similar correspondences. Using that we can boost document

search engine efficiency by decreasing the search space. But if we can extract

information from PDF files that will allows more structured search queries.

Detecting text from PDF file is difficult task. Because unlike other digital documents,

PDF is a layout-based format that defines the fonts and locations of the individual

characters instead of the text semantic units and their role in the file. In this research I

have introduced a text content extraction method from PDF file. We can use it for

allow more structured search queries on large document archives in output

management systems typically work with world leading ERP systems.

When developing the extraction tool, I have mainly considered on four aspects. First

one is ‘word identification’. This is a very important for an application like search.

Because if word is not identified correctly that word is not found. Secondly ‘word

order’ which is specify the right reading order of the words. Another one is ‘paragraph

boundaries’ that determine the beginning and end of a paragraph. Last one is ‘semantic

roles’ and it is used to separate the body text from the rest.

First, I have extracted the last xref offset in order to build the cross-reference table.

Then xref objects were tokenized and the object ids and the relevant offsets were

extracted. A Cross Reference Table contains all the object ids and their relevant

offsets. Whenever the pdf is updated or modified a new xref with only the changed

object ids and offsets is built.

66

To build the pages tree I extracted the root object from the trailer. A page object

contains references to content objects where the text contents are stored. By checking

all those object references I created a tree data structure for processing each page. In

order to make sure the order of pages and contents, I used Depth First Traversal method

to process the tree and built a list of content object ids in the correct order for further

processing.

To further processing I had to tokenize the text stream of the PDF byte array into

several tokens to match each object to a fixed pattern. For building these tokens I used

many tokenizers such and xref tokenizer to tokenize the xref objects, Object tokenizer

to tokenize object tokens, Text tokenizer to tokenize texts, Cmap tokenizer to tokenize

cmap streams.

The binary code of a pdf is always object oriented. These objects needed to be

constructed. Tokenizer was responsible for providing predefined token by token, as

for the need of token handler. The token handler had to process the receiving tokens

and use the object builder factory to construct corresponding objects.

I have implemented an object builder to create objects. “Factory method” is

implemented for object builder. There is a builder factory for providing the specific

object builder for creating pdf objects. Token Handler was used by the object builders.

After the tokens are being handled, the object builder class will analyse the token list

and build the particular object by using a builder of the Object Builder Factory.

To process content objects each content object is read using object reader by traversing

the page tree in depth first traversal methodology. Then the streams which are encoded

are tokenized and stored in stream tokens objects. Then they are decoded using the

relevant decoder.

67

After extracting glyphs and relevant coordinates we had to develop a virtual coordinate

plane to place them. For this I designed a custom data structure with linked lists where

a page is a node and I used glyph objects to store the glyph details and stored them in

a sorted dictionary where the y coordinate is the key and another sorted dictionary with

x coordinate as the key and the glyph object as the value as the value of the main sorted

dictionary.

Before extracting the actual text into a document, we had to read them to get the texts

in the correct order. For that I read the texts from top to bottom left to right and

separated them into lines as in the original pdf. Finally, I wrote the extracted texts

content to an xml document using xml writer. Here I added tags to recognize the pages

and rotation angle and no of images on each page.

After implementing this text content extraction tool, I have evaluated output files from

the system by following guidelines that are suggested by Hannah Bast and Claudius

Korzen in their research paper “A Benchmark and Evaluation for Text Extraction from

PDF” [14]. It evaluates tool quality by considering four aspects which are paragraph

boundaries, distinction of body text and non-body text, reading order and word

boundaries.

• Research Contribution

The principal research contribution of this thesis is to support advanced search queries

on business document archives by extracting business document contents on PDF/A

files.

68

6.2 Future Works

This research primarily focused about allow more structured search queries on large

PDF document archives by extracting text content from PDF files. Most of the time

search queries only take a single point of view. it is only check words or phrases that

appear in documents.

We can improve this tool by indexing a PDF file using different points of view.

a) General and syntactical viewpoint

We can capture general aspects, as well as details about representation and structure

medium and type.

b) Domain viewpoint

In this viewpoint it considers about conceptual description of a domain.

c) Semantic viewpoint

In this viewpoint, semantic aspects of the segments are addressed, in which the

description type and scope are preserved. Type of description represents the view from

which a segment was written, as an example a structural description, refined in

component description, component location description, etc.

d) Instructional viewpoint

Instructional aspects are considered in this viewpoint, with a focus on maintenance

training. Learning goal, instructional strategy, instructional activity, knowledge type,

instructor and learner actions and material use, each with its own collection of possible

values will consist of an instructional description of a segment.

69

6.3 Limitations

This tool is not supporting for large files. Typically, large files cannot load into the

memory as complete file. To extract data from large file we must load file as segments

and need to process segment by segment. This kind of a process does not support with

current implementation.

A PDF file can contain text with different styles and with different orientations. But

data extraction method on this proposed solution having some issues when it is trying

to extract text with different orientations. But researcher primarily focused on business

archive domain and business documents such as receipts, invoices or quotations are

rarely containing text with different orientation.

Some documents limit access to a PDF by setting passwords and by restricting certain

features, such as printing and editing. Some of them are encrypting the document and

the document metadata. Others are encrypting the contents of a document but still

allows search engines access to the document metadata. The tool is not supporting for

this kind of documents. By scanning header section of a PDF file, can determine

whether the file contain encrypted data or not. Proposed tool will skip the data

extraction if it found such a content.

Images are identifying on this extracting method but still it is not extracting the content

of that image. Proposed tool can identify an image file and it will flag such a content.

It will track images on the PDF file and include a tag to the output XML. Since this

research targeting to support for search queries on business document archives,

extraction of image content is not an important at the moment.

70

7 REFERENCES

[1] H. Chao and J. Fan, “Layout and Content Extraction for PDF Documents,”

document analysis systems, pp. 213-224, 2004.

[2] K. Hadjar, M. Rigamonti, D. Lalanne and R. Ingold, “Xed: a new tool for

extracting hidden structures from electronic documents,” in First International

Workshop on Document Image Analysis for Libraries, 2004. Proceedings., 2004.

[3] E. Wustner, T. Hotzel and P. Buxmann, “Converting business documents:a

classification of problems and solutions using XML/XSLT,” in Proceedings

Fourth IEEE International Workshop on Advanced Issues of E-Commerce and

Web-Based Information Systems (WECWIS 2002), 2002.

[4] A. Dengel and F. Dubiel, “Clustering and classification of document structure-a

machine learning approach,” in Proceedings of 3rd International Conference on

Document Analysis and Recognition, 1995.

[5] A. Anjewierden and S. Kabel, “Automatic indexing of PDF documents with

ontologies,” , 2001.

[6] A. Anjewierden, “AIDAS: incremental logical structure discovery in PDF

documents,” in Proceedings of Sixth International Conference on Document

Analysis and Recognition, 2001.

[7] H. L. Chieu, H. T. Ng and Y. K. Lee, “Closing the Gap: Learning-Based

Information Extraction Rivaling Knowledge-Engineering Methods,” in

Proceedings of the 41st Annual Meeting of the Association for Computational

Linguistics, 2003.

[8] D. Esser, D. Schuster, K. Muthmann, M. Berger and A. Schill, “Automatic

indexing of scanned documents: a layout-based approach,” in Document

Recognition and Retrieval XIX, 2012.

71

[9] C. Ramakrishnan, A. Patnia, E. H. Hovy and G. A. P. C. Burns, “Layout-aware

text extraction from full-text PDF of scientific articles,” Source Code for Biology

and Medicine, vol. 7, no. 1, pp. 7-7, 2012.

[10] R. Futrelle, M. Shao, C. Cieslik and A. Grimes, “Extraction,layout analysis and

classification of diagrams in PDF documents,” in Seventh International

Conference on Document Analysis and Recognition, 2003. Proceedings., 2003.

[11] R. Futrelle, “Ambiguity in visual language theory and its role in diagram

parsing,” in Proceedings 1999 IEEE Symposium on Visual Languages, 1999.

[12] R. Futrelle and N. Nikolakis, “Efficient analysis of complex diagrams using

constraint-based parsing,” in Proceedings of 3rd International Conference on

Document Analysis and Recognition, 1995.

[13] S.-H. Lin and J.-M. Ho, “Discovering informative content blocks from Web

documents,” in Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining, 2002.

[14] H. Bast and C. Korzen, “A benchmark and evaluation for text extraction from

PDF,” in Proceedings of the 17th ACM/IEEE Joint Conference on Digital

Libraries, 2017.

[15] W. Kehong, “Optimized hierarchy clustering based extraction for logical

document structures,” Journal of Tsinghua University, 2005.

[16] P. N. Smith and D. F. Brailsford, “Towards structured, block-based PDF,” ,

1995.

[17] T. Padova, Adobe Acrobat 7 PDF Bible, 2001.

[18] R. Cohn, Portable Document Format Reference Manual, 1993.

[19] T. Joachims, Learning to Classify Text Using Support Vector Machines, 2002.

72

[20] A. Jain and B. Yu, “Document representation and its application to page

decomposition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 3, pp. 294-308, 1998.

[21] T. Hu and R. Ingold, “A mixed approach toward an efficient logical structure

recognition from document images,” Electronic Publishing, vol. 6, pp. 457-468,

1993.

[22] J. Fan, “Text extraction via an edge-bounded averaging and a parametric

character model,” in Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, 2003.

[23] M. Lipinski, K. Yao, C. Breitinger, J. Beel and B. Gipp, “Evaluation of header

metadata extraction approaches and tools for scientific PDF documents,” in

Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries,

2013.

[24] Y. Wang, I. T. Phillips and R. M. Haralick, “A Study on the Document Zone

Content Classification Problem,” document analysis systems, pp. 212-223, 2002.

[25] L. Zhang, Y. Pan and T. Zhang, “Focused named entity recognition using

machine learning,” in Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, 2004.

[26] E. Saund, “Scientific challenges underlying production document processing,”

in Proceedings of SPIE, the International Society for Optical Engineering, 2011.

[27] R. Futrelle, “Strategies for diagram understanding: generalized equivalence,

spatial/object pyramids and animate vision,” in [1990] Proceedings. 10th

International Conference on Pattern Recognition, 1990.

[28] E. A. El-Kwae and K. H. Atmakuri, “Document image representation using

XML technologies,” in Document Recognition and Retrieval IX, 2001.

73

[29] H. Déjean and J.-L. Meunier, “A system for converting PDF documents into

structured XML format,” document analysis systems, pp. 129-140, 2006.

[30] D. Tkaczyk, A. Czeczko, K. Rusek, L. Bolikowski and R. Bogacewicz,

“GROTOAP: ground truth for open access publications,” in Proceedings of the

12th ACM/IEEE-CS joint conference on Digital Libraries, 2012.

74

APPENDIX

• Extracted data from sample files

<?xml version="1.0" encoding="utf-8"?>

<pages>

 <MetaData>

No MetaData was found.</MetaData>

 <page pageNumber="1">

 <content contentId="9">

 <Section Rotation="0">

ORDERBEKRÄFTELSE Sida1(1)

Genius Output. Simplified. Ordernr Kund

www.accure.eu 103519 1001826

Orderdatum Datum

Leveransadress Kund

19-10-24

European Spallation Source ERICDustin Sverige AB

A. ESS Head Office Gate E/F03 BOX 1194

Odarslï¿½vsvï¿½gen 113 131 27 Nacka Strand

22484 Lund Sverige

Sverige

Ert ordernr Er referens Referens Vår referens

468557796 Susanne Jï¿½rnberg Susanne Jï¿½rnberg

Betaln villkor Leveransvillkor Leveranssätt Orderdatum

45 dagar netto FOB Ftgpaket 16:00 19-10-24

RADER

Rad Artikelnr Pris Kvt Enh Belopp

10 30CYS15800 12.986,281,00 Styck 12.986,28

CTO ThinkStation P330, Intel Core i7-9700K

20 Frakter 30,001,00 Styck 30,00

FRAKTER

SUMMA

Belopp

TotalInterestAmount

Summa

Fakturatotal, exkl moms

TotalItemAmount

Rabatt

Momsbelopp

Avrundning

Avgifter

ATT BETALA SEK

Pedab AB Pedab AB IBAN: SWIFT:

Pipers väg 28 Pipers väg 28 SE89600000000000037561HANDSESS

170SOLNA 170SOLNA 898

73 73 Konto VAT

Orgnr. Tel.+46 33 700 15 00 SE556628927701

55662892 Epoinfo@pedab.se Bg.

st.

</Section>

 <Section Rotation="90">

 </Section>

 <Image ImageNo="0">

 </Image>

 <Image ImageNo="1">

 </Image>

 </content>

 </page>

</pages>

75

<?xml version="1.0" encoding="utf-8"?>

<pages>

 <MetaData>

No MetaData was found.</MetaData>

 <page pageNumber="1">

 <content contentId="7">

 <Section Rotation="0">

ORDER CONFIRMATION Page1(1

)

Genius Output. Simplified. Order no Customer

www.accure.eu 0010000001Y20000

Order dateDate

02-28-10 12-12-19

Customer address

Delivery address

Industry Customer - Mississippi

Industry Customer - Mississippi

Industry Customer- Adr line 1

Industry Customer- Adr line 1

Industry Customer- Adr line 2

Industry Customer- Adr line 2

Jackson MS ZIP

Jackson MS ZIP

United States

United States

Your order noYour referenceReference Sales

representative

Your referenceFood & BeverageTemplate

deliveryaddressAdmin User Salesperson

Payment termsDelivery termsDelivery methodOrder date

30 days net Cost Insurance003 02-28-10

and Freight

LINES

Ln Item no Price QtyUnit Amount

1 Y22001 31.08 EA 559.44

Fresh Turkey - Catchweight

Fresh Turkey - Catchweight Item, Purchased for

resale

2 Y10033 37.00 CAS 370.00

Product - Simplified Costing

Product - Simplified Costing

SUMMARY

Total 929.44

Total 929.44

TOTAL USD 929.44

</Section>

 <Section Rotation="90">

</Section>

 </content>

 </page>

</pages>

76

<?xml version="1.0" encoding="utf-8"?>

<pages>

 <MetaData>

No MetaData was found.</MetaData>

 <page pageNumber="1">

 <content contentId="10">

 <Section Rotation="0">

Page 1(2)

Invoice

Order no Invoice no

Finds your next business

1000031729 551955555

Customer Order date

10000584 18-11-09

10000584

Gruene Wiese-Wittenbrink Pleus

Gruene Wiese-Wittenbrink Pleus

Sppiekerhof 29

Sppiekerhof 29

48143 BORÅS

48143 BORÅS

Reverse charge, intra-Community supply of goods.

Invoice no Order no Customer Delivery no

551955555 1000031729 10000584 1001025788

Your order no Your reference Our reference Sales representative

Simone Pleus 1744912 Mesut Anliacik

Payment terms Delivery terms Delivery method Your VAT reg no

30 Days net DAP 21

Style no Name Qty PriceDiscountAmount

131613 Daniel Logo Tee

Taric Co 6109100010 Made in IN 00001 16,00 0,00 192,00

 XXS XS S M L XL XXL

Turquoise 1 2 2 1

Turmeric 1 2 2 1

SUMMARY

Total 186,24

Charges -5,76

VAT

VAT code Description VAT (%)Tax basisTax amount

30 0,00 186,24

TOTAL

Item value 186,24

TOTAL EUR 186,24

Style no Name Qty PriceDiscountAmount

131613 Daniel Logo Tee

Taric Co 6109100010 Made in IN 00001 16,00 0,00 192,00

Pedab AB Pedab AB IBAN: SWIFTCODE:

Pipers väg 28 Pipers väg 28 SE89600000000000037561898 HANDSESS

170 73SOLNA 170 73SOLNA Account no. VAT no

Org no. Tel. +46 33 700 15 00 SE556628927701

55662892 Email.info@pedab.se BG

</Section>

 <Section Rotation="90">

 </Section>

 <Image ImageNo="0">

 </Image>

 <Image ImageNo="1">

 </Image>

 </content>

 <page pageNumber="2">

 <content contentId="13">

 <Section Rotation="0">

Order no Invoice no

1000031729 551955555

Customer Order date

10000584 18-11-09

Finds your next business Page 2(2)

Invoice

77

Style no Name Qty PriceDiscountAmount

 XXS XS S M L XL XXL

Turquoise 1 2 2 1

Turmeric 1 2 2 1

Pedab AB Pedab AB IBAN: SWIFTCODE:

Pipers väg 28 Pipers väg 28 SE89600000000000037561898 HANDSESS

170 73SOLNA 170 73SOLNA Account no. VAT no

Org no. Tel. +46 33 700 15 00 SE556628927701

55662892 Email.info@pedab.se BG

</Section>

 <Section Rotation="90">

 </Section>

 <Image ImageNo="0">

 </Image>

 </content>

 </page>

 </page>

</pages>

	DECLARATION
	Abstract
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	1.1 Overview
	1.2 Problem
	1.3 Motivation
	1.4 Objective

	2. LITERATURE REVIEW
	2.1 Automatic indexing of PDF documents with ontologies
	2.2 Automatic Indexing of Scanned Documents - a Layout-based Approach
	2.3 Content Extraction of PDF Documents
	2.4 Diagram Extraction of PDF documents
	2.5 Benchmark and Evaluation for Text Extraction from PDF

	3. METHODOLOGY
	3.1 PDF Components
	3.1.1 Objects
	3.1.2 File Structure
	3.1.3 Document Structure
	3.1.4 Content Stream

	3.2 Text in a PDF file
	3.3 Graphical effect on Text
	3.4 Text state parameters
	3.5 Text Objects
	3.6 Extraction of text content

	4 IMPLEMENTATION
	4.1 High level architecture
	4.2 Getting the last cross reference table (xref) offset
	4.3 Creating the cross-reference table
	4.4 Finding the root and creating the page tree
	4.5 Tokenizing
	4.6 Token Handling
	4.7 Object Builder
	4.8 Reading the content objects
	4.9 Character Mapping
	4.10 Character Mapping
	4.11 Creating Text Rendering Matrix (TRM)
	4.12 Decomposing Text Rendering Matrix
	4.13 Reading the virtual coordinate plane
	4.14 Extracting text to an xml document

	5 RESULTS AND EVALUATION
	6 CONCLUSION
	6.1 Summary
	6.2 Future Works
	6.3 Limitations

	7 REFERENCES
	APPENDIX

