

TOOL SUPPORT FOR AUTOMATION OF C++ TEST CASE

GENERATION

 Imaran Shyabith Maher Dickwella

(168217P)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2020

TOOL SUPPORT FOR AUTOMATION OF C++ TEST CASE

GENERATION

 Imaran Shyabith Maher Dickwella

(168217P)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master

of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2020

i

DECLARATION

I declare that the content of this research is my own work and the CS5999 PG Diploma Project

Report does not include any content previously submitted for a Degree or Diploma in any

other University or institute of higher learning without acknowledgement and to the best of

my knowledge and belief, this report does not contain any material previously published or

written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to regenerate and

distribute my thesis/dissertation, in whole or in part in print, electronic or other media. I retain

the right to use this content in whole or part in future works (such as articles or books).

………………………………….. ……………………..

Imaran Shyabith Maher Dickwella Date

The above candidate has carried out this CS5999 PG Diploma Project Report under my

supervision.

………………………………….. .……………………

Dr. Indika Perera Date

ii

ABSTRACT

Testing of software plays a vital part in the software development process. It is the phase in

the software development life cycle that make sure the developed software is functionally

correct. Software faults can be expensive when the fault is found at the production system

therefore it is essential to find software errors at the development stages of the project when

the cost is minimum. Testing makes sure the software which is developed covers functional

and nonfunctional requirements.

Unit tests take an essential place in software testing and it is the earliest test a developer or a

tester can perform on the implementation, defects can be detected at early stages, and fixes

can be done with lesser cost due to lesser dependencies. Even though it is essential to

implement unit tests, it is not the case in reality. Most software companies rely heavily on end

to end testing. The main reason for lack of testing at the unit test level is due to its time-

consuming nature and it will not provide functional coverage whereas by performing end to

end tests, end-user requirements can be captured and tested. In reality, approximately two-

thirds of the development time is spent on unit testing related activities and the rest of the time

is spent on designing and implementation. However, due to time constraints and budget

limitations, allocating a large portion of the time for unit testing is not practical.

In this research, I came up with a solution to address the above-mentioned issues and to

eliminate the requirement of writing unit tests manually. I implemented a tool which generates

unit tests for applications that are implemented in C++. The process is completely automated

and the unit test files generated by the tool are human-readable. Developers no longer need to

implement unit tests however they may have to validate the correctness of the generated unit

tests and as desired they can extend the meaningfulness of the generated unit tests.

The tool is embedded with three test data generation mechanisms; Random Value Generation,

Goal Oriented Test Generation and Feedback driven Test Data Generation. The tool

successfully produced test data to attain approximately 95% of code coverage with data

generation mechanisms except Random value generation in multiple test experiments

however when the test unit has a higher number of branches Feedback driven test data

generation mechanism showed better performance as it took lesser time for data generation.

Time growth is exponential when the number of branches gets increased in Goal Orientated

Test Generation. This tool can be extended for complex structures and I can successfully

conclude that the research is successful as the tool showed higher accuracy.

iii

ACKNOWLEDGEMENT

My sincere thanks go to my project supervisor Dr. Indika Perera for guiding me throughout

the project and giving a clear vision and a mission to accomplish during this period. It is

essential to mention my friends and the staff of MillenniumIT software engineering Pvt Ltd

for supporting me throughout the MSc course.

I take this moment to thank my parents for the support and the encouragement given to follow

the MSc. in Computer Science amidst this busy schedule at working place. Last but not least,

my sincere thanks go to the Head of Department of Computer Science and Engineering and

the members of the academic staff for advising and guiding me during project evaluations and

presentations.

iv

Table of Contents
DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

1 INTRODUCTION 2

1.1 Background 2

1.2 Unit Testing and Test Case Generation 5

1.2.1 Definition of unit testing 5

1.2.2 Disadvantages of manual unit tests generation 5

1.2.3 When to use unit test generation 6

1.2.4 Unit testing types 7

1.2.5 Other uses of unit testing 10

1.3 Motivation 11

1.4 Research Problem and Objectives 12

2 LITERETURE REVIEW 14

2.1 Program versus Specification-based Test Generation 14

2.2 Code Based Test Generation Methods 14

2.2.1 Static structural test data generation 15

2.2.1.1 Symbolic execution based technique 15

2.2.1.2 Domain reduction 16

2.2.1.3 Search-based techniques 16

2.2.2 Dynamic structural test data generation 16

2.2.2.1 Random selection 17

2.2.2.2 Applying local search 17

2.2.2.3 Goal oriented test generation 18

2.3 Comparison of Test Generation Approaches 19

2.4 Tools 19

2.4.1 KLOVER 19

2.4.2 KLEE 20

2.4.3 CREST 21

v

2.4.4 CAUT 21

2.4.5 DART 22

2.4.6 CUTE 22

2.4.7 PathCrawler 23

2.4.8 AgitarOne 24

2.4.9 CATG 24

2.4.10 EvoSuite 24

3 METHODOLOGY 27

3.1 Proposed Solution 27

3.1.1 High-level design 27

3.2 Scrutiny of the Solution 29

3.3 Progress 31

3.4 Evaluation Methodology 31

4 SYSTEM ARCHITECTURE AND THE IMPLEMENTATION 33

4.1 System Overview 33

4.1.1 Infrastructure layer 33

4.1.2 Application layer 33

4.1.3 Functional layer 33

4.2 Random Value Generator 34

4.3 Feedback Driven Value Generator 35

4.4 Goal Oriented Value Generator 36

4.5 Architecture of Code Generator 38

4.5.1 Code parser 39

4.5.2 Fitness function evaluator module 41

4.5.3 Analyzer 43

4.5.4 Code generator 44

4.5.5 Report generator 45

4.6 Parameters 45

5 EVALUATION 47

5.1 Overview 47

vi

5.2 Evaluation of the Tool 47

5.2.1 Evaluation of feedback driven unit test generator 48

5.2.1 Evaluation of goal oriented test generator 52

5.3 Algorithm Comparison 55

5.3.1 Comparison of code coverage 61

5.3.2 Comparison of time 62

5.3.3 Proof of concept 63

5.3.4 Line coverage 66

5.3.5 Branch coverage 66

6 CONCLUSION 69

6.1 Summary 69

6.2 Contribution 71

6.3 Limitations 72

6.4 Future work 73

Reference 74

Appendix A – Random Test Generation Method 77

vii

List of Figures
Figure 1 - Test pyramid ... 3

Figure 2 - Sample library interface .. 6

Figure 3 - Sample function implementation .. 6

Figure 4 - Sample Algorithmic function ... 7

Figure 5 - Sample Test Case .. 7

Figure 6 - Sample class implementation ... 8

Figure 7 - Expected test class .. 9

Figure 8 - Sample function .. 9

Figure 9 - Test generation flow ... 11

Figure 10 - Overall architecture of KLOVER [12] ... 20

Figure 11 - High level design .. 28

Figure 12 - Function to be tested in KLEE engine .. 29

Figure 13 - Marking symbolic variables for KLEE engine ... 30

Figure 14 - Unit test generator implementation .. 33

Figure 15 - Sample function II .. 35

Figure 16 - Execution tree ... 36

Figure 17 - Sample function III ... 36

Figure 18 - Unit test Module chain.. 38

Figure 19 - Field class ... 39

Figure 20 - Parameter class ... 40

Figure 21 - Method class ... 40

Figure 22 - Constructor class ... 41

Figure 23–Branch Distance computation .. 42

Figure 24–Sample function for fitness calculation .. 42

Figure 25 - Derived Fitness Function for Figure 27 .. 42

Figure 26 - Generated unit test block .. 43

Figure 27 - Generated Test file .. 44

Figure 28 - Header Class ... 48

Figure 29 - Implementation class with std data structures .. 49

Figure 30 - LCOV report for the data structure class .. 50

Figure 31 - Time analysis for the data generation ... 51

Figure 32–Class I ... 52

Figure 33 - Header file for the above class.. 52

Figure 34 - Coverage report for class in figure 30 .. 53

Figure 35 - Time measures for Class I with Goal Oriented Test data 54

Figure 36 - Unachievable branch statements ... 54

Figure 37 - Class A .. 55

Figure 38 - Random Generator Result for Class A ... 55

file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959245
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959246
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959247
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959248
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959249
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959250
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959251
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959252
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959253
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959254
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959255
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959256
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959257
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959258
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959259
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959260
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959261
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959262
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959263
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959264
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959266
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959267
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959268
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959269
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959270
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959271
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959272
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959274
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959275
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959276
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959277
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959278
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959279
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959280
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959281
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959282

viii

Figure 39 - Goal Oriented Result for Class A ... 55

Figure 40 - Class B .. 56

Figure 41 - Goal Oriented Result for Class B ... 56

Figure 42 - Random Generator Result for Class B.. 56

Figure 43 - Class C .. 57

Figure 44 - Goal Oriented Result for Class C ... 57

Figure 45 - Random Generator Result for Class C.. 57

Figure 46 - Goal Oriented Result for Class D ... 58

Figure 47 - Random Generator Result for Class D ... 58

Figure 48 - Class D .. 58

Figure 49 - Class E .. 59

Figure 50 - Random Generator Result for Class E .. 59

Figure 51 - Goal Oriented Result for Class E.. 59

Figure 52 - Random Generator Result for Class F .. 60

Figure 53 - Class F .. 60

Figure 54 - Goal Oriented Result for Class F .. 60

Figure 55 - Code Coverage Comparison Table ... 61

Figure 56 - Time Analysis Table ... 62

Figure 57 - Pseudo code for search logic .. 63

Figure 58 - Example for proof of concept case 1 .. 64

Figure 59 - Example for proof of concept case II ... 65

Figure 60 - Proof of concept case III ... 65

Figure 61 - Time Comparison Vs Branches .. 67

file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959283
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959284
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959285
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959286
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959287
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959288
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959289
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959290
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959291
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959292
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959293
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959294
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959295
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959296
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959297
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959298
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959299
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959301
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959302
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959303
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959304
file:///D:/MyWork/PG_DIP_REPORT_168217P_v4.docx%23_Toc40959305

ix

List of Abbreviations

Abbreviation Description

CUT Class under test

E2E End to End

API Application Programming Interface

HTTP Hyper Text Transfer Protocol

SO Service Orientation

SOA Software Oriented Architecture

TDD Test Driven Development

GUI Graphical User Interface

GTest Google Test

GMock Google Mock

CFG Control Flow Graph

SUT System under test

1

CHAPTER 1

INTRODUCTION

2

1 INTRODUCTION

1.1 Background

Software testing is an important phase in the software development life cycle. It improves the

quality as well as the reliability of the developed software and also it can benefit in various

ways for a software development project. It helps developers identify code bugs and also helps

identify requirement errors. Eg: When two test cases show contradicting results it can be due

to conflicting requirements. When potential conflicts are identified, these conflicts must be

rectified as quickly as possible. Also, testing helps the development team to confirm that the

system works as per the requirements [25]. If due to a bug system behavior differs from the

expected result depending on the scenario it can cause a big issue. Testing helps identify such

issues and the development team can attend to it and rectify those issues quickly. There are

two ways to test a system; manual verification of the system to see it works to expectations,

or automated test suite to verify the functionality. Currently, manual testing is a rare

occurrence. Given the assumption that the code is changing rapidly and the system needs to

be tested manually to assure the changes do not break the existing functionality, every time a

feature is implemented all system scenarios need to be tested in the manual testing process,

thus making the process quite costly. With rapid change requests coming from clients now

the software industry has a requirement to deliver the software as quickly as possible. Hence

in order to cater to this requirement, continuous integration and continuous delivery have been

introduced and with that automated test suites have come into the picture. Typically, a system

or a software testing is planned from the requirement elicitation phase. Designing and

modeling of test cases usually start at the initial stages of the software development process.

eg: In agile environments such as Test-Driven Development (TDD) tests cases are written

even prior to the code being written. Assertions are agreed upon as acceptance criteria. When

a new feature is introduced to the code path new test cases need to be added to the existing

test suite. Typically, software or a system is thoroughly tested internally before shipped out

to the customer. Hence testing is identified as one of the most crucial phases in the software

development process.

3

There are different ways to test a software solution namely; unit testing, component testing,

performance testing, GUI tests, and E2E testing and out of all mentioned methods unit testing

is considered to be the most important testing procedure [11] [26].

The reason is that each function of the software is tested as units and it helps identify issues

of the software at the early stages [8] [10] [25]. Also, unit testing is much closer to the

implementation stage, sits at the bottom of the testing phases and hence makes easier for the

developer to test their implementation. If unit tests are carried out accurately this will enable

in minimizing issues encountered at the integration level therefore the cost is minimum [8].

Implementation of the code and unit testing is tightly coupled and therefore typically are done

simultaneously. Writing unit tests can be a tedious task, usually, an average developer takes

more than fifty percent of the time that is allocated for the feature for the unit test

implementation [10]. Once the class level design is finalized developers can easily do the

implementation of the code. However, when it comes to unit testing it is a cumbersome

process, the reason being there can be complex dependencies and resolving may be time-

consuming. If unit testing is not considered during the designing phase it will be complicated

to implement unit tests later and as there is no proper format or guidelines to follow for manual

unit testing, it makes matters even worse. Some of the common problems in unit testing are

mock classes and stub implementations are required in order to isolate and test a particular

Figure 1 - Test pyramid

4

function, input data must be finalized to test the function, how much variation is needed to

say confidently that the function is properly tested, all the branches need to be tested. Lack of

support from underlying libraries makes it more difficult to implement unit tests and therefore

deep thorough analysis is required before actually implementing unit tests. However, there

are a few drawbacks to testing the system with unit tests. While it is true that testing can detect

presence of issues. However it cannot detect or identify missing features. If the developer

failed to capture a requirement during the implementation which presents in the requirement

specification there is a chance that the developer misses the requirement during the testing

phase as well. Maintainability issues can arise when a function is modified and the developer

may have to modify the unit test to align with the modified implementation otherwise there

will be breaking test cases running on a day to day basis. As unit tests are quite tedious and

time-consuming most companies are reluctant to apply unit tests. Therefore unit testing has

become a frustrating and time-consuming process and becomes a burden to an organization

and as a result, some organizations are reluctant to use unit tests for their application testing.

The main objective of this research is to address the problems stated above and implements a

tool that will take a C++ class as the input and the tool proposed will generate unit tests for

that particular input class. The tool should be able to provide a higher statement coverage,

branch coverage, input coverage, and output coverage. Automating unit test generation will

help developers to increase their code coverage, also help identify assertions, potential crashes

and verify the functionality. A company can benefit greatly from such a tool as it will increase

the confidence in its implementation. If the code is not fully tested in unit tests it may result

in system misbehavior, leading to the system generating invalid outputs which could be a

costly affair for a company. However, there are quite a few issues that need to be discussed

before applying unit tests; how effective would be the automation process be? Can the process

identify bugs in the software? How to identify whether the code catches exceptions properly?

And how to identify the true meaning of the test? What would be the steps taken to solve the

above issues? These areas will be discussed in detail in the chapters to follow.

This research consists of the existing literature available in the above area as well as the

proposed methodology to generate unit tests for code implementations and tool

5

implementation details, results obtained based on the test data selected, system evaluation

based on the obtained result and finally the conclusion.

1.2 Unit Testing and Test Case Generation

This section gives an introduction about the unit testing, branch coverage of function

implementations, and output coverage of functions to detect functional issues and also focuses

on test case generation and will discuss the impact of unit testing on software systems.

1.2.1 Definition of unit testing

“Unit testing is a process which takes the smallest testable parts of an application such as

functions, as units, and then are independently tested for correct/expected behavior. Unit

testing is usually an automated process however rarely it can also be done manually.” [25]

In this report, the Unit is regarded as a code segment which can be considered as the smallest

building block of a program. And the smallest building block of a program is a function.

Therefore, the smallest testable part of a program is a function implementation.

1.2.2 Disadvantages of manual unit tests generation

It takes a developer more time to write unit tests compared to actual implementation. Once

the class level design is finalized converting that design into implementation is considered an

easy task by many developers however due to complexities, unit test implementation can be

a difficult task to achieve. The first steps would be to design test cases, model input and to

finalize methods of testing. Since manual unit testing has no proper format or guidelines to

follow and due to time constraints, it is impractical to test all functions and its code paths.

Some of the common problems incurred in unit testing are mock classes and stub

implementations that need to be available in order to test a particular function. If the stubs or

mock classes are not in place when writing unit tests, the developer first needs to implement

stubs/mocks in order to test implemented class functions. Developers regularly face these

kinds of issues when it comes to testing and it sometimes takes more time than originally

planned when writing unit tests. Another common problem is a lack of support from

6

underlying libraries and therefore unit tests must be designed first before the actual

implementation. When unit tests are implemented it can associate with maintainability

problems like when a function is modified developer may have to modify unit tests as well to

assure there are no code breakages. Therefore unit testing has become a complicated and time-

consuming process and has become a burden to some organizations and as a result, some

organizations have taken alternatives for unit tests. Example:

Assume the following functions are provided by an underlying library: (C++ implementation)

Function to be tested:

Since add function is not virtual, testing on Add function is not possible. Even if they add

function provided by the library is virtual, a mock function needs to be implemented if it is

not available in the library.

1.2.3 When to use unit test generation

Even though unit testing is a time-consuming process its advantages are significant. If

functions are tested as units, developers confident about the code increases and this will assist

to solve most of the functions related to bugs. Unit tests may be very useful for certain

applications. For example, mission-critical applications such as medical applications, banking

applications, etc these types of applications need to be thoroughly tested. End to end testing

bool delete();

bool add();

bool modified();

boolonAdd()

{

 booli = add();

 returni;

}

Figure 2 - Sample library interface

Figure 3 - Sample function implementation

7

alone will not get the job done. Therefore implementation level testing needs to be

emphasized.

1.2.4 Unit testing types

Unit testing can be segmented into different categories. Branch coverage testing to detect

unexpected exceptions is one type of unit testing. Test code should be able to explore different

paths of the code in a way that it covers the majority of the code. Another type of unit testing

is output coverage testing where the output of the function is taken into consideration and

assertions are generated for the developer to validate.

Following is a sample case of unit tests:

If a test is written for this it would take this format;

The tool generates unit tests by exploring code paths (eg: statements) and the tool makes an

assumption that the code functionality is correct. This has been the main drawback of this tool

that it can detect the presence of a bug but it cannot detect an absence of a feature. If the tool

is required to identify a missing feature tool needs additional information to model this

problem and this problem will not be captured in this research.

intarray_sum(intarr[], int length)
{
 int sum = 0;
 for(inti = 0; i< length; i++)
 sum = arr[i] + sum;
 return sum;
}

TEST_F(testSumArray)
{
 intsampleArr[] = {2, 4, 6};
 EXPECT_EQ(12, array_sum);
}

Figure 4 - Sample Algorithmic function

Figure 5 - Sample Test Case

8

Following is a class to be tested:

class Test1
{
 Public:
 Test1 (Test2 *t) {m_t = t;}
 ~ Test1 () {}
 void Call1 ()
 {
 M_t->Call2();
 }
 Private:
 Test2* m_t;
}

class Test2
{
 Public:
 Test2 () {}
 ~ Test2 () {}
 int Call2()
 {
 Return 5;
 }
}

Figure 6 - Sample class implementation

9

In order to test this class we need to come up with a test class as follows:

Branch coverage example:

Class TestTestA{

Public:
 Voidsetup()

{
 a = new TestA(&b);
}
Voidteardown()
{
}

Private:
 TestA *a;

MockB b;

TEST_F(TestTestA, TestCall1)
{
 a->Call1();
 EXPECT_CALL(b.Call2()).Times(1);
}

}

Void addInformation(int type, string information)
{
 if(type == 1)

{
 addName();
 }

 Else if(type == 2)

{
 addAddress();
 }

Else if(type == 3)
{

 addContact();
 }

 Else if(type == 4)

{
 addWorkInfo();
 }
}

Figure 7 - Expected test class

Figure 8 - Sample function

10

To test this class we need to test all the branches therefore according to this example it is

required to have 4 different tests to test this class.

1.2.5 Other uses of unit testing

Apart from bug detection, there are other advantages in writing unit tests as well. Some of

them are as follows.

 Improve code quality

 Improve coding standards

 Facilitates changes

 Simplifies integration

 Provides documentation

When the function to be tested seems difficult to test we usually segment them into smaller

functions. Thus it could result in improving the code quality.

A unit test plan could be used when the code is modified in order to verify that the existing

functionalities have not been affected. If the unit test fails, the issue can be rectified

accordingly.

11

1.3 Motivation

As described in the above section there are many ways to test a software system. This research

focuses on creating a tool that allows developers to generate unit tests automatically instead of

manually writing them. This will reduce the time spent by developers on writing the test enabling

developers to focus more on designing the application and code quality when developing. This

tool will allow developers to create test cases to cover branches in the code as well as test classes

to a certain extent.

Following is the workflow of the tool proposed:

Class to be tested import to the tool

developed

Tool process it and produce another test

class

User compiles it run the test program

Figure 9 - Test generation flow

12

1.4 Research Problem and Objectives

There have been various researches done to generate unit tests for given application

implementation. But most of these tools have failed due to issues in the outcome. The main

issue that will be addressed in this research is how to generate unit tests for a given function

first. Then the focus will extend on to the tool to generate unit tests for classes. Existing

frameworks and tools such as google test framework, lcov will be used to find out various

ways to generate effective unit test cases with implementation. Algorithmic function testing

can be challenging and the aim here is not to demotivate developer from manually creating

unit tests, but to help them save their time so that they can tweak and complete the test case if

the generated one is not meaningful.

For this purpose, the objective is to develop a tool that:

 Generate branch coverage test cases

 Generate test cases to output for a given function

 Generate test cases to improve code coverage

13

CHAPTER 2

LITERATURE REVIEW

14

2 LITERETURE REVIEW

2.1 Program versus Specification-based Test Generation

There are two test cases generating methodologies; program based test generation and

specification-based test generation. In specification-based test generation, formal

documentation is required where the document structure is well defined to generate tests. The

drawback of this methodology is specification writers need to learn an additional language to

convert the specification document to a document that can be used to generate tests.

Program-based techniques only take the system as the input hence the system under is the

only dependency to generate test cases. When the test suite is presented after generation

developer may extend these test cases as desired. Program based test generation has few

advantages over the specification-based test generation method. One advantage of program-

based techniques is that these methods can achieve higher structural coverage compared to

specification-based techniques since the source code implementation can provide more

information for test generators than abstract specifications to generate a test suite.

2.2 Code Based Test Generation Methods

There are various approaches to generate test cases and these techniques can be categorized

as random test generation, path-oriented test generation, goal-oriented test generation and

intelligent approach [1]. The random technique assumes faults in the implementation are

equally distributed however this is a false assumption. Path oriented approach generally use

information about branches and identify the set of paths to be covered and generate tests

accordingly. We can further generalize these techniques as static and dynamic test case

generation methods. Static techniques often produce test cases after performing symbolic

executions while dynamic approach obtains necessary data by running the program under test.

The intelligent technique generally relies on complex computations to generate test cases [30].

15

Code based test Generation falls into following major areas [24]:

 Static Structural Test Data Generation

 Dynamic Structural Test Data Generation

2.2.1 Static structural test data generation

In static structural test data generation, the internal structure of the program is analyzed and

generate test data, without actually executing the program.

Following are the main Static Structural Test generation methods:

● Symbolic Execution - Dynamic symbolic execution to generate input data

● Domain Reduction – Employed as part of Constraint based testing

● Search based technique - Generalize the test generation problem as a search-problem

2.2.1.1 Symbolic execution based technique

Symbolic Testing is a static test generation technique. In symbolic execution, program will

not be executed with real values, instead it allocates symbolic expressions to variables in the

program. This technique generates a set of constraints that traces the conditions that are

required to achieve a certain coverage goal [6]. The solution of these constraints are provided

as values for input variables. In Symbolic Testing, first it generates set of path restraints and

then collects these constraints for the system under test and finally solve these constraints to

obtain actual values [1] [16]. The final solution contains the concrete input data that executes

these paths. Linear programming techniques can be applied in cases where the constraints are

linear. If that is not the case heuristic methods can be used to find the solution [24].

16

2.2.1.2 Domain reduction

Domain reduction is designed as a constraint based test generation methods and it basically

tries to solve domains constraints by providing values for input variables. These can be

obtained from type or information from the specification, or from input by the tester. The

domains are then deduced using the knowledge in the constraints, which involves the operator,

a variable and a constant, or constraints involving a relation operator with two variables. In

order to simplify remaining constraints are substituted with values. Likewise this process

takes place until no further simplification is possible, then the input variable linked to the

smallest remaining domain is selected, and a random value is assigned to it. Then this variable

value is substituted in the constraint system, in order to obtain values for the rest of the

remaining variables. If all variables can be assigned values with this order, then the constraint

system assumed to be successfully completed; otherwise the system repeats variable

assignment stage again, hoping with successfully selecting appropriate random numbers for

the variables [24].

2.2.1.3 Search-based techniques

Search-based testing approach generalize the test generation problem as a search-problem and

solve this problem using random or directed search techniques, such as local search, Hill

Climbing, Simulated Annealing, etc [4]. The search algorithm repeatedly runs the program

under test with potential input data and uses code mutation and observe the result to adjust

the input accordingly. This process repeats until all desired goals are achieved or the pre-

defined threshold exceeds usually a timeout.

2.2.2 Dynamic structural test data generation

It is difficult to statically analyze the relationship between input values and internal variables

for constructional test data generation when there are loops and computed storage locations.

As name implies dynamic methods execute the program with some input data, and then simply

observe the results via some form of program instrumentation.

Following are the main Dynamic Structural Test generation methods:

17

● Random Testing – Treats all branches, functions equally and generate input data

randomly

● Applying local search – Select a path and create a straight line through it, containing

only that path

● Goal oriented test generation – Starts from a goal and starts producing data until the

goal is satisfied

2.2.2.1 Random selection

In this technique, the program selects random sequences of method calls, input random values

and creates a unit test with the method sequence tool selects [3]. Asserts can be generated

based on the return type and this allows developers to capture the functional behavior.

Random testing helps identify software vulnerabilities, like security issues, invalid logics, and

behavioral issues. Random testing is considered cheap and probably the easiest to implement.

One of the main advantages of random testing is, it can produce a very large number of data

set and it can cover a substantial number of bugs at a lower cost. However, the major flaw

with this technique is it can produce data that are irrelevant to the program since random test

generation assumes the fault distribution in the program is equal in all branches however this

assumption is false. Generated test cases also can be duplicated test cases and may only

produce a limited number of meaningful data and also there’s no guarantee that this technique

will produce meaningful data in every single run.

2.2.2.2 Applying local search

A specific path selection is made in the program, and in places where branch statements exist,

a path constraint of the form ci = 0; ci > 0; or ci ≥ 0 is introduced; where ci is the estimation

of how close the predicate is to being fulfilled. This approach basically constructs a set of path

constraints to execute the code through a selected path. For example, suppose there is a branch

where the branch condition is a == b and it will be converted into the path constraint; abs(a −

b) = 0. This is also called the fitness function. Using these fitness functions obtained, decision

can be made whether the constraints are to being fulfilled based on the values returned from

18

the function, being negative when one or more of the constraints remains unsatisfied, and

positive when all of the constraints are satisfied. To execute the code through the interested

path, the program is executed with some random input data initially. If the code is executed

though an unexpected path – if a deviation is observed from desired path - a local search is

called on for program inputs, using the fitness function derived for the desired path, alternative

branch. This fitness function explains how close the branch condition is to satisfy being true.

The value obtained is referred to as the branch distance [24] [29].

2.2.2.3 Goal oriented test generation

All of the mentioned techniques focus on the execution of a path. In order to obtain a structural

coverage criterion like statement coverage, this means all paths needs to discovered such that

there no individual uncovered statement. Goal-oriented test generation however neglect this

statement. First and foremost Goal oriented test generation constructs a control flow graph

from the input program and then, it classify branches in the control flow graph of the program

node as either critical, semi-critical or non-essential with respect to a target.

Critical branch is denoted as the edge which drives the execution away from the expected

execution path. If the execution follows through a critical branch program will never reach

the target hence it is essential in finding an input value such that program does not execute

through critical branches. If proper input cannot be found tool terminates. Semi critical

branches are the branches that lead the execution to the target node. If the provided input takes

the program through a semi critical branch, like in critical branch program doesn’t terminate

because hoping that correct input will be found in next execution cycle. Nonessential branches

do not determine whether the target will be reached, regardless where these nodes are located

in the CFG. Hence, execution is allowed through these branches since there is no impact on

the final outcome [24].

19

2.3 Comparison of Test Generation Approaches

In this section test generation methods such as Search-based Testing, Symbolic Testing and

Concolic Testing will be compared and evaluated. Recent studies are available to compare

performances of Search-based Testing and Symbolic Testing, there have been many attempts

to improve the performance of Symbolic Testing and Concolic Testing approaches

considerably [19]. Moreover, since constraint solvers takes a very important place in deriving

final concrete values over the years the performance of the constraint solvers has improved

greatly and recent studies has given significant attention to improve the performance further.

However Search-based testing has not been treated with the same focus and hence there is no

significant improvement compared to Symbolic and Concolic Testing. Therefore as per the

recent studies, Symbolic and Concolic Testing is expected to be outperformed and expected

to be improved further [19].

2.4 Tools

2.4.1 KLOVER

KLOVER is considered the first symbolic execution and automatic test generation tool for

C++ programs [12]. KLOVER developed in a time where symbolic execution engines are

only available for languages like C and JAVA.

Unlike in concrete execution where the program is executed with real values, in symbolic

execution program is executed symbolically. KLOVER collects each program path it explores

with a path condition including a series of branching decisions. When the test tool has a list

of potential execution paths with mapped symbols, during concrete execution these symbols

will be replaced by real values to explore collected paths. KLOVER uses a decision maker

called SMT (Satisfiability Modulo Theory) solver which is the constraint solver in KLOVER

to find concrete values and remove false paths. KLOVER also does a set of sanity checks and

KLOVER has the capability to detect memory out-of-bound accesses, seg-faults such as

divide-by-zero, and set of user-defined assertions [12].

20

KLOVER needs user’s input about the program to determine variables that needs to be

captured as symbolic inputs. A user can select the list of inputs the user wishes to mark as

symbols, however, it is the users' responsibility to ensure that the relationship between the

inputs is appropriate. When the C++ program is compiled into LLVM byte code, KLOVER

then interprets it for symbolic execution. To handle the C++ library constructs KLOVER uses

its own C++ library. After the execution, statistical information as well as results from sanity

checks are fed, and source program coverage report is produced by gcov. Below diagram

shows the high-level architecture of KLOVER [12]:

2.4.2 KLEE

KLEE is also a symbolic execution tool that is capable of producing high code coverage test

cases by mimicking the LLVM bit code in a custom runtime environment. KLEE’s main

advantage is that it operates on LLVM bit code and due to this KLEE can run on anything

that the Clang compiler tool chain can compile: C, C++, Swift, Rust, etc [13] [31].

The major drawback in KLEE is that even when the bit code is available, a user has to

manually inject KLEE API calls into the source code, link in the KLEE runtime, and may

have to stub out or manually model external library dependencies [13] [17]. When the code is

large tasks like this become daunting and complicates the build systems. KLEE also cannot

determine all possible routes when the program size is large. It even can fail on a utility

function such as sort. The problem becomes a halting problem rather we say an unreachable

problem. KLEE is a heuristic, hence it is capable in only reaching some of the code paths in

limited time. Also, it can't produce results in quick time, according to the paper, KLEE took

roughly 89-hours to generate tests for COREUTILS library which has about 141000 lines of

code in it (with libc code used in them) [13].

Figure 10 - Overall architecture of KLOVER [12]

21

2.4.3 CREST

CREST is also a test data generation tool specifically targeting the C language. CREST inserts

mutations to the code into the target program using CIL and it performs both symbolic

executions as well as concrete execution concurrently. Once the program is executed

symbolically, constraints that are generated are solved using Yices to generate concrete values

which can then be used to create new, unexplored program paths. “Yices is a constraint

resolver that decides the satisfiability of formulas containing uninterpreted function symbols

with equality, real and integer arithmetic, bit vectors, scalar types, and tuples.”[17] Yices is

capable of handling both linear and nonlinear arithmetic.

However the latest version of CREST can only resolve linear and integer arithmetic,

symbolically. And for the CREST tool to be able to inject instrumentation code into the

program user must use functions such as CREST_int, CREST_char, etc., declared in "crest.h".

CREST will then identify these variables and generate symbolic inputs for the program

accordingly [17].

2.4.4 CAUT

CAUT is also a symbolic execution engine based program to generate input data for C

programs for unit tests automatically. It basically is a tool that provides coverage driven

testing on the branch [20].

Currently, CAUT provides following search strategies:

● CREST cfg-guided search strategy

● KLEE rp-md2u search strategy

● Predictive Path Search strategy based on the Coverage Structure

22

2.4.5 DART

DART is tool which is capable of generating unit tests for applications that are developed in

C language and it has achieved automation of software testing combining three main

techniques:

 Automatically extract interfaces details by parsing the source code

 Perform tests with randomly generate test drivers for interfaces extracted

 Analyze results dynamically to see how the code conducts under random testing and

a new set of test inputs are derived based on this information to explore alternative

program paths.

The main strength of DART is it can perform on any program that can compile. DART has

the capability to identify standard errors like segmentation faults (crashes), violations like

assertion and non-terminations. DART is capable of dynamically collecting knowledge about

the execution of the program is called a directed search. DART starts with a random input,

and it calculates and generates an input vector for the next cycle of execution during each

cycle. This vector includes values that are the solution of symbolic constraints gathered from

predicates in branch statements during the previous execution. And as a result the new input

vector will execute the program through a different path. By iterating this process, all related

feasible execution paths can be explored [21].

2.4.6 CUTE

CUTE first instruments the code under test to explore execution paths, and then constructs a

logical input map for the class under test. This generated map can be regarded as a memory

graph in a symbolic way. CUTE then iteratively runs the modified code as below [22]:

 CUTE uses the generated map to constructe a concrete input memory graph for the

program and two symbolic states, one for pointer values and another for primitive

values.

23

 CUTE runs the code on the concrete input graph, collecting constraints (as symbolic

values in the symbolic state) that characterize the set of inputs that would take the

exact path of the execution as the current execution path.

 CUTE reverses one of the collected constraints and solves the resulting restraint

system to obtain a new logical map that is similar to previously generated one but with

a better chance of execution through a different path. It then assigns the new logical

map and repeats the process.

CUTE executes the program in both with actual values and also symbolically. The actual

CUTE implementation first modifies the source code under test, by adding functions that

perform the symbolic execution. CUTE then repeatedly executes the instrumented code only

concretely.

2.4.7 PathCrawler

PathCrawler is test generator which is developed for C applications and it is developed based

on code instrumentation and constraint solving. Hence the tool is efficient and also can be

extended. The code instrumentation is basically a process where it automatic transform the

source code into another source code which helps identify the executed path. The PathCrawler

does not have issues from approximations and is not complex compared to static analysis, nor

from the number of executions demanded by the use of heuristic algorithms in function

minimization and the possibility that they fail to find a solution. PathCrawler includes

standard output into the code as code instrumentation to identify the symbolic execution path

each time the program is executed. The mutated code is executed using a test scenario which

consist of set of inputs from the domain related values. From the execution, symbolic path

can be discovered and this path can then be transformed into a path statement which defines

the “domain” of the path covered by the test-case, set of input values can cause execution of

the same path. The next test scenario is discovered by solving the restraints by defining the

input values which are from outside from the path which is already covered. The modified

code is then executed on these test cases, until all the feasible paths have been covered [23].

24

2.4.8 AgitarOne

AgitarOne is a commercial tool that is capable of generating test data for programs. It executes

classes with various input data and creates a set of observations that represent the function or

the unit behavior, which developers can use to generate assertions [5].

2.4.9 CATG

CATG is an example for concolic unit testing engine based tool and it is developed

specifically for Java programs. CATG uses assembly (ASM) for code mutation or for

instrumentation. CATG mutates class files during runtime and dumps all executed instructions

by the program and all local and global variable values loaded from different memory areas

into a log file. Then CATG loads these log files and interprets logged instructions and values

both symbolic and concretely.

2.4.10 EvoSuite

EvoSuite is a tool that is developed to generate test cases for programs that are developed in

Java. EvoSuite not only provide a higher coverage it also provides assertions as well. To

achieve this, EvoSuite introduced a unique approach to generate and to optimize whole test

suite generation towards gratifying a coverage criterion [4]. EvoSuite implements hybrid

search, dynamic symbolic execution and testability transformation.

User has the option to select a coverage criteria in EvoSuite and based on the selected criteria

EvoSuite evolves an entire test suite. The result generated by the EvoSuite is not adversely

influenced by the order nor by the difficulty or infeasibility of individual coverage goals.

EvoSuite uses an instrumentation-based testing mechanism to produce a set of assertions for

a given class. Asserts can be used to identify the current behavior of the class so that

developers can identify defects, and also the assertions protect against regression faults.

To lead the test suites using EvoSuite for a given Java class, the tool only requires the Java

byte code of the class and its dependencies [4]. EvoSuite analyze the byte code first and then

instrument it to produce assertions, and at the end of the search, EvoSuite generates a test suite

http://www.evosuite.org/

25

for the given class which complies with JUnit. EvoSuite is completely automatic, capable of

generating test suites for the entire packages and no manual intervention required during the

test generation process.

When EvoSuite generates tests for a package, it takes one class at a time (not the entire

package), and the goal is to produce a test suite to maximize the code coverage rather we say

branch coverage for a particular class. EvoSuite is not by any means limited to primitive data

types, it can handle arrays and any class object. To instantiate a class EvoSuite considers all

possible constructors and produces an instance of it, and creates method calls for each method

by passing the required type of variables into it and recursively tries to satisfy all its

dependencies.

26

CHAPTER 3

METHODOLOGY

27

3 METHODOLOGY

As described in the above chapters generating test cases automatically will save a lot of time

for developers. Unit testing is an essential component in delivering a quality product and it is

the testing method that gives the highest level of confidence about the program quality.

Therefore automating the test creation process is beneficial in many cases.

3.1 Proposed Solution

3.1.1 High-level design

The ultimate objective of this research project is to build a unit test generation tool for

programs that are implemented in C++. When a C++ class is given, the tool processes it by

analyzing the header file and the implementation file and generates unit tests such a way that

the tool satisfies the criteria defined in the coverage goal. In the current phase, the user cannot

input the coverage criteria into the demo tool, however, in the next phases, the user should be

able to pass the coverage criteria as a parameter to generate results accordingly. The demo

tool supports following inbuilt coverage criteria; output coverage, branch coverage, and line

coverage. The demo tool only supports the integer data type at the moments and it can be

easily extended to support other complex data types such as string, structs, and objects.

Two test generation algorithms have been implemented and the default algorithm set in the

tool is random test generation. And the user has the capability to pass an argument to select

the searched based test generation algorithm. Please refer the Chapter 04 - System

Architecture for more details.

Following are the prerequisites for the tool:

 G++ - Compiler to compile the C++ code

 Lcov/gcov – Generate coverage report

 Google Test framework – Unit test framework

 Java 8 – Tool is developed in java

 JNI – Communicate with C program

28

 Unix environment – Tool is built for unix environments only

The following diagram shows the high-level design of the system.

As shown in the above diagram, the tool takes the C++ class file as an argument (ex:

main.cpp). Gtest/GMock unit test framework has integrated into the tool as the unit test suite

is generated using Gtest/GMock unit test framework. GCOV/LCOV is used to generate

coverage reports hence GCOV/LCOV frameworks have been integrated into the tool. Based

on the input parameters, the tool will generate a class that consists of unit tests (unit test suite)

satisfying inbuilt coverage criteria and LCOV report which consist of the code coverage.

The challenging part in generating test cases is the generation of input data set. To achieve

data creation, three methodologies have been used; random unit test generation, feedback

driven value generation and goal-based test data generation with the assistance of dynamic

code execution. In all methods, the class under test is executed and evaluated multiple times

to generate the output.

Essentially the tool will cover the following unit testing activities.

● Branch coverage

● Output coverage

● Statement coverage

Test Code Generator
C++ class Unit test class

LCOV GTest/GMock

Figure 11 - High level design

29

3.2 Scrutiny of the Solution

When existing researches for unit test generation for C++ programs are considered, almost all

require some level of manual intervention to generate results. Meaning user input is required

even it states automated unit test generation (for example KLEE, KLOVER). The main reason

being these unit test generation tools have been implemented using symbolic execution

engines. Meaning that a custom runtime environment is used by the tool to produce test cases

for code coverage by emulating LLVM byte code [18]. Basically, tools that are developed

using symbolic execution operate on the LLVM byte code.

If the KLEE engine is taken as an example: KLEE can only generate unit tests for programs

where source code is available, however, it requires the LLVM bit code of the class as well.

However getting the LLVM byte code from the source code can be tricky due to its

dependencies such as build systems, configurations [13]. Even when byte code is available,

users may have to manually inject KLEE API calls into the source code, link in the KLEE

runtime, and possibly stub out or manually model external library dependencies [18].

Generated unit tests are in binary form hence it is not easily readable and if it is required to

verify the correctness of a function by looking at the generated unit test function return values,

it will be difficult to do. These tasks can become exhaustive when dealing with large

codebases and complicated build systems.

Sample function to be tested in KLEE:

 Figure 12 - Function to be tested in KLEE engine

30

In order to test the above function in the KLEE engine, to make the KLEE engine aware of

symbolic inputs, the user needs to manually mark the parameter as symbols as follows.

As mentioned above since the KLEE engine works on top of LLVM bit code user has to

compile the source code to generate the LLVM bit code. The test cases generated by the KLEE

engine are written into a file with .ktest extension and since it is also in binary format, KLEE

is given a tool called ktest-tool to view the content of the file [13].

The tool proposed in this research does not need anything other than the library dependencies

mentioned in the above section and the source code, the proposed tool focuses on the source

code and generates unit tests exploring source code statements and branches. The tool

basically contains two test data generation algorithms: feedback-driven random test

generation and goal-oriented test data generation and based on the algorithm selects data

generation can differ.

In the random test generator, a test input is derived randomly and pass on to the function under

test and evaluate the result if the function returns a value and feedback is used determine the

path taken by the given input, and a duplicate can be sliced with the feedback obtained. Pre-

defined number of iterations takes place to obtain test cases to cover all paths which is the

worst case and if all paths are covered test generation stops without reaching maximum

iterations defined. In the case of goal-oriented tests, test generation starts from a goal and it

starts producing data until the goal is satisfied or until the defined time expires. The goal is to

cover all branches in the code by the exploration of path space. Statements in the code are

modeled into a graph and by providing inputs traverse the tree to obtain different test functions

and paths that are not traversable are notified to the user for further inspection.

Figure 13 - Marking symbolic variables for KLEE engine

31

3.3 Progress

The detailed literature review is completed and analyzed existing implementations related to

the project topic. After the preliminary studies, detailed design has been drafted before

implementing the final product, the code generator. The code generator was implemented and

the code coverage is measured using lcov reports. The tool is a java based application as

mentioned in the pre-requisites. The research has been partially implemented under a selected

set of criteria and limitations. The study limitations have been mentioned under chapter 6

study limitations.

3.4 Evaluation Methodology

For the final evaluation of the research, the code generator will be provided however it will

be a tool that is developed for the demonstration purpose. The tool should be able to generate

unit tests for classes which have setter methods or constructor with primitive data types (only

integer is considered in the tool). Also, in the final demonstration how the code generator

works will be explained. Evaluation of the code generator will be done by comparing coverage

reports. If the model is correct and accurate generated unit test should cover a significant

portion of the implementation.

32

CHAPTER 4

SYSTEM ARCHITECTURE AND THE IMPLEMENTATION

33

4 SYSTEM ARCHITECTURE AND THE IMPLEMENTATION

4.1 System Overview

The Unit test generator works based on a transactional model and the unit test generator is

modeled into 3 main layers.

4.1.1 Infrastructure layer

This layer manages the underlying low-level functions such as thread creation, socket

connection, etc. Changes to the underlying implementation should not affect the interface

given to the application layer by the infrastructure layer. Therefore the upgrades to the

underlying frameworks do not cause code changes in the above layer.

4.1.2 Application layer

This layer facilitates the application with functionality to implement data generation

algorithms. This layer doesn’t have any impact on underlying infrastructure when defining

the application structure. The framework itself creates the required infrastructure for the

application to run based on the application configuration. Modules can be implemented on

top of this layer.

4.1.3 Functional layer

This layer is responsible for managing modules and modules can be hosted on top of a

modular framework. The association of each functional module can be defined using the

functionality provided by this layer. This is implemented on top of the Application layer of

the framework.

Infrastructure layer

Application layer

Functional layer

Figure 14 - Unit test generator implementation

34

The module is a class that has logics to perform a well-defined task. There should be a

predefined set of pre-conditions and post-conditions for a Module.

The unit test generator consists of the following modules.

 Mutate Module

 Code parser Module

 Analyzer Module

 Code Generator Module

 Report Generator Module

Three test generators have been integrated into this tool which is a random value generator,

feedback-driven test data generator, and goal-oriented test generator. In the following

subsections approach for the three generators will be discussed.

4.2 Random Value Generator

As the name implies test data will be generated randomly using random value generators.

With this approach, we can exercise the class under test with random values [3]. Input data

can be either domain values or values that are invalid for that software. Even if the data

provided for the test is not domain-specific still it is a valid test since the application should

be able to handle those values and the scenarios. First, the class needs to be executed with the

generated test data then we need to observe the outputs and based on the result we need to

generate asserts. Due to the simplicity of the random data generation, this approach can apply

for any given software. We can explore unexpected security problems, and we can identify

potential problems that are not handled in the application with the random value generator

approach.

However, there are few drawbacks to this methodology. Since inputs are generated randomly

without taking the class under test into consideration, it raises a concern about the validity of

the input data used to test the class. And also there is a chance for duplicate test cases as inputs

are generated randomly, some execution paths may never get executed, and some functions

may never get tested.

35

Take the following class as an example:

If the task is given to generate unit tests for the above example class with pure random nature,

there is a chance that generated test cases might get executed on the same path. Since random

value generators are used unless a branch condition specifies a range the chances that a

randomly generated value falls into the branch condition have a very low probability. In the

above scenario in most cases randomly generated value could be larger than 3 or can be a

negative value and as a result, the function will return Undefined in most cases. And also we

don’t need multiple test cases to test else path. Hence random value generation may not be

very effective if we adapt to pure random test generation.

4.3 Feedback Driven Value Generator

In this mechanism, the suggested proposal is to improve the test data generation by adapting

the feedback-driven test case generation. For each path in the code, a fitness function will be

defined [4]. Starting with a random value, the value will be fed to each fitness function and

the return value is taken into consideration as the feedback which is used to map input data

with execution path [14]. This way we can eliminate redundant test cases insist tool generates

extra test cases incase tool generates a redundant test case, and this process carries out until

all branches are covered or until set timeout expires. The main objective here is to explore

paths in the code effectively and efficiently. Test data generator selects method calls of the

class under test randomly and then generated random inputs are passed onto the selected

method calls, construct a sample test case and execute the sample test program[28]. The output

std::string intToString(int num)

{

 if (i == 1)

 return “One”;

 else if (i == 2)

 return “Two”;

 else

 return “Undefined”;

}

Figure 15 - Sample function II

36

of the generated test result is evaluated against execution paths (filters) to determine whether

the generated results are illegal, redundant or useful data.

4.4 Goal Oriented Value Generator

A goal-oriented value generator starts from a goal and it starts producing data until the goal

is satisfied or until the defined time expires. The problem statement here is to the exploration

of path space hence the goal is to cover all branches in the code [3]. Goal-oriented test data

generation has a number of practical examples. The main advantage of using this generator is

that this method is capable of identifying data dependencies and carry these data dependencies

up to the goals to influence the data generation [27].

Figure 17 - Sample function III
Figure 16 - Execution tree

37

As denoted in the above diagram the test method or the test function is modeled into a

controlled flow graph where each statement in the program is symbolized as a node in the

graph [11] [15]. For example assignment statement, branch statement, loop statements such

as while/for are all modeled into nodes. Each edge represents the possible execution path. If

there is a conditional node there will be two branch edges denoted as a true branch and false

branch [11] [15]. S denotes the entry point and the E denotes the endpoint. In the goal-oriented

approach, the goal should be to traverse through a set of desired nodes. Basically, traversal

should satisfy the exploration of desired nodes. And the ultimate goal should be to generate

test cases such a way that it satisfies all possible code execution paths. But in certain cases

path exploration can be infeasible. Hence tool may fail to generate a test case for the path

which is infeasible to access. These infeasible paths will require manual intervention, hence

the tool will report these infeasible paths in the log file as warning and developer should attend

and should take corrective actions. In goal-oriented test case generation, the tool should

generate input to satisfy a particular goal. As mentioned above the motivation is to find a test

(a statement or a branch) in the program, the goal is to find inputs on which the test is executed.

As an example, if the goal is to get THROW_ERROR method to get called, the execution

path should be nodes <1, 2, 3, 4, 5, 6>. To achieve this particular goal generation tool must

generate inputs; integer 10 for r1 variable and integer 20 for r2 variable respectively. The tool

should generate these values within the configured time limit and if the tool fails to generate

inputs it must be reported in the logs for further investigations. When the tool comes to the

point where it needs to generate inputs it does a binary search to detect input values. The

drawback of doing a binary search is it has a time complexity of O (log n) and once the input

values are determined based on this information, tool can exercise the true and false branches.

Compare to random testing this approach does not generate a whole lot of inputs but a set of

well-defined inputs to satisfy all the branches unless the branch is infeasible to access. The

random testing helps in certain ways when invalid or unhandled inputs that are generated

randomly and pass on to the method. Random testing can be effective in some ways and it

can help detect unhandled exceptions whereas in goal-oriented approach variable values are

known beforehand by searching for possibilities in the CUT and it will only exercise the class

for the known set of variables derived.

38

4.5 Architecture of Code Generator

This section covers the functionality of each module.

The class under test passes through the module chain as depicted in the above graph. Each

module has a set of pre-conditions and post-conditions and each module operates within a

well-defined boundary.

Fitness Function Evaluator is used to calculate the branch distance when the feedback driven

test data generator is selected meaning this function will only be evaluated at the analyzer

module when feedback driven test data generator is selected as the data generator.

Code parser module checks whether the class is compile able. If this module finds any compile

errors/issues then the tool stops generating unit tests and report errors. If there are no errors

in the class, the class is parsed and the collected data will be moved forward on to the analyzer

module.

Analyzer module is where the test data generation algorithms work. Then the generator

module takes this generated input data/selected methods and constructs unit tests according

to the gtest framework.

Once the code is successfully generated tool itself compiles the generated unit test suite and

runs test code and generates the lcov report. The report generator module is an optional

module and it will only be enabled if the parameter required for report generation is passed as

an argument during the tool run.

Analyzer Code

Generator

Report

Generator

Mutation

module

Code

Parser

Figure 18 - Unit test Module chain

39

4.5.1 Code parser

Since the tool is developed in JAVA 8, there is a requirement for a C++ parser library written

in JAVA. The parser used is “Eclipse CDT Parser” version 5.6.0. First, the Code parser

module checks for syntax errors by compiling the source code and unit test generation process

stops if compiler gives any error. An assumption is made that g++ is available in the

environment to compile the source code. The source code is then parsed and the tool keeps

constructors, methods, and fields for that particular class in data structures. Below figures

show class structures:

Figure 19 - Field class

40

 Figure 21 - Method class

Figure 20 - Parameter class

41

4.5.2 Fitness function evaluator module

The main responsibility of the fitness function evaluator module is to calculate the branch

distance in the function under test when the function consists of branches. The following table

in figure 26 summarizes the computation of branch distances. First branch conditions are

summarized into fitness functions and then this module evaluates fitness functions starts with

random values [14] [28]. The value generated by the fitness function is taken as the feedback

to generate the next set of data. And this process will take place until all branches are covered.

To realize the execution code path and to generate asserts accordingly without creating

duplicate asserts when a random test generator is selected tool needs to calculate the branch

distance for the given input. This module is only needed when the random test generator is

Figure 22 - Constructor class

42

enabled since by default random generator is used in the tool this module will be enabled in

the module chain by default.

Below figure explains the functionality of the fitness function evaluator module:

As shown in figure 28, fitness functions will be evaluated starting with random values. If the

fitness function returns a negative value, it means the code will take the true branch. Likewise,

if the fitness function value is positive, code will take the false path. For function in figure 27,

it is required to create 6 test cases. Hence based on the result return by the fitness function for

Public int getDiscountedPrice(int price)

{

 if (price < 100)

 {

 return price*.95;

 }

 else if (price >= 100 && price < 500)

 {

 return price*.90;

 }

else if (price >= 500 && price < 1000)

 {

 return price*.80;

 }

 Return price;

}

 Decision

Type

Branch

Distance

1

A < B A – B

2

A <= B A – B

3

A > B B – A

4

A >= B B – A

5

A == B Abs (A-B)

6

A != B Abs (A-B)

7

A && B Min (A,B)

8

A || B A + B

Figure 24–Sample function for fitness calculation Figure 23–Branch Distance computation

Fitness Function Branch Condition

F(n) = Price – 100 Price < 100

F(n) = Min(100 – Price, Price – 500) Price >=100 && price < 500

F(n) = Min(500 – Price, Price – 1000) Price >= 500 && price < 1000

Figure 25 - Derived Fitness Function for Figure 27

43

the input random value, taking as the feedback, another input value will be generated for the

negated path.

After successful iterations, values generated for function methods will be passed on to the

next module in the module chain for test case generation.

4.5.3 Analyzer

First of all analyzer module recompiles the class it receives from the fitness function evaluator

module because as explained in the above section log trace is needed to infer the execution

path. This object is going to be used to derive outputs for the given inputs.

As mentioned in the above chapter there are mainly two algorithms that can be used to

generate input data. Based on the algorithm configured analyzer module starts to generate

input data.

At the initialization phase of the tool, an object of the respective algorithm will be created

based on the configuration and will be assigned to the module. Analyzer module is considered

the core of the test generation tool as it does most of the core work. Once the previous module

task is completed analyzer module calls the generate function of the algorithm. How each

algorithm works is described in the above subsection.

When the algorithm computation is completed, this module output a list of test case blocks

that are ready for the developer to execute.

The following diagram shows a sample unit test block.

Figure 26 - Generated unit test block

44

At this stage even though the test body is available still the unit test class is not generated.

This will then be passed on to the code generation module.

4.5.4 Code generator

This is the module that creates the actual unit test class. The pre-condition of this class is a

list of unit test bodies. This class does not validate the body of the class and this module

assumes that unit test blocks that are generated are with correct syntax.

This module gets this list of unit test functions and writes those functions to a file according

to the gtest framework, along with the list of test bodies this module inserts the list of headers

that are required to execute the unit test class and also the main method which is required to

execute the program.

The following diagram shows the snippet of the generated test code.

Figure 27 - Generated Test file

45

4.5.5 Report generator

The responsibility of this module is to generate the execution report which user can use to

analyze the code coverage. This is not a mandatory module which means this module gets

executed only when the user gives the parameter required to execute the code block in this

module.

This module links with Cmake and once the code generator module completes its work, using

the CMake report generator module executes the unit test class. The sample CMake file can

be found in the appendix section of the report. This module also links with lcov and when the

unit test class gets executed it creates the lcov report.

4.6 Parameters

Following is a sample execution with parameters:

java -jar {binary_name} -projectCP{absolute_path_to_the_class} -class {class_name} -

Ddebug=true –Dreport=true

TestGenerator.jar is the binary name.

 Binary name – Specifies the binary name with the absolute path of the binary location

 projectCP–This tag specifies the path variable. To locate the class file, the tool needs

the absolute path of the class.

 class –This variable specifies the class name.

 debug - Debugging options can be enabled if the developer wishes to debug the

program. It helps a developer to have an insight about the test data and test class

generation process.

 report - Reporting module in the module chain will only get executed if the report

option is set to true. If this variable is not specified or set false, then the tool will bypass

this module.

 goal_oriented – Enables the goal-oriented data generation algorithm

46

CHAPTER 5

EVALUATION

47

5 EVALUATION

5.1 Overview

In this section, the research carried out will be evaluated and based on the generated results

the validity and the accuracy of the research will be justified. The implementation component

of this research project is the unit test code generator. Algorithms along with modules

discussed in previous chapters have been implemented.

5.2 Evaluation of the Tool

The main objective of this tool is to generate test cases with higher code coverage. And the

tool will be evaluated based on the following criteria’s [7]:

 Effectiveness

 Efficiency

To evaluate the effectiveness of the tool, the tool generated lcov report will be used and with

the lcov report observations can be made and paths that are covered with the tool and paths

that are not covered by the tool can be identified and ultimately a conclusion can be made

about the effectiveness of the tool. The higher the code coverage the better the effectiveness

of the tool.

To evaluate the efficiency of the tool generated log files by the tool will be used. If the time

is taken as the parameter to evaluate the efficiency of the tool, the expectation is that the tool

to generate results within a justifiable time limit. Timeout reaches within the tool is not

expected during the execution of tool and test generation.

For the purpose of evaluation, multiple C++ implementations will use (C++ classes) and the

above-mentioned factors will be evaluated against each class with the two algorithms that are

discussed in the above chapters.

48

5.2.1 Evaluation of feedback driven unit test generator

Following class consist of adding elements to an std vector and to a map.

The below image depicts the implementation of the above header. If the edge cases are not

handled properly the program has the potential to crash. Take the getValue function as an

Figure 28 - Header Class

49

example. If the requirement is to retrieve a value from the vector for a given index and if the

method returns the value without checking vector boundaries, the program is susceptible to

crash.

Figure 29 - Implementation class with std data structures

50

Below image shows the code coverage report generated by the tool for the above class and

the random value generator used for the experiment.

As you can see in the above graph, the Feedback Driven Test generator was able to produce

approximately 94 percent of code coverage for the above class. Since data is being generated

randomly there is a chance that the tool misses a branch as evident in the above image.

However, with feedback directed mechanism it is possible to minimize this limitation.

Figure 30 - LCOV report for the data structure class

51

The above diagram shows the time taken to generate test results. As shown in the above graph

the tool has received the action to perform the unit test generation at 15.49.02 p.m. and tool

has finished the data generation, the test execution and the report generation at 15.50.37 p.m.

And according to the image the tool has taken toughly about 1 minute and 30 seconds to

generate test data.

When thoroughly analyzed it was identified that the reason for taking 1 minute time to

generate test cases, is mainly due to the fact that the tool composes, compiles and runs

intermediate classes hence makes the test generation process slower. Usually, the compilation

process and the other mentioned tasks consume a lot of time as it involves operations such as

file I/O.

Figure 31 - Time analysis for the data generation

52

5.2.1 Evaluation of goal oriented test generator

To evaluate the performance and for the comparison purpose, the following class in figure 35

will be used for this section. It is shown in the below section when there are multiple branches

in the function even with feedback directed mechanism there is a chance that the tool misses

a branch.

Figure 32–Class I

Figure 33 - Header file for the above class

53

As shown in the above diagram when the algorithm is switched to goal-oriented test

generation we can achieve a greater coverage goal. For the above class, we achieved 100%

code coverage and tool generated data within 1 minute and 2 seconds

Figure 34 - Coverage report for class in figure 30

54

However, there can be scenarios where the goal which is desired to achieve is not attainable

due to logical errors hence in cases like this tool will not be able to cover those branches.

Below is an example:

In the above case inner if block which resides inside the outer block will never achieve as two

blocks consist of contradicting conditions.

Public int getDiscountedPrice(int price, int itemCount)

{

 if (price < 100 || itemCount>5)

 {

 if (itemCount == 5) {

 return price*itemCount*0.95;

 }

 }

 Return price*itemCount*0.9;

}

Figure 35 - Time measures for Class I with Goal Oriented Test data

Figure 36 - Unachievable branch statements

55

5.3 Algorithm Comparison

Figure 37 - Class A

Figure 38 - Random Generator Result for Class A Figure 39 - Goal Oriented Result for Class A

56

Figure 40 - Class B

Figure 42 - Random Generator Result for Class B Figure 41 - Goal Oriented Result for Class B

57

Figure 43 - Class C

Figure 45 - Random Generator Result for Class C Figure 44 - Goal Oriented Result for Class C

58

Figure 48 - Class D

Figure 47 - Random Generator Result for Class D Figure 46 - Goal Oriented Result for Class D

59

Figure 49 - Class E

Figure 50 - Random Generator Result for Class E Figure 51 - Goal Oriented Result for Class E

60

Figure 53 - Class F

Figure 52 - Random Generator Result for Class F
Figure 54 - Goal Oriented Result for Class F

61

5.3.1 Comparison of code coverage

Test Function Random Test Generation

based on feedback

Goal-oriented test

generation

Class A 100% 100%

Class B 100% 100%

Class C 95.5% 100%

Class D 100% 100%

Class E 93.8% 93.8%

Class F 94.7% 94.7%

As shown in the above diagrams, both test data generators show promising results as both

approaches successfully achieved code coverage of above 90% in all cases. However

theoretically in goal oriented value generator, 100% code coverage is attainable with

parameter fine-tuning and improving tool implementation but with feedback driven value

generator we won’t be able to achieve 100% code coverage for certain conditions. In both

approaches, a predefined timeout value is set to exit the test data generation process. Also,

Figure 55 - Code Coverage Comparison Table

0

10

20

30

40

50

60

70

80

90

100

Class A Class B Class C Class D Class E Class F

Code Coverage Comparison

Feedback Directed Test Generator Goal Oriented Test Generator

62

method calls are taken randomly by the tool to test hence the tool has no control over the

meaning of method calls. Eg: Manipulation of member variables are not taken into

consideration when generating test results.

5.3.2 Comparison of time

Test Function Random Test Generation

based on feedback

Goal oriented test

generation

Class A 1 min 2 min 02 seconds

Class B 1 min 2 min 12 seconds

Class C 1 min 25 seconds 2 min 24 seconds

Class D 57 seconds 1 min 49 seconds

Class E 46 seconds 1 min

Class F 1 min 1 min 7 seconds

Figure 56 - Time Analysis Table

Feedback directed test generation method specifically targets the branches that needs to be

tested, and generates value in constant time in most cases as a reason compared to goal-

oriented test generation method it has taken lesser time to produce results. The main reason

for taking more time to generate results in goal oriented test generator is goal oriented value

generator uses binary search algorithm to generate input values and it can be costly when it

comes to finding the value required, hence this approach has taken more time to produce final

0

0.5

1

1.5

2

2.5

Class A Class B Class C Class D Class E Class F

Chart Title

Feedback Directed Test Generator Goal Oriented Test Generator

in minutes

63

coverage reports. However, goal-oriented test generation always has a better chance of finding

the solution in most cases compared to feedback driven value generation as feedback driven

value generator use random values to obtain actual input values.

In instances where the branch checks for an equivalent value; by using feedback directed value

generator it is highly unlikely that we find the solution that satisfy the condition, however

with binary search it is guaranteed that tool will always converge into the final solution after

some iterations in such cases.

5.3.3 Proof of concept

Following is the pseudo code of the binary search:

Goal Oriented Data Generator is based on divide and conquer algorithm, and it initializes the

search logic with a negative value, and proceed with binary search logic. As depicted in the

above image it disregard a section of values if the chosen value does not satisfy the specified

condition and recursively search algorithm tries to locate the value disregarding a value range.

And as a result the logic will reduce the search space by half in each recursion.

Value range we select is (-int_max = lower, int_max = upper). If value selected satisfy the

condition, logic will return the selected value, if the value < x then we change the range to

Figure 57 - Pseudo code for search logic

Procedure binary_search (value, x, condition, l, u)

 if value condition x

 EXIT: x found

 set m = l + (u - l) / 2

 if m < x

 set l = m + 1

 if m > x

 set u = m - 1

end procedure

64

lower+upper/2 make assign it as new lower. Else if value > x then we change the range and

assign the new upper as lower+upper/2 and this logic will be executed until the condition

specified is satisfied.

Case I:

Start value: -INT_MAX

-

INT_MAX

-- -- -- 0 -- 195 --- INT_MAX

Next value: 0

-

INT_MAX

-- -- -- 0 -- 195 --- INT_MAX

Next value: 1073741823

-

INT_MAX

-- -- -- 0 -- 195 --- INT_MAX

Next value: 536870911

-

INT_MAX

-- -- -- 0 -- 195 --- INT_MAX

The above mentioned search logic in figure-60, will be executed until the final result which

is 195 is found. However the limitation as described in above section is the time. Given the

fact that time is unlimited in cases like this relevant input value can always be found with this

approach. However with feedback driven value generator it is not feasible as values are

generated randomly.

Figure 58 - Example for proof of concept case 1

65

Case II:

Goal Oriented Data Generator, starts from the negative range, do the binary search.

Start value: -INT_MAX

-

INT_MAX

-- -- -- 0 -- 195 --- INT_MAX

In the first iteration itself the condition satisfies therefore exist the searching algorithm.

Case III:

Goal Oriented Data Generator, starts from the negative range, do the binary search.

Start value: -INT_MAX

-

INT_MAX

-- -- -- 0 -- 195 --- INT_MAX

Next value: 0

-

INT_MAX

-- -- -- 0 -- 195 --- INT_MAX

Next value: 1073741823

By the second iteration the condition satisfies therefore exist the searching algorithm with

value which is denoted last.

Figure 59 - Example for proof of concept case II

Figure 60 - Proof of concept case III

66

5.3.4 Line coverage

Both test data generators show equal performance in terms of code coverage and time for data

generation completion, Hence we can conclude that line coverage does not have any impact

on the code generator we choose.

5.3.5 Branch coverage

Number of

Branches

Feedback Directed Test Generator Goal-Oriented Test Generator

 Coverage Time Coverage Time

1 100% 8 seconds 100% 14 seconds

2 100% 8 seconds 100% 14 seconds

3 100% 10 seconds 100% 22 seconds

4 100% 10 seconds 100% 21 seconds

5 100% 11 seconds 100% 24 seconds

6 100% 11 seconds 100% 35 seconds

7 100% 11 seconds 100% 56 seconds

8 100% 13 seconds 100% 1 min 20

seconds

As per the above table, both test data generators show 100% code coverage for the selected

data set, however, it is clear when the number of branches increases Goal Oriented Test

Generator degrades its performance in terms of time taken for completion.

67

However, we cannot come to a conclusion to select one approach over the other. If the user

prefers to see results in a quick time Feedback Driven Test Generation should be the choice,

and if the user needs more accurate test cases Goal Oriented Test Generation should be the

choice.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

Time Comparison Vs Branches

Feedback Directed Data Generator Goal Oriented Data Generator

in seconds

No of

Figure 61 - Time Comparison Vs Branches

68

CHAPTER 6

CONCLUSION

69

6 CONCLUSION

6.1 Summary

Software is needed in almost all industries, in every business and the dependency with

software grows every day. With the growth of software dependency, it is required that the

software be secure and reliable. But there are many cases where businesses/industries fail due

to software failures. Software testing is widely considered as the best way to ensure and

improve the reliability of software [8].

The C++ language is a low-level programming language and applications that have low

latency, high-performance requirements, and applications such as mission-critical solutions

usually implement using low-level languages such as C/C++.Due to the data encapsulation

mechanisms, convenient abstraction, software developers prefer C++ over C language. C++

has the following language features:

 Function and operator overloading

 Constructors and destructors

 Classes with multiple levels of inheritance, virtual functions

 Templates, exceptions

 Functors

 Standard libraries (STL and BOOST).

However, these features also complicate the process of implementing C++ testing programs.

Furthermore, due to the mixing of object-oriented programming concepts on top of C code, it

makes test implementation even harder. Manual unit test implementation is a time-consuming

process hence there is an industrial need to automate test generation for C++ application.

Code structural coverage is an important metric in unit testing. Hence it is expected that every

single line of code is executed at least once during the testing. The unit test generation

techniques discussed in the above section ultimately narrowed down to finding test inputs to

execute a specific statement in the code. And the final goal is to generate a test suite that gives

a higher code coverage.

70

There are many unit test development frameworks for the test-driven development approach,

however as described in the above chapters in cases where TDD approach is not practical due

to time and budget constraints, however still there should be a way to measure the code quality

when TDD approach is not taken. Hence the sole purpose of this research is to cater to the

above requirement and propose the implemented solution as a replacement of test-driven

development based on the result.

There have been many attempts to develop a practical solution to generate unit tests to achieve

higher software code coverage and find potential code errors that were previously hidden.

However often in all these approaches, manual intervention is required where the user needs

to mark certain inputs as test inputs. Therefore still there is a growing need for a practical

solution for a fully automated unit test generation tool.

Test generation can be viewed as a search problem and for a given program set of well-defined

tests, goals can be defined. And for a program an unlimited number of test cases can be

generated but when a generalized only finite number of test cases may be valid as coverage

goals may be duplicated. Test goals can be generalized into the following [9]:

 Branch coverage – Derive at least one test case where all branches in a given class are

covered. In branch coverage, there should be one test case to cover branch TRUE

condition and another for branch FALSE condition.

 Line coverage – If the test suite covers the non-commented line of the code at least

one time. To ensure this each basic block of code must be reached by the test suite.

 Exception coverage – The goal here is to build a test suite that forces the class under

test to throw exceptions. Basically, this coverage criteria forces the program to take

negative paths of the program.

 Method coverage – The goal of this criteria is to call every method in the class under

test to be executed by the test suite at least one time.

 Output coverage - Test suite satisfies output coverage when each method that is

publicly accessible in the class under test, at least one test yields a concrete return

value characterized by each abstract value.

71

There are tools to generate unit tests for popular, high-level languages such as Java, however,

for low-level languages such as C++, there are only a few attempts. In this thesis, I explored

and developed a demo tool to generate unit tests for applications that are developed in the

C++ language.

In this thesis, I researched and developed an effective tool to improve the degree of attainable

software automation. This thesis explored methods of effectively derive test cases, the basic

method of testing software. I explored methods such as symbolic analysis, constraint solving,

dynamic program analysis, etc and applied the ideas derived from these methods to build an

effective tool to achieve a higher structural coverage of the code.

6.2 Contribution

The testing framework I propose three data generators; random unit test generation, feedback-

driven random unit test generation and goal-oriented test data generation to improved code

coverage. The main objective of this research is to implement an effective and efficient test

data generation/ unit test generation tool for automated unit testing. Unlike a symbolic driven

unit test generation where generated test cases are in bit code form, the proposed tool will

generate test cases in C++ language and hence the test file is easily readable. When a C++

class is given as the input to the tool, the tool processes it and provides a unit test class.

Developers can use this class to improve the code coverage and improve the meaningfulness

in the unit test. The unit test generation process is completely automated and the developer

has the option to run the unit test code and generate coverage report. During the code

generation, the process code tool executes the class under test multiple times if the function

which is testing returns a value, to generate asserts for the function. Many technologies have

been used to develop this demo tool like Eclipse CDT parser, gtest, gmock, lcov, gocv and

JAVA, JNI. To make the generated unit test file readable, the tool is integrated with the GTest

framework which is a widely used unit test framework for C++ programs.

In this research, my objective is to encourage developers to use this tool to generate test cases

and as a result, they can save up a lot of time as time no longer needed to be allocated for unit

test implementation, and they can focus on improving the code reliability and readability.

72

6.3 Limitations

The main problem which is addressed in this research is the reachability problem, discover

inputs for a given a statement or branch of a program and the starting point is the input

generation and the main objective is to discover methods to handle path exploration

effectively to achieve the test goal (achieve statement or the branch). When the test goal is

presented, the primary analysis of data dependency is carried out to identify the statements

that affect the execution of the goal and then propagate the result of the test goal up in the

order in order to trigger the execution of the test goal. The path exploration efficiency heavily

relies on the results of the data dependency analysis and this leads to lower precision analysis.

Also once a test case is derived this test case is executed to obtain the output result to generate

asserts. Since compiling and executing the program is time-consuming and the end result is

the program takes a long time to generate the test suite.

The main limitation of this tool developed is the correctness of the unit test generated. As

stated in the above chapters, the test tool could detect issues that exist in the code, however,

the tool cannot detect missing requirements. Once the unit test is generated manual

intervention is required and the developer can improve the unit test further if the code

generated can be improved and the developer should it a more meaningful test code.

Another limitation is, In order to tool to generate unit tests for a given class or a function, the

tool needs to isolate that particular unit from its dependencies. If dependencies have not been

properly designed tool will fail to generate unit tests. For example, if a dependency function

is implemented without the virtual keyword tool will not be able to generate a mock function

for it, hence it will call the actual implementation and this is not the desirable case. Hence

during the design phase of the class, some level of attention needs to be given for unit test

design as well even though the implementation is not done, meaning C++ implementation

needs to comply with unit test standards. However, this is not a limitation in the tool rather a

forced rule in unit test design.

73

6.4 Future work

This main focus of this research project is to implement a tool that generates unit test suite for

a given C++ class such a way that at the end of test generation, and upon running the test suite

a high code coverage should be attainable. However, as pointed out in the limitation section

even though high code coverage can be attainable with this approach still there are questions

regarding the validity of the generated result.

As described in the above chapters the ideal way to implement software is with Test Driven

Development and we can call it TDD. However, as described TDD is expensive and some

companies are not willing to invest a lot for TDD. This is basically a solution or rather I call

it a replacement for the TDD approach. However as described in the limitation section, the

proposed solution does not cover the entire scope of the TDD. TDD not only captures bugs in

the software or application, but this approach can also identify missing features. However, the

solution I propose can be extended to fully cover the scope of TDD. The tool can be extended

so that it can detect missing requirements.

74

Reference

[1] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,

M. J. Harrold, and P. Mcminn, “An orchestrated survey of methodologies for automated

software test case generation,”Aug. 2013.

[2]H. Yoshida, S. Tokumoto, M. R. Prasad, I. Ghosh, T. Uehara, “FSX: Fine-grained

Incremental Unit Test Generation for C/C++ Programs”, Proceedings of the 25th International

Symposium on Software Testing and Analysis ser. ISSTA 2016, pp. 106-117, 2016.

[3] J. Burnim, K. Sen, “Heuristics for scalable dynamic test generation”, in ASE '08, 2008.

[4] G. Fraser, A. Arcuri, “Whole test suite generation”, IEEE Trans. Softw. Eng., vol. 39, no.

2, pp. 276-291, Feb. 2013.

[5] S. J. Galler, B. K. Aichernig, “Survey on test data generation tools”, STTT, vol. 16, no. 6,

pp. 727-751, 2014.

[6] H. Tanida, T. Uehara, G. Li, I. Ghosh, “Automatic unit test generation and execution for

javascript program through symbolic execution,” Proceedings of the Ninth International

Conference on Software Engineering Advances, pp. 259-265, 2014.

[7] X. Deng, Robby, J. Hatcliff, Kiasan/KUnit, “Automatic Test Case Generation and

Analysis Feedback for Open Object-oriented Systems,” in Proc. of MUTATION 2007,IEEE

CS, 2007.

[8] Tassey, G, “The economic impacts of inadequate infrastructure for software testing.

National Institute of Standards and Technology,” RTI Project Number 7007.011, 2002.

[9] Hong Zhu, Patrick A. V. Hall, John H. R. May, “Software unit test coverage and

adequacy,”ACM Computing Surveys, 29(4):366–427, 1997.

[10]M. Ellims, J. Bridges, D. C. Ince, “The economics of unit testing”, Empir. Softw. Eng.,

vol. 11, no. 1, pp. 5-31, 2006.

75

[11] Paul Ammann, Jeff Offutt, “Introduction to Software Testing,” Cambridge University

Press, New York, NY, USA, 2008.

[12] G. Li, I. Ghosh, and S. P. Rajan, “KLOVER: A symbolic execution and automatic test

generation tool for C++ programs,” in CAV, 2011.

[13] Li, G., Ghosh, I., Rajan, S. P., Gopalakrishnan, G. GKLEE, “Concolic Verification and

Test Generation for GPUs,” 2012.

[14] P. Garg et al., “Feedback-Directed Unit Test Generation for C/C++ Using Concolic

Execution”, Proc. 35th Int'l Conf. Software Eng. (ICSE 13), pp. 132-141, 2013.

[15] Jacob Burnim, Koushik Sen, “Heuristics for Scalable Dynamic Test Generation” in ASE

'08, 2008.

[16] Olivier Crameri, RekhaBachwani, Tim Brecht, Ricardo Bianchini, DejanKostic, Willy

Zwaenepoel, “Concolic Execution Driven by Test Suites and Code Modifications,” 2009.

[17] Y Kim, M Kim, YJ Kim, Y Jang, “Industrial Application of Concolic Testing Approach,”

A Case Study on libexif by Using CREST-BV and KLEE, 2012.

[18] Cristian Cadar, Daniel Dunbar, Dawson Engler, “Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs”, Proceedings of the

USENIX Symposium on Operating System Design and Implementation, 2008.

[19] Pietro Braione, Giovanni Denaro, Andrea Mattavelli, MattiaVivanti, Ali Muhammad,

“Software testing with code-based test generators: data and lessons learned from a case study

with an industrial software component,” Software Qual J, vol. 22, no. 2, pp. 311-333, 2014.

[20] Duc Anh, Nguyen & Ngoc Hung, Pham, “A Test Data Generation Method for C/C++

Projects,” 2017.

[21] Patrice Godefroid, Nils Klarlund, and Koushik Sen, “DART: Directed Automated

Random Testing,” In Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’05). ACM, New York, NY, USA, 2005.

76

[22] Koushik Sen, Darko Marinov, and Gul Agha, “CUTE: A Concolic Unit Testing Engine

for C”, In Proceedings of the 10th European Software Engineering Conference Held Jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(ESEC/FSE-13). ACM, New York, NY, USA, 2005.

[23] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger, “PathCrawler:

Automatic Generation of Path Tests by Combining Static and Dynamic Analysis”, In

Proceedings of the 5th European Conference on Dependable Computing (EDCC’05).

Springer-Verlag, Berlin, Heidelberg, 2005.

[24] McMinn, Phil, “Search-based software test data generation”, a survey: Research Articles.

Softw. Test, 2004.

[25] Runeson, Per. (2006). A Survey of Unit Testing Practices. IEEE Software. 23.

10.1109/MS.2006.91.

[26] Kassab, Mohamad & DeFranco, Joanna & Laplante, Phillip. (2017). Software Testing:

The State of the Practice. IEEE Software. 34. 46-52. 10.1109/MS.2017.3571582.

[27] Thummalapenta, Suresh & Xie, Tao & Tillmann, Nikolai & Halleux, Jonathan & Schulte,

Wolfram, “MSeqGen: Object-Oriented Unit-Test Generation via Mining Source Code.” 2009.

[28] Jaygarl, Hojun. “Capture-based Automated Test Input Generation”, 2010.

[29] Yatoh, Kohsuke & Sakamoto, Kazunori & Ishikawa, Fuyuki & Honiden, Shinichi,

“Feedback-Controlled Random Test Generation”, 2015.

[30] Cseppentő, Lajos & Micskei, Zoltan. “Evaluating code-based test input generator tools.

Software Testing, Verification and Reliability”, 2017.

[31] Zhang, Chengyu & Su, Ting & Yan, Yichen & Wu, Ke & Pu, Geguang. “Towards

Efficient Data-flow Test Data Generation Using KLEE”, 2018.

77

Appendix A – Random Test Generation Method

I used following class for testing purposes:

Figure A.1 – Sample test class

78

Tool generated following unit test class, and I have inserted captures of the generated class:

Figure A.1 – Sample test class

Figure A.2 – Generated Unit test - I

79

Figure A.3 – Generated Unit test - II

80

Figure A.4 – Generated Unit test - III

81

Figure A.5 – Generated LCOV Report

82

CMake is used to compile the C++ unit test class created, and also used for compilation of

code in the intermediate stages as well:

Figure A.6 – CMake file use to compile the class

83

Class generated with JNI by the tool to execute the C++ code:

Figure A.7 – Intermediate generated JAVA class with JNI

