

VISUAL DEVELOPMENT TOOL SUPPORT FOR

ENHANCING PERFORMANCE AND QUALITY OF

DEVELOPER WORK

U.I. Heenatigala

168223F

This dissertation submitted in partial fulfilment of the requirements for the Degree of

MSc in Computer Science specializing in ​Software Architecture

Department of Computer Science and Engineering

University of Moratuwa
Sri Lanka
April 2020

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant the University of Moratuwa, the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works (such as articles

or books).

………………………………

U.I.Heenatigala Date: ​…………………

I certify that the declaration above by the candidate is true to the best of my knowledge

and that this report is acceptable for evaluation for the Master of Science Project.

………………………………

Dr. Indika Perera

Supervisor (University of Moratuwa)

ABSTRACT

There is a very limited number of visual development tools that support a software

developer. The aim of this study was to develop a visual development tool and

determine the effect of the tool on developing performance and quality of work of a

developer. The research was conducted in five steps. Develop version 0.1 of the tool

with basic requirements. Conduct a survey for the initial tool. Update the tool

according to the survey results. Release version 1.0 of the tool to the sample with

development tasks. Finally analyse the results. Thirty developers from the Srilanka

were randomly selected using the convenience sampling method. Testing method was

used to identify the efficiency of the developers and observation method was used to

explore the quality of the work. Paired t-test in R package 2019 was used to compare

the time taken to complete the given tasks using the tool and without the tool. ​The

quality of work is measured by coding standards followed and also the structure of the

code is inspected to determine how the developer has gone about solving the problem.

Three tasks with varying complexities were given. Task 1 which is the least complex

didn’t give a significant result(P value >0.05). Task 2 and Task 3 development time

analysis gave a positive result for using the tool(P value < 0.05). ​There are further

features that need to be added to make it a product that can be used by the masses.

Suggestions, a real-time preview of the generated code, more built in components

and better style (css) generation are some of those features. The quality standards in

readability and code reuse were improved by using the tool.

The results conclude that the importance of visual development tools to enhance the

performance and quality of the developer according to the complexities of the tasks.

Not only the statistical analysis but also the developer interviews also confirm this.

Further, there is an added advantage that helps new vue developers to learn as well.

As future work we plan to enhance the tool according to the suggestions given.

Keywords - Developer tools, Vue, Vue drag and drop, Developer performance, Code

quality

DEDICATION

To all the parties

who are interested in the field of

Computer Science

ACKNOWLEDGEMENTS

I would like to express profound gratitude to my advisor​, Dr. Indika Perera,​ for his

invaluable support by providing relevant knowledge, materials, advice, supervision

and useful suggestions throughout this research work. His expertise and continuous

guidance enabled me to complete my work successfully.

I would like to thank all my software engineer colleagues for their help on creating a

test group by doing the 3 tasks with tool and without tool and those who gave

valuable feedback for further improvement of the developed tool. I would also like to

thank ​Ms.Dilini Jayakody ​, for providing valuable resources and advice in the

statistical analysis area of this research.

Lastly, I would like to thank ​Riverview Innovation Labs,​ for the support given me to

conduct my research there and to manage my MSc research.

TABLE OF CONTENT

DECLARATION i

ABSTRACT ii

DEDICATION iii

ACKNOWLEDGMENT iv

TABLE OF CONTENT v

LIST OF TABLE vi

LIST OF FIGURE vii

1. Introduction 1

1.1. Background of the study 1

1.2. Problem Statement 4

1.3. Minor Objectives 4

1.3.1. Major Objectives 4

1.3.2. Minor Objectives 4

1.4. Hypothesis 4

1.5. The limitations of the study 4

2. Literature Review 5

2.1. Vue.js 5

2.2. Integrated Development Environments 6

2.3. IDE’s with enhanced domain specific interaction 8

2.4. Impact of Integrated Development Environments 9

2.5. History of user interface 10

2.6. Developing a Graphical user interface 10

2.7. Principles of visual design 11

2.8. Development tools for different situations using Java 12

2.9. Android development tool 13

2.10. What is no code? 13

2.11. Code generation tools 14

2.12. The Effects of visual learning 17

2.13. Visual development tools 17

3. Methodology 19

3.1. Procedure 19

3.2. Selecting a Sample 21

3.3. Data Collection Method 21

3.4. Data Analysis Method 21

3.5. Summary 22

4. Implementation 23

4.1. Initial Requirement 23

4.2. Building the visual development tool 23

4.2.1. Breaking down the components 23

4.2.1.1. Version 0.1 element break down 23

4.2.2. Building the server 27

4.2.3. Download feature 28

4.2.4. Summary 29

4.3. Preliminary survey 29

4.4. Building version 1.0 30

4.4.1. Integrating the veutify components to the visual development

tool 31

4.4.2. Design of the component newly added components 32

4.4.3. Authentication 34

4.4.4. Pages 34

4.4.5. Undo/Redo Feature 34

4.4.6. Preview Feature 36

4.4.6.1. Mobile view preview 36

4.5. Final Tool 37

4.6. Summary 37

5. Evaluation 39

5.1. Results of the initial survey 39

5.2. Analysis of the feedback 39

5.3. Analysing the timing of coding of the developers using three different

tasks 39

5.3.1. Analysis of Task 1 40

5.3.2. Analysis of Task 2 41

5.3.3. Analysis of task 3 42

5.4. Analysis of coding standard of developers 43

5.5. Analysis of issues and suggestions by developers given for the tool 43

5.6. Understanding the results 44

6. Conclusion 46

7. Future Work 48

Reference 48

Appendix A: Test of normality of the data and test result 51

Appendix B : R studio code 56

LIST OF TABLES

Table Tittle Page

Table 5.1 Summary of the result table 40

Table 5.2 Analysis of task 1 40

Table 5.2 Analysis of task 2 41

Table 5.3 Analysis of task 3 42

LIST OF FIGURES

Figure Tittle Page

Figure 2.1 The procedure of UML model map to IEC 61131-3​5 15

Figure 2.2 Relationship of programs and representation proposed 16

Figure 3.1 Summary of the procedure 22

Figure 4.1 Lay out of the two panels 24

Figure 4.2 Table components 24

Figure 4.3 Generated code for table component 25

Figure 4.4 A group of elements contained in a div 26

Figure 4.5 Generated code for the group elements contained in div 26

Figure 4.6 Generated styles for the above design 27

Figure 4.7 Example code for download features 29

Figure 4.8 Layout with new material component 31

Figure 4.9 Design built with the newly added component 32

Figure 4.10 Generated code for design built with the newly added
component

33

Figure 4.11 Example code for create pages 34

Figure 4.12 Example code for create undo/redo features 35

Figure 4.13 The mobile version of the tool 36

Figure 4.14 The final development tool 37

Figure 4.15 Summary of the final product 38

CHAPTER 01

INTRODUCTION

1.1 Background of Study

Software q​uality is the most important factor for software development as it mainly

defines customer satisfaction that is directly related to the success of a software

project [1]. ​The CISQ software quality model defines Reliability, Performance

efficiency, Security and Maintainability as the four important indicators of software

quality [12]

Cost of building programming legitimately identifies with time. Following is a

rundown of various degrees of hourly rates. "Enterprise Class" Custom Software

Development Companies. As the biggest players in the market, Enterprise Class

consultancies for the most part have hundreds if not a huge number of designers and

specialists on staff and by and large work with governments and Fortune 500

organizations that can manage the cost of their out of this world rates [10].

Projects for the most part go in budget from $500,000 - $100,000,000+. Hourly rates

are high as between $250 - $850 every hour, contingent upon the experience level of

the designer/expert [10].

“Big Business Class” Software Development Companies. Huge Business

consultancies will in general work with other enormous organizations that can't

exactly manage the cost of the expenses of the endeavor class shops, yet at the same

time have large spending plans. They normally have between 100 - 1,000 engineers,

and a few workplaces around the globe. They're not as costly as the Enterprise Class,

however they absolutely aren't modest. You can hope to pay between $200 - $300

every hour for ventures going in size from $125,000 - $5,000,000+.(kite agency)[10].

1

The above facts show that the software quality and efficiency is an essential

requirement to the success of a software development company. Many organizations

have implemented and attempted different methodologies intended to improve work

efficiency and quality of software programming.

1. Software quality assurance (SQA) is about processors; it makes sure that the

built software is up to the desired standard. It is a preventive step where

processors and methodologies are used to make sure the built software is up to

the desired standard.

2. Software quality control (SQC) is responsible for making sure features that

are being shipped work according to the defined requirement set. Software

quality control is more about building a better product. It is product oriented

and not process oriented.

3. Testing ​is a fundamental action performed both by the developer and the

software quality tester. Tests targeted specifically to the area of the program

which was changed. Test driven development software development process is

very popular since it makes sure the code shipped performs as expected.

4. Agile software development ​is based on having many iterations, Each

iteration includes small increments of features. This makes mistakes less

problematic due to there being a constant validation of the features built.

5. Documentation and enhance collaboration - ​To maintain any software there

should be proper documentation. Where a new software developer can easily

access and understand the architecture of the software. ​Software is built by

teams and collaboration helps to have clear patterns used throughout the

software.

6. Use Software tools - IDE’s, Code generators, Project management tools etc

[7].

Use of software tools is the area where companies spend the least amount of their

budget. The average price of software tools like phpStorm costs around 200 dollars

but it improves productivity of developers a lot. This is the area that this research tries

2

to improve by building a tool that helps developers to build more quality software

efficiently.

Most of the software developers are still using the regular code editors to develop

software. Software developers struggle with the two sources of the complexities. One

is code and the other is the complexities in the process of producing it when designing

large projects. Therefore, it should be done with considerable investigations to

develop tools and techniques to manage them well [8].

Some researchers have found different visualization tools that support the distribution

of software development processes like Augur device which makes visual

representation of both programming artefacts and programming improvement

exercises, and, essentially, permits engineers to investigate the connection between

them[8].

Vue (​Open Source JavaScript Library​) is used to build user interfaces in websites. It

was initially created by Evan you​. A lot of awesome projects have been created using

the vue library. But all this has been handwritten code. None of it was generated by a

tool. There are a numerous number of repetitive tasks that can be done and generated

using a tool. Therefore, it is worthwhile to develop a ​visual development tool to

enhance quality and performance of a developer. Companies spend many millions to

optimize and upgrade the standards of development. Investment for a tool that helps

to do this is very much in need.

It is clear that quality software is what we should aim for and building quality

software is very expensive. Many companies spend millions in software quality

improvement methodologies. But the amount spent for development tools that

improve software quality and reduces development time is close to zero compared to

other expenses. This is due to the lack of visual development tools that will help to

build better software in a shorter timespan. Therefore this research focuses on

building a software tool that helps developers build better software in a shorter time.

Further it tries to clarify the actual effect of the tool that was built. By running a

comparative study using the built tool and without the built tool.

3

1.2 Problem Statement

Vue developers spend a lot of time typing the same thing repetitively this takes time.

There are a lack of standards followed. There is no visual development tool that has

been developed to aid a vue developer which will save time and enhance standards.

1.3 Objectives of the Study

1.31. Major Objectives

To develop a visual development tool to enhance performance and quality of work of

a vue developer

To explore the effect of visual development tool on developing performance and

quality of work of a developer

1.3.2 Specific Objectives

To compare the coding efficiency of developers using the tool and without the tool.

To evaluate quality of work by reviewing code and analysing how a problem was

approached.

To find out the issues of visual development tool when using it

1.4. Hypothesis

H0 ; There is no significant difference between development time using the tool and

without the tool

H1; There is a significant difference between development time using the tool and

without the tool

1.5. Limitations of the Study

In this research, only 30 developers from Colombo were chosen as the sample. Plus

this sample includes different levels of developers, some senior engineers and some

are inexperienced engineers. Further the development tool supports only a few

features and this research only takes into account software (tasks given to sample)

that can be built using the features available.

4

Therefore, the generalization of results will be questionable as the sample size was

small, and the due to the limited features and the narrowness of the tasks given to the

developers.

5

CHAPTER 02

LITERATURE REVIEW

2.1 Vue.js

Among the frameworks, Vue.js was firstly released in 2014 for the purpose of

creating a library. Though it is a recent development, it has been growing a user

database. Laravel php framework suggests using ​Vue.js for building the frontend

application in Laracasts ​[16]. Vue has reached 163,000 stars to date which is higher

than react.js and angular.js

Vue is a progressive javascript framework that is used to facilitate the creation of

interactive, stateful & reusable user interface components. It is used in big companies

like Alibaba, GitLab, Grammarly, 9GAG, Behance and Laravel Spark. Vue was built

by Evan You when working at google. At the time he was working with angular.js.

This has influenced vue.js to be similar to angular rather than reactjs. The idea of

declaratively specifying user interfaces on top of a data model, has come from

frameworks like angular. The user interfaces automatically keep in sync with

underlying data. The developer has to focus on the data the UI will automatically

update itself according to the data. This is achieved by a reactive system. Unlike the

aforementioned frameworks, Vue uses JavaScript rather than HTML to construct

those user interfaces, citing flexibility as the reason for this design decision [20].

Vue.js is the best lightweight front-end framework based on MVVM mode in Web

applications. The schematic diagram of MVVM modern architecture, in which

ViewModel, like middleware, is responsible for communication between functions

and data [23].

Vue utilizes a layout motor like that of Angular and Ember and gives two-way

information authoritative between the HTML format and controller. Con-trollers in

Vue are exquisitely written6 and give a simple method to tie the HTML format and

controller. Vue gives an approach to characterize segments, like the Handlebars in

Ember and mandates in Angular. These parts can be characterized in .vue documents,

6

joining JavaScript and HTML in a solitary record, like that of the JSX records in

React[16].

Obviously Vue depends on a mix of parts from both Angular and React. Vue also has

a framework that is called Nuxt.js which provides server-side rendering out of the

box. This is a big plus for building performant and modular web applications. Most

of the companies that are using ​Vue.js ​use Nuxt.js for building their websites[3].

2.2 Integrated Development Environments

Studies have been done on the impact of Integrated development environments.

Integrated development environments provide a software engineer with an

environment that is aware of the programming language that the developer is using.

With this knowledge the IDE can provide intellisense, code snippets show errors

before run time.

IDEs like phpstorm support php as the main language but do support other languages

like javascript, css and html. Android Studio supports android app development and

Xcode IDE supports development of ios applications. These tools are now must use

when developing android and ios applications because they provide so much support

for the developer.

IDE’s also provides a runtime environment for your application for example phpstorm

provides a server that is able to run php. Android Studio provides simulators to run the

android project. This makes the developer experience much better since a real device

is not needed and developers can debug their code. Further IDE’s can provide

different device configurations. Android studio and Xcode gives the developer to

choose from many devices that are in different os versions. This helps to launch apps

that support wide range devices.

Xcode contains a set of generic components for ios app development. These

components are categorized into three sections - Bars, Views and controls. Bars

contain components like navigation bars, search bars, status bars, tab bars etc. Views

contain components like actions sheets, activity views, alerts, collections etc. Controls

7

contain components like system buttons, details disclosure buttons, info buttons,

context menus etc. The developer is able to drag and drop these elements to create the

user interface of the app. The developer then is able to attach event handlers to do

these components. This is the approach the visual development that we will build in

vue.js will perform.

2.3 IDE’s with enhanced domain specific interaction

Further advancement on the IDE instruments is to connect with various area models.

In building areas displaying of physical frameworks assumes a significant job. For

engineers it is essential to show genuine articles so as to reproduce and survey their

conduct. This is especially valid for the improvement of new item parts such as, wind

turbines. The reasonableness and solidness of segments should be researched right off

the bat in the plan procedure to stay away from costs that emerge when flawed

structures show up during part testing[21].

Intelligent model approval has been actualized to help the client during improvement.

Thus, the client gets quick input whether hismodels are right as indicated by the

linguistic structure and semantic guidelines characterized by the language in

particular. Moreover, extra semantic data and rules can be characterized in a

nonexclusive manner to confine the manner in which models are created. This can

help distinguish structure mistakes that can be difficult to identify when exploring the

code as it were[21].

OneModelica permits to make substantial Modelica models and to use arbi-trary

Modelica-consistent reproduction devices. Reproduction results can be inves-tigated

inside the IDE and a programmed test system empowers test-driven turn of events and

guarantees that models carry on true to form. The implemen-tation vigorously utilizes

model-driven programming improvement and therefore shows that it is conceivable to

make amazing IDEs for complex space explicit dialects, for example, Modelica[21]

8

2.4 Impact of Integrated Development Environments

The impact of integrated development environments wasn’t what was expected. The

assumption that it would dramatically improve over regular text editors like emacs or

vim. A study was done on a group of developers to reevaluate the benefits of Visual

Studio an IDE for building web apps, mobile apps by microsoft. There was actually a

significant improvement but it was not so clear when other aspects like unrelated

libraries which were used by the IDE and the time taken to learn and debug in the new

environment were taken into account.

The ready made components that were given by the IDE needed separate learning and

getting used to by the developers. A considerable time was also taken to edit the code

that was generated. It was found that adopting new libraries and other frameworks

may help gain productivity.

The analysis shows that a search function does not solve the problem area that takes

the most time. It was only a small part of the more complex process. The complex

process was the program comprehension. The research breaks down previously

envisioned processes taken by software developers in solving a maintenance request

into 2 steps.

1. Find the related code for the maintenance request - This includes searching for

strings related to the request or function calls

2. Study the code that gives the unwanted behaviour and update the code.

The true difficulty in these two steps is not solved by a comprehensive search. The

difficulty lies in the code space that has to be understood. A program contains deeply

nested routine calls that often spans out to ten or more levels. With this understanding

the research shows an in depth process;

1. Running through the control flow to access the related bit of code

2. Tracking the call stack of the function

3. Getting to the starting to point of the function

4. Tracking external behaviours that function is used.

5. Understanding the variables and the variable types

9

In summary it is not the time programmers spent on searching the search function

only improved the mistakenly going to wrong areas of the code. The real difficulty

was the program's comprehension [21].

2.5 History of user interface

User Interfaces have been developed with the development of Personal

Computers(PC), even before the field of Human-Computer Interaction was built

up. There were few published papers that showed how user interfaces have been

developed over the years. There were different features and tools have been added

day by day. According to these researches, graphical interfaces are mostly

discussed. With the User Interface being an unequivocal factor in the expansion of

PCs in the public arena and since it has become a social marvel, the time has come

to illustrate its history[13].

2.6 Developing a Graphical user interface

User interface is a significant aspect which is used by software developers. Most

programming that flops because of poor UIs and client experience. It is important to

understand that the user understands a product, software through its user interface.

User experience is also very important. It goes hand in hand with the user interface.

User experience is what a user feels when the user is using the software. Is it intuitive

does it give the user emotional pleasure and does it give a good attitude towards a

product? It is important to have a good user experience and user interfaces for a

product to achieve its intended use.

According to Nielsen the usability of a software can be broken down to five

categories. They are as follows

1. Learnability

2. Efficiency

3. Memorability

4. Errors

10

5. Satisfaction

Nielsen also suggests that to have a high possibility of designing a good user interface

a designer can follow eleven steps. He also says that following all the steps don’t

guarantee a highly usable software. For the development of the visual development

tool the author considered learnability and memorability to be the main attributes of

the user interface design[17].

2.7 Principles of visual design

It is important to understand principles of visual design before starting the design of

software. The designer should understand the platform of the software in the case of

the visual development tool that platform is web. The target browser is google

chrome. The tool will only support a desktop view. The following guidelines were

considered.

1. Consistency - Through the application a common theme and reusable

components should be used. A design system was built with colors and

spacing defined.

2. Universal usability - The user interface should support different types of users

from beginners to experienced developers.

3. Give proper feedback - The user should get proper feedback from the actions

that were carried out. It should be visible but not in a non interruptive manner.

4. Actions should be organized - Flows of the application should show a

beginning, middle and end. Flows also should contain proper feedback after

each step to show the user satisfaction of completing a step. And then move

the user to the next required step.

5. Error prevention - The user interface should make it difficult for the user to

make errors. For example a number input - a user should be only allowed to

enter numerical values. Further errors should be shown at time of action rather

than later. Javascript validation of inputs can be used to do this. Before

sending it to the server

6. Undo action - The user should be able to reverse the action. This allows the

11

developer to easily try out elements without having the fear of making a

mistake.

7. Support internal locus of control - The user should have the feeling the he/she

is controlling the application and understands it. Hence surprises should be

avoided

8. Lower short term memory load - The short term memory in humans is very

limited and this available amount should be used vicely and shouldn’t be

stretched. Consistency can help to reduce short term memory load in many

user interfaces.

2.8 Development tools for different situations using Java

It has been utilized as Java Beans' good parts. In normal activity of the framework, the

client may produce a "bean" segment by summoning a wizard-based interface that

executes strategy for naturally creating and dealing with the bean. The client utilizes

the wizard to indicate data about the bean, for example, the name of the bean, the

bundle it will be in, and the class it stretches out from. In light of the client input, the

framework makes a bean with the name the client indicated, places it in the client's

present undertaking, and shows the source code produced for the bean.

The client may outwardly connect with the bean (or other existing bean) by utilizing

the visual architects to deal with the bean's properties, including: adding properties to

the bean, including bound and obliged properties, adjusting properties of the bean,

expelling properties from the bean, or in any event, creating a custom property

manager. Likewise, the client may continue to utilize the visual fashioners to deal

with the bean's occasions, including: including occasions, tuning in for occasions, and

making custom occasion sets[25]

Java SCP arrangements have been utilized to create highlight models which are

considered as in various phases of programming improvement and are perceived to be

a significant resource in model change strategies and programming product offering

advancement. This improvement was being perceived as one of the key difficulties for

automated programming advancement with regards to Software Product Lines[3].

12

The instruments like Chemistry Development Kit (CDK) which gives normal

assignments in sub-atomic informatics, including 2D and 3D rendering of concoction

structures, I/O schedules, SMILES parsing and age, ring look, isomorphism checking,

structure outline age, etc.using Java with preparing a web interface, just as for

applications and customer side applets [24].

2.9 Android development tool

AndroidRipper, is an automated strategy that tests Android applications by means of a

Graphical User Interface (GUI). It depends on a UI driven ripper that consequently

investigates the application's UIs attempting to discover blames in the android

application. Running the application on an open source android application

demonstrated that the graphical UI based experiments had the option to identify

beforehand obscure serious blames in the underline code. It demonstrates that the

organized way of android ripper outflanks an arbitrary approach[2].

AndroidRipper is a prime example that visual development tools work. As mentioned

in ​Amalfitano, Fasolino et al. 2012 it enabled detection of previously unknown errors

in the code. Also, structured exploration outperformed the previously used

approach[2].

2.10 What is No Code?

No code is the new wave of software development. Where the user can build their

own software without writing code. Webflow is a company that gives users to design

and develop websites through a visual development tool without any code. Webflow,

a no-code web improvement stage, has raised a huge $72 million Series A series of

financing driven by Accel. The financing esteems the organization at between $350

million and $400 million post-cash, as per Forbes [5].

Chris Wanstrath, Chief Executive Officer in GitHub said that software developers will

no longer use codes in the future. It is important to know how to work with no coding

to improve the efficiency in the future. They have been developing new tools and

teaching them for the people who are interested in it.

13

Bring a stumble into the future with us. Perhaps you've just heard some buzz about

no-code, or possibly this is your first introduction. In any case, information is forced

and there is in every case more to learn.

BuilderX is a company that gives a web based design tool that generates React Native

& React code according to the design you created. It provides a photoshop like tool

that runs on the browser which allows the user to create mobile app screens. Then

these screens can be exported to different codebases like react native or flutter. The

success of companies like webflow and builderX confirms the value and the need for

graphical tools.

2.11 Code generation tools

Code generation is a way of saving time and a way of providing standards. It gives

more flexibility to the user. Since the generated code can be updated according to the

developers needs. This is the main advantage of code generation than encapsulating a

common functionality in a library.

For the improvement of the programme quality and to increase code reuse of a

program, Many frameworks have built in command line tools to carry code generation

tasks. For example the popular php framework yii contains a command line tool that

enables the developers to generate models, controllers and views.

When developing a project, the requirements, automation system architecture is

important to consider from task to task.[26].

14

Figure 2.1 : The procedure of UML model map to IEC 61131-3​5

Note​. Reprinted from “​Automatic code generation from a UML model to IEC 61131-3

and system configuration tools”​, by ​Vogel-Heuser, B., Witsch, D., & Katzke, U. 2005​,

Paper presented at the 2005 International Conference on Control and Automation

This tool generates a IEC 61131-3 code from a UML diagram. The research finds that

the prototype was utilized to exhibit that programmed code age for computerization

innovation can be accomplished through pragmatic utilization of UML. In any case,

the genuine advantages of item direction have not yet been taken. The advantages -

yet in addition any issues - will get clear during application in an increasingly

complex framework, This has been begun as of now. In such application instruments,

for example, legacy will be utilized This will altogether disentangle the organization

of variations and modules. The reconciliation of system angles is another objective.

For circulated frameworks the exhibition of systems and the mapping from

programming modules to various equipment structures relying upon the task size or

chosen variations and the system execution is an essential. The combination of UML

2.0 with its framework charts is another working bundle. Another test is the interface

15

normalization to framework design or overseeing devices[26].

Figure 2.2 : Relationship of programs and representation proposed

Note: Reprinted from Automatic Derivation of Code Generators from Machine

Descriptions ,​Cattell. R., 1980,​ACM Transactions on Programming Languages and

Systems TOPLAS), 2(​2​), 173-190.

This sort of mapping is used during the development of the visual development tool

where each component is mapped to a predefined code sample. When the developer

uses a component and drags and drops it to the canvas this mapping function gets

invoked to generate the related codebase[8].

The code generation tools depend on a type of formats which are considered as tree

creations, which are gathered in the machine tables. A given source program is

converted into a middle of the road parse-tree-like documentation by the front finish

of the compiler. The code generator crosses the program tree, coordinating every hub

against designs on the left-hand sides (LHSs) of the creations in the machine tables.

At the point when an example coordinates, the right-hand side (RHS) of the creation

determines code to be produced, unique compiler activities, for example, distribution,

16

or further matches to be recursively performed [8].

2.12. The effects of visual learning

Practice helps to establish previously learned behaviours. The motor skills can be

gained through constant practice, accurate , proficient and can be executed more

rapidly. Visual processing can be gained through more practice. Nature with a set or

class of articles can prompt an expansion in our exactness in segregating and

remembering them, especially in circumstances when the items are blocked or in any

case hard to separate. Be that as it may, while much is comprehended about how

tactile visual properties are spoken to in neural action, moderately little is thought

about how experience improves their handling [18].

Proof from neurophysiological and mental examinations is meeting up to reveal

insight into how we speak to and perceive objects. This survey portrays proof

supporting two significant speculations: the first is that articles are spoken to in a

mosaic-like structure in which items are encoded by blends of unpredictable, reusable

highlights, as opposed to two-dimensional layouts, or three-dimensional models. The

subsequent speculation is that change invariant portrayals of items are found out

through understanding, and that this learning is influenced by the worldly arrangement

where various perspectives on the articles are seen, just as by their physical

appearance[27].

Learning is an unpredictable procedure. It tends to be characterized as an adjustment

in manner; a generally lasting change in conduct after some time and this is achieved

halfway by information. Learning can occur as a result of new achieved abilities,

standards, observation, information, realities, and new data at hand[22].

These studies show the impact of visuals in learning.

2.13. Visual Development Tools

The greater part of the product configuration devices configuration to help altering,

seeing, putting away, sharing and changing plans. Some products like Argo/UML, an

article arranged plan device have been created with a few novel highlights that address

17

the recognized psychological needs of a product fashioner. It has incorporated a

commonsense depiction of a few subjective hypotheses applicable to programming

plan, a strategy for contriving intellectual help highlights dependent on these

speculations, a bushel of psychological help includes that are exhibited with regards to

a usable programming configuration device called Argo/UML, and a reusable

framework for building comparative highlights into other structure tools[19].

Another work style model was created to imagine, structure and assess another age of

inventive cooperation and programming configuration apparatuses planned for

incorporating convenience and programming building [4].

Even though there is very limited research done on visual development tools. The

surrounding literature on learning and human behaviour suggest that visual tools help

learning. Further visual tools help teams discover hidden attributes that weren’t found

before. There is a paradigm shift of no code meaning building software without

writing code. Companies who have taken advantage of this shift have become

successful [28].

18

CHAPTER 03

METHODOLOGY

This chapter discusses how the research was carried out. The requirement gathering

steps. Detailed plan of building the visual development tool, its development stages,

how the preliminary study was done, how its feedback impacted, the next version of

the tool and how the efficiency of the test was done using a sample.

3.1 Procedure

A preliminary study was done in order to get an understanding about visual

development tools that are currently available. Tools like mockup [29] were studied.

To build and find out the effect of visual development tool, the following steps were

carried out;

1. Come up with the initial requirements specification for the initial release

version 0.1 of the visual development tool. Analysis were done on the -

mockups[29], Xcode IDE and Android studio to gather these requirements -

2. Gather feedback from the sample using a survey through interviews. The

survey consisted of four questions. The questions revolved around the

developer experience and what were features that the developers would like to

have. The survey was given to 10 developers from the sample of 30.

3. Analyze the feedback from the survey and draft a second version of

requirements for the visual development tool

4. Update the visual development tool adding the requirements.

5. Give the version 1.0 of the tool to the sample of 30 developers with 3 tasks to

be performed.

6. Conduct the experiment to find out the efficiency and quality change of the

developers due to the built tool.

To investigate the performance and quality of the developers compared between the

given three different tasks with the tool and without the tool.

19

The three tasks varied from complexity. The tasks were as follows

1. Build the user interface of a contact form (Task 1) The contact form must have

the following fields

a. Name

b. email

c. Subject

d. Description

2. Build the user interface of a blog (Task 2) The interface should display a list

of card components that show the information of a blog article. The website

should be responsive showing 3 articles in a row in desktop view, 2 in tablet

view and 1 in mobile view.

3. Build the user interface of an email client (Task 3) The interface should have a

side panel with navigation links to inbox, sent items etc. The right panel

should contain the list of emails.

The hypothesis to test the efficiency of the coding was made as follows;

Task1

H02; There is no significant difference between development time using the tool and

without the tool in Task 1

H1; There is a significant difference between development time using the tool and

without the tool in Task 1

Task2

H02; There is no significant difference between development time using the tool and

without the tool in Task 2

H1; There is a significant difference between development time using the tool and

without the tool in Task 2

20

Task 3

H02; There is no significant difference between development time using the tool and

without the tool in Task 3

H1; There is a significant difference between development time using the tool and

without the tool in Task 3

3.2 Selecting a sample

For the initial development of the tool 10 software engineers from the sample of 30

developers were interviewed using a convenience sampling method. 30 software

engineers that have 1 to 2 years of experience in frontend development were selected

using a convenience sampling method. All the selected software engineers have

worked with the vue js framework.

3.3. Data Collection Method

Data was collected in two instances. After developing the version 0.1 of the tool 10

developers were interviewed to gather feedback on the tool.

The data was gathered using the testing method and observation method after the

developers completed each task. There were 3 tasks that the sample had to complete.

3.4. Data Analysis Method

The data gathered from the initial interview of the 10 developers were qualitatively

analyzed.

The data from the testing method was compared using the paired t-test statistical

procedure. The R package was used to carry out the paired t-test. Normality of the

data were tested using Histogram, QQ plots and Shapiro Wilk test. The quality of the

codes were analysed using discussion and summarizing the results.

21

3.5. Summary

Figure 3.1 : The summary of the procedure

To summarize the above figure shows the summary of steps taken on this research.

From initial requirements gathering to building the version 1.0 of the tool to finally

analysing the measurement data.

22

CHAPTER 04

IMPLEMENTATION

This chapter discusses the initial requirements, development phases of the visual

development tool. How it was incrementally built. How the surveys were created to

gather user feedback. The survey results of the initial release of the tool. What were

they and how these results were taken into account when upgrading the visual

development tool.

4.1 Initial requirements

The initial requirements were the html tags (with form elements) that can be dragged

and dropped to create a design. The supported tags list - div, image, table, input, select

and checkbox. These were the same elements used by mockups.

4.2 Building the visual development tool

From the initial requirement gathering it was understood that the project needs to be

broken down to smaller modules. The initial break down consisted of a client built

using vue.sj and a server built with koa a node based framework.

4.2.1 Breaking down the components

From the design we broke down the page into smaller components. The breakdown

was done according to the functionality. For example the form inputs were separated

from the layout components.

4.2.1.1. Version 0.1 element break down

1. Layout

2. Canvas

3. Form inputs (button, radio, checkbox, select etc)

4. Div component

5. Image Component

23

6. Table Component

Figure 4.1 : Lay out of two panels

Layout was two panels. The left panel consists of the canvas where a user drags and

drops the elements. The right panel consists of the elements listed above. This is part

of the app that has been built.

The building blocks the div, table and image components were easiest to build. Even

these basic components were hand coded.

Figure 4.2: Table component

24

Table component is the regular html table tag.When the software user downloads the

app from the tool it becomes available for the user for further editing. The generated

code looks as follows.

Figure 4.3 : Generated code for table component

As you can see the user can easily modify the table component. Rest of the version

one components take a similar approach. All are native html elements with styling

25

A group of elements inside a div built using the tool as follows.

Figure 4.4 : A group of elements within in a div

The above design outputs the following code.

Figure 4.5: Generated code for the group of elements within a div

Note that the tool is smart enough to recognise that the components are inside the div.

The components are also ordered in the way they have been placed. All components

are given a unique class name so that the tool can style them individually and place

them in the canvas in the right location. Generated css is not the ideal version that is

possible.

26

Here is an example

Figure 4.6 : Generated styles for the above design

Note that the elements are positioned absolutely and given a top and left to position

the element. This is not ideal at all. This makes it not possible to create responsive

web design.

4.2.2 Building the Server

The server is built using Koa.js for node.js for node.js. Koa is another web system

structured by the group behind Express, which expects to be a littler, increasingly

27

expressive, and progressively hearty establishment for web applications and APIs. By

utilizing async capacities, Koa permits you to jettison callbacks and significantly

increment blunder taking care of. Koa doesn't package any middleware inside its

center, and it gives an exquisite set-up of techniques that make composing servers

quick and pleasant.

Koa is a minimal framework that only provides a bare bone api. This makes it really

fast which is an important feature to use this framework.

The application only consist of few routes listed below;

1. router.post('/get-access-token', getAccessToken)

2. router.post('/project', saveVueProject)

3. router.get('/project', getVueProject)

4. router.post('/generate', generate)

4.2.3. Download feature

The generate route calls the generate function with the given parameters. The logic of

generating the code has been speratated to a separate file called generate.js. The user

can either download a .zip or a .gg format. The generate function requires the context

of the request body and the root directory. This download does not include the

node_modules directory so the user has to install packages after downloading.

28

Figure 4.7 : Example Code for Download Features

4.2.4. Summary

This set of features were the version 0.1 of the visual development tool. The client

built with vue js and the backend built with kor.js. The drag and drop elements were

simple html tags with custom styling. The generated code is stored in the pages

directory of the project. Users are easily able to modify the code for the finer needs

that may be there. The version 0.1 was given to the sample as with few basic tasks.

4.3 Preliminary Survey

 Survey contained the following questions.

1. What are your thoughts of using a visual development tool?

2. What did you enjoy about the tool?

3. What are features that you used most?

4. What additional features would you like to see in the tool?

29

Developers were very happy to be using the tool. Most of the feedback showed that

they are really happy that they don’t have to write code to do the repetitive tasks. The

most used features were the form elements. They have really enjoyed dragging and

dropping elements to the canvas.

From the results we got from the above surveys main points were addressed for the

next version of the tool. Further additional features were added by the author. The list

of requirements for the version 1.0 is as follows

1. Undo ​/ redo feature

2. Preview feature

3. Card component

4. Appbar component

5. Sidebar component.

6. Authentication (github)

7. Pages - Create multiple pages

4.4. Building version 1.0

As per requirements much of them revolved around adding more reusable complex

components (card component, appbar, sidebar etc). Building reusable components that

are accessible with high performance and flexibility is very time consuming. Further

there are libraries that provide said components that are both performant and flexible.

Hence without trying to code the above set of components it was a smart idea to use

an existing vue user interface library. There existing vue ui libraries that are matured

and have a lot of community support. Plus reduces the complexity of the visual

development tool. Hence it was decided to use a vue UI library. There are few

libraries that have been considered

1. Element UI

2. Bootstrap Vue

3. Quasar Framework

4. Vuetify

30

From the above list vuetify was picked due to the following reasons.

Vuetify is a Vue UI Library with beautifully handcrafted Material Components. No

design skills required — everything you need to create amazing applications is at your

fingertips.​ ​(​https://vuetifyjs.com/en/​)

The reason for using a UI library is as follows

1. Full Accessibility and Section 508 support

2. Server Side Rendering support

3. Long-term Support

4. RTL support

5. Built according standards

4.4.1. Integrating the vuetify components to the visual development tool.

Figure 4.8 : Layout with new material component

The new components were moved to a material design section in the sidebar. Apart

from the suggested components additional components were added as well

List of additional components added

1. Progress Bar

2. List component

31

https://vuetifyjs.com/en/

3. Drawer component

These extra components were easy to add since they too were available in the vuetify

(vue ui) library.

4.4.2. Design created by the newly added components

After having the idea of interviewers, the design was built up with newly added

components as follows;

Figure 4.9 : Design built with the newly added components

The design consists of the app bar component, side panel, card component, list

component and the progress bar. The card components consist of two action buttons

where you can attach functions. Same goes to the side panel and the app bar, they too

contain action buttons.

32

The generated code for the above user interface.

Figure 4.10 : Generated code for d​esign built with the newly added components

The generated code places the side panel component defined by the tag mdc-drawer at

the top. Which consists of smaller link components that are defined by

mdc-drawer-item. Following is the app bar component which consists of two actions:

help and download. Next is the card component and the list component. All of these

components come from the vuetify library that was integrated into the project. All of

these components are accessible, performant and flexible. Hence the developer can

easily manipulate the code to fit exactly his/her needs.

33

4.4.3. Authentication

It was clear that an authentication feature was required to manage the different

projects a user might have. The authentication was built around github. The reason

behind the choice is to use the github api to store the generated code directly in a

github repository. Hence github was integrated as a sign on.

4.4.4 Pages

In version 0.1 of the tool it was only possible to create a single page from the tool.

The developers needed a feature where they can save different pages. For example

home page, about page, contact page etc. To build we created an array to store the

page objects in vue state. Project state was created to store all the pages state and

other related project state.

 ​Figure 4.11 :Example code for create pages

4.4.5. Undo / Redo feature

The user is able to undo the previous actions. The actions performed are stored in the

vue.js state as a stack. The stack is popped during an undo action. The redo actions

work the same. Storing the action stack in vue state makes it not persist among

different sessions the only downside to this is that it does not persist between different

sessions.

34

Apart from storing in vue state IndexedDB was used to store the actions performed by

the user. This allows the state of the work done by a developer to be saved for another

session. This makes the app run a little slower but that is negligible considering the

functionality of preserving state among two different states.

IndexedDB was used over web storage because it allows storing larger amounts of

data than web storage. ​IndexedDB is the API for client-side storage that was due to its

capability of storing large amounts of structured data, including files/blobs. This API

uses indexes to enable high-performance searches of this data.

[​https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API​]

Figure 4.12: Example code for create undo/redo features

The undo / redo feature has been built as a mixin since it is a common functionality

35

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

that can be called from anywhere. The current implementation is called from many

places, for example the app bar. By calling `@click="$root.$emit('redo')"`

4.4.6. Preview Feature

The user is given the option to see how the page looks on different sized devices.

Currently supports desktop view, tablet view and mobile view.

4.4.6.1. Mobile view preview.

The developer can preview both for the desktop version and the mobile version.

Figure 4.13 : The mobile version of the tool

36

4.5. Final Tool

With the above features the version 1.0 of the visual development tool was completed.

The final result of the tool looked as follows.

Figure 4.14 : The final visual developed tool with example design

The final developed tool consisted of 12 simple components and 12 vue material

components. The tool also gives an undo, redo feature preview feature and a mobile

view. Providing enough features to the developer to carry out the three tasks that will

be given in the testing phase.

The tool was given to the sample of 30 developers. After the completion of their tasks

the coding standards were analysed.

4.6. Summary

The visual development tool follows a simple client server architecture. The following

diagram shows the main components involved in building the tool. Github is used for

both authentication and storing the generated code. Koa server contains API that both

connect with github and the vue client.

37

Figure 4.15 : Summary of the final product

Vuetify user interface library is the component library that contains the components

that are used in the tool. It is both connected to the server and the vue client app. The

final output of the tool is the downloaded project code.

38

CHAPTER 05

EVALUATION

This chapter discusses the results of the research data gathered from the sample of 30

developers. The chapter analyzes the results to understand the data. How the tool has

performed. Has it provided enough support for the developers to write better software

more efficiently. Further qualitative analysis of the code written by the developers

using the tool and without will be analysed. This analysis will show if the code is

actually in a higher standard than before.

5.1. Results of the initial survey

An initial survey was carried for the 0.1 version of the visual development tool to

confirm the features built and to understand what other requests that the software

developers might give to improve the tool. This was the first validation of the tool.

The following features were requested by most of the developers

1. Undo / Redo feature

2. Preview feature

3. Card component

4. Appbar component

5. Toolbar component

5.2. Analysis of the feedback.

Apart from the Undo / Redo feature and preview feature all other requested features

were for more complex components to be added to the tool. Software engineers have

more need for more higher level components than granular ones.

5.3. Analysis timing of coding of the developers using three different task

The three different tasks were given to complete using the tool and without for the

thirty developers. The normality of the data were checked using Histogram, QQ plots

and Shipro-Wilk tests(Appendix A). Since the data were normally distributed, the

39

Paired T-test in parametric tests was used to check whether there is an effect on a

visual tool for coding efficiency. The comparison between the test using tool and

without tool was analyzed at the 95% confidence interval. The R-package 2019 was

used to analyse the data. All the codes, normality results and test results were attached

in the Appendix B.

The results of three different tasks were summarized in Table 4.1 and then they were

discussed separately.

Table 5.1: Summary Result Table

Tasks Mean(Timing in Minutes)
P Value

 Without Tool With Tool

1 20.23 21.16 0.308

2 59.6 39.3 8.473e-14

3 74.03 65.33 1.882e-11

5.3.1. Analysis of Task 1 - Simplest task given to the developer sample.

H01; There is no significant difference between development time using the tool and

without the tool in Task 1

Table 5.2 : Task 1 test results

Paired t-test results

t-value -1.0377

Df(degree of freedom) 29

Alternative hypothesis: true difference in means is not equal to 0 95
percent

Confidence interval: -2.7729513 0.9062847

Sample estimates: mean of the
differences :

 -0.9333333

40

The mean values of using without tool and with tool were 20.23min and 21.16min

respectively for Task 1. When comparing the means, coding without the tool shows

the lower mean time than the coding with the tool.

Also, the p value(0.308) of task 1 was greater than 0.05(P value> 0.05) which

indicated that the null hypothesis was not rejected at 0.05 significance level.

Therefore, there is no significant time difference shown for coding using the tool and

without tool. There is no significant impact on efficiency using the tool or without the

tool for codes like task 1.

5.3.2. Analysis of Task 2 - Moderately complex task given to the developers

H02; There is no significant difference between development time using the tool and

without the tool in Task 2

Table 5.3 : Test results Task 2

Paired t-test results

t value 13.211

df 29

p-value 8.473e-14

alternative hypothesis: true difference in means is not equal to 0
95 percent

confidence interval: 17.15722-23.44278

estimates: mean of the differences :

20.3

The mean values of using without tool and with tool were 59.6 min and 39.3 min

respectively for Task 2. When comparing the means, coding with the tool shows a

lower mean time than coding without the tool.

41

The p value(8.473e-14) of task 2 was less than 0.05(P value < 0.05) which indicated

that the null hypothesis is rejected at 0.05 significance level. Therefore, there is a

significant positive time difference shown between the coding using the tool and

without tool. The efficiency is higher using the visual development tool than without

using the tool for task 2

5.3.3 Analysis of Task 3 - Most complex task given to the developer sample.

H03 : There is no significant difference between development time using the tool and

without the tool in Task 3

Table 5.4: Test results of Task 3

Paired t-test results

t 10.562

df 29

p-value 1.882e-11

alternative hypothesis: true difference in means is not equal to 0
95 percent

confidence interval: 7.015314 10.384686

sample estimates: mean of the
differences

8.7

The mean values of using without tool and with tool were 74.03 min and 65.33 min

respectively for Task 3. When comparing the means, coding with the tool shows a

lower mean time than the coding without the tool.

The p value(1.882e-11) of task 3 was less than 0.05(P value< 0.05) which indicated

that the null hypothesis is rejected at 0.05 significance level. Therefore, there is a

42

significant positive time difference shown between the coding using the tool and

without tool. The efficiency is higher using the visual development tool than without

using the tool for tasks like Task 3.

Comparing the mean time of tasks shows an advantage of using the tool for both task

1 and 2. But for task 1 developers took less time without the tool. This can be

attributed to developers being unfamiliar with the tool and couldn’t take much

advantage of the tools built in components because the given task (task 1) does not

need the components. The statistical analysis also shows there is no significance

between using the tool and not for task 1.

For both tasks 2 and 3 the mean values show developers took less time to complete

the tasks with the tool. This may be due to the developers being familiar with the tool

after completing task 1 and the developers were able to use the built in components in

the tool to complete task 2 and 3. There was a statistical significance to both the

results in task 2 and 3. The analysis also tells that benefits gained from the tool to

develop task 3 was higher than task 2.

5.4. Analysis of coding standards of developers

The code that has been written by each developer was analysed with and without the

tool. The analysis was done with regard to readability, indentation and code reuse.

The readability, indentation and code reuse. all improved when using the visual

development tool. The down side of the code quality that was generated by the tool

was the styles. Styles were very unreadable and didn’t follow the standards. Further

the styles didn’t support responsive design. The generated id and class names from the

tool also were unreadable. A proper pattern must be used to make the styles more

approachable

5.5 Analysis of issues and suggestion by developers given for the tool

Many of the developers gave positive feedback for the tool. They mentioned learning

how to use it was very intuitive. There were also suggestions to improve the tool. That

43

They are listed below.

1. Ability to edit the code from within the tool.

2. Suggestions

3. Documentations

4. Increase the performance of the tool

5. Styles generated by the tool are not ideal making it difficult to edit.

6. Responsive design is not possible through tool

7. More built in components

8. Support multiple libraries - like reactjs.

The developers mentioned that with more time learning the tool and how it works

they will be able to work faster with the tool. But the tool will be difficult to use with

an existing project. Since the standards and rules followed in that project will be

different. Further they mentioned about the generated styles. Styles were very difficult

to work with and they had to remove the generated styles and write it again.

5.6. Understanding the results

The three tasks given to the sample varied in complexity. The first task was straight

forward. The developers were able complete the task without the tool quicker than

with the tool.

In developing the 2nd task they used the tools inbuilt card component which cut down

the time in development helping them to build the user interface in a much shorter

time compared to without the tool.

Task 3 there was even more significant positive result for using the tool than in task 3.

Proving that the more complex the task the more support the tool gives. This is

ofcourse if the tool provides the components the task needs.

The quality of the code was measured in the following criteria - readability,

indententaton, unused import statements, comments, code reuse. This analysis both

upsides and downsides for the tool. The styles generated by the tool was the main

downside and needs more thought and development. The tasks done without the tool

44

had better styling and were more readable. The code reuse of the developers differed a

lot by each individual. Overall the tool helped to improve the quality of the programs

written.

45

CHAPTER 06

CONCLUSION

In this thesis, we have shown how to design and build a visual development tool that

can generate vue.js code from a design created within the tool, Do a statistical analysis

on the time measurements of 30 developers building 3 tasks with and without the

visual development tool.

The research in this thesis was guided by 4 main objectives. To develop a visual

development tool to enhance performance and quality of work of a vue developer. To

explore the effect of the build tool on developing performance and quality of work of

a developer. To understand if it is possible to have better software quality standards by

using a tool. Finally to compare the coding efficiency of developers using the tool and

without the tool.

Building the visual development tool and identifying the efficiency and quality was a

success. According to the result for task one even though there wasn’t a statistical

significance. It can be said that the tool does not give an advantage when building a

simple user interface. It can be rationalized the overhead of using and understanding

the tool to build a simple user interface is not worthwhile. Which is shown from the

results for task one having a lower mean time when the tool was not used.

Results for tasks two and three both have rejected the null hypothesis meaning it has

given support for the developers when building task two and three. The developers

tool much longer to complete task two and three compared to task one. They were

able to use much more components in the visual development tool.

The research finds that for tasks that have a complex user interface the visual

development tool will benefit the developer to be more efficient and write better code.

This was not the case for simple user interfaces. Task one building a contact form

showed that using the tool took more time from the developers than without. It was

understood that the tool didn’t give much advantage and it was just an extra layer that

the developer had to go through.

46

The research has only proven that the developed tool only helped work for the tasks

that were given to them during the study. It also confirms that software quality

standard have been improved due to the use of the tool.

47

CHAPTER 07

FUTURE WORK

It is worthwhile to carry on with this project. Include more complex components that

are used by software engineers. Further provide an easy way for software engineers to

contribute to the software. This can be achieved by moving the drag and drop

components to a separate open source repository. To build an API that allows the user

to integrate their own components from their design system to the visual development

tool will make way for more vast use cases that the product will be beneficial.

Allow for better style generation this can be achieved by using layout components that

are built into the tool. The current version of the tool doesn’t support responsive

design but with predefined layout components this can be achieved. Further styled

components package can be used to generate the styled components. Meaning the

component itself be styled which will remove the need for external style sheets.

Integrate other user interface libraries like Element UI, ​Bootstrap Vue, Quasar

Framework.

Give the choice to the developer to generate a vue.js app or a nuxt app. Nuxt.js is the

recommended vue application framework. Nuxt applications provide more features

pre built like server side rendering, automatic code splitting etc. Further it is the

framework that is used by big companies that are using vue js.

Further this tool can be integrated into frameworks like blazor. Blazor provides set of

components built using C# also it allows to write your client and server code both in

C#.

Bootstrap is also another very popular framework to build web apps. Bootstrap lets

users build mobile first responsive web apps. It also includes a grid system where the

components can be properly aligned. Solving the issue of the generated code not being

responsive. Further bootstrap has its own readable classes. These classes too can be

used by the tool. Making styles more readable and familiar to developers.

Making the tool as an extension to existing code editors like vscode. This will allow

48

the tool to reach a broad range of users through the extension marketplace. This also

adds the benefit of not having the cycle of downloading the code base and running it

in users local machines. The code can be generated in the local machine and then can

be edited using the existing editor. The prime editor to build this would be vscode

since it is built using electron.

49

REFERENCES

1. Akbar, M. A., Sang, J., Khan, A. A., Shafiq, M., Hussain, S., Hu, H., . . .

Xiang, H. (2017). Improving the quality of software development process by

introducing a new methodology–AZ-model. ​IEEE Access, 6​, 4811-4823.

2. Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., & Memon,

A. M. (2012). ​Using GUI ripping for automated testing of Android

applications. Paper presented at the 2012 Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering.

3. Benavides, D., Segura, S., Trinidad, P., & Ruiz-Cortés, A. (2005). ​Using Java

CSP solvers in the automated analyses of feature models. Paper presented at

the International Summer School on Generative and Transformational

Techniques in Software Engineering.

4. Campos, P., & Nunes, N. (2007). Towards useful and usable interaction

design tools: CanonSketch. ​Interacting with Computers, 19​(5-6), 597-613.

5. Cardello F., (2020).14 no code apps to help build your next startup. Available

: ​https://webflow.com/blog/no-code-app​s

6. Cattell, R. (1980). ​Automatic derivation of code generators from machine
descriptions.​ ACM Transactions on Programming Languages and Systems
(TOPLAS), 2(2), 173-190.

7. Engineering, A. S. R. D. (2018). ​8 Ways to Improve Software Testing through

Planning, Work Environment, Automated Testing, and Reporting ​[Online].

Available:​https://www.altexsoft.com/blog/engineering/8-ways-to-improve-soft

ware-testing-through-planning-work-environment-automated-testing-and-repo

rting/​ [Accessed].

8. Frenken, M., Willemse, T. A., Océ, L. v. G., Bunte, O., & Denkers, J. (2019).
Code generation and model-based testing in context of OIL

9. Froehlich, J., & Dourish, P. (2004). ​Unifying artifacts and activities in a visual

tool for distributed software development teams. Paper presented at the

Proceedings. 26th International Conference on Software Engineering.

10. Huang, S., Gohel, V., & Hsu, S. (2007). ​Towards interoperability of UML

tools for exchanging high-fidelity diagrams. Paper presented at the

Proceedings of the 25th Annual ACM international Conference on Design of

50

https://webflow.com/blog/no-code-apps
https://www.altexsoft.com/blog/engineering/8-ways-to-improve-software-testing-through-planning-work-environment-automated-testing-and-reporting/
https://www.altexsoft.com/blog/engineering/8-ways-to-improve-software-testing-through-planning-work-environment-automated-testing-and-reporting/
https://www.altexsoft.com/blog/engineering/8-ways-to-improve-software-testing-through-planning-work-environment-automated-testing-and-reporting/

Communication.

11. Jackson, D. (2020). 2019 Software Development Price Guide & Hourly Rate

Comparison. Retrieved from​ ​https://www.fullstacklabs.co/blog/

12. Jacques, N. (2019). ​Jump Start Vue. js​: SitePoint.

13. Jørgensen, A. H., & Myers, B. A. (2008). User interface history. In ​CHI'08
Extended Abstracts on Human Factors in Computing Systems​ (pp.
2415-2418).

14. Kitchenham, B., & Pfleeger, S. L. (1996). Software quality: the elusive target

[special issues section]. ​IEEE software, 13​(1), 12-21.

15. Kite Agency,. (2019), Software Development Hourly Rates. Retrieved from:

https://www.kite.agency/software-development-hourly-rates

16. Koetsier, J. (2016). Evaluation of JavaScript frameworks for the development

of a web-based user interface for Vampires. ​Informatica—Universiteit van

Amsterdam​.

17. Pancheri, R. (2015). Design and Implementation of a Graphical User Interface
for Elektra.

18. Rainer, G., & Miller, E. K. (2000). Effects of visual experience on the

representation of objects in the prefrontal cortex. ​Neuron, 27​(1), 179-189.

19. Robbins, J. E. (1999). ​Cognitive support features for software development

tools​: University of California, Irvine.

20. Rugaber, S., Hemel, Z., & Stirewalt, K. (2013). ​Live logic programming.

Paper presented at the 2013 1st International Workshop on Live Programming

(LIVE).

21. Samlaus, R. (2015). ​An Integrated Development Environment with Enhanced
Domain-Specific Interactive Model Validation.​ Linköping University
Electronic Press

22. Shabiralyani, G., Hasan, K. S., Hamad, N., & Iqbal, N. (2015). Impact of

Visual Aids in Enhancing the Learning Process Case Research: District Dera

Ghazi Khan. ​Journal of education and practice, 6​(19), 226-233.

23. Song, J., Zhang, M., & Xie, H. (2019). Design and Implementation of a Vue.

js-Based College Teaching System. ​International Journal of Emerging

Technologies in Learning (iJET), 14​(13), 59-69.

24. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., & Willighagen,

E. (2003). The Chemistry Development Kit (CDK): An open-source Java

51

https://www.fullstacklabs.co/blog/2019-software-development-price-guide-and-hourly-rate-comparison
https://www.fullstacklabs.co/blog/
https://www.kite.agency/software-development-hourly-rates

library for chemo-and bioinformatics. ​Journal of chemical information and

computer sciences, 43​(2), 493-500.

25. Timbol, M. (2001). Development system with visual design tools for creating

and maintaining Java Beans components. In: Google Patents.

26. Vogel-Heuser, B., Witsch, D., & Katzke, U. (2005). ​Automatic code
generation from a UML model to IEC 61131-3 and system configuration tools.
Paper presented at the 2005 International Conference on Control and
Automation.

27. Wallis, G., & Bülthoff, H. (1999). Learning to recognize objects. ​Trends in

cognitive sciences, 3​(1), 22-31.

28. webflow., (2020).Break the code barrier. Retrieved from

https://webflow.com/responsive-website-builderr

29. https://moqups.com

30. ​https://vuetifyjs.com/en/

52

https://webflow.com/responsive-website-builderr
https://moqups.com/
https://vuetifyjs.com/en/

Appendix A : Test of Normality Results and test Results

Normality in Task 1: Without the tool

Shapiro-Wilk normality test

data: Time$T1.without.tool
W = 0.96747, p-value = 0.4725

Normality in Task 1: With the tool

53

Shapiro-Wilk normality test

data: Time$T1.with.tool

W = 0.97286, p-value = 0.6201

Test Results : Paired t-test(Task 1)

data: Time$T1.without.tool and Time$T1.with.tool

t = -1.0377, df = 29, p-value = 0.308

alternative hypothesis: true difference in means is not equal to 0 95 percent

confidence interval: -2.7729513 0.9062847

sample estimates: mean of the differences: -0.9333333

Normality in Task 2: Without the tool

Shapiro-Wilk normality test

data: Time$T2.without.tool
W = 0.98223, p-value = 0.8813

54

Normality in Task 2: With the tool

Shapiro-Wilk normality test

data: Time$T2.with.tool
W = 0.97231, p-value = 0.6041

Test Result: Paired t-test(Task 2)
data: Time$T2.without.tool and Time$T2.with.tool

t = 13.211, df = 29, p-value = 8.473e-14

alternative hypothesis: true difference in means is not equal to 0 95 percent

confidence interval: 17.15722 23.44278

sample estimates: mean of the differences 20.3

55

Normality in Task 3: Without the tool

Shapiro-Wilk normality test

data: Time$T3.without.tool
W = 0.96963, p-value = 0.529

Normality in Task 3: With the tool

56

Shapiro-Wilk normality test

data: Time$T3.with.tool

W = 0.96873, p-value = 0.505

Test Result: Paired t-test(Task 3)

data: Time$T3.without.tool and Time$T3.with.tool

t = 10.562, df = 29, p-value = 1.882e-11

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval: 7.015314 10.384686

sample estimates: mean of the differences 8.7

57

APPENDIX B :R STUDIO Code

#Task 1

mean(Time$T1.without.tool)
par(mfrow=c(1,2), pty = "s")
hist(Time$T1.without.tool,main="",xlab="")
title(main = "Histogram of Task 1 Without Tool", xlab = "T1 Without tool")
qqnorm(Time$T1.without.tool,main = "")
title(main = "Normal QQ plot of Task 1 Without Tool")
shapiro.test(Time$T1.without.tool)

mean(Time$T1.with.tool)
par(mfrow=c(1,2), pty = "s")
hist(Time$T1.with.tool,main="",xlab="")
title(main = "Histogram of Task 1 With Tool", xlab = "T1 With tool")
qqnorm(Time$T1.with.tool,main = "")
title(main = "Normal QQ plot of Task 1 With Tool")
shapiro.test(Time$T1.with.tool)

t.test(Time$T1.without.tool,Time$T1.with.tool,paired=TRUE)

#Task 2
mean(Time$T2.without.tool)
par(mfrow=c(1,2), pty = "s")
hist(Time$T2.without.tool,main="",xlab="")
title(main = "Histogram of Task 2 Without Tool", xlab = "T2 Without tool")
qqnorm(Time$T1.without.tool,main = "")
title(main = "Normal QQ plot of Task 2 Without Tool")
shapiro.test(Time$T2.without.tool)

mean(Time$T2.with.tool)
par(mfrow=c(1,2), pty = "s")
hist(Time$T2.with.tool,main="",xlab="")
title(main = "Histogram of Task 2 With Tool", xlab = "T2 With tool")
qqnorm(Time$T2.with.tool,main = "")
title(main = "Normal QQ plot of Task 2 With Tool")
shapiro.test(Time$T2.with.tool)

t.test(Time$T2.without.tool,Time$T2.with.tool,paired=TRUE)

58

#Task 3
mean(Time$T3.without.tool)
par(mfrow=c(1,2), pty = "s")
hist(Time$T2.without.tool,main="",xlab="")
title(main = "Histogram of Task 3 Without Tool", xlab = "T3 Without tool")
qqnorm(Time$T3.without.tool,main = "")
title(main = "Normal QQ plot of Task 3 Without Tool")
shapiro.test(Time$T3.without.tool)

mean(Time$T3.with.tool)
par(mfrow=c(1,2), pty = "s")
hist(Time$T3.with.tool,main="",xlab="")
title(main = "Histogram of Task 3 With Tool", xlab = "T3 With tool")
qqnorm(Time$T3.with.tool,main = "")
title(main = "Normal QQ plot of Task 3 With Tool")
shapiro.test(Time$T3.with.tool)

t.test(Time$T3.without.tool,Time$T3.with.tool,paired=TRUE)

59

