

IMAGE COMPARISON BASED MOBILE USER

INTERFACE VERIFICATION FRAMEWORK

Maha Kumarage Dinu Sandaru Kumarasiri

168238F

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March, 2020

IMAGE COMPARISON BASED MOBILE USER

INTERFACE VERIFICATION FRAMEWORK

Maha Kumarage Dinu Sandaru Kumarasiri

168238F

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March, 2020

i

DECLARATION
I declare that this is my own work and this MSc thesis project report does not

incorporate without acknowledgement any material previously submitted for the

degree or diploma in any other university or institute of higher learning and to the

best of my knowledge and belief it does not contain any material previously

published or written by another person except where the acknowledgement is made

in the text.

Also, I hereby grant University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles of books).

Signature: ……………………. Date: ……………………….

Name: M.K.D.S. Kumarasiri

I certify that the declaration above by the candidate is true to the best of my

knowledge and that this report is acceptable for evaluation for the CS-6997 MSc

Thesis.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: ………………. Date: ………………………

 ii

ABSTRACT
Due to the highly competitive market, user interface of a mobile application plays a major
role in attracting and retaining its user base. In a full stack or web application development,
there is usually a user interface (UI)/ user experience (UX) designer or a front-end engineer
who implements the front end. On the contrary, in mobile applications, the app developers
themselves implement the front end according to the mockups provided by the UI/UX
designers. The verification of the user interface of the actual application against the provided
mockup happens manually by developers and testers and not by the designers which makes it
less accurate and time consuming since their eyes are not trained to identify pixel level
visual differences.

Until now various researches have been done on automating the verification step of the event
flow and underlying functionalities. But verifying the user interface of mobile applications is
still left for the human eye.

The main objective of this research is to develop a mechanism to get a quantifiable score
based on how much the user interface of a mobile application matches with its initial
mockups. Two accuracy levels are considered for computing this score; layout and overall.
Layout score limits the comparison to the layout of the user interface whereas the overall
score compares layout along with color, orientation, etc.

For the layout level comparison, three local feature matching algorithms namely, SIFT
(Scale-Invariant Feature-Transform), CSIFT (Color SIFT), PCA-SIFT (Principal Component
Analysis SIFT) along with a simple bob detection matching algorithm are considered to be
experimented with. For the overall level comparison, a pixel level comparison algorithm is
used.

In parallel a survey is conducted where UI/UX designers would provide a layout and overall
score for a set of selected use cases. These scores were compared with the scores from the
image comparison algorithms. Based on this, CSIFT is chosen as the underlying algorithm to
compute layout comparison scores as it outputs the closest values mimicking designers. For
the overall value the pixel based scores ended up being stricter than values given by the
designers.

In conclusion, the objective of the research is successfully achieved by implementing a
framework which will output a score based on the comparison between the mockups and the
actual user interface of mobile applications in two accuracy levels; overall and layout only.
Overall score based on pixel level matching turned out to be too strict and better suited if the
requirement is a strict conformity to the provided user interface. Layout score also has
limitations with text intensive applications when the data is dynamically loaded. Both these
scores can be used to verify the user interface, but the thresholds and which score to use is
dependent on the application and how much deviation the company allows against the
provided mockup.

 iii

ACKNOWLEDGMENT
I owe my deepest gratitude to my supervisor, Dr. Indika Perera, for his invaluable

support in providing relevant knowledge, advice and supervision throughout the

project. This would not have been possible without his expertise and continuous

guidance.

I am deeply grateful for the support and advice given by Dr. Malaka Walpola by

providing feedback on the presented work during the continuous progress

evaluations.

Further I would like to thank Mr. Dhanika Perera, Chief Executive Officer, Mr.

Chamika Weerasinghe, Chief Technology Officer, of Bhasha Lanka (pvt) Ltd for

providing the, access to the mockups and case study details and advise in the

development process of mobile domain.

Finally, I would like to thank my colleagues at MillenniumIT and Amazon, for

covering my work and helping me to balance the workload. Without them, this

project would not have been possible.

Special thanks go to all the UI/UX engineers and designers who participated in the

survey and provided an invaluable input to my research.

Last but not least, I am grateful for all the people who supported me throughout this

research in various means.

 iv

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ... ii

ACKNOWLEDGMENT .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS ... x

LIST OF APPENDICES .. xi

1 INTRODUCTION ... 1

1.1 Overview .. 2

1.2 Background .. 2

1.1.1 Evolution of Mobile .. 2

1.1.2 Testing User Interface .. 3

1.1.3 Mobile User Interface Development .. 3

1.3 Problem Statement .. 3

1.4 Proposed Solution .. 4

1.5 Objectives .. 4

1.1.4 General Objectives ... 5

1.1.5 Specific Objectives ... 5

1.6 Overview of the Document ... 5

2 LITERATURE REVIEW ... 7

2.1 Overview .. 8

2.2 Software Testing .. 8

2.3 GUI Testing ... 9

2.4 Automatic mockup validation for web applications .. 12

2.5 Image Comparison .. 13

2.6 Template Matching .. 13

 v

2.7 Feature based matching algorithms .. 13

2.7.1 Global Feature Based Matching ... 14

2.7.2 Local Feature Based Matching ... 14

2.7.3 SIFT (Scale Invariant Feature Transform) ... 15

2.7.4 PCA-SIFT [32] .. 17

2.7.5 GSIFT .. 18

2.7.6 CSIFT [34] ... 18

2.7.7 SURF [36] .. 18

2.7.8 ASIFT [37] ... 19

2.7.9 Comparison of SIFT and its variants ... 19

3 METHODOLOGY .. 23

3.1 Proposed Solution .. 24

3.2 Workflow ... 24

3.3 Shortlisting algorithms ... 25

3.4 Modifying the algorithms to give a quantifiable score 26

3.4.1 Pixel matching score .. 26

3.4.2 Layout matching score ... 26

3.5 Developing the proof of concept application .. 28

3.6 Conducting the survey .. 28

3.7 Data Set .. 29

3.7.1 Use case 1: Hapan .. 29

3.7.2 Use case 2: E-Channelling .. 31

3.7.3 Use case 3: Ada dawasa ... 32

3.8 Selecting the underlying algorithm for layout based score in the framework .. 33

3.8.1 Statistical Analysis .. 33

3.9 Determining usability of pixel based matching ... 34

3.10 Creating the framework .. 34

4 SYSTEM ARCHITECTURE AND IMPLEMENTATION ... 35

4.1 Overview .. 36

4.2 High-level Flow ... 36

4.3 High level architecture of image comparison engine 37

4.3.1 Request Processor .. 37

 vi

4.3.2 Pixel Matcher ... 38

4.3.3 SIFT Matcher .. 38

4.3.4 CSIFT Matcher .. 39

4.3.5 PCA-SIFT Matcher ... 40

4.3.6 Blob Detection Matcher ... 40

4.3.7 Output Processor ... 43

4.4 Proof of Concept Application .. 43

4.5 Image Comparison Framework ... 45

5 RESULTS AND EVALUATION ... 46

5.1 Overview .. 47

5.2 Survey .. 47

5.3 Results ... 47

5.3.1 Layout Matching .. 47

5.3.2 Overall Matching .. 52

5.4 Evaluation .. 55

6 CONCLUSION ... 57

6.1 Research Contribution .. 58

6.2 Limitations ... 59

6.2.1 User interface vs User experience ... 59

6.2.2 Dynamic Data ... 59

6.2.3 Agile environment .. 59

6.2.4 UX design concepts .. 60

6.2.5 Orientation changes ... 60

6.3 Future Directions .. 61

7 REFERENCES .. 62

8 APPENDIX ... 67

 vii

LIST OF FIGURES
Figure 2.1 Stages of key point selection [31] ... 16

Figure 2.2 SIFT and its variants ... 19

Figure 3.1 Workflow .. 25

Figure 3.2 Design (left) and actual (right) Hapan-1 ... 29

Figure 3.3 Design(left) and actual (right) Hapan-2 .. 29

Figure 3.4 Design (left) and actual (right) Hapan-4 ... 30

Figure 3.5 Design (left) and actual (right) Hapan-3 ... 30

Figure 3.6 Design (left) and actual (right) E-channelling-2 31

Figure 3.7 Design (left) and actual (right) E-channeling - 1 31

Figure 3.8 Design (left) and actual (right) E-channeling-3 .. 32

Figure 3.9 Design (left) and actual (right) Ada dawasa-1 .. 32

Figure 3.10 Design (left) and actual (right) Ada dawasa -2 33

Figure 4.1 High level flow ... 37

Figure 4.2 High level architecture .. 37

Figure 4.3 Pixel to pixel matching ... 38

Figure 4.4 SIFT matching .. 39

Figure 4.5 Calculate the matching score for SIFT based algorithms 39

Figure 4.6 CSIFT matching .. 40

Figure 4.7 PCA-SIFT matching ... 40

Figure 4.8 Blob definition .. 41

Figure 4.9 Code segment for removing text from an image 42

Figure 4.10 Creating the monochrome version .. 42

Figure 4.11 Labeling definition for neighboring pixel pattern 42

Figure 4.12 Get Euclidean distance of the attributes ... 43

Figure 4.13 Pixel to pixel matching screen .. 44

Figure 4.14 Layout matching screen .. 44

Figure 4.15 Underlying implementation of the framework API 45

Figure 5.1 Layout matching scores .. 49

Figure 5.2 CSIFT Feature point matches ... 50

Figure 5.3 Design (left) and actual (right) E-Channeling-3 50

 viii

Figure 5.4 Feature point matching for E-channelling-3 ... 51

Figure 5.5 Blob detection in matching in E-channeling -3 .. 52

Figure 5.6 Pixel score provided by the system vs. overall score provided by the

designers ... 53

Figure 5.7 The design (left) and the actual image (right) .. 54

Figure 5.8 The design (left) and the actual image modified (right) 54

Figure 5.9 Design (left) and actual image modified coloring the pixel differences

(right) .. 55

Figure 6.1 Mockup (left) and actual (right) with grass background 60

Figure 6.2 Mockup (left) with grass background and actual (right) without grass

background ... 60

 ix

LIST OF TABLES
Table 2.1 The cost of fixing the issue vs stage it was found [16] 9

Table 2.2 Comparison of most used GUI automated test tools 10

Table 2.3 Comparison between SIFT and its variants [30] .. 20

Table 2.4 SIFT and variants algorithm Comparison [30] .. 21

Table 5.1 Layout Matching Survey Scores .. 48

Table 5.2 Layout matching algorithm scores ... 48

Table 5.3 Overall matching survey scores ... 52

Table 5.4 Results given by the framework for overall pixel by pixel score vs. results

from designers .. 53

 x

LIST OF ABBREVIATIONS
Abbreviation Description

GUI Graphical User Interface

UI/UX User Interface/User Experience

MoGUT Mobile GUI Testing

SUT System Under Test

SIFT Scale-Invariant Feature-Transform

CSIFT Color Scale-Invariant Feature-Transform

PCA-SIFT
Principal Component Analysis Scale-Invariant

Feature-Transform

 xi

LIST OF APPENDICES
Appendix Description Page

Appendix - A Survey Sent to the designers 68

1

1 INTRODUCTION

 2

1.1 Overview

This section introduces the problem domain by building up from the background of

the mobile applications and how testing in mobile applications is important. This will

lead up to the problem statement and the objectives of the research. This chapter

finishes with an overview of upcoming chapters and what to expect from them.

1.2 Background

This section discusses the evolution of mobile devices to the current state where it

has now become a gadget in day to day life, followed by the importance of testing

the user interface of the mobile applications.

1.1.1 Evolution of Mobile

The Motorola Dyna TAC 8000X was the world's first truly portable commercial

mobile phone which was introduced in 1983 [1]. From there to the sleek and stylish

smart phones which we use now, mobile manufacturing industry has come a long

way. Since the inception of smartphones, mobile application development has

evolved from hardware-specific software to high-level platform operating systems

[2]. With these new developments, mobile phones are no longer a luxury for the

young generation as it has been a decade ago [3].

With the increasing usage of mobile phones, the mobile manufacturing industry is

evolved into producing cheaper smart phones with higher specifications. Since the

usage of mobile and its applications has become a habit for the current generation,

mobile app development has also become one of the leading software development

variations. Now the growth of the mobile application industry shapes how we live

and work every day [4].

In earlier days’ mobile applications are simple. User interacted with the mobile

screen by searching through the menus by pressing buttons in their key pads. But

now smart phones have dominated the mobile phone industry. Instead of typing or

pressing buttons in the keyboard, users now interact with the mobile screen by

simply touching it or talking to it.

 3

1.1.2 Testing User Interface

Testing has become the most popular verification and validation method in industry

[5]. It’s the common belief that the sooner the defect or bug is found, the cheaper it is

to fix [6]. The main focus on the testing is the functionality of the software. Research

fields like portability, usability and visualization are usually neglected, but in turn

can prove quite advantageous to the industry [5].

In most of the software applications, the priority in testing has been given to the

functional tests. But mobile applications are different. While the functionality is also

important, the user experience plays a vital role. Some researchers suggest that the

graphical user interface of a mobile application is one of the core elements which

decides the success or failure of an application [7].

1.1.3 Mobile User Interface Development

In web and desktop applications, the job of the UI/UX engineer or front-end engineer

is to design and implement the front end of the system and then hand over to the

back-end developer to implement the logic and functionality. But in mobile

application development, the application size is significantly small when compared

to desktop and web applications. Hence, they are usually developed by a single

mobile application developer.

In the software industry user experience is highly valued. Almost all the companies

get help from a UI/UX engineer or a designer to design the user interface of the

applications. In mobile applications, they provide a mockup to the mobile developer

to refer when building the application.

1.3 Problem Statement

Once the mockup is given to the mobile developer, they will develop the application

to conform to the given mockup. Verification of the application’s real user interface

and its conformity to the mockup is done by the developer at the development stage

and the quality assurer at the testing stage. This will not be verified by a user

interface designer after the implementation and before being released due to resource

constraints. This happens because majority of the small-scale mobile application

 4

companies do not either have a resident UI/UX designer or availability of the UI/UX

designer to participate in the testing and verification step. Since these verifications

are done manually by quality assurance engineers or developers whose eyes are not

trained to catch the visual and pixel level differences, they can be time consuming

and prone to human error. This can eventually lead to user interfaces which are

different from what was expected, when they are initially designed. Hence, it would

be beneficial to all the three parties; designer, developer and the quality assurer to

have an automated mechanism to verify that the application’s real user interface

doesn’t deviate from the one given in the mockup.

The aim of this research is to come up with an automated mechanism to quantify

how much the user interface of a mobile application matches with its mockup.

1.4 Proposed Solution

The proposed solution is an image comparison based user interface verification

framework. When the mockup and a screenshot of the actual application is given to

the framework, it will output a comparison score to quantify how much the actual

application matches with the provided mockup. The comparison score will be

computed using image comparison techniques and be done in two accuracy levels;

overall and layout only.

Overall score can be used to identify overall difference between the design and

actually implemented screen whereas layout level can be used to identify only the

differences in the layout without concerning other aspects like color which get

highlighted in overall matching.

1.5 Objectives

The main objective of this research is to develop a mechanism which allows

developers and quality assurers to easily get a quantifiable score based on how much

the user interface of a mobile application matches with its initial mockups.

 5

1.1.4 General Objectives

• To come up with a framework to quantify the comparison between the actual

user interface and designer provided mockups in an application.

1.1.5 Specific Objectives

• To research and analyze the computer vision algorithms which can be used to

give a quantifiable score to identify similarities and differences between two

images in layout level.

• Implement an overall matching algorithm using pixel based matching.

• Identify modifications which should be done to these algorithms to adapt the

context of this research.

• Implement a proof of concept application which outputs the comparison

scores given by the analyzed computer vision algorithms and/or their

modifications.

• Conduct a survey using a group of designers to validate the scores given by

the layout level algorithms and choose which algorithm will mimic an actual

designer and be most functional.

• Use the same survey to identify how usable pixel base matching as an overall

user interface verification mechanism.

• Implement a framework to provide the pixel based score and the layout based

score between two images.

1.6 Overview of the Document

This document consists of six chapters. The first chapter gives the introduction to the

research by presenting the background of mobile application development, testing

and testing mobile applications. It presents the research problem which we are trying

to solve and the objectives of the research.

The second chapter contains the findings from the related literature. Starting from the

importance of software testing along with the GUI testing, it will continue to discuss

the possible image comparison algorithms which can be used to build the layout

level matching functionality of the framework.

 6

The third chapter describes the identified methodology to solve this problem. This

also involves why the certain algorithms are chosen over others and developing the

proof of concept application along with the mechanism of validating the framework

values.

Fourth chapter contains the information regarding the high-level flow of the

framework, system architecture and implementation details of the proof of concept

application.

In the fifth chapter we have included the results of the image comparison algorithms

along with the results provided by the UX designers and discuss the similarities and

differences between the scores. We have finished the fifth chapter with an evaluation

of the research and how its objectives have been met.

Last chapter was dedicated to discuss the research contribution from the research

along with the limitations of the approach we took and future directions where there

is an opportunity to extend the framework.

 7

2 LITERATURE REVIEW

 8

2.1 Overview

This chapter will cover the findings from the related literature. We have started with

software testing in general and doubled down on the GUI testing and automatic

mockup validation frameworks as they are the most important parts for his research.

From there, we have summarized the research we did on image comparison

algorithms for layout matching. Based on their qualities we have shortlisted three

candidates to use in our proof of concept application.

2.2 Software Testing

Software engineering research is focused on two key objectives: reducing the cost of

production and improving the quality of products [9]. This is where software testing

comes in. The process of examining a software application in order to identify

differences between the required and existing specifications is called software testing

[10].

Software testing comes under “Verification and Validation” part of software

engineering practices. The process of assessing a software application to determine

whether the outcome of a certain development phase match the expectations set at

the start of the phase is called software verification [10]. In simpler terms, software

verification answers the question, “Are we building the product, right?”. The process

of assessing whether a software application satisfy its specified requirements for

building that application is called software validation [10]. This can be done at the

end at the end or during a development phase. In simpler terms, software validation

answers the question, “Are we building the right product?”.

In today’s industry we use various kind of software testing mechanisms to achieve

our quality objectives. Few of these mechanisms are black box testing, white box

testing, regression testing, performance testing, usability testing, acceptance testing,

market comparison testing, etc. [11][12]

These tests will cover the development lifecycle from the requirement engineering

stage to the maintenance stage. But testing is expensive. There are studies which

shows that as much as fifty percent of the overall software development cost can be

 9

associated with testing and related activities [13]. Better quality can be obtained by

increasing the coverage of testing [14]. Better coverage means more test cases which

makes manual testing more tiresome and tedious. The solution for this lies in

automation. Automating software testing includes implementing and executing test

scripts, verifying testing requirements and use automated test tools [15].

The main objective of the software testing is to find the defects as soon as possible.

Table 2.1 gives an approximate idea of how the cost of fixing issues depends on the

stage it was found. It proves the fact that the sooner the defects were found, the

cheaper the cost will be.

Table 2.1 The cost of fixing the issue vs stage it was found [16]

Cost to fix a defect Time detected

Requir-

ements

Archit-

ecture

Construc-

tion

System

test

Post-

release

Time

intro

duced

Requirements 1× 3× 5–10× 10× 10–100×

Architecture – 1× 10× 15× 25–100×

Construction – – 1× 10× 10–25×

2.3 GUI Testing

Graphical User Interface (GUI) is the visual way of interacting with the software. It

is a common part of most of today’s software applications. Since it allows various

degrees of freedom to an end-user, it makes it challenging to the test designers to

design test cases covering all the input interaction space of the graphical user

interface [17].

As graphical user interfaces (GUIs) have become ubiquitous in almost every

software system, the demand for GUI-level testing has been increased [18].

However, this brought a unique set of problems which makes the testers to seek a

different approach as opposed to traditional software testing [19]. One example for

this is the fact that traditional test coverage criteria is being applicable in GUI testing

[19].

 10

GUI is being often neglected in lower stages of testing and comes into play in latter

stages. Typical GUI testing tools are based on capture and replay technique.

However, with the increase of focus in this area, some new techniques were

introduced. These include finite-state-machine based test models and event-flow

based test models. Due to the complexity of these models and most of the use cases

end up being infeasible problems when these models are used individually, the

applicability of these modules are limited [17].

There are several GUI automated testing tools available for industry use. Couple of

the best ones is as follows [7].

Table 2.2 Comparison of most used GUI automated test tools

Testing

Tool
Feature input

Report

Function

abbot • Measured via a test script GUI state

• An interface for controlling the replay

• Event-based testing

Java

Application

Coverage

Report

Guitar • Provide a test case generator plug-in

• Event flow measurement is useful

Java

Application

Unsupported

Pounder • Records test scripts and provides an

interface for measuring the results

Java

Application

Unsupported

Selenium

IDE

• Records the actions of the tester using

HTML script

Web UI Unsupported

These and several other applications use the following methods to test GUIs [20]:

1. Record/Playback

This is the method of conducting the tests by recording the events occurred in

GUI. These events are created by interacting with an application using a

mouse and/or keyboard input and by replaying these recorded events. Since

this technique is a simple pattern many GUI test tools are developed using

this.

 11

2. Capture/Replay

The GUI events are captured through the user setting examples and document

them.

3. Particulars Based

As the name suggests particulars-based tests executes the system based on

graphical user interface particulars of the system. Compared with other test

technologies these tests contain several conditions. Hence it is required to

describe and summarize design particulars or needs explicitly.

4. Beta Testing

A lot of enterprises use beta testing as a way of testing graphical user

interface and it is the most popular test method for GUI testing. Typically, the

software’s beta version is released first with the promise of new functionality

but with the risk of the software not being stable. This mechanism is being

currently used with lot of software in the market. However, the issue here is

that since this is done by a non-specialty testers composition, it is difficult to

get the common users to use and test the app without having the required

knowledge.

Visual GUI testing is another approach for testing GUIs. It uses the same mechanism

as record and replay. However, instead of using GUI component coordinates or code

to detect and interact with GUI bitmap components such as buttons and images, it

uses image recognition [21]. The input of a typical visual GUI testing script is given

automating mouse and keyboard commands to GUI bitmap components which are

recognized through image recognition. The output is also detected using image

recognition and the results are compared to expected results [21].

Another GUI testing method is GUI ripping. GUI Ripper dynamically interact with

the applications user interface and construct a navigation model of the application

and observes the changes to its state [22].

Even though there are many tools and frameworks which provide visual comparison

based GUI testing, their scope was to verify that the event stimulus and transition

gives the correct UI views. MoGUT is such a framework [10]. It detects the defects

 12

in the event flow, based on the images of the next screen. Similarly, in most

frameworks the image comparison is used to check the functionality and the event

flow. But none has closely paid attention to verify the user interface. Recently, a new

tool has come into play to automatically validate mockups in web applications.

2.4 Automatic mockup validation for web applications

Applittools Eyes is a commercially available mockup validation tool for web

development [23]. In a typical web development workflow, the product manager or

graphic designer provides the mockups for the website. Using Applittools eyes you

can automatically match the web application you developed to the given mockups to

ensure that it matches its expected design. It is a commercial software which

provides an SDK for your test automation framework to use. Applitools Eyes SDK

provides quick and easy integrations with existing test automation infrastructure like

Selenium, Appium (Java, .Net, Ruby, Python and JS), Microsoft Coded UI and HP

UFT/ QTP/ LeanFT (24).

This tool allows you to validate all the visual aspects of your application by

automating them. For example, one simple test can validate all the fields on a given

screen. Hence the developer or tester do not have to write separate test cases for each

and every UI element on the screen. There are four layers of match levels for the

visual comparison. The default match level is set to strict. But the user can override it

through code. The match levels are as follows [25].

• Exact - Pixel to pixel comparison, for demonstration purposes and debugging,

will fail a test if a pixel is not in place. (not recommended)

• Strict – Strict comparison is said to mimic the human eyes. Hence, only

significant visual changes will be identified and changes which are small and

not visible to the human eye will be ignored.

• Content – Content comparison identify the changes in content and ignores all

the other differences such as style. If the website includes different styles

which are not relevant to your test, this match level will be very handy.

 13

• Layout – layout comparison as the name suggests detected only layout

changes and ignore the changes in content. This is very useful when the pages

include dynamic or localized content.

Even though this tool is available for web application, there are no similar tools we

can use for mobile applications.

2.5 Image Comparison

In order to validate whether the user interface conform to the mockup provided by

the designer, we plan to use image comparison techniques across two levels of

accuracy; overall and layout.

The simplest similarity measure for overall matching consists of directly comparing

the pixels between two images. Pixel based matching is rarely useful as it is

extremely sensitive to minor transformations, both in geometry (shifts and rotations)

and in imaging conditions (lighting or noise) [26].

Layout matching can be done using template matching techniques, neural networks

and feature matching [27]. At this stage we eliminated the high complex neural

network matching techniques since our requirement is only to match the layout of the

image and doesn’t involve identifying complex images.

2.6 Template Matching

Template matching is performed on scale normalized windows in pixel by pixel

matching basis [27]. This process computes a numerical index indicating how well

the template matches the image in a position by moving the template image to all

possible positions in a larger source image [28].

2.7 Feature based matching algorithms

Feature based image matching algorithms can be categorized in to two main areas.

[29].

1. Global Feature Based Matching Algorithms

2. Local Feature Based Matching Algorithms

 14

Local feature based matching algorithms are more stable in comparison with global

feature based matching algorithms [30]. Some of their real-world use cases are as

follows:

1. Object/Texture Recognition

2. Object Category Recognition

3. Image Retrieval

4. Mining Video Data

5. Building Panoramas

6. Robot Localization

2.7.1 Global Feature Based Matching

Global features include contour representations, shape descriptors, and texture

features. They are able to generalize an entire object with a single vector making

their use in standard classification techniques straight forward. This means that

global features have very compact representation of images where each image

corresponds to a point in a high dimensional feature space. This allows them to use

any standard classifier at the same time making them sensitive to clutter and

occlusion [29].

2.7.2 Local Feature Based Matching

Local features are more robust to occlusion and clutter since they are computed at

multiple points in an image. In case there are variable number of feature vectors per

image, a specialized classification algorithm might be required to handle it [29].

Local feature-based matching algorithms includes feature detection and description.

The characteristics of good local features are as follows [30]:

1. Feature detection has a high repeatability rate and high speed.

2. Feature description has a low feature dimension, which is easy to achieve

quick matching and robustness to rotation, illumination, and viewpoint

change.

There are many popular local feature based matching algorithms starting from SIFT

(Scale-Invariant Feature Transform) where the original paper was referenced by

 15

more than 5000. We have considered SIFT and some popular variants of SIFT

algorithm to find a suitable matching technique to detect the differences and

similarities between the mockup and the actual image.

2.7.3 SIFT (Scale Invariant Feature Transform)

This approach transforms an image into scale invariant features relative to local

features. This process can be divided into four stages [31].

1. Scale-space extrema detection:

This stage involves searching over all scales and image locations. To

implement this process efficiently in order to identify the potential scale and

orientation invariant interest points, a difference-of-Gaussian function is

used.

2. Keypoint localization:

In this stage each of the candidate locations identified from the previous stage

are fitted with a detailed model to determine location and scale. The stability

of the key points is the basis of selection.

3. Orientation assignment:

One or more orientations are assigned to each key point location based on

local image gradient directions. The rest of the computations will be carried

out on the image data which has been transformed relative to this assigned

orientation, scale and location for each feature. This provides the invariance

to these transformations.

4. Keypoint descriptor:

The local image gradients are computed at the selected scale in the region

around each keypoint. These are transformed into a representation that allows

for significant levels of local shape distortion and change in illumination.

These feature extractions are done in a cascading way where the costlier operations

are applied only at the locations which passed the initial tests in order to minimize

the cost. [31]

 16

Figure 2.1 Stages of key point selection [31]

Figure 2.1 represents the stages of key point selection. [31]. Keypoints are displayed

as vectors in the above image. These vectors indicate scale, orientation and location.

(a) The original image of 233x189 pixel.

(b) The first 832 keypoint locations at maxima and minima of the difference-of-

Gaussian function.

(c) Remaining 729 keypoints after minimum contrast threshold being applied to.

(d) Remaining 536 keypoints after applying an additional threshold on ratio of

principal curvatures.

The keypoint with minimum Euclidean distance is defined as the nearest neighbor to

the invariant descriptor vector. In the database of keypoints the nearest neighbor is

considered to be the best candidate to match for each keypoint when matching two

images [31].

The key points are invariant to image rotation and scale. They are also robust across

a substantial range of affine distortion, change in illumination and addition of noise.

 17

Since the key points are detected over a complete range of scales, the large key

points work well for images with noise and blur where small key points work well

for small objects and objects with high occlusion. The efficiency of this computation

is very high to an extent that thousands of key points can be derived from a typical

image in near real time using standard PC hardware [31].

After SIFT was presented, many subsequent researchers followed and built new

algorithms on top of it adjusting the performance of key point detection, descriptor

establishing and image feature matching.

Among various other SIFT based improved algorithms, following algorithms are

considered for this research.

1. PCA-SIFT

2. GSIFT

3. CSIFT

4. SURF

5. ASIFT

2.7.4 PCA-SIFT [32]

Similar to the standard SIFT descriptor, PCA-SIFT for local descriptors accepts the

identical input of sub-pixel location, dominant orientations and the scale of the key

point. Then it extracts a 41×41 patch at the given scale, centered over the keypoint,

and rotated to align its dominant orientation to a canonical direction.

The process for PCA-SIFT can be divided in to three stages:

1. Express the gradient images of local patches by pre computing an eigenspace.

2. For a given patch, compute the local image gradient.

3. Derive a compact feature vector by projecting the gradient image vector using

the eigenspace. Although PCA-SIFT feature vector is considerably small

compared to the standard SIFT feature vector, the same matching algorithms can

be used with it. The correspondence of the two feature vectors to the same key

point in different images is determined using the Euclidean distance between

those two vectors.

 18

In comparison to standard SIFT algorithm, PCA-SIFT is more suitable for capturing

variation in the gradient image of a localized key point in orientation, scale and

space.

2.7.5 GSIFT

GSIFT expands the standard SIFT algorithm by combining local SIFT descriptor

with a global context vector which is similar to shape contexts. This global context

adds value by differentiating between local features that have similar local

appearance. This will give a descriptor which is robust to ambiguities in local

appearances and non-rigid transformations [33].

2.7.6 CSIFT [34]

Standard SIFT algorithm uses a gray scale image. CSIFT, also known as COLORED

SIFT, extends the SIFT algorithm by embedding the color information in the in

descriptors. This makes the features robust to variations in color by using a color

variance model [35]. Robustness to geometrical variations are achieved similar to

SIFT.

2.7.7 SURF [36]

SURF, which is also known as Speeded-Up Robust Features contains feature

descriptors relying on,

1. Gaussian second derivative mask

2. Local Haar wavelet responses

Haar wavelet is a sequence of rescaled "square-shaped" functions which together

form a wavelet family or basis.

SURF uses ingenious box filter and integral image tricks to quickly find the features

and then describe them robustly using Haar wavelets. This has made SURF faster

than its predecessor SIFT.

 19

2.7.8 ASIFT [37]

ASIFT(Affine-SIFT) extends SIFT into a fully affine invariant image comparison

algorithm by simulating the camera optical direction and scale, and normalizing the

rotation and the translation. The existence of large transition tilts between two

images taken from two different viewpoints inspired the exploration of full

invariance.

2.7.9 Comparison of SIFT and its variants

Figure 2.2 gives a high-level summary of SIFT and its variants followed by Table 2.3

[30] which gives a detailed overview of differences between these local feature based

matching algorithms.

SIFT

Discription
Changed

PCA-SIFT

GSIFT

Detection
Changed

CSIFT

Description and
Detection
Changed

SURF

View point
transformation

ASIFT

Figure 2.2 SIFT and its variants

 20

Table 2.3 Comparison between SIFT and its variants [30]

 Key point Detection Key point Description
 Scale-space Selection Main direction Feature

Extraction
#Dimen

sions

SIFT

Different-scale
images
convoluted
with a
Gaussian
function

Detect extrema
in DoG space;
do non-
maxima
suppression

Calculate a gradient
amplitude of a
square area; regard
the direction with
the maximum
gradient strength as
the main direction

Divide a 16×16
region into 4×4
sub-regions;
create a gradient
histogram for
each sub-region

128

PCA-
SIFT Equal to SIFT Equal to SIFT Equal to SIFT

Extract a 41×41
patch; form a
3042-dimension
vector; use a
project matrix to
multiply with it

20 or
less

GSIFT Equal to SIFT Equal to SIFT Equal to SIFT

For each
keypoint, create
a vector
consisting of
SIFT description
and a global
texture vector

188

CSIFT

Replace
grayscale with
color
invariant;
convolute with
a Gaussian
function

Equal to SIFT Equal to SIFT Equal to SIFT 384

SURF

Different-scale
box filter
convoluting
with an
original image

Use a Hessian
matrix to
determine
candidate
keypoints; do
non-maxima
suppression

Calculate a Haar
wavelet response in
x and y directions
of each sector in a
circular area; regard
the direction with
maximum norm as
the main direction

Divide a 20×20s
region into 4×4s
sub-regions;
calculate a Haar
wavelet response

64

ASIFT After a preprocessing - viewpoint transformation, follow SIFT’s steps (i.e.,
the same as SIFT)

 21

Table 2.4 has given a qualitative summarization on the algorithms on following
areas. [30]

1. Scale and rotation
2. Illumination
3. Blur
4. Affine
5. Time Cost

The scale of evaluation is Fair < Good < Better < Best

Table 2.4 SIFT and variants algorithm Comparison [30]

Algorithm Scale &
Rotation Illumination Blur Affine Time Cost

SIFT Best Better Good Good Better
PCA-SIFT Better Better Better Good Better
GSIFT Good Best Best Good Better
CSIFT Best Good Better Better Good
SURF Fair Fair Fair Fair Best
ASIFT Good Fair Fair Best Fair

According to our use case of comparing the mockup with the actual image of a

mobile user interface, we only have to consider the scale, affine and time cost. Blur

and illumination are not considered because the screenshots of the actual application

and mockup do not have blur and illumination since both of them are machine

generated and not the actual real-life images. The other factor which is less likely to

be change in a mockup of a user interface design and a screenshot of a real-life

application is the orientation. The most common UI mistakes in development are on

the lines of the position and scale not orientation.

1. Scale

2. Affine

3. Time Cost

 22

Based on the comparison we have three candidate algorithms who has either best or

better performance in the qualities that we are interested in.

1. SIFT

2. PCA-SWIFT

3. CSIFT

 23

3 METHODOLOGY

 24

3.1 Proposed Solution

The proposed solution for our research problem is to build a framework which will

quantify the comparison between the actually implemented user interface and the

designer provided mockups.

3.2 Workflow

When implementing the proposed solution, we decided to go ahead with two

accuracy levels; overall and layout only.

For overall comparison between two images, we chose pixel based matching where

every pixel of one image is matched with the corresponding pixels in the other image

and come up with a score based on the similarity.

Layout level comparison is not as straight forward as the overall pixel based

comparison. There were lot of available algorithms which we can use as a base

algorithm to compare the similarity between two images. We researched on these

available algorithms and chose a set of shortlisted candidates. We added our own

very simple blob detection algorithm to the list of shortlisted algorithms as well.

After selecting the algorithms, we built a proof of concept application which will

provide a set of scores based on similarities between two images, the two images

being the screenshot of the actual application and the mockup provided by the

designer.

When building this application, we have to slightly modify the existing algorithms to

give a quantifiable score based on the comparison similarities. This score is given as

a percentage. The proof of concept application will output scores using all the

shortlisted algorithms for layout level and overall pixel based algorithms.

After the proof of concept application is implemented, we applied three industrial

use cases and got the comparison scores. We used the same use cases in a survey for

a selected group of user interface designers and asked them a comparison score

based on layout matching and overall matching between the mockup and actually

developed application.

 25

For layout matching, we used the scores provided by the designers as a benchmark to

the scores given by the various algorithms and select the best algorithm to be used in

our framework.

For overall matching, we compared the scores provided by the designers and the

pixel based scores provided by the proof of concept application. The purpose of this

comparison is to determine the usability of the pixel based matching as a mechanism

to match the overall similarity between the application and the mockup.

Figure 3.1 visualize this workflow.

Figure 3.1 Workflow

3.3 Shortlisting algorithms

When analyzing the local feature based matching algorithms in the literature review,

we had three candidates who had the best performance of the areas we are interested

in, namely scale and rotation, affinity, and time cost.

1. SIFT

2. PCA - SIFT

3. CSIFT

We implemented these algorithms as candidates to be used in our framework for

layout matching comparison score.

We also implemented a basic blob detection algorithm. Typically, mobile

applications have very simple user interface to allow the user to quickly do their

intended task. With the rise of the material design [38], the amount of the widgets

available in the user interface has been made very minimal. However, similar to

 26

material design for Android, Apple has its own set of design guidelines [39].

Although fundamentally different, the similarity is that they both suggest a set of

basic components to be used in designing and developing. These components can be

easily detected by a simple blob detection algorithm and matched based on their size

and location in the screen.

3.4 Modifying the algorithms to give a quantifiable score

All of the selected algorithms provide a mechanism to find matches between two

images. To make it a quantifiable score we need to use the matching results and

formulate an algorithm to get a score based on differences or similarities.

3.4.1 Pixel matching score

This is very easy in the pixel to pixel matching algorithm. Since we have the number

of pixels which are different between images, we only have to calculate the

percentage of difference and similarity from it.

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑	𝑝𝑖𝑥𝑒𝑙𝑠
𝐴𝑙𝑙	𝑡ℎ𝑒	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑖𝑚𝑎𝑔𝑒 × 	100%

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 100% − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒%

3.4.2 Layout matching score

Quantifying layout matching is not easy as quantifying the pixel based matching.

The initial approach we can take to find the similarities between the two images is to

compare their feature point matches to total number of feature points.

𝐿𝑎𝑦𝑜𝑢𝑡	𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔	𝑆𝑐𝑜𝑟𝑒 =
𝑁𝑜	𝑜𝑓	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔	𝑘𝑒𝑦	𝑝𝑜𝑖𝑛𝑡𝑠

𝑀𝑎𝑥(𝑁𝑜	𝑜𝑓	𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠	𝑖𝑛	𝑚𝑜𝑐𝑘𝑢𝑝,𝑁𝑜	𝑜𝑓	𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠	𝑖𝑛	𝑎𝑐𝑡𝑢𝑎𝑙) × 100%

Number of matching keypoints are divided from the maximum value between the

keypoints in the mockup and the keypoints in actual rather than taking the number of

keypoints in the mockup as the reference. This is to avoid getting a higher score

when all the keypoints in the mockup matches with the actual image, but actual

image has some other object which gives an extra set of key points and vice versa

 27

where all the keypoints in the actual image matches with the mockup but mockup has

a set of extra key points.

The drawback of this approach is that the difference between the matching keypoints

are not considered. The percentage of difference between the matching keypoints can

be calculated from summing up the Euclidean distance of each keypoint based on

position and scale.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓F, 𝑓G) = H(𝑥F − 𝑥G)G +	(𝑦F − 𝑦G)G +	(𝑠𝑐𝑎𝑙𝑒F − 𝑠𝑐𝑎𝑙𝑒G)G
J

These distances are summed up for all the matching feature points.

𝑇𝑜𝑡𝑎𝑙	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	L𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓1, 𝑓2)

The maximum distance between two feature points is taken as when two feature

points are located in two opposite ends of the image. Maximum scale difference is

taken by considering the feature point’s scale covers whole screen

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓F, 𝑓G) = H(𝑤𝑖𝑑𝑡ℎ)G +	(ℎ𝑒𝑖𝑔ℎ𝑡)G + (𝑚𝑎𝑥𝑆𝑐𝑎𝑙𝑒)GJ

Total distance percentage between the matching keypoints can be calculated as the

following.

𝑇𝑜𝑡𝑎𝑙	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑡𝑜𝑡𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑎𝑡𝑐ℎ𝑒𝑠
× 100%

Total similarity percentage is calculated using the total difference percentage

𝑇𝑜𝑡𝑎𝑙	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 100% − 𝑇𝑜𝑡𝑎𝑙	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

The drawback on calculating only the total similarity percentage as the quantifiable

score to match the similarity of two images is that it doesn’t take the non-matching

feature points into the account.

The actual similarity of the two images is based on both these scores.

 28

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑡𝑤𝑜	𝑖𝑚𝑎𝑔𝑒𝑠

= 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑚𝑎𝑡𝑐ℎ𝑒𝑠	𝑜𝑓	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑝𝑜𝑖𝑛𝑡𝑠

× 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑜𝑓	𝑚𝑎𝑡𝑐ℎ𝑒𝑑	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑝𝑜𝑖𝑛𝑡𝑠

A similar calculation is carried out for blob detection as well.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑡𝑤𝑜	𝑖𝑚𝑎𝑔𝑒𝑠

= 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑜𝑓	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔	𝑏𝑙𝑜𝑏𝑠	

× 	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔	𝑏𝑙𝑜𝑏𝑠

3.5 Developing the proof of concept application

When developing the proof of concept application, we have used a simple approach

where the user can upload two images representing a mockup and an actual

screenshot. It uses two different tabs in order to differentiate between pixel to pixel

based score and layout scores. Dependent on the tab you are in, you can calculate the

pixel to pixel score or layout matching score.

For the layout matching score, you can select what algorithm you want to use among

the four shortlisted algorithms.

The purpose of this proof of concept application is to visualize the comparison score

when applying the shortlisted algorithms. This can also act as an example

implementation of how the framework can be used in a testing framework.

3.6 Conducting the survey

We have conducted a survey using three industrial case studies. Each case study

represents a different type of mobile application which is already on the market. The

rationale of selecting these applications are as follows.

1. “Hapan”: This is an image heavy application designed for kids. Unlike other

applications, this has the least amount of text and used bold colors.

2. “E-Channeling”: This application is a very text intensive application which

has dynamic data loading. Unlike the “Hapan” application, this application

has several mobile application widgets like menus, buttons, dialog boxes, etc.

 29

3. “Ada Dawasa”: This application represents the middle ground of the above

two applications. It has images and widget elements in the same user

interface.

 A selected set of local and foreign user interface designers have been asked to fill a

survey and provide a layout score and overall score by comparing the mockups and

actual images of these mobile applications (Appendix A). The rationale behind

including the foreign user interface designers is that they do not have the context

represent in the text so that the focus will be only limited to comparing the layout

and overall similarity, not the wording on the text as such.

3.7 Data Set

For the survey and get the scores of the framework, we used a data set of ten image

pairs. These images are taken from three real applications which is already in the Sri

Lankan market.

3.7.1 Use case 1: Hapan

Figure 3.2 Design (left) and actual (right) Hapan-1

Figure 3.3 Design(left) and actual (right) Hapan-2

 30

Figure 3.4 Design (left) and actual (right) Hapan-4

Figure 3.5 Design (left) and actual (right) Hapan-3

 31

3.7.2 Use case 2: E-Channelling

Figure 3.6 Design (left) and actual (right) E-channelling-2

Figure 3.7 Design (left) and actual (right) E-channeling - 1

 32

3.7.3 Use case 3: Ada dawasa

Figure 3.8 Design (left) and actual (right) E-channeling-3

Figure 3.9 Design (left) and actual (right) Ada dawasa-1

 33

3.8 Selecting the underlying algorithm for layout based score in the
framework

To select an underlying algorithm for the layout based score in our framework, we

have compared the layout comparison scores we received from the survey with the

values provided by our algorithms.

The best algorithm whose scores are similar to the scores from the designers is

selected as to provide the layout based score for our framework.

3.8.1 Statistical Analysis

For the analysis of the results from the survey we are using mean of the sample and

sample standard deviation to measure variation because we want to make a statement

about the population standard deviation from which the sample is drawn,

Figure 3.10 Design (left) and actual (right) Ada dawasa -2

 34

𝑠 = 	O
∑(𝑥 − 𝑥̅)
𝑛 − 1

xS=sample	mean

s=sample	standard	deviation

n=number	of	scores	in	sample

We will use a t-distribution to get the upper and lower bounds of the values with

95% confidence level

3.9 Determining usability of pixel based matching

Pixel based matching is very restrictive. We compared the score which we got from

pixel based matching to the overall score of comparison by the designers to

determine whether it will match the designer’s idea of overall similarity. This

includes several other aspects like color, orientation, etc. which are not considered in

layout matching.

3.10 Creating the framework

The objective of this research is to provide an automated framework to get a

quantifiable score to capture similarities between the mockup and actual user

interface on the basis of pixel to pixel and layout. This framework should be

implemented as a library where the user can easily import and use in their automated

testing. It should have a clear API to get the pixel based score and layout score.

To extend the functionality and be flexible for testing frameworks to use the

underlying algorithm they prefer instead of the algorithm we suggested, we have also

included the following four algorithms as well.

1. SIFT

2. PCA-SIFT

3. CSIFT

4. Blob Detection and matching

 35

4 SYSTEM ARCHITECTURE AND IMPLEMENTATION

 36

4.1 Overview

We followed a slightly different method in architecting the framework and the proof

of concept application. This chapter discusses the specifics in how we design the

proposed image comparison framework and the proof of concept application.

4.2 High-level Flow

The image comparison framework is designed to be used as a library which provides

API methods to get an overall comparison score and a layout comparison score. We

also made a design decision to extend this API to output comparison scores based on

all of our candidate algorithms in layout comparison. Not only this will provide

flexibility to users in selecting an underlying algorithm which is specific to their use

cases overriding our general recommendation; this also allows us to use the

framework to build the proof of concept application in the first place.

The first iteration of the framework included the implementation of all the candidate

algorithm based scores and pixel based overall value score. This made it possible for

the proof of concept application to use the framework.

After we got the results of the survey and analyzed the scores given by the designers

and chosen a suitable underlying algorithm, we implemented the remaining interface

for the layout comparison score by outputting the scores from the selected underlying

algorithm.

The input for the API methods will be the mockup and actual image’s Buffered

Image object. And the output of these API methods will be a single integer score

between 0-100 based on the method they choose.

High level of the flow is given in Figure 4.1

 37

Figure 4.1 High level flow

4.3 High level architecture of image comparison engine

Image comparison engine consist of a request processor, matcher modules and output

processor (Figure 4.2)

Figure 4.2 High level architecture

4.3.1 Request Processor

The main responsibility of the request processor is to validate the input request and

send to the relevant matcher module.

 38

4.3.2 Pixel Matcher

This module gets two images and match them pixel by pixel and return a pixel

matching score to the output processor. This module is very simple to implement.

High-level overview of the method is given in Figure 4.3.

Figure 4.3 Pixel to pixel matching

4.3.3 SIFT Matcher

This module uses the Difference of Gaussian (DOG) SIFT to identify the feature

points of the two images. To identify the feature points, the buffered images are first

converted to MBF (Multi Band Floating Point) images. A floating-point image is a

greyscale image which represents each pixel as a value between 0 and 1. A multi

band floating point image has a list of floating-point images to represent each band.

For this we have taken the color space as RGB which represent three bands, RED,

GREEN, BLUE.

When the feature points are identified, they are sent to a Coordination Distance

Matcher. This matcher considers the feature point distances in considering the scale,

orientation, x and y coordinates.

 39

Figure 4.4 SIFT matching

Figure 4.5 Calculate the matching score for SIFT based algorithms

4.3.4 CSIFT Matcher

This module matches the two images based on the CSIFT local feature matching

algorithm. Figure 4.6 represents the overview of the implementation and 4.5

represents calculating the score from the list of matching key points. Similar to SIFT,

this also uses a Coordination Distance Matcher.

 40

Figure 4.6 CSIFT matching

4.3.5 PCA-SIFT Matcher

In PCA-SIFT matcher the, the local feature points are identified using the basic SIFT

algorithm. The only difference here is instead of using a Coordination Distance

Matcher, a PCA algorithm based matcher is used.

Figure 4.7 PCA-SIFT matching

4.3.6 Blob Detection Matcher

A blob for the blob detection matcher is defined with the following parameters.

Figure 4.8 shows how this is defined in the code.

1. X coordinate maximum value – Xmax

2. X coordinate minimum value – Xmin

3. Y coordinate maximum value – Ymax

4. Y coordinate minimum value – Ymin

 41

5. Mass (in pixels)

Figure 4.8 Blob definition

When blobs are extracted, matched are identified by making a matrix with Euclidean

distances between the parameters of the two blobs. A match is defined as the pair

which has the lowest score in the matrix.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏1, 𝑏2) = e
(𝑥1fgh − 𝑥2fgh)G + (𝑥1fij − 𝑥2fij)G
+(𝑦1fgh −	𝑦2fgh)G + (𝑦1fij − 𝑦2fij)G

+(𝑚1 −𝑚2)G

J

When detecting the blobs detecting text differences will make the score lower as the

algorithm identify a letter as a blob. In layout matching we are not considering the

text since it is subject to change in most use cases. Hence, we have converted regions

of text to another blob. We have identified text using SWT detector and marked the

set of text as separate blobs [40].

 42

Figure 4.9 Code segment for removing text from an image

We first identify the blobs in each image. To do this we first create a monochrome

version using basic threshold technique given in Figure 4.10.

Figure 4.10 Creating the monochrome version

The next step is labeling blobs using the neighboring pixel pattern. In our case, this

labeling will give us a list of blobs

Figure 4.11 Labeling definition for neighboring pixel pattern

Once the pointers are defined, this will iterate through pixels looking for connected

regions and assigning labels. A matrix is created with the two list of blobs from the

mockup and the actual to identify the matching blobs. The matching score is

determined by calculating Euclidean distance between two blobs considering all the

attributes including mass itself (Figure 4.12).

 43

Figure 4.12 Get Euclidean distance of the attributes

When finalizing matches, we use a threshold to avoid two different blobs to identify

within each other because they are not matched with other blobs.

4.3.7 Output Processor

This is just an abstraction layer to receive the result do the result validation and

return the output.

4.4 Proof of Concept Application

This is a simple application which will provide a front end to upload the two images

and show the results. Figure 4.13 gives you the pixel matching view in the proof of

concept application and Figure 4.14 gives you the layout matching view.

 44

Figure 4.13 Pixel to pixel matching screen

Figure 4.14 Layout matching screen

 45

4.5 Image Comparison Framework

After the survey results are in and when we finalized the underlying algorithm for the

layout score, we can go ahead and apply the algorithm to the layout score. Since the

recommended algorithm from the results is CSIFT, the underlying structure of the

final API looks like the following. How we ended up getting CSIFT as the

underlying algorithm can be found in the next chapter.

Figure 4.15 Underlying implementation of the framework API

 46

5 RESULTS AND EVALUATION

 47

5.1 Overview

This chapter summarizes the result of the research. It will start from our case study

results where we use the same set of use cases in the proof of concept application and

the survey to select an underlying algorithm to be used for the layout comparison

score. This survey also helps us to determine the usability of the pixel based

matching as an overall comparison score.

5.2 Survey

A survey is conducted to identify which layout matching algorithm performs best

similar to a designer. This survey includes a set of image pairs which represents the

actual implemented application’s screenshot and the initial design [Appendix A]. It is

given to a set of hand-picked user interface/ user experience designers from local and

international companies. They are asked to provide two scores; overall score and a

layout score. The overall score should be considering the color, orientation, scale,

layout. The layout score only considers the layout of the particular design.

The same image pairs were given as input to the framework using the proof of

concept implementation and the scores are recorded. Then the framework scores are

matched with the survey scores. The overall score is matched to the pixel by pixel

score in the framework and the layout score matched with the four layout scores

calculated using SIFT, CSIFT, PCA-SWIFT and blob detection. This will allow us to

select an underlying algorithm to calculate layout score for the framework.

5.3 Results

In this section we have compared results of the scores given by our shortlisted

algorithms with the scores from the survey conducted.

5.3.1 Layout Matching

Table 5.1 represents the results of the survey data for layout scores along with its

confidence interval for 95% confidence

 48

Table 5.1 Layout Matching Survey Scores

Use case Mean Sample

Standard

Deviation

Degrees

of

Freedom

Margin of

Error

Upper

Bound

Lower

Bound

Hapan - 1 65.5 10.50 19 4.91 70.41 60.59

Hapan - 2 68.75 14.32 19 6.70 75.45 62.05

Hapan - 3 61.25 11.11 19 5.20 66.45 56.05

Hapan - 4 78.25 11.15 19 5.22 83.47 73.03

EC -1 51.75 16.00 19 7.49 59.24 44.26

EC - 2 66.5 14.15 19 6.62 73.12 59.88

EC - 3 71.5 4.62 19 2.16 73.66 69.34

AD -1 72 5.94 19 2.78 74.78 69.22

AD - 2 75.5 14.03 19 6.57 82.07 68.93

Table 5.2 represents the results coming from the algorithms for the same use cases

Table 5.2 Layout matching algorithm scores

Use case SIFT CSIFT PCA-SIFT Blob Detection

Hapan - 1 57.24 57.53 52.84 41.97

Hapan - 2 75.48 61.9 73.99 93.39

Hapan - 3 54.81 55.08 51.82 87.34

Hapan - 4 56.54 51.53 55.14 77.87

EC- 1 34.80 33.99 32.76 61.55

EC - 2 20.78 20.85 17.89 70.54

EC - 3 17.46 12.71 15.17 87.29

AD - 1 49.38 55,73 47.18 94.9

AD - 2 34.66 34.19 32.03 95.06

 49

Figure 5.1 has visualized the algorithm provided layout matching scores with the

mean of the designer provided layout matching scores from the survey.

Figure 5.1 Layout matching scores

When we consider the layout matching, none of the algorithms strongly co-relates to

the pattern of the scores derived from the survey answers by real designers.

However, when taken separately, text heavy user interfaces like E-Channelling and

Ada Dawasa use cases, the designer provided scores are slightly follow the pattern of

blob detection algorithm scores whereas in picture heavy user interfaces like Hapan,

the designer scores follow the local feature matching algorithm score patterns.

When considering Hapan use case, we can see that it is more color intensive and the

picture to text ratio is high. And the text for screens we have taken to account is

static and not get updated based on the underlying data. In this case, when

identifying the feature points, the non-text components like back ground images and

buttons plays a major role. Figure 5.2 shows a feature point matches between the

design and the actual using CSIFT algorithm which has provided closest result to the

designer provided score.

0
10
20
30
40
50
60
70
80
90

100

Hap
an

 - 1

Hap
an

 - 2

Hap
an

 - 3

Hap
an

 - 4

E-C
han

nellin
g -

1

E-C
han

nellin
g -

2

E-C
han

nellin
g -

3

Ada D
aw

asa
 - 1

Ada D
aw

asa
 - 2

Layout Matching Scores

SIFT CSIFT PCA_SIFT Blob Detection Designers

 50

Figure 5.2 CSIFT Feature point matches

But when we consider E-Channeling and Ada Dawasa use cases, both these two apps

are more text intensive. So, majority of identified feature points are letters. When the

text is actually based on an underlying data source, the values between actual and the

design are bound to change. Figure 5.3 shows the design and actual images for one

of the E-channeling use cases. According to this figure you can see that the data

presented in the screen is dependent on the underlying data source. In the design

Figure 5.3 Design (left) and actual (right) E-Channeling-3

 51

phase, dummy data is used for these scenarios.

Figure 5.4 shows the feature point matching for the same use case. For example, the

design has used a female icon in the top left corner here as in the actual screenshot is

an icon of a male based on the data. Similar to the icon, the dates of the design is

different from the dates of the actual screenshot.

When the blob detection algorithm is used to this scenario, the text is detected and

converted in to blobs as a preprocessing step. Because of this, the location of the text

is matched rather than the text itself. The drawback of this approach is that before

detecting the blobs, the image in converted into a monochrome image. Because of

this it will lose the colors close to the background. For example, in Figure 5.5, the

circular objects were not identified as blobs.

Figure 5.4 Feature point matching for E-channelling-3

 52

Because of this blob detection is not suitable to identify the images with similar color

palette. However, the underlying data problem can be solved by mocking the same

data as in the design or doing the comparison before plug in the actual data source. In

this way we can avoid the anomalies for text intensive applications.

5.3.2 Overall Matching

Table 5.3 Overall matching survey scores

Use case Mean sample
deviation

Margin of
Error

Upper
Bound

Lower
Bound

Hapan - 1 63.75 23.94 11.21 74.96 52.54
Hapan - 2 74.75 20.03 9.37 84.12 65.38
Hapan - 3 66.25 17.91 8.38 74.63 57.87
Hapan - 4 81 8.52 3.99 84.99 77.01
EC - 1 53.75 29.82 13.96 67.71 39.79
EC - 2 67.25 18.39 8.61 75.86 58.64
EC - 3 75.38 6.65 3.12 78.49 72.26
AD - 1 68 17.95 8.40 76.40 59.60
AD - 2 62.25 16.58 7.76 70.01 54.49

Figure 5.5 Blob detection in matching in E-channeling -3

 53

Table 5.4 Results given by the framework for overall pixel by pixel score vs. results
from designers

Use case
Pixel by pixel matching

score

Overall score given by

designer

Hapan - 1 6.52 63.75

Hapan - 2 1.35 74.75

Hapan - 3 4.12 66.25

Hapan - 4 11.36 81

EC -1 46.28 53.75

EC - 2 34.62 67.25

EC - 3 40.66 75.38

AD -1 76.56 68

AD - 2 55.96 62.25

Figure 5.6 represents a graph to compare the overall scores given by the designers to

pixel to pixel score provided by the framework.

 Figure 5.6 Pixel score provided by the system vs. overall score provided by the
designers

0
10
20
30
40
50
60
70
80
90

Hap
an

 - 1

Hap
an

 - 2

Hap
an

 - 3

Hap
an

 - 4

E-C
han

nellin
g -

1

E-C
han

nellin
g -

2

E-C
han

nellin
g -

3

Ada D
aw

asa
 - 1

Ada D
aw

asa
 - 2

Pixel Score Vs Overall Score

Pixel Overall

 54

According to this graph we cannot see any co-relation between the designer’s overall

score with the framework provided pixel to pixel score.

The main reason for this mismatch is the color difference. When comparing the

pixels in two images color plays a large role. The framework will treat a small

difference of the RGB value as same as a big difference of RGB value. For example,

our Hapan-1 use case, the color difference is very small. Figure 5.7 shows the the

design and the actual image. In Figure 5.8 design is given with the actual image

where the pixels which are different from the design is colored in red. For non-

trained eyes, the background color of the two images are almost identical. But for the

trained eyes, they can see the difference, but the overall score will be based more on

how close the color to the design, rather than whether the color is the same or not.

Another reason for the score difference is the objects to background ratio. In every

use case except one, pixel score has been the lowest when compared to the overall

score provided by the designers. But in the Ada Dawasa - 1 use case in figure 5.9, the

pixel score (76.56) is greater than the designer provided overall score (68).

Figure 5.8 The design (left) and the actual image modified (right)

Figure 5.7 The design (left) and the actual image (right)

 55

Figure 5.9 is the output from the pixel to pixel matching. It is visible that all the

objects in the user interface doesn’t match, but since both are on white background,

the back ground is taken as a similarity.

5.4 Evaluation

In this research we have considered five local feature based matching algorithms and

analyzed them of their usefulness for this context. This helped us to narrow down

and shortlist three algorithms based on scale, affine and execution time.

We implemented the three selected algorithms; SIFT, PCA-SIFT and CSIFT

modifying them to match to our context. We also implemented a simple pixel based

matching algorithm and a new blob detection algorithm as well.

The implementation of these five algorithms has been used for the proof of concept

application. This application will allow a user input two images and find the

comparison scores based on the five algorithms.

Figure 5.9 Design (left) and actual image modified coloring the
pixel differences (right)

 56

A survey was done selecting a group of designers and giving them a set of use cases

of mockups and actual user interfaces. We have asked them to provide two scores

considering the layout matching and overall matching. The aggregated result from

these values are used to compare with the scores given by the proof of concept

application.

According to the results the pixel based score doesn’t have any correlation with the

designer provided overall value score. However, this can still be useful for the

developers and quality assurance engineers to identify the changes easily between

the implementation and the mockup.

Comparing the layout scores, we find that CSIFT algorithm closely follows the

pattern of designer scores compared to the other algorithms. Hence, we have used

CSIFT as the base algorithm for layout matching when building our framework.

 57

6 CONCLUSION

 58

The world is moving more towards leveraging mobile devices to replace almost

everything in the day to life. This allows a lot of appetite for new application

domains as well as lot of competition for existing application domains.

To get a competitive advantage, the companies need to provide a good user

experience for the users. Unfortunately, unlike web development or other application

development, mobile user interfaces are not implemented by the front-end engineers

or UI/UX engineers. Although the companies do seek the user interface designer in

the designing phase, they do not take steps to allocate the designer to verify once the

application is built. This leaves the developer and the quality assurance engineer to

evaluate the implemented user interface with the designed one using an untrained eye

leaving space for lots of errors and ending up releasing a user interface which is

different from the one user interface designer envisioned when the mockup was

designed. Hence, we need a proper mechanism to quantify the differences between

the mockup and the actually implemented user interface.

6.1 Research Contribution

This research focuses on implementing a solution for the above problem by

providing a framework where the developer or the quality assurance engineer can use

to verify the user interface by providing the design and the actual implementation.

On the road of achieving this result we have researched for the similar products and

researches on this area and found that although similar mockup verification systems

exist for web applications, the same has not been explored for mobile user interfaces.

We designed our framework such that the user can use the recommended layout

matching score by default. In the same time the framework also provides the ability

to use other layout matching algorithms directly to match the layout between two

images. The framework also provides the pixel to pixel matching score as well.

Although the research suggested that it is not usable and too restrictive, developers

and testers can still use it if needed.

Depending on the application type, users can either directly use the CSIFT backed

layout score provided by the framework or other layout algorithm.

 59

The framework is built as an open source library so the users can use it and create

their own solutions.

We also developed a proof of concept application which users can directly use to test

their user interfaces if they do not need any customizations.

6.2 Limitations

6.2.1 User interface vs User experience

This framework only compares the differences in the user interface. In mobile apps

user experience also plays a major role. This includes several areas like including

animations, response speed, changes to the user interface when the orientation

changes, etc.

6.2.2 Dynamic Data

In some mobile applications like the e-channeling use case, when the data like the

doctor’s name, or available hospitals can be different since they are dynamically

loaded. This will affect to the computed scores. If a real user interface designer does

the testing, they know these kinds of data is dynamically loaded. To avoid this, we

have removed the text in blob detection matcher. But they are still considered in the

local feature matchers.

6.2.3 Agile environment

Since software industry is moving towards more agile environment, the business

requirements change. When this happens in the middle of the development process,

the developer applies the changes without going through the UX designer if there is

no resident UX designer present. A good example of this can be removal of a free

feature or addition of a free feature. When this happens, the actual implemented

screen ends up being different to the mockup. If there is a UX designer in resident

they can provide modified mockups with those changes applied or in testing stage

they can incorporate that knowledge in testing the user interface. But when we use

image comparisons with the initial mockups, these changes will be flagged.

 60

6.2.4 UX design concepts

Designers follow some concepts to ensure accessibility and consistency of the

product. But in most cases developers do not have knowledge on these. Hence, they

tend to do the easiest development and doesn’t worry about the other aspects. For

example, in the Hapan mobile app use case, Figure 6.1 and Figure 6.2 the designer

has been consistent with the grass background throughout the app whereas the

developer has only included them in the app only in the screen of Figure 6.1.

6.2.5 Orientation changes

Orientation changes has not been considered in this framework algorithms, specially

the layout matching ones, to calculate similarity between the screenshot with the

mockup. Unlike position changes and scale, orientation change is very unlikely

happen. However, there are use cases where orientation changes can play a major

role like animation heavy applications like games.

Figure 6.1 Mockup (left) and actual (right) with grass background

Figure 6.2 Mockup (left) with grass background and actual (right) without grass
background

 61

6.3 Future Directions

To fine tune the score received by the framework by pixel matching to be more

correlated to the actual values by designers, we can consider assigning a weighted

score based on the color difference or a threshold. More research can be done fine

tuning these approaches.

In the blob detection approach the image is converted to monochromic image before

detecting blobs. This eliminates the chances of detecting blobs which are close to the

back ground color. More research can be conducted on that area to see how we can

incorporate the color without converting to a monochromic image.

The framework can be improved and an IDE plugin can be built on top of it where

the screenshot of the implemented application screen will be matched with the

provided design while in the development phase itself. This will allow the developer

to fix the errors before even sending to the quality assurance engineer.

 62

7 REFERENCES
[1] “The evolution of the mobile phone.” [Online]. Available:

http://www.telegraph.co.uk/technology/mobile-phones/11339603/The-

evolution-of-the-mobile-phone-in-pictures.html. [Accessed: 13-Jan-2017].

[2] L. Corral, A. Sillitti, G. Succi, A. Garibbo, and P. Ramella, “Evolution of

Mobile Software Development from Platform-Specific to Web-Based

Multiplatform Paradigm,” Rev. Tecnol. | J. Technol., vol. 12, no. 4, pp. 181–

183, 2013.

[3] S. Perez, “For The Young, Smartphones No Longer A Luxury Item |

TechCrunch,” 2012. [Online]. Available:

https://techcrunch.com/2012/02/20/for-the-young-smartphones-no-longer-a-

luxury-item/. [Accessed: 13-Jan-2017].

[4] C. Shealy, “A Collection of Mobile Application Development Statistics:

Growth, Usage, Revenue and Adoption - Top Mobile Application

Development Platforms, Vendors and Developers,” 2016. [Online].

Available: http://solutionsreview.com/mobile-application-development/a-

collection-of-mobile-application-development-statistics-growth-usage-

revenue-and-adoption/. [Accessed: 13-Jan-2017].

[5] C. J. Budnik, R. Subramanyan, and M. Vieira, “Industrial requirements to

benefit from test automation tools for GUI testing,” Inform. 2007 - Inform.

Trifft Logistik, Beitrage der 37. Jahrestagung der Gesellschaft fur Inform.

e.V., vol. 2, pp. 410–414, 2007.

[6] P. Yadav, U. K. Yadav, and S. Verma, “Software Testing : Approach to

Identify Software Bugs,” no. 2, pp. 26–30, 2012.

[7] S. McConnell, Code complete: [a practical handbook of software

construction], 2nd ed. Berkeley, CA, United States: Microsoft Press,U.S.,

2004.

[8] “List of tablet PC dimensions and case sizes,” [Online]. Available:

https://en.wikipedia.org/wiki/List_of_tablet_PC_dimensions_and_case_sizes.

[Accessed: 13-Jan-2017].

 63

[9] L. J. Osterweil, “Software processes are software too, revisited: an invited

talk on the most influential paper of ICSE 9,” in Proceedings of the 19th

IEEE International Conference on Software Engineering, pp. 540–548,

Boston, Mass, USA, May 1997.

[10] IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software

Engineering Terminology," 1990.

[11] “Types of Software testing and definitions of testing terms,” 2016. [Online].

Available: http://www.softwaretestinghelp.com/types-of-software-testing/.

[Accessed: 13-Jan-2017].

[12] L. Williams, “Testing Overview and Black-Box Testing Techniques,” 2006.

[Online]. Available: http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf.

[Accessed: 13-Jan-2017].

[13] M. J. Harrold, “Testing: a roadmap,” in Proceedings of the Conference on

The Future of Software Engineering, ser. ICSE ’00. New York, NY, USA:

ACM, 2000, pp. 61–72.

[14] E. Dustin, J. Rashka, and J. Paul, Automated software testing: introduction,

management, and performance. Boston: Addison-Wesley, 1999.

[15] L. Feng and S. Zhuang, “Action-driven automation test framework for

Graphical User Interface (GUI) software testing,” in AUTOTESTCON

(Proceedings), 2007, pp. 22–27.

[16] H. Jung, S. Lee, and D. Baik, “An Image Comparing-based GUI Software

Testing Automation System,” Elrond.Informatik.Tu-Freiberg.De, 2012.

[17] L. Lu and Y. Huang, “Automated GUI test case generation,” in Proceedings -

2012 International Conference on Computer Science and Service System,

CSSS 2012, 2012, pp. 582–585.

[18] G. Liebel, E. Alegroth, and R. Feldt, “State-of-practice in GUI-based system

and acceptance testing: An industrial multiple-case study,” in Proceedings -

39th Euromicro Conference Series on Software Engineering and Advanced

Applications, SEAA 2013, 2013, pp. 17–24.

[19] A. M. Memon, “GUI testing: Pitfalls and process,” Computer, vol. 35, no. 8,

pp. 87–88, 2002.

 64

[20] O. H. Kwon and S. M. Hwang, “Mobile GUI testing tool based on image

flow,” Proc. - 7th IEEE/ACIS Int. Conf. Comput. Inf. Sci. IEEE/ACIS ICIS

2008, conjunction with 2nd IEEE/ACIS Int. Work. e-Activity, IEEE/ACIS

IWEA 2008, pp. 508–512, 2008.

[21] E. Borjesson and R. Feldt, “Automated System Testing Using Visual GUI

Testing Tools: A Comparative Study in Industry,” Software Testing,

Verification and Validation (ICST), 2012 IEEE Fifth International

Conference on. pp. 350–359, 2012.

[22] A. M. Memon, I. Banerjee, B. Nguyen, and B. Robbins. The First Decade of

GUI Ripping: Extensions, Applications, and Broader Impacts. In Proceedings

of the 20th Working Conference on Reverse Engineering (WCRE), October

14-17, 2013, Koblenz, Germany.

[23] Applitools, "Visual test automation for web Apps," Applitools -, 2015.

[Online]. Available: https://applitools.com/web-app-testing/. Accessed: Aug.

16, 2016.

[24] N. zeldin Administrator, "Overview," 2016. [Online]. Available:

https://applitools.atlassian.net/wiki/display/Java/SDK+Guide. Accessed:

Aug. 16, 2016.

[25] Applitools - Automated Visual Testing, "How to Configure match level

[Advanced visual test automation Techniques]," in YouTube, YouTube, 2016.

[Online]. Available: https://www.youtube.com/watch?v=DzO-

uzOLjUY&list=PLkqF-NUszJY7LZAdiAxf2zk1t1DBwP630&index=5.

Accessed: Aug. 16, 2016.

[26] “Chapter 6 Learning Image Patch Similarity.” [Online]. Available:

http://ttic.uchicago.edu/~gregory/thesis/thesisChapter6.pdf. [Accessed: 13-

Jan-2017].

[27] F. Ren, J. Huang, R. Jiang, and R. Klette, “General traffic sign recognition by

feature matching,” 2009 24th International Conference Image and Vision

Computing New Zealand, 2009.

[28] R. Brunelli, “Template Matching Techniques in Computer Vision,” 2009.

[29] D. Lisin, M. Mattar, M. Blaschko, E. Learned-Miller, and M. Benfield,

“Combining Local and Global Image Features for Object Class

 65

Recognition,” 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR05) – Workshop.

[30] J. Wu, Z. Cui, V. S. Sheng, P. Zhao, D. Su, and S. Gong, “A Comparative

Study of SIFT and its Variants,” Measurement Science Review, vol. 13, no. 3,

pp. 122–131, 2013.

[31] D. G. Lowe, “Distinctive Image Features from Scale-Invariant

Keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–

110, 2004.

[32] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation for

local image descriptors,” Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.

[33] E. Mortensen, H. Deng, and L. Shapiro, “A SIFT Descriptor with Global

Context,” 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR05). 

[34] A. Abdel-Hakim and A. Farag, “CSIFT: A SIFT Descriptor with Color

Invariant Characteristics,” 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition - Volume 2 (CVPR06).

[35] J.-M. Geusebroek, R. V. D. Boomgaard, A. Smeulders, and H. Geerts, “Color

invariance,”/IEEE Transactions on Pattern Analysis and Machine

Intelligence/, vol. 23, no. 12, pp. 1338–1350, 2001

[36] J.-J. Seo and K.-R. Yoona, “Modified Speeded Up Robust Features(SURF)

for Performance Enhancement of Mobile Visual Search System,”/Journal of

Broadcast Engineering/, vol. 17, no. 2, pp. 388–399, 2012.

[37] J.-M. Morel and G. Yu, “ASIFT: A New Framework for Fully Affine

Invariant Image Comparison,”/SIAM Journal on Imaging Sciences/, vol. 2,

no. 2, pp. 438–469, 2009

[38] “Material Design for Android | Android Developers,” Android Developers.
[Online]. Available: https://developer.android.com/guide/topics/ui/look-and-
feel. [Accessed: 27-Mar-2019].

[39] Apple Inc, “Human Interface Guidelines,” Human Interface Guidelines -
Design - Apple Developer. [Online]. Available:
https://developer.apple.com/design/human-interface-guidelines/. [Accessed:
27-Mar-2019].

 66

[40] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes with

stroke width transform,” 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2010.

 67

8 APPENDIX
Appendix – A: Survey

 68

 69

 70

 71

 72

