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ABSTRACT

Modeling weekly rainfall has become a demanding assignment due to the complexity of
rainfall pattern. Accurate inferences on weekly rainfall prediction facilitate to fill the
noticeable gap with respect to the climate monitoring to reduce the climate stress in the
country. However, relatively, few measures have been taken to perform the modeling of
rainfall in the context of long memory. This study therefore, provides an assessment of such
a phenomenon by fitting a novel time series models to weekly rainfall. As the weekly rainfall
exhibits the blend features of long memory and time dependence variance, various class of
long memory models were fitted by accounting the heteroskedasticity. The best fitted model
developed is ARFIMA-GARCH for deseasonalized data. The model was trained using
weekly rainfall data from 1990 to 2014 and validated using data from 2015 to 2017 in
Colombo city, obtained from the Department of Meteorology, Sri Lanka. The exact
maximum likelihood estimation method was utilized to estimate model parameters. For the
evaluation of the suitability of the method for parameter estimation, Monte Carlo simulations
were carried out with various non seasonally and seasonally fractionally differenced
parameter values along with the variance model parameters. The forecasting performance of
the five types of long memory models developed was evaluated based on the novel index
developed using absolute error for an independent data set in addition to the classical
indicators. The rainfall percentiles with the 95% confidence intervals were also developed by
exploring temporal variability of weekly rainfall based on parametric approach and
bootstrapping approach. It was found that the high likelihood to form extreme rainfall events
during beginning of South West Monson (SWM) (30" April to 10" June) and during
withdrawal of SWM rainfall (17"-30" September) as well as with the time span from 8"
October to 11" November during Second Inter Monsoon (SIM) rainfall. Based on the real
coverage probabilities which derived using bootstrap calibration, it was found that there is a
discrepancy of the nominal and calculated coverage probabilities of the 95% confidence
intervals of rainfall percentiles. The deviation of the normality of the fitted distribution with
the small size of sample could be a reason for the such a disparity. The novel long range
dependency model is recommended to be used in forecasting weekly rainfall in Colombo
city in Sri Lanka since the forecasting performance of the new model is not much diluted
with the increase of the forecasting length. The study highlights various challenges for
applied statisticians in modeling weekly rainfall.

Keywords: Weekly Rainfall, Long Range Dependency, ARFIMA-GARCH, Forecasting,
Coverage Probability, South West Monsoon
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CHAPTER 1
INTRODUCTION

1.1. Background

Climate change leads to extreme weather conditions which greatly affect the diverse
set of human and natural systems in the world. The Intergovernmental Panel on
Climate Change (IPCC) defines climate change as "any change in climate over time,
whether due to natural variability or as a result of human activity”. Observational
evidence indicated that the climate change has significantly affected in many
countries at different levels which causes a serious threat to sustainable development.

According to the IPCC report in 2014, many key changes arose on various climatic
variables, during the period of 1880 to 2012; the average combined land and ocean
surface temperature went up by of 0.85°C, mean sea level rose by 19 c¢cm over the
period of 1901 to 2010, green gas concentration has increased now higher than ever
and the number of heavy precipitation events has increased in many regions. Though
the climate variables are components of natural capital, on the other hand, those are
the key factors that make severe impact on people wellbeing, economy of the
country, environment and social stability. Impacts of climate variability depend on
the intensity of the events which affect the global community at different level.
Based on the projected changes in the system, IPCC has highlighted alarming trends
in changes in global climate and has emphasized the importance of the prediction of
climate variables, particularly precipitation in different time scales (IPCC, 2014).

Rainfall, snowfall and other forms of frozen or liquid water falling from clouds are
generally known as "Precipitation™ (Trenberth, 2005). Solomon et al., (2007) claimed
that the number of heavy precipitation events cause to increase likelihood of flooding
events in many regions even those where there has been a reduction in total
precipitation. According to Dai (2006), the biggest impact on the society may occur
due to the changes in precipitation patterns and its variability. Information on key

climatic variable predictions allows to various stakeholders to prompt themselves for



action in order to reduce adverse impacts and enhance positive effects of climatic
variation. Numerous studies have been carried out on climate change and its
repercussions, in particularly significant trends in precipitation and temperature
(Portmann et al., 2009; Reiter et al., 2012; Shi et al., 2014; Nam et al., 2016). At the
local level, particularly in developing regions, there is a need for better information
on rainfall patterns and its variability through accurate predictions which help to

prepare adaptation in advance.

1.2. Climate Change in Sri Lanka

South Asian countries are frequently vulnerable to extreme whether events and
people who live in those regions face a huge challenge to deal with the impact of
climate change due to the high population density, poverty and lack of resources to
confront climate stress. (Ahmed and Suphachalasai, 2014). Sri Lanka is also a
tropical country in South Asian region located at the latitudes of 5°55 N and 9° 51 N
and the longitudes of 79°41E and 81°53 E with an area of 65610 square kilometers

and the country frequently exposes to erratic weather events.

There is sufficient evidence to claim that climate, in mostly rainfall pattern in Sri
Lanka has already changed over the past years (Peiris et al., 2000; Waidyarathne et
al., 2006; Manawadu and Fernando, 2008). This change resulted in substantial
difference in the atmospheric behavior which inflicts serious consequences on human
wellbeing. The mean air temperature of the country increased by 0.016°C during the
time span from 1961 to 1990 while mean annual rainfall decreased by 144 mm
(Eriyagama et al., 2010). It was revealed that a significant climate change in rainfall
and temperature of low country wet intermediate region of Sri Lanka. The percentage
reduction in the mean annual rainfall during 1986 to 2001 compared to the period
1932 to 1985 was 9% while the corresponding value for the mean annual maximum
temperature was 1.4% (Piyasiri et al., 2004). Manawadu and Fernando (2008)
claimed that the number of rainy days in Sri Lanka decreased based on the result of
analyzing the spatio-temporal trends in the rainfall using the daily rainfall records at
the 22 meteorological stations during the period 1961-2002. Jayawardene et al.,

(2005) have highlighted that the rate of annual rainfall has increased significantly by



3.15 mm/year in Colombo district while it decreased by 4.87 mm/year and 2.88
mm/year in Nuwara Elliya and Kandy districts respectively.

As in other countries, climate vulnerabilities are expected to be critical in Sri Lanka
in the various sectors such as agriculture, fisheries, water, health, urban development,
human settlement, economic infrastructure, biodiversity and ecosystem in the
country (Mawilmada et al., 2010). Few studies have been carried out to project future
climate scenarios with respect to the rainfall in Sri Lanka to assess the impact on
agricultural output, economy and water resource of the country. Based on the studies
on rainfall projections, Basnayake et al., (2004) highlighted that there is a decreasing
trend in mean annual rainfall while De Silva (2006) claimed that the increasing trend
in mean annual rainfall. The changes of delay in monsoon onset and an increase in
the occurrences of monsoon break period which are caused by enhanced greenhouse
emission that could have a substantial impact on decreasing summer precipitation in
key areas of South Asia (Ashfaq et al., 2009). The literature on rainfall projections
demonstrate the necessity of prediction of rainfall by seasonal basis to obtain

accurate rainfall for the country.

1.3. Annual Rainfall Pattern in Sri Lanka

Sri Lanka is the one of the tropical countries in South Asian region that receives
rainfall throughout the year. The mean annual rainfall of the direst part of the
country is under 900 mm while it is around over 5000 mm in the wettest part of the
country (Source: www.meteo.gov.lk). Generally, the annual rainfall pattern in many
parts of Sri Lanka is bimodal and rainy periods have been classified into four seasons
by Domroes (1974).

The four seasons are:

1. First Inter Monsoon (FIM) from March to April

2. South West Monsoon (SWM) from May to September
3. Second Inter Monsoon (SIM) from October to November
4

North East Monsoon (NEM) from December to February



The rainfall of the country is strongly governed by the seasonal varying monsoon
system. With the mean annual rainfall 1861mm, 60% of rainfall is received during
SWM and SIM while 14%, and 26% rainfall is received during FIM and NEM
respectively (Premalal, 2013). The southwestern part of the country receives rainfall
at any time of the day during southwest monsoon seasons and the amount of the
rainfall varies from 100mm to over 3000mm. During the period of NEM, the dry and
the cold wind blowing from the Indian land occurs result in cool but dry weather
over many parts of the island and the rainfall amount varies from 177mm to
1281mm.

FIM rains mostly spread in South-Western region and the rainfall amount varies
from 250mm to 700mm. It is particularly observed that the thunderstorm type rain
during the afternoon or evening. SIM enriches from wide spread rain with strong
winds that sometimes leads to floods or landslides. Rainfall in SIM furnishes balance
distribution over Sri Lanka and the rainfall amount varies from 750mm to 1200mm
(Source: www.meteo.gov.lk). Various studies have been conducted on the onset of
four rainy seasons and the length of spells in the four seasons (Ramesh et al., 1996;
Peiris et al., 2000; Omotosho et al., 2000; Goswami and Gouda, 2007). However, the

result of those studies are highly varied.

The large-scale climatic drivers also contribute considerably to rainfall variability in
the Sri Lanka. The two main large-scale climatic drivers that influence the rainfall
pattern of Sri Lanka are, the Southern Oscillation (SO) and the Indian Ocean Dipole
(Zubair, 2002; Zubair et al., 2003; Zubair and Ropelewski, 2006). El Nino and La
Nina are generated due to the changes in the winds, atmospheric pressure and sea
water in the Pacific Ocean. El Nino and La Nina are the opposite phases such that El
Nino leads to wetter conditions during October to December and drier conditions
during January to March and July to August on average (Zubair et al., 2008). Those
two climate drivers are extreme weather conditions such that EI Nino being the
warm extreme and La Nina the cold extreme and those do not change with the
regularity of the seasons such as winter and summer, however, they might be recur

on average about every three or four years (Permalal, 2013). Malmgren et al., (2003)



have claimed that the no change was observed NEM rainfall with respect to the El
Nino Southern Oscillation (ENSO). Also, they reported that the no similar influence
from ENSO is seen for the two seasons NEM and FIM while there were differences
in SWM rainfall pattern with respect to the ENSO climate divers. Furthermore, it is
Important to note that rainfall is the main erratic variable in tropical countries like Sri
Lanka.

1.4. Impact of Unpredicted Rainfall

Rainfall is the one of the most important climatic variables in planning and decision
making in the agricultural sector, particularly in those regions where livelihood of the
people concerned depend on rain fed agriculture. According to Jayewardene et al.,
(2005), the 22% of the agricultural exports and 75% of the industrial exports use
electricity which 62% is generated through hydropower.

Rice cultivation plays an imperative role in Sri Lanka as most of the other countries
in Asia. It is projected that by 2050, the majority of paddy growing areas in Sri
Lanka will be faced to water related issues particularly during Maha season and as a
result, paddy cultivation in those regions will become low down (De Silva et al.,
2007). Furthermore, Amarsinghe et al., (2015) projected that the irrigation
requirement increased by 10-17% based on the late onset of the rainfall. According
to the prediction of climate change for the 2050, De Silva et al., (2007) claimed that
the paddy irrigation water requirement will be increased by 23% due to the average
rainfall decreased by 17% during the wet season. Paddy farming output falling by
20%-30% in the next 20 to 30 years due to the erratic weather conditions will result
in such a negative impact on agriculture employment in this section which has a 35%
of the working population in Sri Lanka (Baba, 2010).

Declining rainfall is a serious threat to the tea industry and it is estimated that the tea
yield would be reduced by 30-80 kg/Ha with a reduction in monthly rainfall by
100mm (Wijeratne et al., 2007). It was found that the variability of coconut
production mainly depends on the two key factors, changes in monsoon rainfall and

increases in maximum air temperature. Based on the result of the projection under



six different climate scenarios, Peiris et al., (2004) claimed that the coconut
production would not be sufficient to cater the local demand after 2040 when other
external factors are non-limiting. According to Fernando et al., (2007), the loss of
income to the economy with respect to coconut production was between US$ 32

million to US$ 73 due to low rainfall which is caused by climate change.

Changes in rainfall pattern cause to increase the likelihood of short and long run crop
production decline which leads to a food insecurity in the country. The shifts in the
monsoonal rainfall pattern due to global warming alarming to South Asian with
respect to the food production and Sri Lanka is predicted to be one of the countries
that faces risk of food insecurity in the Asian Pacific region (De Zoysa and Inoue,
2014). Thus, the change of pattern and the quantity of rainfall most of the time create

a serious threat to the sustainable development of countries at different levels.

Sri Lanka is also under stress to face such climate changes which result in extreme
weather conditions, particularly in rainfall events. Rainfall in the Wet Zone is mostly,
intensive resulting flooding, landslides, soil erosion, damage to properties and
infrastructures. Lo and Koralegedera (2015) claimed that the cities including
Colombo in Sri Lanka would be seriously faced to water related issues due to
changes in rainfall patterns, urbanization and installation of complex infrastructure.
Furthermore, they reported that the very heavy rainfall may occur in future in the
Colombo city. Sri Lanka has witnessed a number of extreme rainfall events in South
Western region during the south west monsoon season. The most recently, a flood
event in Sri Lanka was reported in May 2016 and rainfall varied between 74.7mm to
137.7mm. Sri Lanka was hit by severe tropical storms that caused widespread
flooding and landslides in 22 districts of the country (OCHA Report, 2016). Each
year the government of Sri Lanka spends huge amount to reconstruct and renovate

the infrastructures which damage caused by floods in the wet zone.

Changing in trends of rainfall can potentially increase the transmission of mosquito
vector born disease, such as Dengue in many districts in the country (Pathirana et al.,

2009). According to Najim et al., (2012), the coastal and marine resources in South



Asian region including Sri Lanka have been affected seriously due to the changes of
climate events. Also, the total climate change cost in South Asia based on the
economic findings using the integrated assessment model, will increase in the long
term (Ahmed and Suphachalasai, 2014). Some studies have been carried out to
highlight the rainfall impact on the country based on the past data, but none of the
studies were reported to predict rainfall in the short-term basis.

The studies conducted so far with respect to the rainfall in Sri Lanka indicates that
the properties of rainfall including rainfall trend, amount and intensity have changed
(Malmgren et al., 2003; Jayawardena et al., 2005; Waidyaratne and Peiris, 2006;
Wickramagamage, 2010; Mathugama and Peiris, 2011 & 2012) but very few
attempts were made to predict the amount of rainfall either on short-term or a long
term basis. Though many authors have used different models to predict rainfall on
annual, seasonal or monthly basis, either on agro-ecological or district basis (Soltani
et al., 2007; Kaushik and Singh, 2008; Nirmala and Sundaram, 2010; Ghalhari et al.,
2015) there are many drawbacks with respect to the statistical and non statistical
aspects. Nevertheless, extremely very few studies have been reported in forecasting
weekly rainfall (Burt and Weerasinghe, 2014).

1.5. Motivation to the Study

Sri Lanka is an agricultural country and its main energy source is hydropower. Time
or quantity variations in rainfall could have directly affected on agricultural output
which would be cased to sever damage to the Gross National Product in the country.
Prior knowledge of short-range raining behavior will help Sri Lankan farmers to take
advantage of rainfall by having proper water management practices which cause to
maximize the crop harvest and minimize the human hardship during erratic rainfalls.
Due to the fact that Sri Lanka is situated in a tropical location, the high variability of
weather conditions can be formed which causes unexpected heavy rain, floods,
lighting, landslides and high winds. Moreover, Sri Lankan economy is directly linked
with aviation and shipping which mainly depend on exports; tea, rubber, coconut,
minor agricultural products, apparels and tourism (Rathnayake et al., 2011). Thus,

the advance knowledge of short range, rainfall is valuable to many fields.



Furthermore, advance knowledge of short-term rainfall amount will assist early
prevention and control as well as future preparation regarding public health issues.
Information on rainfall could be used in decision making with respect to the spread
of diseases and pets (Dhiman et al., 2010). Information on short range forecasting in
rainfall is utilized in the construction field which contributes to the development of
the country. Most of the time, people who engaged in the construction field need
short range forecast information to plan their activities to get maximum benefits by
reducing the unnecessary cost which arises due to unexpected rainy events. Rainfall
has a strong influence on traffic and sewer system in urban areas in the country.
Therefore, prior knowledge of short-range rainfall is very essential to make effective

decisions and planning to prevent future obstacles.

Forecasting rainfall can also be used for climate monitoring, detecting of droughts
and bad weather conditions. Warning systems specially for floods may require a
quantitative rainfall forecast to increase the lead time for warning. Frequent floods
and landslides are already causing extensive damages to our infrastructure in the
region and threaten to urban development. Hidayah et al., (2011) highlighted that the
importance of simulation of continuous rainfall in hydrological research, especially

for flood estimations.

Thus, it is clear that the changes of the pattern and quantity of rainfall has a
considerable impact on various sectors and human wellbeing in the country at
different levels. Lack of accurate knowledge about the occurrences and the amount
of rainfall has significantly affected the growth of the country directly or indirectly.
Many stakeholders need to make early actions to reduce risk of climate change with
accuracy prediction of climatic events, especially rainfall events. Therefore, prior
knowledge is very essential to make effective decisions and planning policies to

prevent future obstacles.

It has been observed that though the mean annual rainfall pattern is normal, the

unusual pattern of rainfall with a short period may disturb many activities in the



country such as agricultural, drinking water supply, construction, commercial and

social stability during the recent past years in Sri Lanka.

Various prediction methods have been developed on annual and monthly time scales
but less attention was given for weekly rainfall prediction. Nevertheless, rainfall
forecasting on a weekly basis is very essential to the government, businessmen,
people in the industrial sectors, to increase the productivity, maximize economic
benefits and minimize losses. Also, it will be useful to policy makers to implement
new policies which will help to develop the country. Sri Lanka needs to address
climate change adaptation to ensure the economic development with carefully
investigated information on rainfall pattern and its variability which result in from

the predictions of the best fitted rainfall models in various regions.

1.6. Objectives of the Study

In view of the above explanation in details, the objectives of this study are:

e To study the temporal variability of weekly rainfall in SWM and SIM

e To identify extreme weekly rainfall events during the period of SWM and
SIM

e To identify the impact of exogenous variables; temperature, relative humidity
and vapor pressure on weekly rainfall

e To develop a novel model to forecast weekly rainfall in Colombo city

e To validate the model

1.7. Chapter Outline

Organization structure of the theses is presented in this section as follows. Chapter 2
will provide the comprehensive literature review on rainfall studies. Various types of
models such as Box and Jenkins models, Artificial Neural Network models,
Regression models, Hybrid models and long range dependency models are discussed
in detail by different time scales in this chapter. Data description of the study and the
theories used for modeling the rainfall in different context are given in Chapter 3.



The result of the explanatory data analysis of the rainfall at different time scales
along with the impact of exogenous variables for modeling are discussed in Chapter
4. Temporal variability of SWM and SIM are explained based on parametric and
bootstrapping methods in the Chapter 5. Modeling via classical time series
approaches are discussed in Chapter 6. The development of the novel models in
detail are discussed in Chapter 7. Chapter 8 will provide conclusions and
recommendations along with suggestions for further researchers. Finally, Chapter 9

provides list of publications generated by this study.
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CHAPTER 2
LITERATURE REVIEW

Rainfall is one of the most complex and difficult elements of the hydrological cycle
to understand and model due to the its high variability in both space and time (French
et al., 1992). However, due to the importance of rainfall, over the past decades,
several models have been developed to predict the rainfall with different degrees of
accuracy. In this Chapter, a critical evaluation of past studies on modeling rainfall
amount is carried out with emphasis on forecasting models based on the various time

scales.

2.1. Prediction of Rainfall Using ARIMA/SARIMA

Box and Jenkins (1976) time series approach have been extensively used to model
and forecast total rainfall in various time scales: annual, seasonal, monthly and
weekly basis by various authors. The common used models are ARIMA (Auto
Regressive Integrated Moving Average) and SARIMA (Seasonal ARIMA).

2.1.1. Prediction of Annual Rainfall

Ogallo (1986) employed ARMA (3,1) to the areal annual rainfall of two homogenous
regions in East Africa using rainfall records from 1922 to 1980. In order to determine
the annual rainfall anomalies, composite indices which were developed through
empirical orthogonal analysis. The model could be accounted for only 50% of the
total observed variability. However, Ogallo suggested that the model accuracy would
be improved by considering seasonal variation. Partheepan et al., (2005) developed
ARIMA model to forecast the annual rainfall of Batticaloa district in Sri Lanka using
rainfall data from 1900 to 2003. The data for 100 years were used for the model
development and remaining 4 years were used for model validation. Parameters of
the model are significance at 0.05 level of significance and the correlation coefficient
between actual and fitted values of the validation period was as 0.82 (p<0.05). A
study conducted to predict the annual rainfall of Chattisgarh State in India by
Chakraborty et al., (2010) and they developed AR (1) for annual rainfall. The model

11



was tested for 2006. The model AR (1) was decided based on the AIC value MFE,
MAE, MRE and RMSE. However, the time span that used for model building was
very low and also no attempt has been made to test the significance of the parameters

of the model.

2.1.2. Prediction of Seasonal Rainfall

ARIMA models have been developed to model the pre monsoon rainfall (March,
April, May) for six stations of the Western region in India using data from 1949 to
2009 by Narayanan et al., (2013). Based on the predicted result for the time span
between 2010 to 2030, it was concluded that there would be considerable rise in the
pre monsoon rainfall over the northwest part of the country. Ghalhari et al., (2015)
suggested SARIMA (2,0,0) (5,1,0), SARIMA (1,0,1) (5,1,0) and SARIMA (0,0,1)
(5,1,0) models to seasonal rainfall for the three stations in the South of Kerman
province in Iran. The seasonal rainfall (Winter and Falls) data from 1963 to 2008
were used for the model development and the model validity was done using data for
a period of 5 years (2009-2013). Even though the study claimed the existence of
correlation between actual and forecasted for the independent series but it failed to
give the significance levels to get the real idea about the overall accuracies of the
models. It should also be noted that the prediction for 20 years ahead from such a

model is not statistically sound.

2.1.3. Prediction of Monthly Rainfall
Delleur and Karvas (1978) suggested ARMA (1,1) model to the square root

transformation of monthly basin average rainfall series over 15 basins located in the
Midwestern United State. The record lengths varied from 492 to 684 months and the
basin average rainfall were obtained by the Thiessien Polygon method. However, no
attempt has been made to give overall model accuracies. Soltani et al., (2007) also
developed an ARIMA model using monthly rainfall data of 28 main cities of Iran
during the period of 1970 to 2000. Though they tested the parameters and model
assumptions, no attempt has been made to validate the model for an independent data
set. Kaushik and Singh (2008) developed SARIMA (3,0,2) (2,0,1)12 model for

12



prediction of rainfall on monthly scales during the period of 1994-2006. The study
was conducted at Mirzapur, Uttar Pradesh in India. The study did not check the
model validity using an independent data set, nevertheless, the authors claim that the
accuracy of predictions made by the model was fairly less. Another drawback of this

model is that replacement of missing values by zero.

Kingdom of Saudi Arabia, Momani (2009) developed seasonal ARIMA
(1,0,0)(0,1,1) 12 model using rainfall records from 1922 to 1999 to forecast monthly
rainfall 10 years ahead. Significance of the model parameters as well as diagnostics
of error were carried out. However, it compared the actual and forecasted rainfall
based on the time series plot only. According to the plot, the model was not able to
represent the peak values of the rainfall. A similar study was carried out by Ali
(2013) to forecast monthly rainfall of Baghdad International airport station in Iraq
during the period of 1980 to 2012. It should be noted that both studies have not made
any attempt to find overall model accuracy. SARIMA (0,1,1) (0,1,1)12 has been
developed for forecasting monthly rainfall of Tamil Nadu in India by using monthly
rainfall data from 1871 to 2006 (Nirmala and Sundaram, 2010). The parameters were
estimated and tested for statistical significance, but the accuracy of the model has not
been done. Nevertheless, authors suggested that the accuracy of the model could be
improved by adding more input parameters such as ElI Nino Southern Oscillation
(ENSO) and Land surface temperature. A similar type of model has been suggested
by the same authors to predict monthly rainfall in Tamil Nadu using data time span
from 1950-2008.

Gerretsadikan and Sharma (2011) suggested SARIMA (0,0,1) (1,1,4)12 to study
monthly rainfall of Mekele station of Ethiopia using rainfall records from the period
1975 to 2009. They claimed that the model was adequately fitted to the historical
data and there was no violation of assumptions in relation to model adequacy.
However, parameters were not tested for the significance. In the case study of
Abadeh region in Iran, Shamsnia et al., (2011) modeled the monthly average
precipitation 1989 to 2009 using seasonal ARIMA (0,0,1) (1,1,1)1> model. However,

in this study as well, no attempt was made to work out the overall model accuracy
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and parameters were not tested for the significance. Using data from 2001 to 2013 in
Central Java region in Indonesia, Nugroho and Simanjuntak (2014) fitted ARIMA
(6,0,3) for monthly rainfall. Generally, it is not recommended to use higher order AR
models. Nevertheless, the authors have not justified why they selected higher order

models.

Yusof and Kane (2012) applied two time series analysis techniques namely, seasonal
ARIMA and the state space model based on exponential smoothing modeling
methods for forecasting monthly rainfall of two weather stations in Malaysia using
monthly rainfall records from 1968 to 2003. The study developed SARIMA (1,1,2)
(1,1,1)12 and SARIMA (4,0,2) (1,0,1)12 as the best fitted models for the two regions
and parameters of the seasonal ARIMA were tested for the significance. Though they
claimed that the exponential smoothing state space models have been adequately
fitted to the data, it was not given the model accuracies. Mahsin et al., (2012)
developed seasonal ARIMA (0,0,1) (0,1,1)12 model to monthly rainfall in Dhaka
Station in Bangladesh using the rainfall data over the period from 1981 to 2010. Aziz
et al., (2013) developed SARIMA (0,0,0) (2,1,0)12 model for monthly rainfall
predictions using time span from 1974 to 2010.

In another study in the Eastern region of Ghana by Ampaw et al., (2013) developed
SARIMA (0,0,1) (2,1,1)12 model for monthly rainfall. However, the detail of the
diagnostic test statistics did not provide. However, they claimed that the difference
between actual and predicted rainfall varied between -6.92 mm to 13.75mm. A
study done in the Shouguag city, China by Wang et al., (2013) formed SARIMA
(2,0,2) (1,1,1) 12 using monthly data for the period of 1996 to 2009. However, in this
study too, no attempt has been made to test the significance of the parameters of the
model. The percentage error varied within 20%, except for the January, May,
September and December. It also claimed the reason for the high relative error of
January and December. This was due to fact that the model is not sensitive. Selvaraj
et al.,, (2013) employed ARIMA (0,0,12) model to forecast monthly rainfall in
Tamilnaudu, India. The training data set made from January 2001 to December 2012.

No comments are made on diagnostics tests and forecasting.
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Patrick et al., (2014) used monthly rainfall (1970-2009) to develop ARIMA (5,1,1)
model to Kinshasa city of Congo in Africa. These authors have not made attempts to
test the parameters of the model for the significance. Wang et al., (2014) developed
ARIMA models by accounting both the inter annual and inter monthly variation in
forecast of monthly rainfall. Preliminary clustering analysis was performed for the
monthly rainfall data on Lanzhou precipitation station in Lanzhou, China from 1951
to 2000 and the characteristics of each cluster, namely minimum, maximum and

truncated mean rainfall of each cluster were fitted with separate ARIMA models.

Etuk and Mohamed (2014) developed SARIMA (0,0,0) (0,1,1)1 to predict monthly
rainfall in Gezira irrigation scheme in Sudan. They have checked the model
diagnostic but no attempt had been made to evaluate forecasting accuracy. Dastorani
et al., (2014) also developed different order of ARIMA and SARIMA models for
nine stations in North Khorasan, Iran. Babazadeh and Shamsnia (2014)
recommended SARIMA (0,0,0) (2,1,0)12 to monthly rainfall in area Shiraz in Iran. It
should be noted again that none of the above three studies made any attempt to test

the parameters for significance and the percentage errors.

SARIMA (0,0,1) (1,1,1) 12 model was built to forecast monthly rainfall using rainfall
data from 1980 to 2006 of Sylhet station, Bangladesh (Bari et al., 2015). The data
(1980 to 2006) were used as the training set and data from 2007 to 2010 were used as
validation set. No comparison has been done between actual and predicted. Eni and
Adeyeye (2015) forecasted monthly rainfall in 2013 using SARIMA (1,1,1) (0,1,1)12.
The study was done in the Warri town of Nigeria using the past rainfall records from
2003 to 2012. Using pair wise t distribution, they claimed that the differences
between the actual and observed were not significant at 0.05 level of significance.

Chonge et al., (2015) modeled SARIMA (0,0,0) (0,1,2) 1> for data (1977-2014) in
Gishu Country, Kenya and forecasted for two years ahead. In this study, Mean
absolute percentage error (7.78%) was taken as a statistical indicator to judge the
model. It should be noted that MAPE does not provide any sense of the magnitudes
of the error for each point. SARIMA (1,1,5) (1,1,2)12 was identified as the best fitted
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model to forecast monthly rainfall of the Urmia lake catchment area of India by
Alimirzaie et al., (2015). In this study, 42 years monthly rainfall data (1968-2010)
were used to train the model but no comparison was done between actual and

forecast value even for the trained data sets.

Savoe (2015) made an attempt to predict long term precipitation over the Ghanaian
segment of Ghana using data from 1967 to 2000. SARIMA (2,1,1) (1,1,1)12 was
proposed as the best fitted model for the average monthly rainfall. The authors have
predicted for 41 years ahead (2007 to 2047). It should be pointed that prediction of
such a long period is not statistically valid using ARIMA models. Furthermore, as in
most of the past studies, the significance of the model parameters as well as

comparison of actual and forecast values were not done.

A recent study by Mohamed and Ibra (2016) have developed multiplicative seasonal
autoregressive integrated moving average (MSARIMA) to forecast monthly rainfall
of Nyala station in Sudan using rainfall data from 1971 to 2010. Those models have
been selected based on the RMSE and MAE. However, these indicators are not
suitable to justify the accuracy of a model. Zafor et al., (2016) also developed eight
different seasonal ARIMA models to predict monthly rainfall in different locations in
Sylhet district, Bangladesh. Models were developed using rainfall records from 2001
to 2012 while the performance of the models have been validated using data in 2011
only. This is not sufficient and further it is not an independent data set.

2.1.4. Prediction of Weekly Rainfall

Unlike monthly rainfall, not much studies have been carried out to forecast weekly
rainfall under ARIMA/SARIMA environment. Zakaria et al., (2012) modeled weekly
rainfall data from four rainfall stations in the North West of Iraq for the period 1990-
2011 using seasonal ARIMA approach. They considered only 30 rainy weeks every
year for this study. The four models suggested are ARIMA (3,0,2) (2,1,1)30, ARIMA
(1,0,1) (1,1,3)30, ARIMA (1,1,2) (3,0,1)30 and ARIMA (1,1,1) (0,0,1)30. They have
considered that there is a seasonal pattern with the length of 30 weeks and they have

highlighted about the complexity of representing seasonal periods to the models. The
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performance of the model was evaluated by using the same data, but not for an
independent data set. Though, the forecasted values were obtained up to 2006, the

predicted values were not compared with the actual values.

Popale and Govantiwar (2014) developed seasonal ARIMA (1,1,1) (1,0,1)s2 model
for forecasting weekly rainfall using 31 years (1982-2011) data of Rahuri region in
India. The length of the seasonality has been assumed as 52 without any statistical
justification. In this case too, model parameters were not tested for the significance

and the forecast values were not compared with actual values.

2.2. Use of Artificial Neural Network for Modeling Rainfalls

In section 2.1 it was shown that ARIMA (either seasonal or no seasonal) models
have achieved success in their own linear domains. However, rainfall is a result of
many complex atmospheric parameters which cannot easily be determined on the
assumption linearity among variables within the same series. Thus, some authors
have used Artificial Neural Network (ANN) approach to model rainfall to address
the problems belonging to nonlinear forecasting.

Kumarasiri and Sonnadara (2006) developed an ANN model for the annual rainfall
in the Colombo city in Sri Lanka. Rainfall of the past ten years were used as input
vector and the network was trained from 1869 to 1973 using feed forward back
propagation algorithm and it was tested using the time span from 1974 to 2003. The
authors claimed that the proposed model has been successful in forecasting the
annual rainfall amount one year ahead. However, the proposed model should not be
able to forecast beyond two years ahead, as accuracy becomes exceedingly low.
Nanda et al., (2013) proposed ARIMA (1,1,1) and three different ANN namely,
multilayer perceptron (MLP), legendre polynomial equation (LPE), functional link
ANN (FLANN) to estimate yearly rainfall. They found that the model FLANN yield
better prediction in comparison to other models in forecasting yearly rainfall.
Nirmala (2015) employed ANN to predict annual rainfall of Tamilnadu in India
using rainfall records for 136 years (1871-2006). Out of those data, 100 years (1871-
1970) were used for training the network using three algorithms, namely gradient
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descent (GD) algorithm, scaled conjugate gradient (SCG) algorithm and radical basis
function (RBF) algorithm. The RBF was selected as the best out of the three
algorithms discussed above due to lower mean absolute percentage error. However,

the accuracy of the models were not tested for individual forecast values.

Krishnankutty (2006) applied two approaches, namely ANN and multiple linear
regression (MLR) for forecasting the southwest monsoon rainfall of the 14 districts
of Kerala in India. Fourteen separate feed forward ANN and MLR models were
developed for distinct districts in Kerala. The data for 51 years (1941-1991) have
been used for training the network using back propagation learning algorithm while
the data for a period 1992-2004 were used for testing purpose. The correlation
coefficient between the forecasted and actual values for the district area-weighted
model was 0.95. The author claimed that the ANN models outperformed MLR
models based on the visual observation of plots.

Kumar et al., (2007) developed an ANN in forecasting regional rainfall of Orissa
State in India by accounting information on large scale climate tele connections
namely, El Nino Southern Oscillation (ENSO), Equatorial Zonal Wind Index
(EQWIN), Ocean-Land Temperature Contrast (OLTC). The summer monsoon
seasonal rainfall during the four months period, from June to September were
considered for this study. Genetic Optimizer algorithm was used to optimize the feed
forward back propagation network architecture. The result revealed that the
correlation coefficient of forecasted and actual was 0.8951. But no comparison was
carried out for individual points. Many studies were carried out to evaluate the
seasonal rainfall in different regions by using ANN (Mekanik and Imteaz, 2012;
Gupta et al., 2013; Golabi et al., 2013; Rasel et al., 2015).

Two authors; Kumarasiri and Sonnadara (2006) employed ANN for the purpose of
predicting monthly rainfall in the Colombo city in Sri Lanka. The monthly rainfall
was classified into 06 categories based on the rainfall depths since the large error
have been occurred when using actual depth of rainfall as input. The multilayered

feed forward network was trained by using the back-propagation algorithm for 50
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years from 1949 to 1998 and testing was done for 05 years from 1999 to 2003. The
authors claimed that the model have been reasonably successful in forecasting

monthly rainfall a month ahead.

In 2008, Mar and Naing applied three-layer feed forward neural network on monthly
rainfall data for the period of 1970 to 2006 for the purpose of forecasting monthly
rainfall in Myanmar. Based on the low RMSE (9.881) of the model, the authors
claimed that ANN has a good ability to forecast monthly rainfall of Myanmar.
Khodashenas et al., (2010) used ANN model to predict monthly precipitation of
Mashhad synoptic station in Iran using rainfall data from 1958 to 2008. The
proposed model consists of 4 hidden neurons with one out put neuron which could
predict monthly rainfall with a high accuracy. The correlation coefficient of

predicted values and actual vales of rainfall was reported as 0.84 (P<0.05).

Vamsidhar et al., (2010) developed a multilayered feed forward neural network
model for forecasting monthly rainfall in India using rainfall data for the period
1901-2000. Pressure, humidity and dew point were considered as the input of the
network. The model with 7 hidden neurons was selected as the best model among the
tested models and the model accuracy has been calculated (94.28%) using the
formula, Accuracy = 100-MSE. Mekanika et al., (2011) made an attempt to develop
long term rainfall prediction model (12 months in advance) using ANN to forecast
monthly rainfall for the West mountainous region in Iran. Three ANN models were
formed based on the Levemberg-Marquardt algorithm with different inputs using
monthly rainfall from 1977 to 2002. The model was tested for the year 2003.

Deshpande (2012) employed four distinct ANN models, namely multilayer
perceptron neural network (MLP), jordon elmann neural network (JENN), Self
organized feature map (SOFM), recurrent neural network (RNN) for predicting
monthly rainfall of Maharashtra State in India. Terzi and Cevik (2012) applied ANN
to forecast monthly rainfall in Isparta and compared with result of multiple linear
regression model. ANN model was selected as the best model for monthly rainfall

estimation in the study region based on the correlation coefficient and RMSE.
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A feed forward neural network model have been employed for forecasting monthly
rainfall of Mirzapur district, Uttar Pradesh in India by Kumar and Yadav (2013). Ten
climatic variables monthly temperature (average, diurnal, minimum and maximum),
evaporation (potential and reference crop), relative humidity, clouds cover and
frequency (ground frost and wet days) data from 1995 to 2002 have been used as
model inputs. The authors claimed that the agreement between predicted and
observed had been good and the determination of coefficient was reported as (R?
=0.8563).

Gupta et al., (2014) developed ANN model for forecasting monthly rainfall of
Madhya Pradesh in India. Normalized monthly rainfall data of 10 years from 2000 to
2010 were used as input variables to the multi layered feed forward neural network.
In this study, 75% of data were used for training, 15% of data were used for
validating and 10% data were used for the testing. The model was trained using back
propagation algorithm. The correlation value of the actual and predicted was 0.9360
(P value <0.05). Many researchers all over the world made attempts to model
monthly rainfall using different ANN with increasing degree of accuracy (Alhashimi,
2014; Dubey, 2015; Mesgari et al., 2015).

Luk et al., (2001) applied three different ANN, namely multilayer feed forwards
neural network (MLFNN), partial recurrent neural networks (PRNN) and time delay
neural networks (TDNN) on rainfall amounts which were taken during 15 minutes
intervals from 1991 to 1996 of an urban catchment in Western Sydney, Australia for
the purpose of predicting rainfall. They selected the eight ANN based on NMSE and
the authors claimed that the all ANN models could make reasonable forecasts
accuracies for one-time step ahead (15 minutes). Based on the NMSE of the
validation period, it was reported that the TDNN has more accuracy in predicting
rainfall in comparison to MLFNN and PRNN. A study was conducted to forecast
hourly rainfall of Bangkok in Thailand by Hung et al., (2009) using ANN model.
Eight different ANN models were formulated using different input such as humidity,

air pressure, wet bulb temperature, rainfall intensities and cloudiness using hourly
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data from 1977 to 1999. Two simple multilayered ANNs were trained by using
sigmoid activation function while six generalized feed forward ANN were trained by
using sigmoid and hyperbolic tangent transformation algorithms. The data of the year
2003 were used for the testing purpose. Furthermore, sensitivity analysis was
performed to rank the input contribution and beside the rainfall itself, the most
important input was the wet bulb rainfall temperature in forecasting rainfall. The
correlation coefficients between actual and predicted for 1h, 2h and 3h were
0.99,0.92 and 0.84 respectively.

Charaniya and Dudual (2013) proposed two distinct ANN models namely,
generalized feed forward (GFNN) and focused time lag delay (FTLNN) neural
networks for daily rainfall predictions on the basis of preceding events of rainfall
data. This study has been carried out at Nagpur region in the Central part of India
using rainfall daily rainfall records for 30 years (1977-2006). The result indicated
that FTLNN model made better forecast accuracy than the GFNN for learning a
temporal pattern which gave least normalized Mean Squared Error. Similar studies
were carried out for modeling daily rainfall using ANN approach in various countries
(Weerasinghe et al., 2010; Amesh and Negaresh, 2013; Omidvar, 2015).

2.3. Use of Multiple Linear Regression for Rainfall Forecasting

Krishnankutty (2006) applied Multiple Linear Regressing (MLR) for forecasting the
southwest monsoon rainfall of the 14 districts of Kerala in India using rainfall as
independent variable and compared those models with the corresponding feed
forward ANN and concluded that the ANN models ANN models outperformed MLR
models. Kannan et al., (2010) developed MLR to predict the summer monsoon
(September to November) rainfall using monthly rainfall data during summer
monsoon of previous year in Tamil Nadu, India and claimed that accuracy of
predicting value is low. The study did not provide the corresponding R? value and
furthermore, errors of the model were not tested for white noise and nothing has been

mentioned about the significance of the model parameters.
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Rasel et al., (2015) applied two statistical approaches; MLR and ANN to forecast
seasonal rainfall in South Australia using spring rainfall as dependent variable.
Single and combined lagged large-scale remote climate drivers such as, EI Nino
Southern Oscillation (ENSO), Indian Ocean Dipole (I0OD) and Southern Annular
Mode (SAM) were considered as potential predictor variables on long term spring
rainfall. The study revealed that lagged Dipole Model Index (DMI)-SAM have been
more effective on spring rainfall predictability than other combination of climate
drivers and using those predictor variables, ANN model could increase the model
correlation up to 87% (p < 0.05) whereas, the rainfall predictability of MLR was
52% (p < 0.05).

Terzi and Cevik (2012) applied MLR technique for monthly rainfall in Isparta and
compared it with three-layer feed forward ANN model. Based on the R? value and
RMSE, they concluded that ANN is more superior than MLR. Alhashimi (2014) also
developed MLR model to monthly rainfall (1970 - 2008) in Iran taking air mean
temperature, relative humidity and wind speed as independent variables without
validation of diagnostic tests related to MLR. They also claimed that ANN model is
superior than MLR model in forecasting monthly rainfall based on the correlation
coefficient and RMSE values. It should be mentioned that in ANN models,
parameters are not tested for statistical significance, though the authors claimed that

the ANN models are superior than other models.

Armesh and Negaresh (2013) employed MLR model and ANN model to forecast the
maximum daily rainfall of Saravan in Iran considering various meteorological
variables and climate indices from 1986 to 2010 as potential predictors. They found
that the variables; monthly maximum and minimum relative humidity and climate
indicators have made a significant effect on the maximum daily rainfall in Saravan.
This regression model was fitted for the purpose of model comparison with radical
basis function (RBF) NN and multilayered feed forward back propagation (MLFBP)
NN for forecasting daily maximum rainfall. The correlation coefficient of the models
RBF, MLFBP and MLR were 0.95.0.95 and 0.89 respectively. Thus, based on the
correlation coefficient, RMSE and MAE, authors claimed that the ANN model
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considerably yield better forecasting result. However, no attempt was made to test
the model assumptions and parameters of the regression model for significance.

2.4. Hybrid Models for Rainfall Forecasting

In the previous section three types of modeling approaches were discussed
independently. Each approach has advantages as well as drawbacks. Therefore, in
recent years researchers in all over the world have proposed hybrid models which
combining two or more different types of models to forecast the rainfall at different
time scales for improving the forecast accuracy.

Yu and Yu (2012) proposed modular radical basis function neural network (M-RBF-
NN) coupled with the singular spectrum analysis (SSA) and partial least square
(PLS) regression for forecasting monthly rainfall of Liuzhou in China. Monthly
rainfall data from January 1949 to December 2006 were used to train the model.
Initially, the technique SSA was applied to the rainfall series to the purpose of
removing of trends and to reform the new time series. Next, a triple phase non linear
M-RBF-NN model was utilized for rainfall forecasting by linking different activation
functions. Then the result in a suitable number of RBF-NN predictors were selected
using the partial least square technology. Finally, the model was assembled by the
least squares support vector regression (LS-SVR). Based on the absolute relative
error (ABRE), root mean square error (RMSE) and Pearson relation coefficient
(PRC), authors claimed that the M-RBF-NN has the highest accuracy. However, it
should be pointed out such indicators are not recommended to judge a model for

forecasting accuracy.

Mahalakshmi et al., (2014) developed a hybrid model with a combination of ARIMA
and ANN to predict monthly rainfall in Tamil Nadu, India using data from 1950 to
2012. The seasonal ARIMA (0,1,1) x (0,0,1)12 model was fitted to the historical data
and the residual derived from the ARIMA model was fitted by ANN. For the ANN
they used a data set 756, out of which, 700 data were used to train the network using
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feed forward back propagation algorithm. The authors revealed that the better
forecast result could be obtained using a hybrid model than ARIMA or ANN alone.

Patel and Parekh (2014) employed a hybrid model by combining the ANN and
Adaptive Neuro Fuzzy Inference System (ANFIS) to forecast monthly monsoon
rainfall for Gandhinagar station in India. Various membership functions were utilized
to derived eight different models and they considered climate parameters as input
variables for all models. It was found that the hybrid model with seven membership
functions with three inputs, namely relative humidity, temperature and wind speed
produced the best performance to forecast the rainfall in this area. It should be
pointed out that unlike statistical models there is no justification why 8 models were
considered and also no significance is considered when variables and their

transformation are included into the model.

Abbot and Marohasy (2014) used ANN model with genetic optimization to find the
lagged relationships among temperature, atmospheric pressure, climate indices to
study the monthly rainfall of three geographical distinct regions in Queensland.
Meteorological data, including rainfall from 1893 to 2012 were used for this study
and result was compared with Predictive Ocean Atmospheric Model for Australia
(POAMA) which is the General Circulation Model currently used to produce the
official seasonal rainfall forecast. The result indicated that the forecasts using ANN
for three areas were superior compared to forecasts from the best available general
circulation model (POAMA).

A survey which consists of several artificial intelligence models that have been used
to forecast the rainfall was conducted by Pallavi and Singh (2016). The ANN,
combined model of support vector machine (SVM) & Fuzzy logic method and NN-
Fuzzy method were models considered for this study. Based on the survey, the author
concluded that the hybrid combination of ANN and Fuzzy logic; adaptive neuron

fuzzy inference system (ANFIS) was the best approach for rainfall forecasting.

A hybrid model combining the self organizing map (SOM) and multilayer perceptron

neural network (MLPN) have been developed to forecast the typhoon rainfall from
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July to October in Taiwan by Lin and Chang Wu (2009). In this study, hourly rainfall
data of 10 rain gauges of Tanshui river basin was used. Firstly, they analyzed input
data using SOM technique that was used to decompose the input into distinct
clusters. Then, MLPN was carried out for each cluster. The Proposed model was
applied and compared with the conventional ANN model result. It was found that the

forecasting power of the proposed model outperform conventional ANN.

Yusof et al., (2013) developed a hybrid ARIMA (2,1,2)-GARCH (1,1) and ARIMA
(3,1,1)-GARCH (1,1) to model daily rainfall of Ipoh and Alorestar in Malaysia
respectively using data for the period from 1968 to 2003. Residuals in both models
were found to be white noise as well as no ARCH effects. Though they claimed that
the models fit the daily rainfall data set at two locations. well, no attempt was made

to find the accuracy rate of the predictions.

Two hybrid models have been developed to forecast daily precipitation of two
locations in Iran by Teimoorzadeh et al., (2015). Firstly, single genetic programming
(GEP) and ANN were applied on daily rainfall data for 9 years (2000-2008). Then,
two hybrid models, namely wavelet genetic programming (WGEP) and wavelet
ANN (WANN) were developed using same data set due to low accuracy of first
models. It was found that the forecast accuracy was significantly increased using the
hybrid model and also forecast accuracy using WANN outperform using WGEP. A
study was carried out to forecast daily precipitation using hybrid models, namely
wavelet-artificial neural network (WANN) at Verayneh station, Iran and the result
was compared with adaptive neuro fuzzy inference system (ANFIS) by Solgi et al.,
(2014). Wavelet transformation was applied to the daily precipitation data and
original time series were decomposed to multiple sub time series which could be
applied as input data for artificial neural network. Different structures in ANFIS were
applied to the same dataset for the purpose of comparison. Based on the result, the
best model was the WANN which had less error than ANFIS along with the high
correlation coefficient (r =0.95).
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Faulina and Suhartono (2013) applied different techniques to forecast daily rainfall
of six area in Indonesia by using rainfall records from 1996 to 2012. This study
focused to develop both individual and hybrid models, namely Adaptive Neuro
Fuzzy Inference System (ANFIS), ARIMA, ARIMAX, ARIMA-ANFIS and
ARIMAX-ANFIS. Traingular, Gaussian and Gbell functions were used as
membership functions of ANFIS and best model was selected based on the RMSE. It
was found that the individual ARIMA model yields a more accurate forecast than
other complex models. Also, the authors mentioned that complicated models do not
always yield better forecast than the simple one. Furthermore, it should be added that
complicated models do not recommend the inferences with some confidence and

consequently most of the complicated models are subjective.

2.5. Impact of Other Climatic Variables on Rainfall

Various studies have been carried out to find the dynamic relationship between
annual or monthly rainfall and other external variables using vector auto regression
(VAR) models (Adenomon et al., 2013) or regression models (Malmgren et al.,
2003). Kumar et al., (2007) found that seasonal rainfall of Orissa State in India has
significant association with large scale climate tele connections namely, ElI Nino
Southern Oscillation (ENSO), Equatorial Zonal Wind Index (EQWIN), and Ocean-
Land Temperature Contrast (OLTC). Tularam (2010) found a relationship between
ENSO and rainfall in South East Queensland. Mekanik and Imteaz (2012) claimed
that the there is a significant relationship between large climatic drivers; ENSO,
Indian Ocean Dipole (IOD) and Southern Annular Mode (SAM) with spring rainfall
of Victoria in Australia. A similar study was carried out by Rasel et al., (2015)
claimed that the significant relationship between large scales climatic drivers such as
ENSO, 10D and SAM with seasonal rainfall in South Australia.

The findings of the above studies provided evidences to the significant relationship
between the large climatic drivers with the seasonal rainfall. Also, it is noted that the
few studies in literature reported the significant relationship between rainfall and

other external factors as temperature, relative humidity, vapor pressure etc.
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2.6. Long Memory Models

In recent past, time series models with long memory features became very popular
among researchers in many fields in particularly in financial time series modeling.
Features of a autoregressive fractionally integrated moving average (ARFIMA) long
memory model was initially introduced by Granger and Joyeux (1980) and Hosking
(1981). It was an extension of the traditional ARMA process with a fractional
differencing parameter. The model defined as ARFIMA (p,d,q) allows the parameter
“d” to take fractional values for differencing. There is a fundamental change in the
correlation structure of the ARFIMA model, when compared with the correlation
structure of the conventional ARIMA model (See Chen et al., 1994). According to
Granger and Joyeux (1980), the slowly decaying autocorrelation exhibited in long
range dependency or long memory models differ from stationary ARIMA models
that decay exponentially. This is the primary detection for the development of long
memory models. However, development of such models is not an easy task as there

are many unsolved problems in this area of research.

2.6.1. Estimating of Fractional d of ARFIMA Models

Many researchers proposed different methods to estimate the fractional differencing
parameter. Gewek and Porter-Hudak (1983) proposed a method for estimating the
long memory differencing parameters based on a simple linear regression of the log
periodogram. An approximate maximum likelihood method for parameter "d" was
proposed by Fox and Taqqu (1986). Fundamental properties of the ARFIMA family
and the estimation of the model parameters were discussed by Andel (1986). An
exact maximum likelihood estimation method for differencing parameter was
introduced by Sowell (1992). Chen et al., (1994) developed a regression type
estimator of 'd" using lag window spectral density estimators. A method based on
the smoothed periodogram for estimating of ARFIMA parameters was proposed by
Resien (1994). Comparison study assessments were done by Cheung and Diebold
(1994) on maximum likelihood estimators for fractionally differenced parameters
using two types of maximum likelihood (ML) estimators in the form of frequency-

domain ML and exact domain ML of time series processes with an unknown mean.
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2.6.2. Use of Long Memory Models
Montanari et al., (1997) proposed fractional differenced ARIMA models for daily

and monthly inflows of lake Maggiors in Italy and monthly rainfall in Genoa. They
applied an approximation in the spectral domain of the Gaussian maximum
likelihood function called Whittle estimators for the model parameter estimation.
However, authors claimed that though the fractional ARIMA improved the modeling
of inflows with long range persistence the analysis of monthly rainfall shows that the
absence of long-term effects. Further, the authors suggested that in fractionally
difference method with a seasonal component would improve the capability of

representing both long and short memory persistence of the hydrological time series.

2.6.3. Use of Gegenbauer ARMA Models

Due to the practical success of the ARFIMA model, a more generalized fractionally
differenced long memory time series model called the Gegenbauer
ARMA(GARMA) was probed in detail by Gray et al., (1989). This type of long
memory class illustrates multiple unbounded spectral peaks away from the zero.
Chung (1996) extended the work in introducing a grid-based parameter estimation
procedure of an elementary GARMA process. A concise summary of fractionally
differenced Gegenbauer processes with long memory was provided in Dissanayake
(2016). An extensive review of fractionally differenced Gegenbauer processes with

long memory carried out by Dissanayake et al., (2018).

2.6.4. Use of Seasonal Autoregressive Fractionally Integrated Moving Average
(SARFIMA) Models

Though the ARFIMA model was able to capture the long-range dependency, it does
not take into account the seasonal variation patterns present in some real data series
particularly in rainfall series. The SARFIMA (Porter-Hudak, 1990) is a natural
extension of the ARFIMA process with an additional seasonal filter. The model
consists of long memory dependency features with periodic behavior in terms of the
data. SARFIMA model was utilized for forecasting of the monthly IBM product
revenue in Ray (1993). Peiris and Singh (1996) suggested a convenient method to
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calculate predictors for seasonal and non seasonal fractional parameters of long
memory models under certain conditions. The work done by Bisognin and Lopes
(2009) described number of properties of seasonally fractional ARMA process in
detail. SARFIMA model was applied to forecast Iraqgi oil production and model
parameters were estimated using conditional sum of squares by Mostafaei and
Sakhabakhsh (2011). Additionally, Reisen et al., (2014) proposed a semi parametric
approach to estimate two seasonal fractional parameters in a SARFIMA model and

the performance was evaluated through a Monte Carlo experiment.

However, extremely few attempts have been made to study the rainfall behavior in
context of long memory. A study done by Yaya and Fashae (2014) made an attempt
to fit SARFIMA models for rainfall data in six rainfall zones of Nigeria but they
claimed that could not develop significant SARFIMA models which the seasonal
behavior with the long-range dependency of the real data. However, these types of
models can be developed to tackle to model complex time series such as weekly

rainfall.

2.6.5. Models for Capture Heteroskedasticity

There has been growing interest in modeling time series in many disciplines such as
finance, economics, environmental science, hydrology etc. having heteroscedasticity
property. The heteroscedasticty in time series is generally handled using
autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH
(GARCH) models (Engle, 1982; Bollerslev, 1986). Various authors (Ling and Li,
1997; Henry, 2001; Jenson, 2005; Sena et al., 2006) developed ARFIMA-GARCH
models for different applications, but less attention was given for short-term or long-
term prediction of the series and thus those work has less importance from practical

point of view.

Kane and Yusof (2013) employed GARCH (1,1) model to the residual of the
ARFIMA that fitted for the daily rainfall data from 1975 to 2008 in Malaysia. They
estimated the fractional differencing parameter using the method proposed by the

two researchers Gewek and Porter-Hudak (1983) and claimed that the by adding the
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GARCH specification for the ARFIMA error helps to capture the serial correlation in
the squared residual. Reisen et al., (2014) proposed SARFIMA-GARCH model for
modeling and forecasting daily average PMio (Airborne Ambient Particulate Matter)
concentration. Semi parametric procedure suggested by Reisen et al., (2014a) was
used to estimate the fractional differencing parameter in along with time dependence
condition error variance. The authors claimed that some features of the data such as

seasonality, long memory and volatility were able to capture by the proposed model.

2.6.6. GARMA Class of Models with Heteroskedasticity

Fresh interest in the econometric community infused into the process the introduction
of a GARMA class of models with heteroskedasticity by Dissanayake and Peiris
(2012). It was followed by the casting of the process driven by Gaussian white noise
in state space by Dissanayake et al., (2016a) to establish a parameter estimation
based optimal lag order validated by predictive accuracy. A similar experiment in
which the process was driven by GARCH errors (instead of Gaussian white noise)
was presented by Dissanayake et al., (2014) with the validation of parameter
estimation based optimal lag order done through log likelihood measures.

2.7. Summary of the Chapter 2

Many researchers have attempted to predict rainfall at different time scales. The type
of models used are MLR, ARIMA, SARIMA, ANN, Hybrid and long memory. Of
those, ARIMA, SARIMA, and ANN were found to be more popular in modeling
rainfall irrespective of time scales. However, there were various drawback in such
models with respect to the statistical aspect as well as non-statistical aspects. Almost
all models were not tested for an independent data set. Though some studies
provided correlation coefficient of predicted and observed, most of those failed to
give p-value which need to get overall judgment about the model. Thus, most of
those models are not recommended to use. All authors have claimed that prediction
of weekly rainfall, in particularly in tropical countries is more difficult than

prediction of annual, seasonal or monthly due to various noisy structure.
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Nevertheless, very few studies were reported to model weekly rainfall but no proper

prediction was carried out.

Almost all authors claimed that ANN models are better than MLR. However, the
main drawback of this methodology is that these model parameters are not tested
statistically. Many researchers developed hybrid models coupled with artificial
neural network for the purpose of forecasting rainfall. However, some of them
claimed that more complicated model not always give better forecast in comparison
to the simple ones. Another drawback of hybrid models or ANN model is that the
results depend on the methodology used to estimates parameters and no study has

been claimed that their results are invariant of the methodology used.

The long memory models with a fractional differencing parameter have been popular
among the researchers in modeling complicated time series data. Most of the
researchers applied long memory models for the financial time series. Generally,
rainfall series in tropical countries are also complex as financial series. There has
been a still noticeable gap modeling persistent rainfall in view of long memory. It is
very important to develop a novel model to forecast weekly rainfall series since very
less attention have been given to model the rainfall at weekly basis. Nevertheless,
this extensive literature review certainly provides immense information on the

direction of developing novel model for weekly rainfall in Colombo city.
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CHAPTER 3
RESEARCH METHODOLOGY

In order to enrich the understanding of characteristics of the weekly rainfall series,
many techniques are applied and those methods are described in detail in this
chapter. Initially, the study site and the data description of the weekly rainfall along

with the exogenous climatic variables are discussed.

3.1. Study Site

Sri Lanka is a tropical country in South Asian region and the Colombo city is the
commercial capital of Sri Lanka, situated with latitudes 6° 55’ N and Longitude 79°
51" E and is chosen as the study site. Colombo meteorological location is the main
station of the department of Meteorology in Sri Lanka. Many meteorological
variables including daily rainfall data have been recorded without missing values by
the Colombo station since 1870. The corresponding study site is presented by the

Figure 3.1.

3.2. Data Description

Daily rainfall data and the climatic variables: minimum and maximum temperature,
relative humidity (AM & PM), minimum and maximum vapor pressure were
obtained at daily basis from 1960 to 2017 in Colombo city from the Department of
Meteorology, Sri Lanka.

The daily rainfall (mm) data has been converted into weekly rainfall by dividing a
year into 52 weeks such that week 1 corresponds to 1-7 January, week 2 corresponds
to 8-14 January week 3 refer as 15-21 January and so on. The corresponding weeks
are presented in Table 3.1. In order to make homogenous period irrespective the

years. February 29" wasn’t taken into account when making 52 weeks.
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Figure 3.1: The city of Colombo is in the Colombo district
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Table 3.1: Standard weeks in a year

Week | Date Week | Date
1 January 01 -07 27 July 02-08
2 January 08 -14 28 July 09-15
3 January 15 -21 29 July 16-22
4 January 22 -28 30 July 23-29
5 January 29 -February 04 31 July 30-August 05
6 February 05 -11 32 August 06-12
7 February 12 -18 33 August 13-19
8 February 19-25 34 August 20-26
9 February 26 -March 04 35 August 27-September 02
10 March 05-11 36 September 02-09
11 March 12-18 37 September 10-16
12 March 19-25 38 September 17-23
13 March 26 -April 01 39 September 24-30
14 April 02-08 40 October 01- 07
15 April 09-15 41 October 08- 14
16 April 16-22 42 October 15- 21
17 April 23-29 43 October 22- 28
18 April 30- May 06 44 October 29- November 04
19 May 07- 13 45 November 05 -11
20 May 14-20 46 November 12-18
21 May 21-27 47 November 19-25
22 May 28-June 03 48 November 26-December 02
23 June 04-10 49 December 03-09
24 June 11-17 50 December 10-16
25 June 18-24 51 December 17-23
26 June 25-July 01 52 December 24-31

3.3. Analysis of the Weekly Rainfall Percentiles for SWM

The city Colombo is located in the Western part of the country which directly
receives rainfall from SWM. The rainfall percentiles analysis was utilized on weekly
rainfall series during SWM to pursue and underline the temporal fluctuations during
the time span from 1960 to 2015. The weeks 18-39 were pertaining to the SWM is
presented by Table 3.2.
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Table 3.2: The weeks pertaining to the SWM

Weeks Date Weeks Date
18 | April 30-May 06 29 | July 16-22
19 May 07-13 30 [ July 23-29
20 May 14-20 31 July 30-August 05
21 May 21-27 32 August 06-12
22 May 28-June 03 33 | August 13-19
23 June 04-10 34 August 20-26
24 | June 11-17 35 | August 27-September 02
25 June 18-24 36 September 03-09
26 | June 25- July 01 37 September 10-16
27 July 02-08 38 September 17-23
28 | July 09-15 39 September 24-30

In addition to standard weeks, running totals of weekly rainfall were also considered
for the analysis of weekly rainfall percentiles. The running totals of weekly rainfall
were obtained during SWM period is presented by Table 3.3. It is calculated total of
148 running weekly totals of weeks which belongs to SWM.

Table 3.3: The running totals of weeks pertaining to the SWM

Running totals of Date
weeks during SWM
Week 1 April 30-May 06
Week 2 1-7 May
Week 3 2-8 May
Week 4 3-9 May
Week 148 24-30 September

Before analyzing rainfall percentiles, the trend analysis was carried out and tested the
linear and quadratic trend pattern in weekly rainfall during time period from 1960 to
2015. Also, the weekly rainfall series pertaining to the SWM checked for the
randomness using auto correlation plots. Furthermore, the normal probability plots of
each weekly rainfall series which belong to SWM were obtained to test the
normality. The weekly rainfall percentile analysis was done in context of confidence

intervals using two approaches namely, parametric and bootstrapping. Under the
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parametric approach, estimates were made by fitting the probability distributions for
weekly series in SWM and those details are presented from the section 3.5.

3.4. Analysis of the Weekly Rainfall Percentiles for SIM

The SIM furnishes considerable shower to the city Colombo during the October to
November. This analysis mainly focused to assess the temporal variability of the
weekly rainfall during the SIM. The weeks 40-48 were belongs to the SIM is
presented by Table 3.4.

Table 3.4: The weeks pertaining to the SIM

Weeks Date Weeks Date
40 October 01- 07 45 November 05 -11
41 October 08- 14 46 November 12-18
42 October 15- 21 47 November 19-25
43 October 22- 28 48 November 26-December 02
44 October 29- November 04

The running totals of weekly rainfall were also considered as SWM for the analysis
of weekly rainfall percentiles. Those running totals of weekly rainfall were utilized to
study the variability of the rainfall and those are presented by Table 3.5. It is

calculated total of 57 running weekly totals of weeks which pertaining to SIM.

Table 3.5: The running totals of weeks pertaining to the SIM

Running totals of Date
Weeks during SIM
Week 1 1-7  October
Week 2 2-8  October
Week 3 3-9  October
Week 4 4-10 October
Week 57 26" November to 2" December

Linear and quadratic trend patterns in weekly rainfall during the SIM was tested
before carrying out the analysis of rainfall percentile. Moreover, randomness of the

series was assessed using auto correlation plots. Two approaches: parametric and
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bootstrapping were applied to underline the rainfall percentiles along with the 95%

confidence intervals.

3.5. The Best Fitted Statistical Distribution for Weekly Rainfall

Many known probability distributions; Log normal, Exponential, Gamma, Weibull,
Largest Extreme Value, Smallest Extreme Value, Logistic, Log Logistic along with
the different forms of some distributions such as 3-parameter Gamma, 2-parameter
Exponential, 3-parameter Log Logistic and 3-parameter Weibull distributions were
utilized to fit probability distribution for the weekly rainfall series and two test
Anderson-Darling and Kolmogorov-Smirnov test were used to identify the best fitted

probability distributions.

Weekly rainfall percentiles at 50, 60, 70, 80 and 90 and the corresponding 95%
confidence intervals were calculated using best fitted distribution for the standard
weeks. It is also fitted many probability distributions mentioned above for the
running weekly totals of 148 weeks in SWM and 57 weeks in SIM and the same
procedure was carried out to select the best fitted probability distributions and
calculated the five percentiles and the corresponding 95% confidence intervals for

the running weekly totals.

3.6. The Use of Bootstrapping Approach

This is a non parametric distribution free method. Resampling with replacement
procedure was utilized to create the number of samples with the same size based on
the original sample. Here, large number of statistics made based on the large number
of repeated samples created. The 95% confidence intervals for the weekly rainfall

percentiles were developed using percentile bootstrap approach.

In order to identify the time period which, form the extreme rainfall events, the
rainfall percentiles along with the 95% confidence intervals which made using two
approaches were utilized and those statistics were used to enrich the understanding of

the weekly rainfall variation during the SWM and SIM. Furthermore, the analysis of
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the running weekly total with their 95% confidence intervals used to confirm the
result of the analysis which was made based on the two approaches.

3.7. Coverage Probability for Weekly Rainfall Percentiles

The coverage probability of the confidence intervals is one of the measurements that
can be used to test the accuracy of the confidence interval bands. To compute the
accurate level of confidence intervals for weekly rainfall percentile, the parametric
bootstrapping approach was applied based on the real coverage probability which
derived from the bootstrapping calibration. Under the parametric approach all the
inferences including confidence interval bands made based on the distribution which
we selected as best fitted either skewed on symmetric. This attempt has been made to
test the inferences as confidence interval bands created by using skewed distribution.
Here, one weekly rainfall series were considered as population and considered the
95% confidence intervals made based on the best fitted distribution. A simulation
was carried out to calculate the coverage probability of the 95% confidence interval
for the rainfall percentiles at the small sample size. It is important to noted that the
2000 random samples were generated using parametric bootstrapping approach. It
was compared the calculated coverage probability with the nominal coverage
probability. Based on the result, it was highlighted that the corresponding accurate

confidence level for the percentiles to achieve the real coverage probability as 95%.

3.8. Modeling Weekly Rainfall Using Classical Models

Before moving to novel approach, it is better to model the rainfall using conventional
approach since many reasons. The presence of complex models do not give better
result always and to overcome much difficulties in modeling the weekly rainfall,

conventional method is initially used.

In this study, an effort is made to model the weekly rainfall series from 1990 to 2014
using Seasonal Autoregressive Integrated Moving Average (SARIMA) model by
accounting the correlation structure of the series. Since the heteroskedasticity

presence of the residuals derived from the above best fitted model a variance model
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called Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
developed to capture the stochastic volatility. Model assumption were also tested
simultaneously, to assess the accuracy of the fitted model. In addition to above
models, an ARIMA-GARCH model was fitted to the deseasonalized weekly rainfall
series to improve the model accuracy and the forecasting performance.

Furthermore, the study is moved to model the weekly rainfall with exogenous
variables to identify effect of the exogenous variables on weekly rainfall. Vector
Auto Regressive (VAR) model was utilized to find the affect the nine variables such
as minimum, maximum and average of three variables temperature, relative humidity
and vapor pressure on weekly rainfall. Also, the Granger causality test was applied

to test one time series of the exogenous variable is useful in forecasting rainfall.

3.8.1. Stationary Series

A stochastic process {Yt} is said to be a stationary if for arbitrary points ty, t2, ts...tn,
the joint distribution of the random variable {Yu, Yt2, Yts...Ywn}and {Yti+h, Yto+h...
Ytn+n} are the same. Observed series was tested for the stationary using Argument
Dickey Fuller Test (ADF). This was developed by Dickey and Fuller (1979). This is

used to test whether a unit root is present in an autoregressive model.

3.8.2. ARIMA Modeling

Box-Jenkings Auto-regressive Moving Average (ARMA) is a one of the most
popular techniques used for rainfall forecasting. An autoregressive model of order p
is typically classified as AR (p) and a moving average model with g terms is known
as an MA (q). A model that consists of p autoregressive terms and g moving average
terms is called ARMA (p, q). Usually, the original time series employs a lag operator

B to define the ARMA (p, q) and model may be written as

¢o(B)y,=0(B)e,

B is the backward shift operator defined as By, =Y, ,

(P(B) :1_@18_@282 _(PsBB T _(Ppo
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06(B)=1+6,B+6,B° +0,B° +...+0,B"

The series should be a stationary to model ARMA (p, q). If it is non stationary, the
series should be transformed into a stationary series by getting differencing d. It is

defined as ARIMA(p,d,q) and simply it can be written by using a back shift operator,
¢o(B)(1-B)"y,=0(B)e,

3.8.3. SARIMA Modeling
If a time series exhibit a periodic behavior within certain time intervals then the
series are said to be a seasonal time series. Those series can be model using seasonal
ARIMA model and can be denoted by SARIMA(p,d,q)x (P,D,Q)s. The formula can
be formed as;
o(B)®(B*)(1-B)’ (1-B°)°y,=0(B)O®B"),
®(B)=1-®,B°-®,B* -®,B* —...-®, B
®(B)=1+0,B° +0,B* +0,B* +...+ © B

Where ¢(B), 6(B), ®(B°) and ®(B®) are polynomial of order p, g, P and Q

respectively. p and P are the order of non seasonal and seasonal autoregressive and g
and Q are the order of non seasonal and seasonal moving averages. Also, d and D are

the number of non seasonal and seasonal differences and s is the length of season.

3.8.4. Concept of ARCH/GARCH Modeling

The Autoregressive Conditional Heteroskedasticity (ARCH) model was first
introduced by Engle (1982) for modeling the time dependent conditional variance.
This model was generalized by Bollerslev (1986) called as Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) models. Time dependent
variance or conditional variance commonly called as heteroskedasticity cannot be
captured by the ARIMA/SARIMA models. Thus, GARCH models are utilized to
capture the conditional variance existed from the residuals derived which from the
ARIMA/SARIMA models. The GARCH (p, q) model can be written as;
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Here, &, indicates the uncorrelated residuals of the SARIMA model that have time
dependent variance while e, isarandom variable i.i.d with mean zero and variance

1. Thus, in SARIMA-GARCH model, the conditional mean is described by the
SARIMA while conditional variance is described by GARCH model.

3.8.5. Testing for the Serial Correlation

The existence of serial autocorrelation violates the standard assumption in
ARIMA/SARIMA models. Estimates and forecast values are no longer efficient and
the estimates are biased and inconsistence when ignoring the serial correlations.
Breusch-Godfrey serial correlation Lagrange Multiplier (LM) test is used to check

the serial correlation of a given series up to specific lag.

3.8.6. Testing for the ARCH Effect

Time dependent variance cannot be tested using ACF of the residuals. Thus, squared
residuals from the mean model is used to identified the heteroskedasticity of the
residuals and this is known as the ARCH effect. If the residuals exist an ARCH

effect, the Lagrange multiplier test is used. Initially, estimate the mean equation:

R, =c+u,
Gl =y, Y, UL, YU, e, +7,Ur
The corresponding hypothesis are;
Hy=v,=7,=7,=...=7,=0 Vs H, =atleastone y, =0

The test statistic is defined as TR? (The multiplication of the number of observation
and the coefficient of the multiple correlation) and under Ho, this statistic follows the
chi squared distribution with g degree of freedom (Engle, 1982).
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3.8.7. VAR Modeling

Vector Autoregressive Model (VAR) are used for multivariate time series and its
structure is a linear combination of past lags of the same variable along with the past
lags of the other variables. This type of models examines the dynamic relationship
among the interrelated variables. The {Y} is a VAR process order 1 [VAR (1)] and

for k=2 (k denoted as number of exogenous variables) model can be written as;

Yie = P10 T PriYipa TP1Yo00 €1

Yo =@+ P21 Y100 T P2Yon HE

3.8.8. Granger Causality Test

This test is used to find the direction of the relationship among set of time series. The
causality is away to investigate two variables in a time series. If the variable X is
necessary to forecast the variable Y, then X is said to Granger Cause Y.

The corresponding null hypothesis is,

Ho: X does not Granger Cause Y Vs Hi: X Granger Cause Y

3.9. Modeling Weekly Rainfall Using Novel Approach

Modeling rainfall becomes a demanding assignment since the complexity of rainfall
pattern has changed day by day. It is noted that the rainfall in Sri Lanka shows the
erratic variation. Thus, it cannot expect high forecasting accuracy by modeling
rainfall using conventional approach. Accordingly, we have to move to a new
technique to address this issue. Relatively, few measures have been taken to perform
the modeling of rainfall in the context of long memory. This study provides an
assessment of such a phenomenon by fitting an appropriate time series model by
counting the long memory features. The long-range dependency model is allowed to
take fractional values for the differencing. According to the Granger and Joyeux
(1980), the fractional differencing is the infinite filter that corresponding to the
expansion of (1-B) 9, where B is the backwards shift operator while d is the fractional
differing parameter. However, according to the Hosking (1981), the fractional

differencing operator can be defined as an infinite binomial series expansion in
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power of the backward shift operator. There are several parameters estimation
methods for the long memory parameter d were proposed by the researchers. The
spectrum based semi parametric whittle estimation method, regression method,
wavelet-based method, approximately maximum-likelihood methods based on
truncations of the infinite autoregressive expansion of the process and the truncation
of the infinite moving average expansion of the process and exact maximum
likelihood method with the Cholesky decomposition and with the Durbin-Levinson

algorithm are some model parameter estimation methods for long memory models.

A long-range dependency model is proposed to fit weekly rainfall data to explore
characteristics of persistence through an unbounded spectral density. Since the
weekly rainfall exhibited the persistence, initially, autoregressive fractionally
integrated moving average (ARFIMA) model is fitted. The exact maximum-
likelihood method with Durbin-Levinson algorithm was utilized to estimate the long
memory parameter of the model and this was not tested for the previous rainfall
studies. However, a Monte Carlo simulation was carried out with different
fractionally differing parameters to measure the suitability of the method for
parameter estimation. Best fitted model is chosen based on the minimum of the mean

absolute error.

Careful examination of the data exhibits periodic fluctuations as an additional
feature. Since, the rainfall series exhibit periodic variations and persistence, a
seasonal autoregressive fractionally integrated moving average (SARFIMA) model is
fitted to weekly rainfall series. Here also used MLE method for the parameter
estimation. Same as above, Monte Carlo simulation was done with different seasonal
and non seasonal fractionally differencing parameters to measure the aptness of the
method for parameter estimation.

In addition to the observed series, the deseasonalized series also considered and

fitted long memory model for the purpose of the improve the forecasting accuracy.
Since the heteroskedasticity existence in the all above models, variance models are
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developed to the above long-range dependency models to gain good modeling

accuracy.

The number of long range dependency models (5); ARFIMA, ARFIMA for the
deseasonalized data, ARFIMA-GARCH, ARFIMA-GARCH for the deseasonalized
and adjusted SARFIMA-GARCH model are developed for the weekly rainfall series
and selected best fitted model to describe the features of the weekly rainfall by

accounting forecasting performance of the next year.

3.9.1. The Discrepancy Between Short and Long Memory Series
Let assume that the process {Yi}is a stationary time series with autocorrelation

p(k)=corr(Y,,Y,,) and the normalized spectral density function is

1 & i
f(oa):z— Zpke"“"” ;—m<mo<m where o is the Fourier frequency then can be

k=—o0

identified the following differences between short memory and long memory series.

Table 3.6: The difference between short and long memory series

Short Memory Series Long Memory Series
Pi s exponentially decay P s hyperbolically decay
p, ~ r“forlr| <1 p, ~k*for d>0

2P <® Z|Pk|:°O

lim_ f(w) exsistandbounded | lim  f(w) not exsist or unbounded

If the shape of the auto correlation function in between exponentially and
hyperbolically called as intermediate memory series.
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CHAPTER 4
EXPLONATORY DATA ANALYSIS

Analysis of pattern of weekly rainfall would enhance the management of water
resources which enables us to face the impact of climate change. A detailed
explanatory data analysis was carried out to explore the features of rainfall in this
chapter. The rainfall characteristics are discussed at different time scales such as
annual, seasonal, monthly and weekly. Also, features of the exogenous variables is

described in this chapter.

4.1. Descriptive Analysis of Annual Rainfall

The summary statistics of fifty-six years of annual rainfall data are presented in
Table 4.1. Also Figure 4.1 depicts the annual rainfall trend in Colombo city during
the study period.

Table 4.1: The summary statistics of annual rainfall total (in mm) for the period of 56
years (1960-2015)

Number
of Years Mean SD Median Minimum Maximum CV (%)

56 2402.2  456.1 23954 1456.6 (1986) 3934.5(1963)  18.99

During the period of 1960 to 2015, the annual rainfall of Colombo city was varied
from 1456.6 mm to 3934.5 mm. The mean annual rainfall over the 56 year period
was 2402.2 mm with a coefficient of variance of 19% confirms that the less variation
in annual rainfall. The minimum annual rainfall amount was recorded in 1986 while

maximum rainfall was reported in 1963.
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Figure 4.1: Annual rainfall in Colombo city in mm (1960-2015)

Figure 4.1 illustrates much slight decreasing rainfall pattern during the 56 years
period. However, the variation in annual rainfall pattern like to be much consistent
during the study period. All the years except 1986 enriched from the rainfall with

more than 1750mm amount in the Colombo city.

4.2. Descriptive Analysis of Seasonal Rainfall

The rainfall patterns of the country are predominantly governed by the seasonally
varying monsoon system. Rainy periods of the country mainly have been classified
into four seasons. Two monsoon periods and two inter monsoon periods. The
Colombo city is located in the Western part of the country, Sri Lanka. Due to the
geographical location, the city of Colombo is influenced by erratic rainfall mainly
during two seasons namely, SWM and SIM. The summary statistics of seasonal
rainfall are presented in Table 4.2 and the seasonal rainfall behavior was graphically

presented from the Figure 4.2 and Figure 4.3.
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Table 4.2: The summary statistics of seasonal rainfall total (in mm) from 1960 to

2015
Mean
Season Mean SD CV(%) Median Min Max Intensity

First Inter Monsoon (FIM) 3748 1585 42.3 336.9 101.8 736.8 6.2
(March to April) (2004) (1961)

South West Monsoon (SWM) 1024.1 256.3 25.1 992.8 509.8 17378 6.7
(May to September) (1986) (1963)

Second Inter Monsoon (SIM)  695.4  226.7 32.6 684.1 2219 12644 114

(October to November) (1986) (2005)

North East Monsoon (NEM) 302.1 155.6 51.5 295.2 58.4 631.7 34
(December to February) (1981) (2014)

Parenthesis indicates the year of which minimum or maximum occurred
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Figure 4.2: Seasonal rainfall during the time span from the 1960 to 2015

According to the Figure 4.2, the highest rainfall amount was received to the city
Colombo was reported during the SWM from May to September. Based on the
statistics of the Table 4.2, the mean seasonal rainfall of SWM was accounted as
1024.1mm. The maximum seasonal rainfall during the SWM was reported in 1963
with a 1737.8 mm. Since the heavy shower particularly beginning of the SWM can
be occurred during this season, sometimes leads to occur the floods events in the
city. The season SWM enriched from the rainfall with more than 509 mm. The

second highest rainfall amount was received in the city during the SIM from October
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to November. The highest and lowest rainfall amount during the SIM were reported
in years 1986 and 2005 respectively. The SIM showed the highest intensity rainfall
which causes to floods and landslides. The lowest rainfall amount was received for
the Colombo city during the NEM. The mean seasonal rainfall was 302.1 mm during
this season. It is noticed that the considerable rainfall amount were received for the
city Colombo during the NEM in the year 2014.

Seasonal Rainfall in mm (1960-2015)
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Figure 4.3: Distribution of rainfall for the four seasons from 1960 to 2015

The highest coefficient of the variance is marked as 51.5% for the period of NEM
indicated that the much variation in seasonal rainfall than the other three for the city
Colombo. According the Figure 4.3, it can be seen that the much peaks of the
seasonal rainfall in NEM. However, those peak rainfall values not give much effect

on the city due to those were in low range.

4.3. Descriptive Analysis of Monthly Rainfall

The pattern of the monthly rainfall is more beneficial for the many field in the
country. To examine the monthly rainfall characteristics, the summary statistics of
the monthly rainfall during the time span from 1960 to 2015 is obtained and
presented in Table 4.3.
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Table 4.3: The summary statistics of monthly rainfall total (in mm) for the period of
56 years (1960-2015)

Month Mean SD CV(%) Median Minimum Maximum
January 70.68 58.78  83.2 68.4 0.0* 211.5 (1984)
February 7290 61.38 84.2 64.8 0.0 ** 221.8 (1963)
March 1194 78.40  65.6 105.4 0.2 (1996) 356.8 (1977)
April 2554 1346 527 231.7 70.9 (2004) 617.9 (1999)
May 346.2 1734 50.1 320.6 83.5 (2014) 750.7 (1977)
June 193.0 9320 483 183.6 63.8 (1986) 602.3 (1992)
July 132.3 1016 76.8 109.1 10.5 (1986) 482.2 (1998)
August 1143 9130 79.9 91.6 2.5 (2001) 435.2 (1962)
September 238.3 1389  58.3 209.8 29.3 (1976) 631.4 (2015)
October 363.0 169.8 46.8 358.1 94.8 (1983) 871.2 (1977)
November 3325 1640 493 295.1 52 (2000) 971.5 (2010)
December 163.8 1095 66.8 156.5 6.6 (2003) 476.5 (2014)

Parenthesis indicates the year of which minimum or maximum occurred
*(1974,1983,1977), ** (1972,1976,1980,1987,1998)

According to the above table, the two months, January and February showed less
rainfall than the other months. There was not any rainfall during the months January
and February in several years (1974,1983 and 1977 for January and 1972, 1976,
1980, 1987, 1998 for February). The months, April, May, September, October and
November are enriched from rainfall while out of the those, May, October and
November give heavy shower to the city. The coefficient of variation in monthly
rainfall marked noticeably high values than the seasonal and annual. The highest
variation of coefficients reported during months January and February which
illustrated the not much consistence rainfall. The highest monthly shower in the city
recorded in the month November in 2010 which was 971.5 mm during the study

period.

49



1000
800

600 *

400 M ¥ H
200

I

0&6

Rainfall in mm

Figure 4.4: Box plot of the monthly rainfall

According to the box plot of the monthly rainfall, it can be clearly seen that an
extreme rainfall event in the month November. Some several months also marked
extreme rainfall events by which were badly affected on the city. The city of
Colombo was enriched by the rainfall significantly during the three months May,

October and November.

4.4. Explanatory Analysis of Weekly Rainfall

Descriptive analysis of weekly rainfall with respect to the four seasons are carried

out separately.

4.4.1. Descriptive Analysis of Weekly Rainfall for SWM

In order to examine the pattern and behavior of the weekly rainfall the descriptive
statistics were obtained and those were presented by seasons. The corresponding
summary statistics of the weekly rainfall pertaining to the SWM is presented in Table
4.4 and the box plot of the weekly rainfall in SWM is depicted from the Figure 4.5.
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Table 4.4: The summary statistics of weekly rainfall total pertaining to SWM (week
18-39) from 1960 to 2015

Week No and Period: Mean SD CV(%) Median Min Max
18  (April 30- May 06) 816 96.1 117.8 42.0 0.0 407.7
19 (May07-13) 86.2 964 1119 55.6 0.0 470.3
20 (May 14-20) 755 96.7 128.2 48.5 0.0 506.8
21 (May 21-27) 69.5 69.2 99.5 50.7 0.0 331.8
22 (May 28-June 03) 69.0 61.8 89.6 48.0 0.5 239.1
23 (June 04-10) 525 727 1384 33.1 5.1 519.8
24 (une 11-17) 406  32.0 79.0 32.0 2.0 141.0
25 (June 18-24) 358 355 99.3 20.8 0.0 132.8
26 (June 25-July 01) 39.5 41.9 106.2 28.2 0.0 196.4
27 (uly 02-08) 342 36.3 106.0 17.6 0.1 146.3
28  (uly 09-15) 290 323 111.2 16.2 0.0 135.2
29  (uly 16-22) 37.2 60.9 163.6 17.9 0.0 331.6
30 (uly 23-29) 227 323 1419 11.9 0.0 173 .0
31 (July 30-August 05) 195 265 135.9 8.6 0.0 111.6
32 (August 06-12) 21.5 28.7 133.7 11.6 0.0 150.4
33 (August 13-19) 30.8 35.0 1137 17.9 0.0 146.6
34 (August 20-26) 294  40.2 136.6 20.1 0.0 205.9
35 (August 27-September 02) 27.7 354 128.1 19.4 0.0 150.4
36 (September 03-09) 36.1 43.6 120.7 19.3 0.0 170.1
37 (September 10-16) 443 527 119.0 28.8 0.0 275.6
38 (september 17-23) 62.1 74.6 120.1 32.1 0.3 379.9
39 (september 24-30) 86.6 91.1 105.2 56.5 0.0 376.4
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Figure 4.5 illustrates that the distributions of the weekly rainfall data during SWM
and all those distributions are positive skewed. Also, this depicts that there is a
significant high variation in weekly rainfall in the week 18-23 while much lower
variation in weeks 24 and 25. The lowest (19.5mm) and highest (86.6mm) mean
weekly rainfall were reported in the 315 week and 39" week respectively. It is noted
that mean weekly rainfall in SWM gradually decreases from 19" week to 31 week
and then the pattern has changed to increase. An almost similar pattern was observed
in median weekly rainfall also. Maximum weekly rainfall was recorded in the 23"
week (519.8mm) in 1992. The weeks 23, 24, 27 and 38 received rainfall
continuously over the 56 year. It is also noted that the 82% of the weeks in SWM
marked more than 100% coefficient of variation which indicates the high variation in

weekly rainfall.

4.4.2. Descriptive Analysis of Weekly Rainfall for SIM

The summary statistics of the weekly rainfall during the period of SIM is presented
in Table 4.5 and the box plot of the distribution of the weekly rainfall in SIM is
illustrated from the Figure 4.6 respectively.

Table 4.5: The summary statistics of weekly rainfall total pertaining to SIM (week
40- 48) from 1960 to 2015

Week No and Period: Mean SD CV(%) Median  Min Max
40  (October 01- 07) 51.9 52.1 100.3 35.1 0.2 237.2
41 (October 08- 14) 81.7 89.4  109.3 46.4 0.0 370.1
42  (October 15- 21) 98.6 93.4 94.7 71.1 0.0 413.7
43 (October 22- 28) 89.7 74.2 82.8 73.5 0.0 362.4
44 (October 29- November 04) 102.9 78.1 76.0 82.9 0.0 337.0
45  (November 05 -11) 91.1 84.9 93.1 73.7 0.0 464.0
46 (November 12-18) 76.8 76.6 99.7 534 0.0 347.3
47 (November 19-25) 62.4 649 104.1 53.8 0.0 388.5

48  (November 26-December02)  55.2 53.7 97.2 32.0 0.0 2321

Mean weekly rainfall of SIM varies from 51.9 mm to 102.90 mm. The lowest and
highest mean week rainfall was reported the 40" week and the 44™ week
respectively. The highest weekly rainfall in SIM was reported in 2010. It can be seen

in a similar pattern of weekly rainfall in mean and median in SIM. Also noted that in
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all the weeks in SIM higher mean rainfall than median rainfall. The week 40%
received rainfall continuously over the period of 1960 to 2015 and minimum of the
rainfall of this week reported as 0.2mm. Almost mean and median weekly rainfall
during SIM is much higher than the weekly rainfall in SWM. It can be seen that the
high variability in weekly rainfall at the middle of the seasons. However, coefficient
of variance values indicates that the considerable much low fluctuation in the weekly
rainfall pertaining to SIM than SWM.
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Figure 4.6: Box plot of the weekly rainfall pertaining to the SIM

Figure 4.6 depicts the distributions of the weekly rainfall data during SIM. All the
weekly rainfall, pertaining to the SIM were positive skewed with longer tail to the
right. Beginning and the withdrawal of the season shows much low rainfall than the

middle. Many extreme weekly rainfall events can be seen at the weeks 41-47.

4.4.3. Descriptive Analysis of Weekly Rainfall for FIM

Table 4.6 gives the summary statistics of the weekly rainfall during the FIM period.
Also, distribution of the weekly rainfall in this period is presented from the Figure

4.7.
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Table 4.6: The summary statistics of weekly rainfall total pertaining to FIM (Week
10-17) for the period of 56 years.

Week No and period: Mean SD  CV(%) Median Min Max

10  (March 05-11) 223 27.0 1210 12.9 0.0 113.2
11 (March 12-18) 29.1 36.7 126.0 14.9 0.0 141.5
12 (March 19-25) 260 383 1474 13.4 0.0 220.9
13 (March 26 -April 01) 315 289 91.8 24.9 0.0 1294
14 (April 02-08) 50.1 52.9 105.5 34.2 0.0 227.2
15 (April 09-15) 49.7 473 95.2 38.4 0.0 261.4
16 (April 16-22) 720 67.6 93.9 56.8 0.0 336.3
17 (April 23-29) 716 63.3 88.4 55.6 0.2 280.6
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Figure 4.7: Box plot of the weekly rainfall pertaining to the FIM

According to the Figure 4.7, there is an increasing trend of weekly rainfall since
beginning of the season. Positive skewed distribution can be clearly identified in
weekly rainfall in all the weeks pertaining to the FIM. The maximum weekly rainfall
in FIM was recorded in 1999 (336.3mm) at the 16™ week. It is noted that the week
17" received continuous rainfall over the 56 years. The high mean rainfall was
observed at the weeks 16-17. The high coefficient of variance implies that the much
heavy variation in weekly rainfall during the FIM. However, the considerable low
shower can be identified during the FIM than the SWM and the SIM in Colombo
city.
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4.4.4. Descriptive Analysis of Weekly Rainfall for NEM

The summary statistics of the weekly rainfall in NEM is presented in Table 4.7.

Table 4.7: The summary statistics of weekly rainfall total pertaining to NEM (week
49-52 and week 1-9) for the period of 56 years (1960-2015)

Week No: Mean SD CV(%) Median Min Max
49 (December 03-09) 47.1 55.0 116.9 30.9 0.0 259.2 (2010)
50 (December 10-16) 39.3 40.5 102.9 27.6 0.0 172.7 (2015)
51 (December 17-23) 30.2 32.0 105.9 17.7 0.0 135.7 (1965)
52 (December 24-31) 29.9 46.1 154.4 10.7 0.0 268.7 (1969)
1 (Janvary01-07) 16.1 26.1 162.9 4.4 0.0 121.4(1986)
2 (January 08 -14) 24.0 36.0 150.2 4.3 0.0 136.5 (1969)
3 (January 15 -21) 11.3 22.8 201.3 0.1 0.0 108.3(1999)
4 (January 22 -28) 12.2 20.3 166.2 1.1 0.0 70.8(2001)
5 (January 29 -February 04) 14.5 24.0 165.2 1.2 0.0 110.3 (1990)
6 (February 05 -11) 216 319 1479 2.8 0.0 135.1(1984)
7 (February 12 -18) 13.6 23.2 170.8 0.7 0.0 103.6 (2012)
8 (February 19-25) 20.4 30.6 150.1 9.2 0.0 154.0(1964)

9 (February 26 -March 04) 25.4 34.0 133.8 111 0.0 127.0 (1974)

According to the Table 4.7, maximum weekly rainfall was marked in 1969 (268.7
mm) during the week 52 in NEM. The mean weekly rainfall during this season
showed much low amount than the SWM and SIM. Most of the mean weekly rainfall
was less than 20 mm. It is noted that the much considerable rainfall in weeks 49-52
than the other weeks in the NEM. Also, all the weeks illustrated the more than 100%
coefficient of variation indicated that the very high variation in weekly rainfall
during this season. It is noticed that the coefficient of the variation in week 3 was
201.3% implies that the much heavy variation in weekly rainfall during this week.
This is the week which have largest coefficient of variation among the 52 weeks.
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Figure 4.8: Box plot of the weekly rainfall pertaining to the NEM

Figure 4.8 depicts the distribution of weekly rainfall in NEM. As we expect, all
weekly rainfall distribution positive skewed while many extreme rainfall amounts
can be seen in weekly rainfall in NEM. It can be clearly seen that the much heavy
shower in weekly rainfall at the beginning of the season. As above mentioned,
Figure 4.8 also showed the high variability in weekly rainfall during the week3 than
the others. However, though it has high variation it gives much low rainfall to the

city.

4.5. Descriptive Analysis of the Weekly Temperature

Temperature is considered as one of the exogenous climatic variables in modeling
weekly rainfall. To enrich the understanding of the behavior of temperature a
descriptive analysis was carried out for minimum, maximum and mean temperature
during the period from 1990 to 2014.

4.5.1. Minimum Weekly Temperature

In order to examine the temporal variability of the minimum weekly temperature, the
time series plot and the summary statistics were obtained and presented in Figure 4.9

and Table 4.8 respectively.
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Time Series Plot of Minimum Temperature
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Figure 4.9: The time series plot of the minimum weekly temperature

Table 4.8: The summary statistics of the minimum weekly temperature

Mean Median Minimum Maximum CV(%) Skewness

234 235 18.2 27.6 6.0 -0.29

The Figure 4.9 depicts a random pattern in minimum temperature and based on the
Table 4.8, the lowest minimum weekly temperature in Colombo city was recorded as
18.2 °C during the period of 1990 to 2014. The coefficient of variance (6%) provided
evidence to low fluctuation in minimum weekly rainfall while this has a moderate
negative skewed distribution. Moreover, the mean minimum weekly temperature was
considered to describe the pattern of the minimum temperature over the considered

time span.
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Figure 4.10: Mean minimum weekly temperature

Beginning of the year, the mean minimum weekly temperature indicated much lower
value while it was gradually increased till 13" week. It can be clearly seen that the

after 31% week, a steady decline until end of the year.

4.5.2. Maximum Weekly Temperature

The Table 4.9 and Figure 4.11 depicts the descriptive statistic of the maximum
weekly temperature and the corresponding maximum mean weekly temperature over

the 56 years.

Table 4.9: The descriptive statistics of the maximum weekly temperature

Mean Median Maximum Minimum CV(%) Skewness
31.8 31.7 36.1 29.6 3.47 0.74

The maximum weekly temperature varies from 29.60C to 36.1°C while it can be
identified low fluctuations in maximum weekly temperature (coefficient of variance

3.47%). This is also skewed with a tail to positive.
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Figure 4.11: Mean maximum weekly temperature

The Figure 4.11 depicts high mean maximum weekly temperature at the beginning of
the year and the pattern has changed to decline from the weeks 16" to 30". An

increasing trend pattern is depicted from the week 30™ to until end of the year.

4.5.3. Average Weekly Temperature

The summary statistics of mean weekly temperature were presented in Table 4.10.

Table 4.10: The summary statistics of the average weekly temperature

Mean Median Minimum Maximum CV(%) Skewness

27.7 27.6 24.4 30.4 2.84 0.04

The lowest average weekly temperature in Colombo city was reported as 24.4 °C
while the highest was recorded as 30.4°C during the study period. The Table 4.10
shows that the low coefficient of variation than the minimum weekly temperature
and this indicated that the much consistency pattern. This has slight positive skewed
distribution.
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4.6. Descriptive Analysis of the Relative Humidity

Relative humidity is a ratio, express in percent, of the amount of atmospheric
moisture present relative to the amount that would be presented if the air were
saturated at the given temperature. This is a function of the both moisture content and
the temperature. To assess the relationship between relative humidity and rainfall
three measurements such as the minimum, maximum and average of relative
humidity were considered and those characteristics were described in the following

sections.

4.6.1. Minimum Weekly Relative Humidity

The some features of the minimum weekly relative humidity (MinRH) is described
using the time series plot (Figure 4.12) along with the summary statistics table of the
MinRH. (Table 4.11).
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Figure 4.12: The time series plot of the minimum weekly relative humidity

The Figure 4.12 showed the most of the MinRH in between 40 and 70 while some of
them were above to 80 and below to 30.
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Table 4.11: The descriptive statistics of the minimum weekly relative humidity

Mean Median Minimum Maximum CV(%) Skewness

61.87 65.0 26.0 90.0 16.37 -0.82

The MinRH was reported as 26% while maximum was 90% during the considered
time span. This is slightly negative skewed distribution while it is noted that the
much considerable fluctuation (CV=16.37%). To explain the variation of the
minimum relative humidity with respect to the weeks in a year, the mean minimum

weekly relative humidity was taken and those are depicted by Figure 4.13.
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Figure 4.13: Mean minimum weekly relative humidity

According to the Figure 4.13, there was a slight decline in mean minimum weekly
relative humidity at the beginning of the year and after 4" week it can be clearly
identified the increasing trend until the 25" week. Also, it depicts steady pattern in
between the 26-46 weeks and there was a gradual decrease until end of the year from

46" week.
4.6.2. Maximum Weekly Relative Humidity

The summary statistics of the maximum weekly relative humidity (MaxRH) was

taken to observe features of the MaxRH and result is presented in Table 4.12.
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Table 4.12: The descriptive statistics of the maximum weekly relative humidity

Mean Median Minimum Maximum CV(%) Skewness

95.4 81.2 74.0 100.0 2.9 -1.98

The minimum of the maximum RH was reported as 74% while maximum was 100%.
This showed the negative skewed distribution with longer tail to the left. However,
this showed the lowest fluctuation than the minimum and average relative humidity.
To explain the variation of the maximum relative humidity with respect to the weeks
in a year, the mean maximum weekly relative humidity was taken and those are
depicted by Figure 4.14.
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Figure 4.14: Mean maximum weekly relative humidity

According to the above Figure 4.14, there is a decreasing trend in mean maximum
relative humidity from 2" to 5" week. However, after the 5" week, it showed an
increasing trend up to 17" week and again displayed the decreasing trend up to the
week 32 and changed the pattern again to increasing trend. After that it can be
identified decreasing trend till end of the year. Though the trend pattern has been
changed, the amount of the change is considerable low.
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4.6.3. Average Weekly Relative Humidity

In order to examine the temporal variability of the average weekly relative humidity
(AvgRH), time series plot and summary statistics of AvgRH were obtained and result
Is presented in Figure 4.15 and Table 4.13 respectively.
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Figure 4.15: The time series plot of the average weekly relative humidity

Based on the above Figure 4.15, there is much low fluctuation in Avg RH than
MinRH. Most of the AvgRH in between 75%-85%.

Table 4.13: The descriptive statistics of the average weekly relative humidity

Mean Median Minimum Maximum CV(%) Skewness

81.0 81.2 64.0 99.1 5.0 -0.33

The Table 4.13 showed that the minimum average relative humidity as 64% while
maximum was 99.1. The coefficient of variation indicated that the much consistent

variation compared with the minimum weekly relative humidity. This also showed
negative skewed distribution.
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4.7. Descriptive Analysis of the VVapor Pressure

Vapor pressure is the amount of pressure of water vapor in the air and it measured by
milibars. The maximum amount of moisture that can be in the air is called saturation
vapor pressure for a given temperature. The relative humidity gets 100% at the
saturation vapor pressure. The characteristics of the minimum, maximum and mean

weekly vapor pressure is discussed in detail in the following sections.

4.7.1. Minimum Weekly Vapor Pressure

In order to examine the temporal variability of the minimum weekly vapor pressure
(MinVapPres), the time series plot and the summary statistics were obtained and
those are presented in Figure 4.16 and Table 4.14 respectively.
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Figure 4.16: The time series plot of the minimum weekly vapor pressure

The Figure 4.16 indicates that the most of the minimum vapor pressure in between
20-34 milibar. Also, it is noted that some weeks' vapor pressure is considerable low

from the others.
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Table 4.14: The descriptive statistics of the minimum weekly vapor pressure

Mean Median Minimum Maximum CV(%) Skewness

27.0 27.9 13.8 32.8 111 -1.16

The minimum and the maximum of the minimum vapor pressure were reported as
13.8 milibar and 32.8 milibar respectively. This also showed a negative skewed
distribution with longer tail to the left. To explain the variation of the minimum
vapor pressure with respect to the weeks in a year, the mean minimum weekly vapor

pressure was taken and those are depicted by Figure 4.17.
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Figure 4.17: Mean minimum weekly vapor Pressure

According to the Figure 4.17, the mean weekly minimum vapor pressure showed
increasing trend pattern from week 4 to week 22 and thereafter it depicted the much
stable pattern up to week 44. Also, it showed the decreasing trend at the end of the

year.

4.7.2. Maximum Weekly Vapor Pressure

In order to examine the temporal variability of the maximum weekly vapor pressure
(MaXVapPres) the time series plot and the summary statistics of the variable were

obtained and result are presented in Figure 4.18 and Table 4.15 respectively.
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Time Series Plot of MaxVapPres
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Figure 4.18: The time series plot of the maximum weekly vapor pressure

The Figure 4.18 indicates that the most of the maximum vapor pressure in between
30-34 milibar. Also, it is noted that some weeks' vapor pressure is considerable low

from the others.

Table 4.15: The descriptive statistics of the maximum weekly vapor pressure

Mean Median Minimum Maximum CV(%) Skewness

32.2 32.2 25.0 37.4 5.0 -0.14

The maximum vapor pressure was varied from 25.0 milibar to 37.4 milibar. It is
seems to be much consistent pattern in maximum weekly vapor pressure when
compared with the minimum and average vapor pressure. This is a slightly negative
skewed distribution. To explain the variation of the maximum vapor pressure with
respect to the weeks in a year, the mean maximum weekly vapor pressure was taken

and those are depicted by Figure 4.19.
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Figure 4.19: Mean maximum weekly vapor Pressure

There is a increasing trend at the beginning of the year and after the week 21 it

changed to the decreasing trend pattern.

4.7.3. Average Weekly Vapor Pressure

In order to examine the temporal variability of the average weekly vapor pressure the

summary statistics of the variable was obtained and result is presented in Table 4.16.

Table 4.16: The descriptive statistics of the average weekly vapor pressure

Mean Median Minimum Maximum CV(%) Skewness

29.8 30.1 22.2 345 6.5 -0.91

The average weekly vapor pressure varied from 22.2 milibar to 31.5 milibar. The
variation of the series considerable low (CV= 6.5%) compared with the minimum

vapor pressure.

4.8. Summary of the Chapter 4

There was a slight decreasing pattern in the annual rainfall in Colombo city. SWM
and SIM bring more rainfall to the city than FIM and NEM. During 1960 to 2015,
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the total rainfall of SWM varied from minimum of 509.8mm (1986) to maximum of
1737.8 mm (1963) with the mean of 1024.1mm and standard deviation of 256.3mm.
Also, it is noted that the rainfall with high intensity in SIM. However, rainfall

variability is much higher during FIM and NEM than that in other two seasons.

The weekly rainfall by seasons exhibited an increasing trend in weekly rainfall at the
beginning as well as withdrawal of the SWM. The coefficient of variation is more
than 100% in 82% of weeks in SWM that provided evidence to high fluctuation in
weekly rainfall during the SWM. There is a much possibility to form the floods
during the beginning and the withdrawal of the SWM since heavy shower along with
the much variation in weekly rainfall. In contrast, low rainfall amount was received
during the beginning and the end of the SIM. There is much consistence in weekly
rainfall was observed during the season SIM than SWM. Though an increasing trend
of weekly rainfall can be seen at the beginning of the season FIM, it provided

considerable low shower through the season to the city.
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CHAPTER 5

COVERAGE PROBABILITY FOR WEEKLY RAINFALL
PERCENTILES CONFIDENCE LIMITS

Modeling rainfall percentile is one of the successful techniques that can be used to
describe the temporal variability of the rainfall and to highlight the its behavior.
However, before modeling the rainfall, it is better to study the temporal variability in
weekly rainfall in different aspects. Therefore, the main focus of this chapter is to
model weekly rainfall percentile in the context of confidence intervals and study the
coverage probability for weekly rainfall percentile confidence intervals.

5.1. Trend Estimation

The parametric trend analysis was carried out for all weeks separately and tested the
linear and quadratic trend pattern during the time span from 1960 to 2015. The plots
of time series demonstrate the sense about the trend pattern of the weekly rainfall.
The time series plots for the randomly selected weeks in SWM and SIM are shown in
Figure 5.1 and Figure 5.2 respectively. Also, the remaining plots were shown in
Appendix 1.

Time series plot of week 20, week 28, week 32, week 34
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Figure 5.1: The time series plots of the weekly rainfall of the selected weeks
(20, 28, 32 and 34) in SWM
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Time series plot of week 41, week 44, week 46, week 48
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Figure 5.2: The time series plots of the weekly rainfall of the selected weeks
(41, 44, 46 and 48) in SIM

The Figure 5.1 and Figure 5.2 do not provide any sense about the presence of trend.
The rest of the time series plots also demonstrate the same pattern (Appendix 1).
However, to avoid the conclusion subjectively the hypothesis tests were carried out
for the parameters of the linear and quadratic trend. The result of the test of

parameters in linear trend is shown in Table 5.1.
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Table 5.1: The coefficients (slope) of the linear trend along with the P-values

Week Slope and Week | Slope and Week | Slope and Week Slope and
P-value P-value P-value P-value
1 0.156 (0.4777) 14 | 0.126 (0.776) 27 |-0.394(0.191) | 40 0.478 (0.271)
2 0.223 (0.460) 15 | 0.360 (0.361) 28 | -0.355(0.186) | 41 -1.050 (0.157)
3 0.149 (0.436) 16 0.012 (0.984) 29 -0.369 (0.469) 42 -0.729 (0.350)
4 -0.026 (0.881) 17 -0.240 (0.651) 30 -0.283 (0.293) 43 -0.305 (0.623)
5 0.353 (0.076) 18 | -0.596 (0.459) | 31 |-0.067 (0.762) | 44 -0.615 (0.346)
6 0.300 (0.259) 19 |-1.831(0.120) | 32 |-0.357(0.134) | 45 0.351 (0.622)
7 0.263 (0.171) 20 -1.052 (0.191) 33 0.121 (0.679) 46 -0.427 (0.505)
8 -0.724 (0.103) 21 -0.730 (0.204) 34 0.277 (0.410) 47 0.693 (0.200)
9 -0.157 (0.580) 22 | 0.798(0.119) 35 | 0.206 (0.488) 48 0.392 (0.382)
10 0.193 (0.392) 23 0.090 (0.882) 36 0.632 (0.079) 49 0.577 (0.207)
11 0.133 (0.665) 24 0.411 (0.122) 37 -0.140 (0.752) 50 0.141 (0.678)
12 -0.500 (0.115) 25 -0.035 (0.906) 38 -0.389 (0.533) 51 -0.426 (0.108)
13 0.281 (0.243) 26 -0.447 (0.200) 39 -0.132 (0.863) 52 -0.199 (0.606)

It can be concluded that no significant linear trend is presented in any week since
none of coefficients are significantly different from zero since the corresponding p-
values are not less than 5%. Furthermore, no quadratic trend also presence in weekly
rainfall within the same time period. The some of the weeks' result is presented in

Table 5.2 and the rest weeks also showed the similar result.

Table 5.2: The coefficients of linear and quadratic along with the P-values of the

randomly selected weeks

Weeks Linear Coefficient (P-Value) | Quadratic Coefficient (P-Value)
11 -1.89 (0.127) 0.0356 (0.093)
23 3.66 (0.139) -0.0626 (0.137)
29 -2.40 (0.248) 0.0357 (0.312)
32 -0.353 (0.715) -0.0001 (0.997)
46 -3.57 (0.172) 0.0551 (0.214)
52 -1.80 (0.255) 0.0280 (0.296)

5.2. Weekly Rainfall Percentiles

Rainfall percentiles are employed in designing of water related structures in many
fields. Sound awareness about the rainfall pattern is vital to mitigate the various

issues derived from heavy rainfall and long dry spell existence due to climate
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change. Based on the result of the explanatory data analysis, it is found that the city
Colombo was enriched from the heavy shower during the South West Monsoon
(SWM) and Second Inter Monsoon (SIM). Furthermore, it is explored that the heavy
intensity rain events over the SIM. Thus, SWM and the SIM are the two rainy
seasons which can have much possibility to form extreme rainfall events. Fifty six
year weekly rainfall series varied from 1960 to 2015 were considered for this
analysis and weeks 18-39 were pertaining to the SWM while weeks 40-48 belong to
SIM. Here, the series week 18 was made by taking into consideration of the 18™
week (April 30-May 06) rainfall in every year. The remaining weekly series also

made in the same manner.

5.3. The 95% Confidence Intervals for the Weekly Rainfall Percentiles using
Parametric Approach

Most of the researchers made attempt to make inferences about the rainfall amount
by using point estimates derived from the different theoretical probability
distributions for rainfall percentiles. Sharma and Singh (2010) used the Generalized
Extreme Value distribution, Gamma and Log Pearson distributions for the maximum
weekly rainfall in the monsoon period at the Pantnagar region in India to study the
temporal variability of maximum weekly rainfall. According to the review of rainfall
percentiles carried out by Sharda and Das (2005), the Weibull distribution is more
likely fitted for describing weekly rainfall at Dehradunin India. Also, they used the
probability distribution models for computing minimum assured amount of rainfall at
different probability levels. Beta and Weibull distributions were fitted for the weekly
rainfall during the monsoon and non monsoon periods, respectively, and those best
fit distributions are employed for computing minimum assured amount of rainfall at
different probability levels for the Command area by Mishra et al., (2013).
Moreover, many researchers have fitted theoretically probability distributions for the
rainfall data at different timescales mainly monthly, seasonally and annually for the
purpose of making inferences about the rainfall using point estimates.(Varathan et
al., 2010; Singh et al.,, 2012; Alghazali and Alawadi, 2014; Mayooran and
Laheetharan, 2014; Ghosh et al., 2016).
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However, extremely few studies were reported in Sri Lanka with respect to the
rainfall variation at weekly scale. Waidyarathne et al., (2006) analyzed weekly
rainfall data to investigate the change of the onset of FIM rain in coconut growing
agro ecological regions in Sri Lanka. However, it might be more risky depending on
a single value formed from probability distributions to mitigate the circumstances
which would be existed due to climate change. Confidence interval is one of the most
popular techniques that can be used to measure the uncertainty. Based on the
literature, there is no study has been conducted for weekly rainfall quantities in

context of the parametric confidence interval approach.

5.3.1. Distribution of Weekly Rainfall

Many probability distributions were fitted to the weekly rainfall series pertaining to
the SWM and SIM and five rainfall percentiles; Pso, Pso, P70, Pso and Pgo along with
the 95% confidence intervals were made based on the best fitted distribution. To get
the sound knowledge of the distributions of the weekly rainfall initially, histograms
were obtained and some of those are presented from the Figure 5.3 and Figure 5.4

respectively. Moreover, the remaining plots were illustrated in Appendix -1.

Histogram of Week 20, Week 28, Week 32, Week 34
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Figure 5.3: Histogram of the total weekly rainfall for week numbers: week 20, 28, 32
and 34 in SWM
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Histogram of Week 41, Week 44, Week 46, Week 48
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Figure 5.4: Histogram of the total weekly rainfall for week numbers: week 41,44,46
and 48 in SIM

Histogram of dataset provides clear evidence that the distributions of the weekly
rainfall which pertaining to the SWM as well as SIM are skewed with longer tail to
the right. Four randomly selected weeks 20, 28, 32 and 34 which belong to SWM are
depicted in Figure 5.3 and weeks 41, 44, 46 and 48 in SIM are presented in Figure

5.4. An almost similar pattern was observed in remaining data series also.

5.3.2. Randomness of the Weekly Series

The randomness of the weekly rainfall series were checked by using the
autocorrelation plots. The auto correlation plots of the randomly selected four weeks
which two weeks belongs to SWM and rest pertains to the SIM are presented from

the Figure 5.5, Figure 5.6, Figure 5.7 and Figure 5.8 respectively.
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Autocorrelation Function for Week 20
(with 5% significance limits for the autocorrelations)
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Figure 5.5: The auto correlation plot of the week 20 belongs to SWM

Autocorrelation Function for Week 34
(with 5% significance limits for the autocorrelations)
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Figure 5.6: The auto correlation plot of the week 34 belongs to SWM
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Autocorrelation Function for Week 41
(with 5% significance limits for the autocorrelations)
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Figure 5.7: The auto correlation plot of the week 41 pertains to SIM

Autocorrelation Function for Week 44
(with 5% significance limits for the autocorrelations)

08
0.6

04

0.2

O'OI.--l .Ill__ll.l . S
-0.2 | | |

Autocorrelation

-04
-06
-0.8

Lag

Figure 5.8: The auto correlation plot of the week 44 pertains to SIM

According to the above figures that the corresponding weekly rainfall series for the
weeks 20, 34, 41 and 44 are in random manner. Also, similar patterns of
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autocorrelation were observed reaming weekly series (Appendix 2). Thus, it can be
concluded weekly rainfall series of all the weeks 18-48 have a random pattern.

5.3.3. Normality of Weekly Rainfall Series

Probability Plot of Week 20
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Figure 5.9: The normal probability plot of the week 20 in SWM

Probability Plot of Week 34
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Figure 5.10: The normal probability plot of the week 34 in SWM
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Probability Plot of Week 41
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Figure 5.11: The normal probability plot of the week 41 in SIM

Probability Plot of Week 44
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Figure 5.12: The normal probability plot of the week 44 in SIM

The Anderson Darling test confirmed that the distributions of weekly rainfall
significantly different from the normal distribution. Furthermore, all graphs provide

the evidence to reject the null hypothesis that the series is followed normal
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distribution. A similar result was obtained in remaining data series too. This implies
that none of the weekly rainfall series belongs to SWM as well as SIM followed

normal distribution.

5.3.4. Common Distributions for Weekly Rainfall Totals

The following known distributions: Log normal, Exponential, Gamma, Weibull,
Largest Extreme Value, Smallest Extreme Value, Logistic, Log Logistic along with
the different forms of some distributions such as 3-parameter Gamma, 2-parameter
Exponential, 3-parameter Log Logistic and 3-parameter Weibull distributions were
utilized to select best fitted distribution for the weekly rainfall in 18 to 48. The Table
5.3 represents some of the selected probability distributions with their probability
density functions. The distribution parameters were estimated using maximum

likelihood approach.

Table 5.3: The Probability density functions

Distribution Probability Density Function Parameters
Lognormal 1 (In x— z2) u - Location Parameter,
f(x)= exp| — .
o X2 20 o -Scale Parameter
u>0,6>0,X>0
Exponential 1 X a -Scale Parameter
f(x)== exp| - =
(94 o o >0
2 Parameter (x-2) o -Scale Parameter,
) f(x)== exp| -
Exponential a a
A -Threshold parameter
o >0, A<X
Largest 1 X- (x— ﬂ) u - Location Parameter,
Extreme f(x):;exp (_0 ] EXp | —€Xp (—6 j o -Scale Parameter
Value
n>0,0>0,X>0
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Table 5.3: (Continued...)

Weibull B X ) a -Scale Parameter, B -Shape
f(x):—ﬂxﬂf exp —(—j Parameter
a a

a>0,p>0,X>0

3-Patarameter _ /) | o-Scale Parameter, [-Shape

. 4 g1 X-4

Weibull f(x):a_ﬂ(x_i) eXp |- a Parameter,A-Threshold
parameter
a>0,p >0, A<X

The Anderson Darling and Kolmogorov-Smirnov test were used to identify the best
fitted probability distributions for weekly rainfall series. The Table 5.4 is presented
the best fitted probability distributions for the weekly rainfall series parting to the
SWM and the corresponding maximum likelihood estimates along with the two test
statistics called Anderson Darling test statistics (AD) and Kolmogorov-Smirnov test
statistic (KS).

80



5.3.4.1. Properties of the Best Fitted Models for Weeks in SWM

Table 5.4: The best fitted statistical models and maximum likelihood estimates

for weekly rainfall during SWM

Week Best Fitted AD KS Estimated Parameters
No. Distribution (MLE)
. 0.317 | 0.0782 | a.=77.061, p=0.878,
18 3 - Parameter Weibull (0.501) | (0.884) | 2 =-0.838
. 0.131 | 0.0526 | a= 82.249, 3 =0.888,
19 3 - Parameter Weibull (0520) | (0.996) | 2= -0.935
. 0.247 | 0.0684 | a=67.331, B =0.804,
20 3 - Parameter Weibull (0.510) | (0.956) | %= - 0.508
. 0.362 | 0.1027 | A=73.570, B =
21| 3-Parameter Weibull | /o1y | (0.596) | 1.086, A= - 1.752
. 0.457 | 0.0857
22 Exponential (0540) | (0.773) o= 63.989
0.319 | 0.0700
23 Lognormal (0.526) | (0.928) u =3.518,6=0.912
. 0.291 | 0.0691
24 | Weibull (0.257) | (0.934) a = 43.645, B =1.267
. 0.498 | 0.0752 | a =34.182,3=0.884,
25 3 - Parameter Weibull 0.222) | (0.920) | 2=-0.383
26 2- Parameter 0912 | 0.1099 | 0.=40.204,
Exponential (0.103) | (0.110) | A =-0.718
. 0.275 | 0.073 | o=32.535, p=0.887,
27 3 - Parameter Weibull (0521) | (0.926) | A =-0.269
. 0.531 | 0.069 | a=24.822,B3=0.741,A
28 3 - Parameter Weibull (0.186) | (0.952) | =-0.131
29 2- Parameter 0.873 | 0.1813 | . =37.875,
Exponential (0.107) | (0.182) | L =-0.676
. 0.596 | 0.1066 | a=16.711, p=0.626,
30 3 - Parameter Weibull (0.210) | (0.548) | A =-0.038
31 2- Parameter 0.841 | 0.1823 | 0 =19.853, A =-
Exponential (0.126) | (0.232) | 0.355
. 0.617 | 0.1002 | a=15.263, p=0.602,
32 3 - Parameter Weibull (0.113) | (0.627) | 2 =-0.029
. 0.445 | 0.094 | a=23.975,p=0.651,
33 3 - Parameter Weibull (0.531) | (0.706) | %= - 0.067
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Table 5.4: (Continued...)

0694 |0.1193
(0.101) | (0.194)
0.607 | 0.1186 | o=22.408, p=0.698,

34 | 2- Parameter Exponential a=29.964, L =-0.535

35 | 3 - Parameter Weibull

(0.220) | (0.410) =-0.089
. 0.544 0.0888 | 0=26.012, p=0.602,
36 | 3 - Parameter Weibull (0.328) | (0.770) - 0.049

0.246 | 0.0662 | o =40.709, p=0.838,
(0.531) | (0.967) | %=-0.366
0438 | 0.0979 | o= 57.303, p=0.855,
(0.315) | (0.656) | %=-0.261
0.397 | 0.0679 | o= 81.654, p= 0.863,
(0.394) | (0.958) | A =-0.831

37 | 3 - Parameer Weibull

38 | 3 - Parameter Weibull

39 | 3 - Parameter Weibull

* The value in parenthesis represents the corresponding P value

It can be seen that the most of the weeks (15 out of 22) belong to the SWM were well
fitted with the 3 parameter Weibull distribution. However, weeks 22-24,
Exponential, Lognormal and Weibull distributions were found to be most appropriate
distributions. Two parameter Exponential distributions were most probable
distribution for the weeks 26, 29, 31 and 34. Moreover, 68% of the running weekly
totals are well fitted with the 3 parameter Weibull distribution while 22% are fitted
with the two parameter Exponential distribution and the remaining are well fitted

with the Exponential, Largest Extreme Value, Weibull and Lognormal distributions.

5.3.4.2. Properties of the Best Fitted Models for Weeks in SIM

The best fitted probability distribution and the corresponding test statistics during the
SIM are presented in Table 5.5.
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Table 5.5: The best fitted statistical models and maximum likelihood estimates for
weekly rainfall during SIM

Week AD KS Estimated Parameters

No. | Best Fitted Distribution | (Pvalue) [ (Pvalue) (MLE)

0.372 0.0536 [ a=49.918, p=10.901,
40 | 3 - Parameter Weibull (0.443) | (0.725) | A=-0.403

0.181 0.0156 |a= 77.341,p=0.875,
41 | 3 - Parameter Weibull (0.520) [ (0.973) | A=-0.832

0.360 0.0002 | a=104.811,p =1.097,
42 | 3 - Parameter Weibull (0.465) [ (0.999) | A=-2.583

0.245 0.0179 [ 0=95.553, B =1.189,
43 | 3 - Parameter Weibull (0.510) [ (0.965) | A=-0.671

0.137 0.0057 | a=113.014, p=1.309,
44 | 3 - Parameter Weibull (0.540) [ (0.891) | A=-1.717

0.574 0.0730
45 | Largest Extreme Value (0.144) | (0.926) | n =58.397, 6 =51.092

0.842 0.1180 |[a=78.205, A =-
46 | 2- Parameter Exponential | (0.126) | (0.417) | 1.397

0.645 0.1107 |[a=63.506, A =-
47 | 2- Parameter Exponential | (0.322) | (0.499) [ 1.134

0.692 0.1034 | a=56.235, A =-
48 | 2- Parameter Exponential | (0.103) [ (0.587) | 1.005

* The value in parenthesis represent the corresponding pvalues

Most of the weeks belong to SIM were well fitted with the 3 parameter Weibull
distribution while 2-parameter Exponential and Largest extreme value distributions
were found to be most appropriate distributions for remaining. Furthermore, 65% of
the running weekly totals are well fitted with the 3 parameter Weibull distribution
while 30% are fitted with the two parameter Exponential distribution and the

remaining are well fitted with the Largest Extreme Value distributions.

5.3.5. Confidence Intervals for Weekly Rainfall in SWM

The formulas used for the percentile and its variance calculation based on the
probability distribution is also shown in Table 5.6. Furthermore, Table 5.7 depicts

the formulas that were employed for the confidence bands of percentiles.
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Table 5.6: The formulas used for percentiles and variance estimates

Percentiles ()2 p) Variance of Percentile Var()ﬁ p)
Distribution

f+z, Var(i) +z,°Var(6) +2Z ,Cov(4, 6)
Lognormal

In(1- p)& [-In(1- p)[var(&)
Exponential
[In(1-p)a] | Var(d) +[-In(1- p)J* Var(@) +2[- In(1- p) ]Cov (4, &)

2 Parameter
Exponential

a+2 o Var(4) +z,°Var(6) +2Z ,Cov(4, 6)
Largest
Extremes Value

_ & [-In(1-p)}s XEVar(a)er—zz var(f) -2z, X5 Cov(@, B)

Weibull a B ap’

A+a [— In(1 p)] Var(i)ﬂzfVar(d)+ijaaz;Var(ﬁ) —Z%é)zzpzCov(d,ﬁ)+2&;00v(&,i)
3-Parameter . 7 /
Weibull 25 2y CVELA)

Table 5.7: The formulas used for confidence intervals for percentiles

Distribution Confidence Bands
Lognormal _
Exponential exp| (X )2, Warx,) | o %)+ 7, W)
Weibull % X,

2-Parameter Exponential
3- Parameter Weibull

If ;-0 {)ZP—Z%JVar()Zp . X +Z{y,/Var()2

i Var(X .) Var(X

Largest Extreme Value

{x -Z,,Var(X, Var(X , J

% Zg,

Weekly rainfall percentiles and the corresponding 95% confidence intervals which

calculated using above formulas are presented in Table 5.8. Those intervals were

made for the weekly rainfall percentiles at 50, 60, 70, 80 and 90 based on the

probability distributions which were selected as best fitted for corresponding weeks.
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Table 5.8: The percentiles of the weekly rainfall and the corresponding 95%

confidence intervals during SWM in the city Colombo

Week PERCENTILES
Number
Pso Peo Po Pso Pao
18 49.9 68.9 94.4 131.7 198.5
(32.1,67.7) (46.5,91.4) (65.4, 123.3) (92.1, 171.3) | (136.3, 260.7)
19 53.5 73.6 100.45 139.7 209.6
(34.6,72.4) | (49.9,97.3) | (70.0,130.9) | (98.1,181.2) | (144.2, 274.9)
20 42.2 59.9 84.3 121.2 189.5
(25.9,585) | (38.7,81.0) | (56.2,112.4) | (81.5,160.9) | (124.5, 254.6)
21 50.8 66.1 85.5 112.3 156.8
(35.9,65.6) | (485,83.8) | (64.1,107.0) | (84.8,139.8) | (116.8, 196.8)
22 47.8 63.2 83.1 111.0 158.9
(36.8,62.1) | (48.6,82.1) | (63.9,107.9) | (85.4,144.3) | (122.3, 206.4)
23 33.72 42.5 54.4 72.6 108.4
(26.6,42.8) | (33.3,54.1) (42.1,70.2) | (55.0,95.9) | (78.5, 149.8)
24 32.7 40.7 50.5 63.5 84.3
(25.6,41.7) | (32.6,50.9) (41.0,62.3) | (51.7,78.2) | (67.8, 104.8)
25 22.2 30.6 41.8 58.2 87.4
(14.3,30.1) | (20.7,40.4) (29.1,54.5) | (40.8,75.6) | (59.8, 115.1)
26 27.2 36.1 47.7 64.0 91.9
(19.9,34.4) | (26.5,45.8) (35.0,60.4) | (47.0,80.9) | (67.6, 116.1)
27 21.3 29.2 39.8 55.4 83.0
(13.8,28.7) | (19.8,38.6) (27.8,51.9) | (38.9,71.8) | (57.1, 108.9)
28 15.0 21.9 31.8 47.0 76.4
(8.7,21.3) (13.6, 30.3) (20.3,43.2) | (30.3,63.8) | (47.6, 105.2)
29 25.5 34.0 44.9 60.3 86.5
(18.7,325) | (24.9,43.1) (33.0,56.9) | (44.3,76.2) | (63.7, 109.4)
30 9.3 145 225 35.7 63.4
(4.7, 13.8) (8.0, 21.0) (12.9,32.0) | (20.7,50.7) | (35.1,91.6)
31 13.4 17.8 23.6 31.6 45.4
(9.8,17.0) (13.1, 22.6) (17.3,29.8) (23.2, 40.0) (33.4,57.3)
32 8.3 13.2 20.8 33.6 61.0
(4.0, 12.5) (7.0, 19.3) (11.6,29.9) | (18.9,48.3) | (32.7,89.2)
33 13.6 20.9 31.8 49.8 86.4
(7.1, 20.0) (11.9, 29.9) (18.8,44.8) | (29.6,69.9) | (49.1, 123.6)
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Table 5.8: (Continued...)

34 20.2 26.9 355 47.7 68.5
(14.8,257) | (19.7,34.1) (26.1, 45.0) (35.1,60.3) | (50.4,86.5)
35 13.2 19.7 29.2 44.2 74.0
(7.3,19.0) (11.7, 27.6) (18.0, 40.3) (27.6,60.9) | (44.4,103.5)
36 14.1 225 35.4 57.3 103.9
(6.9, 21.3) (12.0, 32.9) (19.8, 51.0) (32.3,82.3) | (155.6, 152.2)
37 25.9 36.3 50.4 715 109.8
(16.3,35.6) | (24.0,48.7) (34.3, 66.6) (49.0,93.9) | (73.6, 146.0)
38 37.1 515 70.9 99.7 151.7
(23.6,50.5) | (34.4,68.6) (48.7,93.1) | (69.1,130.3) | (103.1, 200.3)
39 52.6 73.0 100.4 140.9 213.7
(33.6,71.6) | (48.9,97.0) (69.3,131.6) | (97.8,184.0) | (144.6, 282.8)

The result indicated that there was much heavy rainfall at the begins of the SWM.
Also, Weeks 18-23 marked considerable rainfall with high variability. It is noted that
90" percentiles of weeks 18-23 vary between 108.4mm to 209.6 mm which bring a
greater amount of rainfall to this region. According to the table 5.8, there is a 90%
chance to have 209.6 mm maximum rainfall, during the 19" week and this value can
be varied between 144.2 mm and 274.9 mm at 95% confidence level. However, a

clear decreasing pattern of weekly rainfall can be identified after the 23" week.

The weeks 31 and 32 marked lower rainfall amount than others during SWM. After
35" week, again it can be seen an increasing trend of weekly rainfall till the end of
the season. The week 39 records the highest rainfall amount in the SWM. The
median rainfall of the 39" week series was 52.6 mm while the 70" percentile of this
week marked more than 100 mm rainfall amount which is a large quantity for the
area. Week 38 also brings much heavy rainfall with noticeable variation in this

season for this region.

The rainfall percentiles and corresponding 95% confidence intervals for running
totals of weekly rainfall were also constructed during the SWM in Colombo. Figure
5.13 represented only 90" percentile of running total and its 95% confidence bands.
It also depicts the high rainfall variation with the arrival of SWM. Also, Figure.5.13

illustrates the much heavy rainfall due to the withdrawal of the SWM. Based on the
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result of the running total of the weekly rainfall, it can be further confirmed that there
was heavy rainfall with great variation during the period of weeks 18-23 (30" April
to 101 June) and weeks 38-39 (171"-30" of September).

90th Percentile of Running Total of Weekly Rainfall and 95% Confidence Intervals during SWh
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Figure 5.13: The 90™ percentiles of running total of weekly rainfall and 95%

confidence intervals during SWM in Colombo

Based on the analysis of past extreme rainfall events in Colombo area during SWM,
it can be identified that the many floods occurred in the months May and June. Most
recently (on 15 May 2016) Sri Lanka was hit by a severe tropical storm that caused
heavy flooding in Colombo. Furthermore, floods occurred in Colombo in the past
years; 1975, 1989, 1992, 2008 from May to June period (Jegarascsingam, 1998).

5.3.6. Confidence Intervals for Weekly Rainfall in SIM

Weekly rainfall percentiles which pertaining to the SIM with the corresponding 95%
confidence intervals are presented in Table 5.9. Those intervals also were made for
the weekly rainfall percentiles at 50, 60, 70, 80 and 90 based on the probability
distributions which were selected as best fitted for corresponding weeks.
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Table 5.9: The percentiles of the weekly rainfall and the corresponding 95%

confidence intervals during SIM in the city Colombo

Week PERCENTILES
Pso Peo P70 Pso Pao
40 32.8 44.9 60.9 84.2 125.5
(21.5,44.2) (30.8,59.0) | (42.8,79.0) (59.6, 108.9) (86.7, 164.3)
41 50.1 69.1 94.8 132.4 199.7
(32.1, 68.0) 46.6,91.7) 65.7, 123.9) (92.5, 172.3) (136.5, 262.8)
42 72.5 94.2 121.6 159.1 221.6
(51.5,93.5) (69.4,119.0) | (91.4,151.7) | (120.5,197.8) | (165.4,277.7)
43 69.5 88.1 111 141.9 192.9
(50.6,88.5) | (66.6,109.7) | (85.9,136.2) | (110.5,173.4) | (146.5,237.7)
44 83.7 104 128.5 160.9 212.4
(62.7,104.7) | (80.6,127.4) | (90.8,131.4) | (110.6,159.4) | (166.2,257.9)
45 77.1 92.7 1111 135 173.4
(61.5,92.7) (75.2,110.2) | (90.8,131.4) | (110.6,159.4) | (141.7, 205.0)
46 52.8 70.3 92.8 124.5 178.4
(38.6, 67.0) (51.5,89.0) | (68.1,117.4) | (91.5,157.4) (1315, 225.8)
47 42.9 57.1 75.3 101.1 145.1
(31.4,54.4) (41.8,72.3) | (55.3,95.4) (74.3, 127.8) (106.8,183.4)
48 38 50.5 66.7 89.5 128.5
(27.8,48.2) | (37.0,64.0) | (49.0,84.9) (65.8,113.2) (94.6, 162.4)

The result showed in Table 5.9 indicated that there is no much heavy rainfall at the
beginning of the SIM as SWM. Also, it is noted that low variability at the withdrawal
of the monsoon. However, the Weeks 41-45 showed the high rainfall amount with
the large variability result cause to form the extreme rainfall events. The weeks 42
and 44 record the great amount of rainfall for this region during SIM than others.
Based on the analysis of the running weekly totals, it can be expected much heavy
rainfall with high variability during the time span of 16"-22"d October. Figure 5.14
represented the 90" percentile of running total during SIM and its 95% confidence

bands.
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90th Percentile of Running Weekly Totals and 95% Confidence Bands in SIM
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Figure 5.14: The 90" percentiles of running total of weekly rainfall and 95%
confidence intervals during SIM in Colombo

Based on the analysis of both weekly totals as well as running weekly totals during
the SIM period, there is a high possibility to have heavy rainfall events during the
Weeks 41-45 (08" October to 11" November). There is a 90% chance to have 221.6
mm maximum rainfall in the week 42. This value can be varied between 165.4mm to
277.7 mm at 95% confidence level. Thus, week 42 (15"-21% October) has much

chance to form extreme rainfall events during this monsoon period.

5.4. The 95% Confidence Intervals for the Weekly Rainfall Percentiles using
Bootstrapping Approach
Confidence intervals for quantiles of a random variable mostly depend on the
distribution function. However, according to the Burn (2003) there are several
shortcomings of this approach. The number of assumptions with respect to the
distribution and necessity of larger data series to make inferences are the main
drawbacks of this approach. A bootstrapping approach has been proposed as an
alternative approach for calculating confidence intervals through the resampling
process. Dunn (2001) made an attempt to build bootstrap confidence intervals for

predicting rainfall quantities. Simultaneous confidence intervals for a daily minimum
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rainfall total using a bootstrap resampling method considering of serial dependency
have been produced by Ferro et al., (2005). Lucio (2007) adapted bootstrap method
for the purpose of evaluating of small sample inferences for monthly rainfall extreme

quantiles.

Three approaches Bayesian, Bootstrap and Profile Likelihood were employed to
construct confidence intervals of extreme rainfall quantiles by Chen Si et al., (2016).
There are many bootstrapping approaches to calculate the confidence intervals for
the population parameters. The percentile bootstrap method, parametric
bootstrapping method, the bootstrap-t intervals and the bias corrected accelerated
percentile (BCa) method are the some of the methods often used for making
confidence intervals as alternative to the parametric approach. In this study, the
percentile bootstrap method is utilized to calculate the 95% confidence intervals for
the weekly rainfall percentiles. The percentile method is more popular among
applied statistician (Hall, 1992).

5.4.1. Percentile Bootstrap Method

The bootstrap method is used to make inferences by using the information based on a
number of resample from the same sample. This is a nonparametric technique that
assists to make conclusions about the characteristics of a population based on the
existing sample unlike the parametric approach which makes assumptions about the
estimators. The procedure creates simulated data set by drawing observations from
the original sample with replacement. If a parameter can be expressed as a function
of an unknown distribution, then its bootstrap estimator is also the function of the

same distribution function.

Suppose a random sample of size n, X= (X1, X2, Xa,..., Xn) from an unknown

population with probability distribution function f(x) and let 6 be the parameter and

0 be the estimator for® based on data set. B is the number of samples with size n
generated from the f(x) then X*= (X*1, X*2, X*3..., X*n) denote the bootstrap
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random sample of size n. Let 6” be an estimator computed using the bootstrapping

sample of X*.

Suppose we generate B number of bootstrap samples with size n from the original

sample data and for each sample we computed the statistic of interest
0" :(é;,é;,....,é;). In our study, the rainfall percentile is the interest in statistic. The
ordered bootstrap values are used to compute the bootstrap confidence intervals from
the Percentile method. Suppose 1000 bootstrap replications of 6 denoted by

(9;,9;,....,6’[000) and after ranking ascending order it can be denoted as

*

(efl],efz]:----,e[moo])- Then the bootstrap percentile confidence intervals at the 95% level

of confidence would be [6’(25),9’{975)] (Singh and Xie, 2008).

5.4.1.1. CI for Weekly Percentiles in SWM

Table 5.10 depicts weekly rainfall percentiles and the corresponding 95% bootstrap
confidence intervals. Those intervals also were made for the weekly rainfall
percentiles at 50, 60, 70, 80 and 90 based on the 1000 bootstrap samples.

Table 5.10: The 95% confidence intervals of weekly rainfall percentiles (based on

1000 bootstrap samples) pertaining to SWM (week 18-39)

Week PERCENTILES
Pso Peo P70 Psgo Pao

18 42.0 61.6 100.0 129.4 223.8
(30.9, 66.3) (34.8,100.6) | (54.1,130.3) | (96.4,207.1) (128.6, 343.4)

19 55.6 81.1 101.7 142.2 198.1
(32.6 ,86.4) (48.1,105.1) | (78.,144.0) | (99.2,191.8) (144.6, 351.1)

20 485 57.9 82.0 121.6 197.5
(26.2,59.7) (47.4,84.6) | (56.7,126.8) | (68.2,178.6) (116.5, 306.7)

21 50.7 61.3 82.6 99.6 154.6
(41.2, 64.5) (50.0,84.2) | (56.3,101.8) | (72.0,143.9) (102.7, 242.6)

22 48.0 75.7 85.2 142.8 164.6
(29.2,78.1) (43.6,97.2) (67.0,143.5) | (84.6,163.2) (144.8, 184.4)

23 33.1 42.6 49.1 76.5 114.9
(24.0, 44.4) (31.7,515) | (415,78.1) | (49.0,105.3) (76.5, 135.6)
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Table 5.10: (Continued...)

24 32.0 38.8 48.0 61.9 86.6
(27.2,41.6) | (31.048.3) | (37.0,63.6) | (47.8,85.5) | (60.4,116.5)
25 20.8 35.6 49.0 63.5 91.1
(14.0,36.3) | (17.5,49.9) | (32.7,66.9) | (48.0,84.9) | (68.0,114.8)
26 28.2 475 54.0 65.0 83.2
(14.6,49.4) | (22.8,57.2) | (36.7,65.2) | (53.4,80.6) | (66.3, 143.4)
27 17.6 30.4 47.3 59.0 86.1
(11.9,31.9) | (16.8,49.9) | (27.6,59.4) | (46.0,78.7) | (61.8,123.8)
28 16.2 24.2 33.7 57.6 86.3
(10.1,25.9) | (13.4,34.5) | (20.0,59) (31.8,83.1) | (57.9,92.6)
29 17.9 33.2 40.4 53.5 76.7
(11.7,35.4) | (15.4,41.0) | (27.9,55.7) | (39.1,70.2) | (58.4, 164.2)
30 11.9 18.1 237 33.9 475
(7.7,215) | (11.0,24.6) | (15.3,34.3) | (235,455 | (35.4, 104.2)
31 8.6 13.3 25.1 31.4 62.0
(3.3,17.2) | (6.4,263) | (12.1,315) | (24.2,52.3) | (32.0,89.0)
32 11.6 17.1 237 42.7 57.9
(43,18.1) | (9.7,24.3) |(16.2,458) | (21.6,51.9) | (46.9, 82.0)
33 17.9 27.4 41.7 54.6 89.3
(10.0,29.3) | (15.0,46.9) | (26.4,55.7) | (41.2,86.3) | (56.0,106.9)
34 20.1 22.9 30.0 54.2 72.8
(9.6,24.0) | (14.0,30.3) | (20.9,54.7) | (29.6,72.3) | (54.8, 115.0)
35 19.4 21.8 28.3 47.2 64.9
(7.6,25.9) | (18.6,29.1) | (22.4,47.7) | (28.0,62.4) | (48.9,145.9)
36 19.3 27.4 45.9 68.0 114.7
(7.9,33.7) | (15.8,58.2) | (25.3,68.2) | (43.9,105.0) | (69.0, 142.6)
37 28.8 34.7 44.4 69.9 118.1
(16.2,375) | (25.145.5) | (34.3,70.7) | (44.2,116.3) | (77.8,153.0)
38 32.1 40.4 58.9 122.8 167.2
(22.3,42.9) | (29.1,64.1) | (38.6,130.9) | (54.8,164.1) | (116.1, 215.4)
39 56.6 85.8 102.8 155.4 225.6
(32.2,89.6) | (48.3,104.3) | (77.1,158.5) | (101.0,216.1) | (164.4, 316.8)

*The values in parenthesis represent the corresponding 95% confidence intervals.

The result indicated that the heavy rainfall at the beginning of the SWM.
Furthermore, it can be expected much rainfall from week 18 to week 23. It is evident
from Table 5.10 that 80% or more chances to have 207.1mm maximum weekly
rainfall in the weeks 18 - 23. However, after the 23" week it can be seen clear
decline of weekly rainfall up to week 35. It can be expected 86.3 mm maximum
week rainfall with 80% probability at week 33 which showed maximum rainfall
variability out of weeks 24-35. The week 31 and 32 marked much lower rainfall
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during the SWM. Since week 36 it can be seen much rainfall till end of the season.
The week 39 marked highest rainfall amount during the SWM. The table depicts a
high variability at the weeks 18-23, 29 and 38-39. Also, there is a much higher
possibility to have extreme rainfall during the weeks 18-23, 29 and 38-39.

However, almost similar conclusion can be made based on the parametric as well as
percentile bootstrap approach since both emphasis the same time period to have

much possibility to form extreme rainfall events to the region during the SWM.

5.4.1.2. CI for Weekly Percentiles in SIM

Table 5.11 depicts weekly rainfall percentiles and the corresponding 95% confidence

intervals which made using percentiles bootstrap approach.

Table 5.11: The 95% confidence intervals of weekly rainfall percentiles (based on

1000 bootstrap samples) pertaining to SIM (week 40-48)

Week PERCENTILES
Pso Pso P70 Pso Pgo
40 3.1 48.8 67.1 99.5 122.7
(20.1, 50.3) (32.3,73.4) (45.7, 99.6) (64.4,118.9) (100.4, 165.9)
41 46.4 64.8 87.7 135.6 239.3
(29.8, 71.7) (44.6, 107.4) (61.7, 143.0) (84.6, 222.6) (137.9, 291.7)
42 71.1 83.1 107.4 156.0 220.1
(52.8,91.5) (70.0, 131.8) (79.3,157.7) (105.1, 211.4) (161.9, 366.0)
43 73.5 90.8 114.4 135.4 185.7
(51.9, 96.6) (70.0, 119.3) (86.7,138.2) (108.7, 166.0) (139.7, 265.2)
44 83.0 107.9 1325 168.7 212.0
(59.7, 119.8) (78.7,134.1) (97.6, 169.1) (128.9, 201.3) (169.7, 280.7)
45 73.7 79.2 109.5 125.8 182.7
(61.0, 86.1) (71.0,112.0) (78.7,126.1) (107.0, 178.9) (125.7, 314.8)
46 53.4 75.6 100.8 142.6 192.7
(33.0,80.9) (45.9, 109.5) (72.0,142.7) (97.0, 185.5) (144.4, 226.2)
47 53.8 73.3 80.2 90.1 125.6
(29.1, 74.7) (53.2, 83.9) (66.2, 90.2) (79.2,114.8) (90.5, 178.7)
48 32.0 62.7 76.2 105.7 132.3
(24.1, 65.6) (30.5, 77.0) (55.2,107.2) (71.8,129.4) (107.7, 152.1)

*The values in parenthesis represent the corresponding 95% confidence intervals.

The results indicated that the heavy rainfall over the SIM compared with the SWM.

It can be expected 135.6 mm maximum rainfall at 80% probability at week 41 and
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the value can be varied from 84.6mm to 222.6mm which indicated that a high
variability. It is noted that high rainfall variability at the weeks 41-45 in SIM. Thus,
there is a much higher chance to have extreme rainfall events at above weeks. Based
on the result of Table 5.10, it is clear that the beginning as well as the withdrawal of
the monsoon season showed much low rainfall amount along with the low variation
with compared to the middle of the weekly rainfall. Here also, a good agreement is

seen with the result of parametric approach.

However, it is noted that the width of the 95% confidence intervals made based on
the percentile bootstrapping approach get much high value than the parametric
approach. Small sample size and positive skewed distribution of weekly rainfall are
some reasons for the high width of confidence intervals of percentiles which made
using those methods. To make accurate confidence intervals, the coverage
probability should be taken into account.

5.5. Accurate Confidence Interval Bands

The coverage probability of the confidence interval is one of the imperative factors
that should be considered when making inferences using confidence limits. Accurate
confidence bands enhance the degree of the awareness level of rainfall variability at
high uncertainty. To calculate the accurate confidence interval bands, the parametric
bootstrapping approach is used by utilizing the coverage probability which can made

bootstrapping calibration.

The main aim of this analysis is to find the accurate level of confidence intervals for
weekly rainfall percentiles derived from Weibull distributions based on the real
coverage probability which formed using Bootstrap Calibration. Accurate estimates,
either point or intervals are essential since many decisions might be depend on those
values. In such situation, sample size is the other main factor which influences to
accurate inferences. In fact, it is more complicated to compose inferences and make
decisions at the small size of the sample. Most of the time, estimates derived from

the fitted theoretical probability distributions becomes inaccurate at the small sample
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size. To overcome this problem, the bootstrapping technique can be used. The
Weibull distribution and its properties are explained by the following section.

5.5.1. Weibull Distribution
The Weibull distribution was invented by Waloddi Weibull and this is widely used

continuous probability distribution. Moreover, life and climatic data are analyzed
using this versatility distribution. The characteristic of the Weibull distribution is
varied based on the values of the scale and shape parameters. The shape of the
density function of the Weibull distribution changes drastically with the value of the
shape parameter. The Weibull distribution can be approximated to the normal
distribution when shape parameter is about 3.6 (Johnson and Kotz,1970). Figure

5.12 describes the shape of the Weibull distribution with different scale and shape
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Figure 5.15: Density functions of Weibull distribution with different scale and
shape parameters
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The p™ percentile of the Weibull distribution (Xp) and its variance [Var (Xp)] is
defined as follows (Heo et al., 2001). a andf% are the maximum likelihood estimators
for the scale and shape parameters of the Weibull distribution.

The p™ Percentile of Weibull Distribution - X 0

X, =a[-In(-p)}}

oo XA XL 7,
Var(X,) =——Var(a) + =~ Z Var(B) -2 Y
o p op

7 2
p

Cov(a,B) Where Z, =In[-In(1-p)]

The equations that used to calculate the confidence intervals for the Weibull

percentiles are given as;

R Var Xp . 1/Varixpi
p H
X

p p

5.5.2. The Coverage Probability

The coverage probability of a confidence interval can be briefly explained as the
proportion of the time that interval that contains the true value of interest. The
coverage probability of a confidence interval can be calculated using simulation
method; firstly, many samples of size n should be simulated from the population and
compute the confidence intervals for interest parameter for each sample. After that,
the proportion of samples should be computed for the known population parameters
is contained in the confidence interval. That proportion is an estimate for the
coverage probability for the confidence interval. However, a discrepancy can be
occurred between the computed coverage probability and the nominal coverage
probability due to many reasons such as approximating a discrete distribution with a
continuous distribution, when the population is not normal etc. In this study, our
interest parameter is percentile and based on the confidence intervals of percentiles

(Pso, Peo, P70, Pso and Pgo) the coverage probability will be calculated.
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5.5.3. Data for the Simulation

To work out the coverage probability, here considered one weekly data series during
the SWM as the population. In this study, the data which belong to the week 24 (11-
17 June) in SWM (The weekly data of 46 years for the time span from 1970 to 2015)
was considered as the population. Here, small sample size (n=46) was considered for
this analysis to distinguish the real and nominal confidence bands clearly. The
summary statistic of the total rainfall during week 24 is presented in Table 5.12 along

with the histogram (Figure 5.16).

Table 5.12: Descriptive statistics of the weekly rainfall data (week 24)

No. of CV
Variable | Data | Mean | Median | Min | Max (%) Skewness
Week 24 46 36.1 18.4 0.1 146.3 |104.9 1.37

Histogram of Week 24

Frequency

? I
. | |
0 20 40 60 80 100 120 140
Week 24

Figure 5.16: Histogram of weekly rainfall data (week 24)

From 1970 to 2015 total weekly rainfall in the 24" week varied from 0.1mm to
146.3mm with a mean 36.1mm. Figure 5.16 illustrates the weekly rainfall as
positively skewed with a longer tail to the right and the result was further confirmed
as the coefficient of skewness is 1.37. The large coefficient of variance (104.9%)

gives evidence to high fluctuations in weekly rainfall (week 24).
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The total rainfall during week 24 was fitted to different type of probability
distributions and those data were well fitted with the two parameter Weibull
distribution. Corresponding Anderson Darling and Kolmogorov-Smirnov test
statistics were 0.258 (P-value =0.256) and 0.0673 (P-value = 0.941) respectively.
The maximum likelihood estimates for the scale and shape parameters of the fitted
Weibull distribution were 33.9286 and 0.8775 respectively.

5.5.4. The Simulation Procedure

Weekly rainfall series for the 24" week from 1970 to 2015 was taken as population
having 46 points and well fitted with the two parameter Weibull distribution. Based
on the population data (N=46), 2000 random samples (each sample size is also equal
to 46) were generated using bootstrapping approach called as Samplel, Sample2,
Sample3, ... Sample2000 from the Weibull distribution (a, ). Furthermore, it is

estimated the maximum likelihood estimates (MLE) for the scale and shape

parameters of data sets pertaining to the Samplel (&l,Bl), Sample2(&2,[§2),

Sample3 (4, B;)and so on. Five percentiles (Pso, Peo, P70, Pso and Pgo) were

calculated for each sample (Samplel to Sample2000).

Again 300 samples were generated (Same sample size (n=46)) based on the
generated Samplel, Sample2, Sample3 etc. Let denote those 300 samples derived
from the Samplel, as Sam1, Sam1,...., Sam1s0. Here, it describes only the coverage
probability of randomly selected four samples (Sample68, Sample423, Sample802
and Sample1551). Let us consider the 300 samples generated based on the Samplel.
Firstly, it is calculated the 50" percentile and corresponding 95% confidence
intervals of Saml;, Saml,, Samlz and so on. The coverage probability was
calculated based on the 300 confidence intervals (95%). The same procedure was
carried out to calculate the coverage probability of confidence intervals at 95.2%,
95.4%, 95.6%, 95.8%, 96%, 96.2%, 96.4%, 96.6%, 96.8%, 97%, 97.2%, 97.4%,
97.6%, 97.8% and 98% confidence levels. Other samples which generated from the

Samplel, Sample2...., Sample2000 were applied using the above procedure and
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calculated the corresponding coverage probabilities for each confidence level listed
above.

5.5.5. Results Obtained from the Simulation
For the interpretation purpose the computed coverage probabilities of confidence
intervals of randomly selected four samples (Samples 68, 423, 802 and 1551)) at

different uncertainty levels are presented in Tables 5.13-5.16 respectively.

Table 5.13: The coverage probabilities of five percentiles (Pso-Pgo) based on the

300 samples derived from the Sample68

Confidence Coverage Probability

Level (%) Pso Pso P Pso Pgo
95.0 93.00 93.00 93.00 92.00 92.67
95.2 93.33 93.33 93.00 92.67 93.00
95.4 93.33 93.67 93.00 93.00 93.00
95.6 93.67 93.67 93.00 93.00 93.67
95.8 94.00 93.67 93.00 93.00 93.67
96.0 94.33 93.67 93.67 93.33 94.00
96.2 95.33 94.33 94.00 94.00 94.67
96.4 95.67 95.00 94.00 94.67 95.00
96.6 96.33 95.33 94.67 94.67 95.00
96.8 96.33 95.67 95.00 94.67 95.00
97.0 96.67 96.00 95.00 95.33 95.00
97.2 96.67 96.33 95.33 96.00 95.00
97.4 96.67 96.33 95.67 96.00 95.33
97.6 96.67 96.33 96.00 96.00 95.33
97.8 96.67 96.33 96.00 96.33 95.67
98.0 96.67 96.33 96.67 96.33 96.33

Thus, 95% confidence interval for 95% coverage probability for the sample size 46
was found as (0.89, 1.00). The Table 5.13 shows that the 95% coverage probability

of Pso can be attained at 96.2 % confidence level. Similarly, the 95% coverage
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probability of Peo, P70, Pgo and Pgo can be reached at the confidence levels 96.4, 96.6,
96.8 and 96.4 respectively.

Table 5.14: The coverage probabilities of five percentiles (Pso-Poo) based on the
300 samples derived from the Sample 423

Confidence Coverage Probability

Level (%) Pso Peo P Pso Pso
95.0 94.00 93.67 90.67 87.67 90.67
95.2 94.00 94.00 91.00 88.67 91.67
95.4 94.00 94.00 91.00 89.00 91.67
95.6 94.00 94.33 91.67 89.00 91.67
95.8 94.33 94.33 91.67 89.00 92.00
96.0 94.33 94.33 92.00 89.33 92.00
96.2 94.33 94.67 92.00 89.33 92.33
96.4 94.67 94.67 92.33 90.00 93.00
96.6 95.00 94.67 92.33 91.33 93.67
96.8 95.67 94.67 92.67 91.67 94.00
97.0 95.67 95.00 93.00 92.00 94.67
97.2 96.00 96.00 93.33 92.67 94.67
97.4 96.67 96.67 93.33 93.00 94.67
97.6 97.00 97.00 93.67 93.67 95.00
97.8 97.33 97.67 94.67 94.33 95.33
98.0 97.67 97.67 95.00 95.00 95.33

As explained above (Table 5.13), the real 95% coverage probability of Pso, Pso, P70,
Pgo and Pgo can be obtained at the 96.6, 97.0, 98.0,98.0, and 97.6 respectively.
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Table 5.15: The coverage probabilities of five percentiles (Pso-Pgo) based on the 300
samples derived from the Sample 802

Confidence Coverage Probability

Level (%) Pso Peo P Pso Pso
95.0 94.33 94.33 90.67 89.33 89.33
95.2 94.33 94.33 90.67 89.33 89.67
95.4 94.33 94.67 90.67 89.67 90.00
95.6 95.33 95.33 91.33 89.67 90.00
95.8 95.67 95.33 91.67 89.67 91.33
96.0 95.67 95.33 91.67 90.00 91.33
96.2 96.00 95.67 92.00 90.00 91.67
96.4 96.00 95.67 92.67 90.00 92.00
96.6 96.33 96.00 92.67 90.67 93.33
96.8 96.33 96.00 92.67 91.00 93.33
97.0 96.33 96.33 93.33 91.33 94.00
97.2 96.67 96.33 94.00 91.67 94.67
97.4 97.33 96.67 94.33 92.00 94.67
97.6 97.33 96.67 94.67 93.00 94.67
97.8 97.67 97.00 95.00 94.00 95.00
98.0 97.67 97.00 95.00 95.00 95.33

Table 5.15 illustrates the 95% coverage probability of Pso, Peo, P70, Pso and Pgo
obtained at the 95.6, 95.4, 97.8, 98.0, and 97.8 confidence levels respectively.
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Table 5.16: The coverage probabilities of five percentiles (Pso-Pgo) based on the 300
samples derived from the Sample 1551

Confidence Coverage Probability

Level (%) Pso Peo P Pso Pgo
95.0 92.67 92.33 92.00 92.00 89.67
95.2 93.00 92.33 92.00 92.33 89.67
95.4 93.33 92.67 92.00 92.67 89.67
95.6 93.33 92.67 93.33 92.67 92.33
95.8 94.67 93.00 93.33 93.00 92.33
96.0 95.33 93.00 93.33 93.00 92.33
96.2 96.00 93.00 93.67 93.67 93.33
96.4 96.00 93.33 93.67 93.67 93.33
96.6 96.00 93.33 94.00 94.00 93.67
96.8 96.00 93.67 94.00 94.33 93.67
97.0 96.33 93.67 94.67 94.67 94.67
97.2 96.33 93.67 94.67 94.67 94.67
97.4 96.67 94.67 95.00 94.67 94.67
97.6 96.67 94.67 95.00 95.00 95.00
97.8 96.67 95.00 95.33 95.00 95.33
98.0 97.67 95.00 95.33 95.33 95.33

As explained above (Table 5.13), the Table 5.16 shows that the 95% coverage
probability of Pso, Peo, P70, Pgo and Pgo obtained at the 95.8, 97.8, 97.4, 97.6, and 97.6
confidence levels respectively. Same procedure was carried out for the remaining
samples and calculated the average accurate coverage probability based on the 300
samples derived from each 2000 samples presented in Table 5.17.

Table 5.17: Average accurate confidence level based on the 95% confidence level
for Weibull percentiles

Percentiles Pso Pso P70 Pso Pgo
Coverage Probability | 95.901 97.501 97.603 97.680 97.910

Results in Table 5.17 indicate that the real 95% CI does not attain for any of the

percentile values under Weibull distributional though analysis found Weibull is the
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best fitted distribution. The accurate confidence level is closer to 95% at Pso and gap
increases as percentile value increases. Based on the above real confidence levels, it

is calculated the confidence bands of percentiles of week 24 as follows.

Table 5.18: The confidence bands of percentiles of week 24 (nominal and

actual values)

Percentile | Value Confidence Accurate confidence Confidence
limits at level of | levels attend the real limits at
95% coverage probability coverage
(Nominal) of 95% probability
(Actual)
Pso 22.4 15.2 32.9 95.901 14.9 335
Peo 30.7 215 43.8 97.501 205 46.1
P70 41.9 30.0 58.6 97.603 28.5 61.6
Pso 58.4 42.0 81.2 97.680 39.8 85.5
Poo 87.8 62.0 124.3 97.910 58.3 132.2

The asymptotic behavior of bootstrap confidence limits for weekly rainfall
percentiles were found to be more useful than normal confidence intervals from
practical and decision point of view. Due to development of computing power in
statistics, it is not difficult task to compute coverage probabilities of percentiles if the
distribution is known. However, based on the result formed from the simulation,
there is a considerable difference between nominal and calculated coverage
probabilities. Weibull distribution, drastically tends to be skewed to the right when
the shape parameter less than one. Thus, the distribution of weekly rainfall deviates
from the normal distribution with respect to the lower (less than one) value of shape
parameter of the distribution. The deviation of the normality of the fitted distribution
with the small size of sample could be the reason for the discrepancy of the nominal

and calculated coverage probabilities.

5.6. Summary of the Chapter 5

Weekly rainfall data pertaining to SWM is skewed with a longer tail extending to the
right to all the weeks in SWM. However, a common probability distribution was not

found to represent all the weeks, but three parameter Weibull distribution was well
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fitted with the most of the weeks. Based on the results of percentiles and
corresponding 95% confidence intervals analysis which derived using parametric and
bootstrapping approach, it can be expected that much heavy rainfall with high
variability during arrival of SWM in the weeks 18-23 (30" April to 10" June) and
withdrawal of the SWM in the weeks of 38-39 (17-30 September).

Based on the parametric analysis of the both weekly totals as well as running weekly
totals during the SIM period, there is a high possibility to have heavy rainfall events
during the Weeks 41-45 (08" October to 11™ November). A similar result was
obtained from the bootstrapping approach also.

However, the lengths of the 95% confidence intervals were not in satisfactory level.
Small sample size and strongly skewed distribution pattern might be a one of the
reasons for wide confidence bands. In addition to the weekly rainfall percentile
analysis, the 95% confidence bands of percentiles are utilized to compute the real
coverage probability of the 95% confidence intervals. Rainfall total during the 24"
week (11-17 June) in SWM was considered as the study population and those data
series was well fitted with the Weibull distribution. Based on the simulation using
bootstrapping approach, it is found that the most of the coverage probability of 95%
confidence intervals of 50" percentile is less than 0.95 and the 95% accurate
coverage probability is attained at the average level of 95.901%. The corresponding
accurate coverage probabilities of 95% confidence intervals of 60™,70™, 80" and 90™
percentiles are given at the average levels of 97.501%, 97.603%, 97.680% and
97.910% of respectively.
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CHAPTER 6

MODELING OF WEEKLY RAINFALL: CLASSICAL TIME
SERIES APPROACHES

The main goal of this chapter is to find the possibilities of forecasting weekly rainfall
using conventional time series models. An attempt was made to model the weekly
rainfall series with exogenous variables such as weekly temperature, relative
humidity and vapor pressure in this chapter. The data series from 1990 to 2014 (1300
points) were used to train the models and an independent data set were used to
validate the models. Furthermore, the draw backs of the time series modeling are
discussed in detail in this chapter as those drawbacks would be useful for creating

new types of models.

6.1. Variability of Weekly Rainfall during 1990-2014

The modeling weekly rainfall was done using 1352 data points during the time span
from 1990 to 2015. Here, the series with length 1300 was considered model forming
while rest was used for the model validation. In order to examine the temporal
variability of the weekly rainfall, the time series plot was obtained and it is presented

by Figure 6.1.

Time Series Plot of Rainfall
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Week Number (1990-2014)

Figure 6.1: Time series plot of the weekly rainfall {Y} from 1990 to 2014
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Based on the above plot, random behavior of the rainfall pattern can be clearly
observed. However, it cannot be identified decreasing or increasing trend in weekly

rainfall during the considered time span.

6.2. ldentification of ARIMA Model

In order to identify the correlation structure of the observed series, the

autocorrelation was taken and those result is shown in Figure 6.2.

Series Rainfall

08 1.0
1

08

ACF
04

00

Lag

Figure 6.2: Autocorrelation plot of the series from 1990 to 2014

A seasonal behavior can be clearly recognized from this plot. Since the data were
captured on a weekly basis and also seasonality of length 52 can be seen, new series
was obtained by taking one long-term difference. That is Zi, {ZJ}={Y+Yts2}. Thus,
to identifying the seasonal length, autocorrelation function (ACF) and Partial auto
correlation function (PACF) were obtained with 52 lag difference. The plot of ACF

of the new series {Z} is shown in Figure 6.3.
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Figure 6.3: ACF of the Z;series from 1990 to 2014 with 52 lag

The plot of ACF of the series with 52 lags showed one significant spike at 52 lag.
This pattern identified that the new series can be considered as stationary series. In
order to identify the suitable models for weekly rainfall, firstly, observed series was
tested for the stationary using Argument Dickey Fuller Test (ADF). The result is
illustrated in Table 6.1.

Table 6.1: Result of Dickey Fuller test

Null Hypothesis: ZT has a unit root
Exogenous: Constant

t-Statistic  Prob.*

Augmented Dickey-Fuller test statistic -33.17186  0.0000
Test critical values: 1% level -3.435381

5% level -2.863649

10% level -2.567943

*MacKinnon (1996) one-sided p-values.

Based on the above result, the null hypothesis that the there is a unit root is rejected

indicates that the series is stationary at 0.05 level of significance. The Partial Auto
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correlation plot of new series {Zt} is obtained and those result is presented in Figure
6.4.

Partial Autocorrelation Function for Zt
(with 5% significance limits for the partial autocorrelations)
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Figure 6.4: PACF of the series from 1990 to 2014 with 52 lag

According to the plot of PACF it can be clearly identified that the seasonal length is
52 since significant sample autocorrelation existed in the 52" lag and lag multiplier
of 52 (52,104,156, 208...). Thus, many Box and Jenkins models were developed for
the new data series and models were selected based on the Akaike Information
Criterion (AIC), Schwarz Criterian (SC), Durbin-Watson (DW) statistics, Root Mean
Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute
Percentage Error (MAPE) criteria. Based on the criteria, selected models are listed in
the Table 6.2.
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Table 6.2: Selected models and values of the selection criteria

Model AlC SC | DW | RMSE | MAD | MAPE

SARIMA (1,0,0) (0,1,0s2 | 11.55 |11.56 |2.00 | 77.54 |49.46 | 885.57

SARIMA (1,0,2) (0,1,0s2 | 11.55 |11.57 |2.00 | 77.42 |49.48 | 897.37

SARIMA (2,0,1) (0,1,0)s2 | 11.55 | 11.57 |2.00 | 77.45 |49.50 | 896.94

SARIMA (1,0,0) (1,1,0)s2 | 11.55 |11.56 |2.00 | 77.40 |49.01 |895.24

SARIMA (1,0,1) (1,1,0)s2 | 11.55 | 11.57 | 2.00 | 77.45 |49.90 | 896.94

Based on the model selected criteria, it is selected SARIMA (1,0,0) (1,1,0)s2 as a best
fitted since this returns the smallest RMSE and MAD. Diagnostic tests were carried
out for the best selected model. The residuals are random at 0.05 level of significant
and the corresponding result is depicted by Figure 6.5. However, the assumption
which is residuals are normally distributed are highly deviate at the level of 0.05
significance and the normality test result of the selected model SARIMA (1,0,0)
(1,1,0)s2 is presented from the Figure 6.6.
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Sample: 1 1300
Included observations: 1246
Q-statistic probabilities adjusted for 2 ARMAterms

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
i i) 1 0.001 0.001 0.0014
ih i) 2 0.000 0.000 0.0015
i i 3-0.02.. -0.02.. 1.0314 0.310
ifh i 4 0.035 0.035 25826 0.275
i i 5 -0.00.. -0.00.. 2.5848 0.460
ifi ifh 6 0.034 0.033 3.9932 0.407
ifi ifh 7 0.026 0.028 4.8562 0.434
i T 8 -0.01.. -0.01.. 5.0236 0.541
i i) 9 -0.00... -0.00... 5.1182 0.646
i 'l 1..-0.01.. -0.02.. 55754 0.695
i i 1..-0.03.. -0.03.. 7.1194 0.625
i i) 1.. 0.011 0.011 7.2826 0.699
ih i 1.. -0.00... -0.00... 7.2846 0.776
i i 1..-0.04.. -0.04.. 10.011 0.615
i i 1..-0.07.. -0.07.. 17.314 0.185
i i 1..-0.02.. -0.02.. 18.223 0.197
i T 1..-0.01.. -0.01.. 18.374 0.243
i i 1..-0.05.. -0.05... 21596 0.157
i 1] 1.. 0.026 0.028 22.440 0.168
i i) 2.. 0.007 0.011 22506 0.210
i i 2.. 0.009 0.013 22.600 0.255
if i 2..-0.05.. -0.04.. 26.374 0.154
i i 2..-0.00.. -0.00... 26.387 0.192
i i 2..-0.03.. -0.03.. 27555 0.191
i i) 2.. 0.017 0.007 27.905 0.219
i i) 2.. 0.023 0.018 28596 0.236
i i} 2.. 0.050 0.048 31.794 0.164
ih i) 2.. 0.001 0.003 31.797 0.200
ih i 2..-0.00... -0.00... 31.797 0.240
i i 3..-001.. -0.02.. 32.267 0.264
i i 3.. 0.007 -0.00.. 32.328 0.306
i i) 3.. 0.008 -0.00.. 32.417 0.348
i i 3..-0.01..-0.02.. 32.640 0.386
i i} 3.. 0.044 0.047 35128 0.322
] i 3..-0.01.. -0.01.. 35511 0.351
ih i) 3.. 0.008 0.006 35.583 0.394

Figure 6.5: The correlogram plot of the residual of the model SARIMA
(1,0,0)x(1,1,0)s2
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Figure 6.6: The normality test of the residuals of the model SARIMA (1,0,0)(1,1,0)s2

The best fitted model was tested for the serial correlation using the Breusch-Godfrey

serial correlation LM test and the corresponding result is presented in Table 6.3.

Table 6.3: Test result of the Breusch-Godfrey serial correlation LM test

Model F statistics Prob. Prob. Chi-
F(2,1241) Square (2)

SARIMA (1,0,0) (1,1,0)s2 1.06 0.3467 0.3456

Based on the result shown in the Table 6.3, the residuals derived from the model do
not show the any significant serial correlation. However, the assumption that the
squared residuals are random is significantly deviated at 0.05 significant level and
the corresponding test result is described by Figure 6.7 and this indicates the non
constant variance. Thus, in order to examine the presence of the heteroskedasticity,
ARCH effect was tested using the ARCH test and the test result is presented in
Table 6.4.
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Figure

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
i i 1 0.059 0.059 4.3284 0.037
il fl 2 0.078 0.074 11.853 0.003
il i} 3 0.070 0.062 17.955 0.000
i} i} 4 0.057 0.045 22.092 0.000
i i 5 -0.02... -0.03... 22.580 0.000
i i 6 -0.01.. -0.02... 22.960 0.001
ih i 7 0.000 -0.00.. 22.960 0.002
i Ll 8 -0.02... -0.01... 23.605 0.003
i i 9 -0.03.. -0.02.. 25277 0.003
i i 1..-0.04.. -0.03.. 27.526 0.002
i i 1..-0.03.. -0.03.. 29.467 0.002
i i 1..-0.05.. -0.04.. 33.744 0.001
i i 1..-0.03.. -0.01... 35.027 0.001
i i 1..-0.02.. -0.01... 35.860 0.001
i i 1..-0.04.. -0.03... 38.223 0.001
i i 1..-0.03.. -0.02... 39.745 0.001
i i 1..-0.04.. -0.04... 42588 0.001
i i 1..-0.01.. -0.00.. 42.886 0.001
i i) 1..-0.00.. 0.000 42.984 0.001
i i) 2.. 0.001 0.003 42.985 0.002
i i 2..-0.03.. -0.03... 44.460 0.002
i i) 2.. 0.012 0.006 44.637 0.003
M I 2.. 0.069 0.066 50.683 0.001
i i 2.. 0.063 0.054 55.768 0.000
(m | 2.. 0194 0.181 103.94 0.000
i i 2.. 0.055 0.016 107.79 0.000
15| i} 2.. 0.102 0.056 121.04 0.000
i} i) 2.. 0.049 0.009 124.06 0.000
i} i) 2.. 0.057 0.024 12816 0.000
i 'l 3..-0.01..-0.02.. 128.29 0.000
ih i) 3.. 0.004 -0.00.. 128.31 0.000
i i 3..-0.02.. -0.03.. 129.16 0.000
i i 3... -0.04... -0.03... 131.60 0.000
i 1] 3..-0.02.. -0.00.. 13254 0.000
if i 3..-0.05.. -0.02... 136.19 0.000
i i) 3..-0.03.. -0.00... 137.47 0.000

6.7: The correlogram

of squa

SARIMA(1,0,0)(1,1,0)s2

red residuals of the

Table 6.4: Test results of the heteroskedasticity ARCH effect

Model F Prob. Prob. Chi-
statistics | F(3,1289) | Square(3)
SARIMA (1,0,0) (1,1,0)s2 | 5.621 0.0037 0.0038
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Based on the above result, there is no evidence to accept the null hypothesis that the
there is no ARCH effect at the 0.05 level of significance. Thus, we can conclude that
the ARCH effect is presented in the residuals which derived from the best fitted

model.

However, despite the ARCH effect, the model was tested for the independent data set
(The weeks in 2015) and the observed and predicted values is presented by the
Figure 6.8.
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Figure 6.8: Observed and predicted weekly rainfall in 2015 using the
model SARIMA (1,0,0) (1,1,0)s2

According to the above figure, there is not much good agreement with the forecasted
and observed values in weekly rainfall. Since the heteroskedasticity existed in the
mean models, thus it is required to fit a variance model in addition to the mean
equation. The section 6.3 describes the model which can be used to capture the not

only mean behavior but also variation in the weekly rainfall series.
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6.3. Development of GARCH/ARCH Model

Many GARCH models were employed to capture the conditional variance existed
from the best fitted mean model. The model SARIMA (1,0,0) (1,1,0)s.-GARCH (1,2)
is selected as the best fitted hybrid model for the weekly rainfall series. The
parameters estimation is presented in Table 6.5. Based on the result shown in the
Table 6.5, all the model parameters are significant except constant term. Thus, model
assumptions are tested and the residuals and squared residuals derived from the

model are in random order at the 0.05 level of significance.

Table 6.5: Parameter estimation of the model SARIMA (1,0,0) (1,1,0)s.-GARCH
(12)

Variable Coefficient Std. Error z-Statistic  Prob.

C 1.592860 1.775992 0.896885 0.3698
AR(1) -0.189212  0.087144 -2.171262 0.0299
SAR(1) 0.245646  0.083604 2.938202 0.0033

Variance Equation

C 813.5964 68.23715 11.92307 0.0000
RESID(-1)"2 0.191982 0.016442 11.67666 0.0000
GARCH(-1) 1.128340 0.032597 34.61500 0.0000
GARCH(-2) -0.410790 0.019678 -20.87536  0.0000

The model was tested for the independent data set (The weeks in 2015) and the

observed and the predicted values are presented by the Figure 6.9.

114



400

350 l

300

250

200 A
150 | ‘(

100 I / ‘
PN WY VT Y.
; ZM i ans 1 1

1 357 9111315171921232527293133353739414345474951

Rainfall in mm

Week Number a— Ohserved

= Predicted

Figure 6.9: Observed and predicted weekly rainfall in 2015 using the
model SARIMA (1,0,0) (1,1,0)s2- GARCH (1,2)

According to the Figure 6.9, we cannot see much agreement between the observed
weekly rainfall with the predicted. Thus, to improve the power of the forecasting
auto regressive integrated moving average models were fitted for the deseasonalized
series. The corresponding details of the deseasonalized series is explained the next

section.

6.4. Modeling for Deseasonalized Data

As it was found difficult to fit GARCH models with high forecasting performance, as
an alternative method seasonality was removed from the original series, assuming
that the observed series can be represented as

Yi=Si+ Te+ e (21,2, 1300;i=1,2....52)

Initially, detrended series was calculated and by getting the averages for the 52

weeks over the period of 1990 to 2014 make the seasonal index by assuming the
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additional model. Thus, deseasonalized series was made based on the calculated

seasonal index.

Different Box-Jenkins models were applied for the deseasonalized series to capture
the mean behavior. Finally, AR (1) model is selected as the best fitted model to
describe the deseasonalized data. Diagnostic tests were carried out and it was found
that the selected model residual is random at 0.05 level of significant. But the
assumption which is residual is normally distributed is still deviated at the 0.05
significant level. Also, the squared residuals are significantly deviated (Figure 6.10)
and indicated that the time dependence variance. Thus, the heteroskedasticity test
was applied to test the ARCH effect and the result is presented in Table 6.6.
Furthermore, Table 6.7 describes the test result of the serial correlation of the

selected AR (1) model for the deseaonalized data.

Table 6.6: The result of ARCH effect of AR (1) for deseasonalized data
Heteroskedasticity Test: ARCH (AR (1) for deseasonalized Data)

F-statistic 4.056724 Prob. F(3,1292) 0.0070
Obs*R-squared 12.09393 Prob. Chi-Square(3) 0.0071

The result shown in Table 6.6 indicates that the presence of the ARCH effect at 0.05

level of significance.

Table 6.7: The result of serial correlation of AR (1) for deseasonalized data

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 0.242785 Prob. F(3,1294) 0.8665
Obs*R-squared 0.730758 Prob. Chi-Square(3) 0.8659

Based on the test result of the serial correlation LM test, there is no evidence to reject
the null hypothesis that the no serial correlations at 0.05 level of significance. This

implies that the there is no serial correlation.

116



Autocorrelation Partial Correlation AC PAC Q-Stat Prob

i i 1 0.031 0.031
] i 2 0.051 0.050
il i 3 0.080 0.077
] i 4 0.060 0.054
i i 5 -0.01... -0.02...
i Ll 6 -0.01... -0.02...
i i 7 0.010 0.004
(] 'l 8 -0.02... -0.02...
f Ll 9 -0.02... -0.02...
i [ 1..-0.03.. -0.02...
i i 1..-0.03.. -0.02...
f L[ 1.. -0.03... -0.02...
[ [ 1..-0.02... -0.01...
(] 'l 1.. -0.03... -0.02...
0 i 1..-0.03.. -0.02...
i i 1.. 0.013 0.021
(] 'l 1.. -0.03... -0.02...
i |y 1.. 0.004 0.009
i i 1... -0.00... -0.00...
i i 2...-0.00... -0.00...
[ i 2..-0.01.. -0.01...
i i 2...-0.00... -0.00...
ifi il 2.. 0.033 0.030
i} i} 2.. 0.044 0.042
i ifm 2.. 0.180 0.175
I i 2.. 0.034 0.018
| i} 2.. 0.072 0.045
i [ 2.. 0.021 -0.01...
ifi i 2.. 0.031 0.003
i i 3...-0.00... -0.01...
i [ 3... -0.00... -0.00...
i 0 3..-0.02.. -0.02...
[ i 3..-0.02... -0.01...
[ i 3..-0.01... -0.00...
[ i 3..-0.03... -0.01...
i ' 3...-0.04... -0.02...

Figure 6.10: The correlogram of squared residuals of the model

AR (1) for deseasonalized data

Since the squared residuals is not random and the ARCH effect is presented, the
various GARCH models are utilized to capture the non constant variance by keeping
the mean model as AR (1) for deseasonalized data series. Out of the various models,
AR (1)-GARCH (1,1) model is selected as the best model for the forecasting weekly
rainfall in Colombo city. The diagnostic test was carried out for the best fitted model
as done for the pervious. The model parameter estimates are presented in Table 6.8.
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Table 6.8: The result of the estimated AR (1)-GARCH (1,1) model for
deseasonalized series
Variable Coefficient Std. Error z-Statistic  Prob.

C 45.76302 1.285538 35.59835 0.0000
AR(1) 0.111689 0.028697 3.892002 0.0001

Variance Equation

C 676.1237 56.75019 11.91403 0.0000
RESID(-1)"2 0.342132  0.029182 11.72395 0.0000
GARCH(-1) 0.515348 0.029095 17.71282 0.0000

Based on the above result all the parameters are significant at 0.05 level of
significance. The residual analysis was carried out and the residuals as well as
squared residuals are not significantly deviated from the randomness. The
corresponding correlogram plots are presented by Figure 6.11 and Figure 6.12
respectively. Based on the test result of the ARCH test (Table 6.9), it can be

concluded that the there is no ARCH effect moreover.

Table 6.9: The result of ARCH effect of AR(1)-GARCH(1,1) for deseasonalized data

Heteroskedasticity Test: ARCH (AR(1)-GARCH(1,1))

F-statistic 0.509352 Prob. F(3,1292) 0.6759
Obs*R-squared 1.530976 Prob. Chi-Square(3) 0.6751
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob...

ih i) 1 0.000 0.000 0.0003

i i 2 0.021 0.021 05715 0.450
i ] 3-0.01.. -0.01.. 0.6971 0.706
1] i} 4 0.044 0043 3.1691 0.366
i i 5 -0.00... -0.00... 3.1693 0.530
i i 6 -0.00... -0.00... 3.1693 0.674
i i} 7 0.040 0.041 5.3105 0.505
i i) 8 0.004 0.002 5.3337 0.619
i i 9 -0.04.. -0.04.. 8.0276 0.431
i i 1.. -0.04... -0.04.. 10.320 0.325
i i 1..-0.02.. -0.02... 10.902 0.365
i i 1.. 0.010 0.011 11.044 0.440
i i 1..-0.03.. -0.03.. 12.635 0.396
i i 1..-0.03..-0.02.. 13.822 0.387
if i 1..-0.06.. -0.05.. 18.738 0.175
i i) 1..-0.00.. 0.003 18.738 0.226
i i) 1.. -0.00.. -0.00... 18.835 0.277
ih i) 1.. 0.002 0.003 18.838 0.338
ifi il 1.. 0.028 0.029 19.839 0.342
i i) 2.. 0016 0.015 20.193 0.383
i i 2..-0.00.. -0.00... 20.202 0.445
i i 2..-0.03..-0.02.. 21516 0.428
i i) 2.. 0.004 -0.00.. 21542 0.487
i i 2..-0.02.. -0.03.. 22.383 0.497
i i) 2.. 0.006 -0.00.. 22.432 0553
i i) 2.. 0.003 0.001 22.444 0610
i i 2.. 0.006 0.002 22.488 0.662
i i 2..-0.04.. -0.04.. 25.200 0.563
i ] 2..-0.01.. -0.01... 25673 0591
i i 3..-0.00.. -0.00.. 25.767 0.638
i i 3.. 0.019 0.018 26.235 0.663
i i) 3.. 0.010 0.013 26.356 0.704
i i 3..-0.02.. -0.02.. 27.153 0.711
1] i} 3.. 0.043 0.047 29.642 0.635
i i 3..-0.02... -0.02... 30.474 0641
ih i) 3.. 0.012 0.011 30.673 0.677

Figure 6.11: The correlogram of residuals derived from the model AR (1)-
GARCH (1,1) for the deseasonalized data
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob...
i i 1 -0.03... -0.03... 1.1966 0.274
i T 2 -0.01.. -0.01... 1.4894 0.475
i i) 3 -0.00.. -0.00.. 1.4895 0.685
i i) 4 0.022 0.022 21314 0.712
i 'l 5-0.02.. -0.02.. 2.8797 0.719
iy i 6 -0.01... -0.01... 3.2039 0.783
ih i 7 0.018 0.016 3.6319 0.821
i i 8 -0.01.. -0.01.. 4.0573 0.852
i i 9 -0.02... -0.02.. 4.8189 0.850
i i 1..-0.03.. -0.04.. 6.7078 0.753
i i 1..-0.02.. -0.03.. 7.6216 0.747
i i 1..-0.02.. -0.02... 85398 0.742
i i 1..-0.01.. -0.02.. 9.0339 0.770
't i 1..-0.02.. -0.02.. 9.6627 0.786
i i 1..-0.03.. -0.03.. 11.277 0.733
i i 1.. 0.015 0.011 11593 0.772
' i 1..-0.02.. -0.02.. 12.318 0.781
i i 1.. 0.013 0.009 12530 0.819
i i) 1..-0.00.. -0.00... 12531 0.862
i T 2..-0.00.. -0.01.. 12553 0.896
i 'l 2..-001..-0.01.. 12.752 0.917
i i 2..-0.01..-0.01.. 12.905 0.936
ifi i) 2.. 0.025 0.017 13.744 0.934
i i 2.. 0.020 0.016 14.248 0.941
15| 15| 2.. 0123 0.120 34.174 0.104
i i 2.. 0.042 0.049 36.523 0.082
i 1] 2.. 0.026 0.030 37.408 0.088
i i) 2..-0.00... -0.00... 37.460 0.109
i T 2..-0.00.. -0.01.. 37.495 0.134
ih i) 3.. 0.004 0.005 37516 0.163
ih i) 3.. 0.008 0.012 37.594 0.193
i i 3..-0.02.. -0.02.. 38.450 0.200
i 1] 3..-0.01.. -0.00... 38.619 0.231
i 1] 3..-0.01..-0.00.. 38.787 0.263
i i 3..-0.03.. -0.02.. 40.544 0.239
i i 3..-0.03..-0.02.. 42411 0214

GARCH (1,1) for the deseasonalized data

mm as shown in the Table 6.10.
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Figure 6.12: The correlogram of squared residuals derived from the

model AR (1)-

Thus, the best selected model was tested for the independent data set and the
observed and the predicted weekly rainfall is depicted from the Figure 6.13.

Furthermore, the forecasting result was evaluated by calculating the absolute error in



400

350 l

300

250

200 |

Rainfall in mm

NN vl
N il )

1 4 7 1013161922 2528313437 4043 46 49 52 = Actual

P

Week Number - Predicted

Figure 6.13: Actual and predicted weekly rainfall in 2015 using AR (1)-
GARCH (1,1) for deseasonalized data

Table 6.10: The absolute error in mm for the weekly rainfall in 2015
[AR (1) - GARCH (1,1)] model for deseasonalized data

Absolute Error in Number of
mm weeks Cumulative
00--10 11 (21.2) 11 (21.2)
11--15 6 (11.5) 17 (32.7)
16--20 4 (1.7) 21 (40.4)
21--25 3 (5.8) 24 (46.2)
26--30 3 (5.8) 27 (52.0)
31--35 3 (5.8) 30 (57.8)
36--40 5 (9.6) 35 (67.4)
41--45 0 (0.0 35 (67.4)
46--50 2 (3.8) 37 (71.2)
More than 50 15 (28.8) 52 (100.0)

The Figure 6.13 depicts the much good agreement between the observed and the
predicted except extreme values. According to the Table 6.10, 21.2% of weeks
rainfall can be predicted very closely with less than 10mm error bound from the

observed values. Also, it is clear that the weekly rainfall can be predicted with less
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than 15mm error bound of 32.7% weeks in 2015. However, in 28.8% weeks in 2015

showed more than 50mm error.

6.5. Modeling Weekly Rainfall with Exogenous Variables using VAR

Minimum, maximum and the average of the three variables temperature, relative
humidity and vapor pressure were taken to account as exogenous predictor variables
in modeling weekly rainfall. The dynamic relationships among the climatic variables
including rainfall are assessed based on the Vector Autoregressive model (VAR).
VAR is often used for multivariate time series modeling specially in the fields as
finance and agriculture. Relatively few studies can be found in literature in modeling

climatic variables using VAR (Farook and Kannan, 2015).

Initially all the variables are tested for the stationary using Augmented Dickey Fuller

Test and those result are presented in the Table 6.11.

Table 6. 11: Result of Augmented Dickey Fuller (ADF) test for determining
the stationary of the time series

Variable | ADF test | p-value | Integration
Statistics of order
Rainfall | -20.11381 | 0.0000 I(0)
MinTemp | -8.064293 | 0.0000 I(0)
AvgTemp | -9.404993 | 0.0000 I(0)
MaxTemp | -7.361883 | 0.0000 I(0)
MinRH | -9.341557 | 0.0000 1(0)
AvgRH | -8.217019 | 0.0000 1(0)
MaxRH | -19.68546 | 0.0000 I(0)
MinVapp | -9.920362 | 0.0000 I(0)
AvgVapp | -11.39427 | 0.0000 I(0)
MaxVapp | -9.606267 | 0.0000 I(0)
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Table 6.11 clearly indicated that those climatic variables including the rainfall are
stationary in their level form. To examine the correlation structure among the
variables at various lag lengths, Pearson correlation matrix along with the

corresponding p values were taken and those result is presented in the Table 6.12.

Table 6.12: The correlation between rainfall and exogenous climatic variables at lag

1and lag 2
Variable Correlation | pvalue | Variable Correlation | pvalue
Tmin(-1) 0.055 0.048 | Tmin(-2) 0.065 0.020
AvgTemp(-1) 0.004 0.883 | AvgTemp(-2) 0.012 0.677
Tmax(-1) -0.064 0.020 | Tmax(-2) -0.066 0.017
MinRH(-1) 0.169 0.000 | MinRH(-2) 0.148 0.000
AvgRH(-1) 0.241 0.000 | AvgRH(-2) 0.153 0.000
MaxRH(-1) 0.134 0.000 | MaxRH(-2) 0.124 0.000
MinVap(-1) 0.186 0.000 | MinVap(-2) 0.181 0.000
AvgVap(-1) 0.213 0.000 | AvgVap(-2) 0.184 0.000
MaxVap(-1) 0.184 0.000 | MaxVap(-2) 0.131 0.000

Based on the above table, average temperature does not give significant correlation
with rainfall at the lag 1 as well as lag 2. The average relative humidity at lag 1
showed maximum significant correlation to the rainfall out of the all other variables
(0.241). The second highest correlation is presented in average vapor pressure at lag
1(0.213). It is noted that the correlation between the weekly rainfall series and
exogenous climatic variables are fairly low but significant except the variable
average temperature at 0.05 level of significance. Stepwise regression was carried
out with the above variables with lag 1 and lag 2 except average temperature. The

corresponding result is presented in Table 6.13 and Table 6.14 respectively.
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Table 6.13: Analysis of Variance of stepwise regression at lag 1

Model Summary S R-sq

Analysis of Variance
Source DF AdjSS AdjMS F-Value P-Value

Regression 4 356212 89053 26.89
AvgRH(-1) 1 70652 70652 21.33
AvgVap(-1) 1 64496 64496 19.47
Tmax(-1) 1 7810 7810 2.36
Tmin(-1) 1 27914 27914 8.43
Error 1293 4282289 3312

Total 1297 4638500

R-sq(adj) R-sq(pred)
575491 7.68%  7.39%  6.93%

0.000
0.000
0.000
0.125
0.004

According to the Table 6.13, only four variables at lagl are selected as best fitted

variables to the rainfall. Also, low R? value indicated that the 7.68% variation of

weekly rainfall only explained by the other exogenous climatic variables which is

very small.

Table 6.14: Analysis of Variance of stepwise regression at lag 2

Total 1297 4638500
Model Summary S

Analysis of Variance

Source DF AdjSS AdjMS F-Value
Regression 8 417558 52195 15.94
AvgRH(-1) 1 54809 54809 16.74
AvgVap(-1) 1 34235 34235 10.45
Tmax(-1) 1 14039 14039 4.29
Tmin(-1) 1 20203 20203 6.17
Tmin(-2) 1 7451 7451 2.28
MaxRH(-2) 1 16849 16849 5.15
MinVap(-2) 1 37323 37323  11.40
MaxVap(-2) 1 7776 7776 2.37

Error 1289 4220943 3275

R-sg R-sq(adj) R-sq(pred)
57.2240 9.00% 8.44% 7.82%

P-Value
0.000
0.000
0.001
0.039
0.013
0.132
0.023
0.001
0.124
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Eight variables are selected as predictor variables to the weekly rainfall series.
However, the low R? value indicated that the 9% of variation in weekly rainfall

explained by the other exogenous climatic variables is also small.

To find the optimal lag value to select best order of the VAR model, the selection
criteria are obtained and the result are presented in Table 6.15.

Table 6.15: Values of the selection criterion for selecting the optimal lag order

Lag LogL LR FPE AIC SC HQ
0 -27140.15 NA 12685234  41.89684  41.93273  41.91031
1 -25787.94  2683.564  1783698.  39.93509  40.29391* 40.06974
2 -25582.75  404.3669  1472632.  39.74344  40.42520  39.99927*
3 -25465.23  229.9459  1392008.  39.68709  40.69179  40.06412
4 -25365.44  193.8826* 1352330.* 39.65809* 40.98574  40.15631

Table 6.15 provides the values of different criterion for the different lag length order
and selected lag 2 as optimal lag length based on the HQ (Hannan-Quinn Information
Criterian). Based on the optimal lag length, the VAR was applied and the

corresponding result is presented by Table 6.16.
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Table 6.16 : VAR model for weekly rainfall series

RAINFALL
(1)

RAINFALL
(-2)

TMIN(-1)

TMIN(-2)

TMAX(-1)

TMAX(-2)

AVGRH(-1)

AVGRH(-2)

MAXRH(-1)

MAXRH(-2)

RAINFALL

0.114147
(0.03255)
[ 3.50656]

0.073526
(0.03285)
[ 2.23792]

-3.466618
(1.89205)
[-1.83220]

-3.664593
(1.86433)
[-1.96564]

2.717274
(2.08428)
[ 1.30370]

-3.85025
(2.09235)
[-1.84016]

1.308890
(0.63147)
[ 2.07277]

-1.498058
(0.63678)
[-2.35256]

-0.045762
(0.63110)
[-0.07251]

0.875696
(0.62913)
[ 1.39191]

TMIN

-0.001294
(0.00061)
[-2.1060]

-0.000359
(0.00062)
[-0.5783]

0.331014
(0.03570)
[9.27162]

0.201666
(0.03518)
[ 5.73261]

0.018661
(0.03933)
[ 0.47448]

-0.008167
(0.03948)
[-0.2068]

-0.009177
(0.01192)
[-0.7701]

0.017092
(0.01202)
[ 1.42247]

0.015426
(0.01191)
[ 1.29540]

0.016573
(0.01187)
[ 1.39603]

TMAX

-0.002113
(0.00043)
[-4.8846]

-0.000164
(0.00044)
[-0.3756]

-0.001399
(0.02515)
[-0.0556]

0.015203
(0.02478)
[ 0.61355]

0.459521
(0.02770)
[ 16.5878]

0.331459
(0.02781)
[ 11.9188]

-0.020952
(0.00839)
[-2.4963]

0.009009
(0.00846)
[ 1.06442]

0.040348
(0.00839)
[ 4.81018]

0.049957
(0.00836)
[ 5.97442]

AVGRH

0.001444
(0.00191)
[ 0.75592]

1.38E-05
(0.00193)
[ 0.00717]

0.228930
(0.11104)
[ 2.06167]

0.363688
(0.10941)
[ 3.32397]

0.217488
(0.12232)
[1.77798]

-0.127484
(0.12280)
[-1.0381]

0.379513
(0.03706)
[ 10.2406]

0.137909
(0.03737)
[ 3.69022]

0.109782
(0.03704)
[ 2.96406]

0.082326
(0.03692)
[ 2.22969]

MAXRH

-0.000764
(0.00157)
[-0.4864]

0.000372
(0.00159)
[0.23472]

0.135557
(0.09132)
[ 1.48444]

0.247954
(0.08998)
[ 2.75564]

0.732540
(0.10060)
[ 7.28195]

0.294272
(0.10099)
[ 2.91399]

0.221560
(0.03048)
[ 7.26963]

0.090803
(0.03073)
[ 2.95450]

0.188727
(0.03046)
[ 6.19601]

0.187653
(0.03036)
[ 6.17997]

MINVAP

0.001658
(0.00120)
[1.37871]

-0.00059
(0.00121)
[-0.4866]

0.194435
(0.06988)
[ 2.78237]

0.120818
(0.06886)
[ 1.75463]

0.017819
(0.07698)
[ 0.23148]

-0.17194
(0.07728)
[-2.2249]

-0.02097
(0.02332)
[-0.8990]

0.011202
(0.02352)
[0.47632]

-0.00033
(0.02331)
[-0.0140]

-0.03195
(0.02324)
[-1.3751]

AVGVAP

0.000727
(0.00068)
[ 1.07647]

6.81E-05
(0.00068)
[ 0.10001]

0.028017
(0.03924)
[0.71397]

0.035938
(0.03867)
[ 0.92945]

0.079054
(0.04323)
[ 1.82877]

0.060786
(0.04340)
[ 1.40076]

-0.014687
(0.01310)
[-1.1214]

-0.009271
(0.01321)
[-0.701]

0.002127
(0.01309)
[ 0.16248]

0.001197
(0.01305)
[ 0.09170]

MAXVAP

0.001177
(0.00067)
[ 1.74997]

-0.000574
(0.00068)
[-0.84505]

-0.029825
(0.03909)
[-0.76289]

-0.002809
(0.03852)
[-0.07291]

0.186847
(0.04307)
[ 4.33853]

0.188907
(0.04323)
[ 4.36946]

-0.01269
(0.01305)
[-0.97255]

0.016320
(0.01316)
[ 1.24035]

-0.001478
(0.01304)
[-0.11336]

-0.000951
(0.01300)
[-0.07314]
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Table 6.16 (Continued)

MINVAP(-1) 0900472  -0.057213 0017785 0012091 -0.049677 0.003423  -0.0498  -0.028474
(1.34247)  (0.02533)  (0.01784)  (0.07879)  (0.06479)  (0.04958)  (0.02784)  (0.02774)

[0.67076] [-2.2585] [0.99674] [0.15347] [-0.7667] [0.06904] [-1.7886]  1.02651]

MINVAP(-2) 2316140 -0.040715 -0.035085 0.117999  0.055295 -0.01574  -0.00663  -0.052218
(1.33987)  (0.02528) (0.01781)  (0.07863) (0.06467)  (0.04949)  (0.02779)  (0.02769)

[1.72863] [-1.6103] [-1.9701] [1.50060] [0.85505] [-0.3181]  [-0.2385] 1.88(-312]

AVGVAP(-1) 3569213 0352814  -0.029773 -0.001409 -0.127685 0817008  0.673464  0.430800
(3.03359)  (0.05724)  (0.04032)  (0.17804)  (0.14641)  (0.11204)  (0.06292)  (0.06268)
[1.17657] [6.16355] [-0.7384]  [-0.0079] [-0.8720] [7.29196] [10.7041] [6.87280]

AVGVAP(-2) 2910134 -0.017603 -0.013006 -0.116066 -0.189934  0.239285  0.255720  0.260364
(3.11163)  (0.05871) (0.04136)  (0.18262) (0.15018)  (0.11492)  (0.06454)  (0.06429)
[093524] [-0.2998] [-0.3144]  [-0.6355] [-1.2647] [2.08210] [3.96249] [ 4.04955]

MAXVAP(-1)  -0.16089  -0.040276 0.000845  0.010000 -0.083543 -0.08684  -0.02291  0.075961
(1.90928)  (0.03603) (0.02538)  (0.11205) (0.09215)  (0.07052)  (0.03960)  (0.03945)
[-0.08427] [-1.1179] [0.03332] [0.08924] [-0.9066] [-1.2315] [-0.5785] [ 1.92546]

MAXVAP(-2)  -3.052905  0.030094 0.015523  0.110554  0.140071  -0.0009  0.000219  0.000489
(1.92530)  (0.03633) (0.02559)  (0.11299)  (0.09292)  (0.07111) (0.03993)  (0.03978)
[-1.58568] [0.82837] [0.60660] [0.97842] [1.50739] [-0.0126] [0.00547] [0.01229]

R-squared 0.098321 0.421221  0.532502 0.336899  0.031768  0.509402  0.624012  0.474170
Adj. R-squared 0.087771 0.414449  0.527032 0.329141  0.020440  0.503662  0.619613  0.468017
Sum sg. resids 4182438. 1489.177  738.8438 1440555 9742790 5705335  1799.071  1785.674

S.E. equation 57.11770 1.077777  0.759158 3.352130  2.756752  2.109583  1.184623  1.180204
F-statistic 9.319479 62.20042  97.35051 4342276  2.804234  88.74249  141.8454  77.06996
Log likelihood -7084.291  -1930.954  -1476.075 -3403.788 -3149.973  -2802.68  -2053.646 -2048.795
Akaike AIC 10.94036 2.999929  2.299037 5269319  4.878233  4.343107  3.188976  3.181502
Schwarz SC 11.00407 3.063640  2.362748 5333030  4.941945  4.406819  3.252687  3.245213
d'\e/lp‘)?:r?dent 45.47195 2349615  31.84831 80.97042  95.39599  27.03043  29.83451  32.19052

S.D. dependent 59.80243 1.408467  1.103866 4.092655  2.785365  2.994385  1.920733  1.618111

According to the Table 6.16, the effects of the exogenous climatic variables on the
rainfall are considerably small. Though the adjusted R? 8.8%, the fitted model
explained only 9.8% (R?=0.098) of the total variation in the rainfall. The Granger

causality test was applied to examine the direction of causality among the variables.
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This is the technique can be used to determine to one time series is useful in
forecasting another. The test result is displayed from the Table 6.17.

Table 6.17: Result of Granger Causality test

VAR Granger Causality/Block Exogeneity Wald tests

Dependent variable: RAINFALL

Excluded Chi-sq df Prob.
TMAX 11.12273 2 0.0038
TMIN 3.403311 2 0.1824
AVGRH 7.208089 2 0.0272
MAXRH 1.981949 2 0.3712
MINVAPPRES 3.675845 2 0.1591
AVGVAPPRES  3.063885 2 0.2161
MAXVAPPRE 2.565040 2 0.2773

All 260.4913 14 0.0000

According to the above test result, the most of the null hypothesis that the exogenous
climatic variables do not Granger-cause the rainfall do not reject. Average Relative
humidity and maximum temperature are the only two variables made significant
impact on rainfall and useful in forecasting rainfall at the 0.05 level of significance.
Impulse response function was taken and corresponding graphs are presented from
the Figure 6.14.
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Response to Cholesky One S.D. Innovations + 2 S.E.

Response of RAINFALL to RAINFALL
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Figure 6.14: Impulse response function of average relative humidity to rainfall

According to the above figures, there is a positive effect on rainfall in the future with

increasing of average relative humidity in the current period. Also, it can be seen a

decreasing trend of positive effect until the 10" week. The forecasting in weekly
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rainfall is made based on the fitted VAR model. However, the forecasting

performance is not in satisfactory level.

6.5.1. Modeling Deseasonalized Weekly Rainfall with Exogenous Variables

Initially deseasonalized rainfall is tested for the stationary using Augmented Dickey

Fuller Test and those result is presented in the Table 6.18.

Table 6.18. Result of Augmented Dickey Fuller (ADF) test for the deseasonalized

rainfall series

Null Hypothesis: DESEARAINFALL has a unit root
Exogenous: Constant

t-Statistic  Prob.*

Augmented Dickey-Fuller test statistic -33.92381  0.0000
Test critical values: 1% level -3.434980
5% level -2.863472
10% level -2.567848

*MacKinnon (1996) one-sided p-values.

To find the most favorable lag value for the VAR model the selection criterion are

used and those result are presented in Table 6.19.

Table 6.19: Values of the selection criterion for selecting the optimal lag order

Lag LogL LR FPE AIC sC HQ
0 -23241.97  NA 5278460 3587958 3591147  35.89155
1 -21955.63 2554.803  80036.91  33.99326  34.28032*  34.10098
2 -21760.72 3847076  65396.96 3379124  34.33346  33.99471*
3 -21652.87 2115483  61119.13  33.72356  34.52094  34.02278
4 -21567.13  167.0985*  59106.29*  33.69002*  34.74257  34.08500

Table 6.19 shows of different selection criterion for the different lag length order and

selected lag 2 as optimal lag length based on the HQ (Hannan-Quinn Information

Criterion).
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Table 6.20: VAR model for the deseasonalized data

DESEARAINF
ALL(-1)

DESEARAINF
ALL(-2)

TMIN(-1)

TMIN(-2)

TMAX(-1)

TMAX(-2)

MAXRH(-1)

MAXRH(-2)

AVGRH(-1)

AVGRH(-2)

DESEARAI
NFALL

0.040687
(0.03160)
[1.28737]

0.015567
(0.03161)
[ 0.49255]

-1.098819
(1.82917)
[-0.60072]

-2.733121
(1.82685)
[-1.49608]

2.434270
(2.13024)
[1.14272]

-1.213717
(2.08046)
[-0.58339]

-0.240489
(0.62495)
[-0.38481]

0.770743
(0.62278)
[1.23758]

1.759521

(0.61992)
[ 2.83830]

-1.32544
(0.62910)
[-2.10688]

TMIN

0.000310
(0.00062)
[0.50187]

0.000786
(0.00062)
[ 1.27230]

0.282457
(0.03575)
[ 7.90041]

0.142952
(0.03571)
[ 4.00348]

-0.082116
(0.04164)
[-1.9721]

-0.098667
(0.04066)
[-2.4264]

-0.010287
(0.01222)
[-0.8421]

-0.008909
(0.01217)
[0.7318]

-0.039324

(0.01212)
[-3.2454]

-0.012459
(0.01230)
[-1.0132]

TMAX

-0.001808
(0.00043)
[-4.2404]

1.69E-05
(0.00043)
[0.03962]

-0.065415
(0.02468)
[-2.6503]

-0.054216
(0.02465)
[-2.1994]

0.350049
(0.02874)
[12.1781]

0.251906
(0.02807)
[ 8.97349]

0.014838
(0.00843)
[ 1.75958]

0.024349
(0.00840)
[ 2.89756]

-0.044925

(0.00836)
[-5.3706]

-0.017027
(0.00849)
[-2.0058]

MAXRH

-0.001742
(0.00156)
[-1.1180]

-0.000418
(0.00156)
[-0.2681]

-0.139305
(0.09015)
[-1.5452]

-0.016182
(0.09004)
[0.1797]

0.354190
(0.10499)
[3.37358]

0.027541
(0.10254)
[ 0.26860]

0.106858
(0.03080)
[ 3.46929]

0.105139
(0.03069)
[ 3.42538]

0.154067

(0.03055)
[ 5.04263]

0.009466
(0.03101)
[ 0.30530]

AVGRH

0.000250
(0.00193)
[0.12937]

-0.000926
(0.00193)
[0.4789]

0.003032
(0.11192)
[0.02709]

0.152894
(0.11177)
[1.36788]

-0.076543
(0.13034)
[0.5872]

-0.333099
(0.12729)
[-2.6168]

0.047498
(0.03824)
[ 1.24217]

0.019601
(0.03810)
[0.51441]

0.330562

(0.03793)
[8.71519]

0.076492
(0.03849)
[1.98727]

MINVAP

0.001068
(0.00123)
[ 0.86629]

-6.71E-05
(0.00123)
[-0.0544]

0.166319
(0.07133)
[ 2.33167]

0.113821
(0.07124)
[1.50771]

0.000707
(0.08307)
[ 0.00851]

-0.189296
(0.08113)
[-2.3332]

-0.003666
(0.02437)
[-0.1504]

-0.036938
(0.02429)
[-1.5209]

-0.020755

(0.02417)
[-0.8585]

0.003344
(0.02453)
[0.13632]

AVGVAP

0.000216
(0.00069)
[0.31238]

3.77E-05
(0.00069)
[ 0.05449]

0.003570
(0.04004)
[0.08916]

0.021673
(0.03999)
[0.54194]

0.059152
(0.04663)
[ 1.26847]

0.047133
(0.04554)
[ 1.03491]

-0.001391
(0.01368)
[0.1016]

-0.003016
(0.01363)
[0.2212]

-0.015322

(0.01357)
[-1.1290]

-0.013847
(0.01377)
[-1.0054]

MAXVAP

0.000676
(0.00069)
[0.98111]

-0.000831
(0.00069)
[-1.20602]

-0.060858
(0.03987)
[-1.52634]

-0.026915
(0.03982)
[-0.67590]

0.154855
(0.04643)
[ 3.33489]

0.168991
(0.04535)
[3.72639]

-0.007652
(0.01362)
[-0.56174]

-0.007337
(0.01358)
[-0.54049]

-0.015443

(0.01351)
[-1.14280]

0.010172
(0.01371)
[0.74174]
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Table 6.20

: (Continued...)

1)

2)

AVGVAPPRES
Q)

AVGVAPPRES
-2

1

2)

R-squared
Adj. R-squared

Sum sq. resids
S.E. equation

F-statistic

Log likelihood
Akaike AIC

Schwarz SC

Mean
dependent

S.D. dependent

MAXVAPPRE(-

MAXVAPPRE(-

MINVAPPRES(:

-0.042881
(1.27248)
[-0.03370]

MINVAPPRES(-

1.841315
(1.27021)
[ 1.44961]

0.111385
(2.89384)
[ 0.03849]

0.073927
(2.95293)
[ 0.02504]

0.590670
(1.81035)
[0.32627]

-1.799875
(1.82766)
[-0.98480]

-6.908218
(116.606)
[-0.05924]
0.023866

0.011673

3754697.
54.13933
1.957448

-7014.272
10.83401
10.90170

45.43667

54.45812

-0.055376
(0.02487)
[-2.2264]

-0.038222
(0.02483)
[-1.5395]

0.397388
(0.05656)
[ 7.02573]

0.013406
(0.05772)
[0.23228]

-0.048671
(0.03538)
[-1.3754]

0.016848
(0.03572)
[0.47164]

16.53217
(2.27913)
[ 7.25370]
0.442506

0.435543

1434.410
1.058186
63.54890

-1906.636
2.964000
3.031694

23.49615

1.408467

0.019338
(0.01717)
[1.12625]

-0.033937
(0.01714)
[-1.9800]

0.013577
(0.03905)
[ 0.34770]

0.020954
(0.03984)
[ 0.52590]

-0.003547
(0.02443)
[-0.1452]

0.001790
(0.02466)
[0.07257]

16.26530
(1.57340)
[10.3377]
0.567446

0.562043

683.6181
0.730520
105.0298

-1425.656
2.222891
2.290584

31.84831

1.103866

-0.041285
(0.06271)
[0.6583]

0.063208
(0.06260)
[ 1.00967]

0.043512
(0.14262)
[ 0.30508]

-0.039661
(0.14554)
[0.2725]

-0.095244
(0.08922)
[-1.0674]

0.090411
(0.09008)
[1.00371]

52.97403
(5.74695)
[9.21777]
0.093633

0.082312

9120.281
2.668269
8.270919

-3107.122
4.813747
4.881441

95.39599

2.785365

0.019411
(0.07786)
[ 0.24932]

0.125414
(0.07772)
[1.61373]

0.136947
(0.17706)
[0.77346]

0.008109
(0.18067)
[ 0.04488]

0.001536
(0.11077)
[0.01387]

0.071254
(0.11182)
[0.63720]

40.44586
(7.13446)
[ 5.66909]
0.352998

0.344917

14055.80
3.312480
43.68141

-3387.837
5.246282
5.313975

80.97042

4.092655

0.004069
(0.04962)
[0.08201]

-0.014315
(0.04953)
[-0.2889]

0.832626
(0.11285)
[7.37826]

0.251368
(0.11515)
[ 2.18291]

-0.089669
(0.07060)
[-1.2701]

-0.005049
(0.07127)
[-0.0708]

2.681531
(4.54718)
[0.58971]
0.509021

0.502889

5709.765
2.111225
83.00456

-2803.181
4.345425
4413118

27.03043

2.994385

-0.04914
(0.02786)
[-1.7641]

-0.005843
(0.02781)
[-0.2101]

0.686051
(0.06335)
[ 10.8298]

0.267729
(0.06464)
[4.14172]

-0.02363
(0.03963)
[-0.5962]

-0.003074
(0.04001)
[-0.0768]

2519121
(2.55260)
[ 0.98689]
0.623969

0.619272

1799.277
1.185153
132.8520

-2053.72
3.190631
3.258325

29.83451

1.920733

-0.027469
(0.02774)
[-0.99031]

-0.050938
(0.02769)
[-1.83971]

0.447533
(0.06308)
[7.09471]

0.275898
(0.06437)
[ 4.28628]

0.075440
(0.03946)
[1.91171]

-0.004285
(0.03984)
[0.10757]

4.048911
(2.54177)
[ 1.59295]
0.474648

0.468086

1784.049
1.180127
72.33536

-2048.204
3.182132
3.249826

32.19052

1.618111
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Based on the Table 6.20, the effects of the exogenous climatic variables on the
deseasonalized rainfall is considerably small. The Granger causality test was applied
to examine the direction of causality among the variables. The test result is displayed
from the Table 6.21.

Table 6.21: Result of Granger Causality test

VAR Granger Causality/Block Exogeneity Wald Tests
Date: 01/30/19 Time: 16:17

Sample: 1 1300

Included observations: 1298

Dependent variable: DESEARAINFALL

Excluded Chi-sq df Prob.
TMIN 3.352485 2 0.1871
TMAX 1.308047 2 0.5199
MAXRH 1.599714 2 0.4494
AVGRH 10.07149 2 0.0065
MINVAPPRES  2.110683 2 0.3481
AVGVAPPRES  0.002786 2 0.9986
MAXVAPPRE  1.028125 2 0.5981
All 21.88885 14 0.0809

According to the above test result, the average relative humidity is the only variable
that gives significant impact on rainfall and useful in forecasting deseasonalized
rainfall at the 0.05 level of significance. Impulse response function was taken and

corresponding graphs are presented from the Figure 6.15.
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Response to Cholesky One S.D. Innovations + 2 S.E.

Response of DESEARAINFALL to DESEARAINFALL
60

50 |

40

30

20

10

-10 T T T T T T T T T

Response of DESEARAINFALL to AVGRH
60

50 -

40

30

20 |

10

-10 T T T T T T T T T

Figure 6.15: Impulse response function of average relative humidity to

deseasonalized rainfall

According to the above figures, there is a positive effect on rainfall in the future with
increasing of average relative humidity in the current period. Also, it can be seen that
the decreasing trend of positive effect until the 10" week. The forecasting in weekly

rainfall is made based on the fitted VAR model and actual and fitted weekly rainfall

series is presented from the Figure 6.16.
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Figure 6.16: Actual and predicted rainfall in 2015 using VAR model for

desesonalized data

According to the Figure 6.16, there is a much agreement of predicted values with the
actual rainfall values. But still there is a noticeable gap in predicting weekly rainfall

at extreme rainfall events.

6.6. Summary of the Chapter 6

The autocorrelation structure of the weekly rainfall provided the evidence to have a
seasonal behavior with length of 52. Many autoregressive integrated moving average
models were utilized to model weekly data series. Some models were identified as
suitable models for weekly rainfall series based on the selection criteria and those
models are successful in their linear domain. However, the weekly rainfall does not
follow the simple linear regulations. Neither of the GARCH models were successful

to model weekly data due to statistical complexity.
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Thus, as an alternative, the seasonal index was calculated by assuming the additional
model with length of 52 and AR (1)-GARCH (1,1) model was well fitted for the
deseasonalized data series. However, forecasting accuracy was not satisfactory level.
Though two exogenous variables namely, average relative humidity and maximum
temperature significantly effect on weekly rainfall, give low contribution in
forecasting weekly rainfall. Thus, inclusion of exogenous variables too did not
improve forecasting accuracy much more and then the importance of new type of

model was recommended.
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CHAPTER 7

NOVEL APPROACH TO MODEL WEEKLY RAINFALL

7.1. Concept for New Modeling

As explained in the section 6.6 weekly rainfall exhibited mixed features of the non
linearity phenomenon and thus, it is necessary to move to a new class of models
which are beyond the conventional time series approaches. Then, long range
dependency models which have been used to capture the blend features of the
complex time series are considered as initial step in developing new models. The
features of such models can be identified by two different approaches: (i) The
spectral density function with an unbounded peak at the frequency is near to zero and
(if) The autocorrelation function decay the hyperbolically to zero. The periodigram

of weekly rainfall series is shown in Figure 7.1.

Periodogram
3e+05 de+05 Se+05 6e+05

2e+05

1e+05

Oe+00

00 01 02 03 04 05

Frequency

Figure 7.1: The periodgram of the rainfall series from 1990 to 2014

The Figure 7.1 exhibits unbounded spectral density at the near to zero. The
maximum spectrum density of the weekly rainfall series can be seen at a frequency

which is very close to zero (0.0385185). Consequently, different types of long-range
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dependency models are applied with some modifications to capture the real dynamic
of weekly rainfall series. The exact maximum-likelihood method with Durbin-
Levinson algorithm was utilized to estimate the long memory parameters and this
approach has not been tested by the previous authors for rainfall studies. The exact
maximum likelihood method is used to develop for all types of long-range
dependency models. Five types of long-range dependency models: ARFIMA,
ARFIMA for deseasonalized data, ARFIMA-GARCH, ARFIMA-GARCH for the
deseasonalized data and adjusted SARFIMA-GARCH are developed to decide the
best fitted model.

7.2. ARFIMA Long Range Dependency Model

The autoregressive fractionally integrated moving average (ARFIMA) long memory
model is an extension of the conventional ARMA process. The model ARFIMA (p,
d, q) allows the parameter "d" to take the fractional values for differencing and is

known as long memory parameter.

The ARFIMA (p,d,q) model of a process {Y,},., is given by (7.1)

o(B) V* (Y,-n)= 0(B) &, (7.)

Where p is the mean of the process, {¢,},.,is a white noise process with zero mean

and constant variance o2, B is the backward shift operator, such that y, , =B"y,,

¢(B) and 6(B) are autoregressive and moving average polynomials of order p and g

respectively such that

o(B)= i(pi B' 1<i<p (7.2)
0(B)= quej B’ 1<j<q (7.3)
j=1

138



The differencing operator, such that V¢ =(1—B)® can be expressed by the binomial

series as,

a-py -3 k0Dl g

& Kl (d-1)! (74

Where d is defined as the long memory parameter.

The ARFIMA (0, d,0) process is a discrete time series process {Y,},., that satisfies

the following equation.

VY, = g (7.5)

Where d < 1/2, {Yi} is a stationary process and has the infinite moving average

representation
Y, = \V(B)St = Z\ngt—k (7.6)
k=0

(k+d-D)!
Where Yk = g — 1)

K+
It can be easily shown that V& /(d ~1)! as K= o0

Where d >-1/2, {Y:} is an invertible process and has the infinite autoregressive
representation (7.7)
©(B)Y, = anYt—k =& (7.7)
k=0

 (k—d-1)!
Where ™ =g g _1)!

o n ~ K K— o
As aboveitisclear K (-d-1)! as
Thus, d e(—%%] exhibits the process is stationary and invertible. The spectral

density function of the ARFIMA (0, d,0) process {Y,},_, is f(w) that can be written
as (7.8)
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-2d
f(m):(Zsin %) O<w<n (7.8)

f(o)xo? ©—0
The spectral density function f(w) is unbounded when the frequency is near zero.
Also, the auto covariance function at lag k (y, ) and auto correlation function (p, ) of

the process can be expressed as follows

_ _ _ (1 (=2d),
Y = Cov (Y, Yix) = E(yt Yix )_ (k—d)!(— k—d)! (7.9)
and

d(1+d)...(k=1+d)
1-d)(2-d)(3-d)...(k —d)

pe = Corr(y,, Y, ) = (k=1,2,34.) (7.10)

Hosking (1981) showed that the above auto correlation function of the process

satisfies the expression p (k) ~ k*** when 0 <d<%/2 and it decays hyperbolically

to zero as k—w for ARFIMA model. In contrast, p, decays exponential for

ARIMA model. The process with d = 0 reduces to a short memory ARMA model
and under the assumption of stationary Gaussian with zero mean the log-likelihood
function of this process is given by

L(0)= —%Iog det(T',) —%y’l“ely (7.11)

!

Where y =(y,,¥,,Ys......y,) and T, isthe variance co-variance matrix of{Y,}._,

and 0 is the parameter vector. The MLE for 6 was obtained by maximizing the

L(0)

As explained in the section 7.1, the exact maximum likelihood estimation method
was utilized for the parameter estimating and Monte Carlo simulation was carried out
for different "d" values to evaluate the suitability of the estimation method before

applying it for parameter estimation of the weekly rainfall series.

140



7.3. Results of Monte Carlo Simulation - ARFIMA (0, d,0)

A number of Monte Carlo experiments were carried out to evaluate the performance
of the maximum likelihood method used for parameter estimation. The simulation
was done based on various fractional differencing parameter values with 1000
replications. The four different series lengths (n=100, n=200, n=500 and n=1000)
were considered for the simulation. The simulation results provided fractionally
differenced parameter estimates and corresponding standard and mean square errors.
Monte Carlo experiment was conducted on a simulated ARFIMA (0, d,0) series with
parameter values: d=0.1, d=0.15, d=0.3 and d=0.45.

The simulation was carried out using the R programming language (Version 3.4.2)
utilizing a HP11(8GB, 64bit) computer. The "arfima" package (Veenstra and
Mcleod; 2012) in R optimized the log likelihood function and obtained the exact
maximum likelihood estimators. Two algorithms namely Durbin-Levinson and

Trench algorithms were utilized to maximize the log likelihood and obtain optimal
simulation and forecasting results. The standard errors of the estimates SE (Ei) and

mean square error of the estimates MSE (8) can be expressed as;

sed) = (>, —a)/R (7.12)

mse(d) = -, —d)z/R (7.13)

Where ar is the MLE of d for the r'" replication and R is the number of replications.

Tables 7.1 present the average of the estimated (d), SE(d) and MSE (d) for

d=0.1,0.15,0.3 and 0.45 for a generating process of ARFIMA(0,d,0) and for 1000
Monte Carlo replications.
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Table 7.1: Result for exact maximum likelihood estimator of d for a generating
process of ARFIMA (0, d,0)

d n d SE(d) MSE(d)
0.1 100 0.05175 0.09127 0.01066
200 0.07485 0.06268 0.00456

500 0.08856 0.03679 0.00148

1000 0.09499 0.02546 0.00067

0.15 100 0.10487 0.09158 0.01042
200 0.12658 0.05936 0.00407

500 0.14084 0.03680 0.00144

1000 0.14560 0.02541 0.00067

0.3 100 0.24931 0.08773 0.01027
200 0.27264 0.05750 0.00405

500 0.28922 0.03624 0.00143

1000 0.29474 0.02518 0.00067

0.45 100 0.37742 0.06959 0.01011
200 0.40795 0.04772 0.00405

500 0.43103 0.03142 0.00135

1000 0.44359 0.02707 0.00077

The results in Tables 7.1 clearly indicates that the parameter bias has decreased with

the increase in sample size irrespective of long memory parameter d. Furthermore,

the results provide evidence that the parameters become consistent with the increase

in series length. Also, as we expected the standard error and the MSE of the

estimators have decreased with the increase in series length. Thus, it can be

concluded that the performance of the maximum likelihood estimator is reasonably

accurate.
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7.4. Modeling Weekly Rainfall Using ARFIMA Model

The weekly rainfall series from 1990 to 2014 was used to train the model while the
rest was used for validation. Various ARFIMA models were fitted for the data set
and forecasting performance of the models were evaluated by using an independent
sample size 52 (2015). The best fitted model was selected based on the minimum
MAE (7.14).

NME:%ipJ (7.14)
i=1

The ARFIMA (4,0.057924,4) was selected as the best fitted model and the
corresponding estimates are presented in Table 7.2. The constant term was included

irrespective of significant.

Table 7.2: The parameter estimates of the model ARFIMA (4, 0.05792421, 4)

Parameters Estimates Standard Pvalue
Error

0, 1.20698 0.024232 0.00000

0, -0.24938 0.045421 0.00052

04 0.57650 6.32e-07 0.00000

0, -0.67522 6.32e-07 0.00000

0, 1.12444 0.023116 0.00000

0, -0.11315 0.03651 0.00194

0, 0.52201 0.03542 0.00000

0, -0.67435 0.02150 0.00000
Constant -0.01633 0.03808 0.66787
d 0.05792 0.02765 0.03616

It can be concluded with 95% confidence that all model parameters except constant
term are significantly different from zero. The best fitted model can be expressed by
(7.15).
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(L-1.206 B +0.249 B? — 0.576 B® +0.675 B* ) (1— B)**™(Z, +0.016) =

(7.15)
(1+1.124 B-0.113 B2 + 052 B* ~0.674 B* ) ¢,

Where Z: is the standardized weekly rainfall series and B is the back-shift operator.

7.4.1. Residual Analysis for the Model ARFIMA (4, 0.05792421, 4)

The residual of the model was not significantly deviated from the random and the
corresponding correlogram is depicted by Figure 7.2. The significance of p-values in

Figure 7.3 confirms that there is a significant ARCH effect. The heteroskedasticity of
the residual was also confirmed by ARCH LM test (Table 7.3)

Table 7.3: The result of ARCH LM test of ARFIMA (4,0.0579,4)

Heteroskedasticity Test: ARCH

F-statistic 3.721605 Prob. F(3,1293) 0.0111
Obs*R-squared 11.10348 Prob. Chi-Square(3)  0.0112
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob

i i 1 -0.02... -0.02... 0.8901 0.345
] i} 2 0.060 0.060 5.6392 0.060
i 1] 3 -0.00... -0.00... 5.6540 0.130
i 1] 4 0.016 0.012 5.9822 0.200
i 1] 5 0.009 0.010 6.0966 0.297
i 1] 6 0.013 0.012 6.3180 0.389
i i) 7 0.010 0.010 6.4583 0.487
i 1] 8 0.008 0.007 6.5438 0.587
i 'l 9 -0.01.. -0.01.. 6.8279 0.655
i i 1..-0.03.. -0.04... 8.7697 0.554
i 'l 1..-0.01.. -0.01.. 8.9043 0.631
ih I 1.. 0013 0.017 9.1252 0.692
i f 1..-0.02... -0.02... 9.9500 0.698
i i 1..-0.02... -0.02... 10.671 0.712
i i 1..-0.05... -0.04.. 14.148 0.514
i i 1..-0.00... -0.00... 14.184 0.585
i 'l 1..-0.03... -0.02... 15.403 0.566
i ] 1.. -0.00.. -0.00... 15.499 0.627
i 1] 1..-0.00... -0.00... 15.602 0.684
ih i) 2.. 0.007 0.007 15.661 0.737
i 'l 2..-0.02..-0.02.. 16.601 0.735
i il 2..-0.05... -0.05... 20.025 0.581
i ] 2..-001..-0.01.. 20470 0.613
i i 2..-0.04..-0.04.. 23124 0512
i 1] 2.. 0.005 0.002 23.161 0.568
i ] 2..-0.02..-0.01.. 23.789 0.588
ifi il 2.. 0.034 0.033 25.370 0.554
i i 2..-0.04..-0.03.. 27553 0.488
i ] 2..-001..-0.02.. 27.809 0528
i ] 3..-0.02.. -0.02.. 28.434 0.547
i 1] 3..-0.00.. -0.00... 28.437 0.599
i 1] 3.. 0.011 0.006 28.612 0.639
i i 3..-0.03.. -0.03.. 29.990 0.618
] i} 3.. 0.050 0.045 33.353 0.499
i f 3..-0.02.. -0.02... 34.235 0505
i i) 3.. 0.019 0.008 34.717 0530

Figure 7.2: The correlogram of residuals of the model ARFIMA (4,0.0579,4)
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1} i} 1 0.041 0.041 22125 0.137
1} i} 2 0.055 0.053 6.0893 0.048
il i} 3 0.068 0.064 12.116 0.007
1} ] 4 0.046 0.039 14.884 0.005
i i 5-0.01.. -0.02.. 15.336 0.009
i i 6 -0.01... -0.02... 15.696 0.015
i i) 7 0.008 0.007 15.790 0.027
i i 8 -0.02... -0.02.. 16.615 0.034
i 'l 9 -0.02... -0.02.. 17.498 0.041
i i 1..-0.03.. -0.02.. 18.759 0.043
i i 1..-0.03.. -0.02... 20.189 0.043
i i 1..-0.03.. -0.02... 21.481 0.044
i i 1..-0.02..-0.01... 22.434 0.049
i i 1..-0.03.. -0.02... 24.175 0.044
i i 1..-0.04.. -0.03.. 26.336 0.035
i il 1.. 0.024 0.032 27.072 0.041
i i 1..-0.02.. -0.02... 28.103 0.044
ih i) 1.. 0.003 0.006 28.116 0.060
i ] 1..-0.01..-0.01.. 28257 0.079
i i) 2..-0.00... -0.00... 28.274 0.103
i i 2..-0.01.. -0.01... 28.442 0.128
i 1] 2..-0.00... -0.00... 28.442 0.161
i 1] 2.. 0.023 0.020 29.154 0.175
ifi il 2.. 0.040 0.037 31.246 0.147
i ] 2.. 0.198 0.194 83.481 0.000
ifi i 2.. 0.041 0.021 85711 0.000
15| i} 2.. 0.088 0.062 95.925 0.000
i i 2.. 0.018 -0.01.. 96.358 0.000
i i 2.. 0.020 -0.00.. 96.897 0.000
i i 3..-0.00.. -0.00... 96.905 0.000
i i 3..-0.01..-0.01.. 97.102 0.000
'l i 3..-0.02.. -0.02... 97.892 0.000
i i 3..-0.02.. -0.00... 98.504 0.000
i i) 3..-0.01.. -0.00.. 98.966 0.000
i i 3..-0.03.. -0.01... 100.50 0.000
i i 3..-0.03..-0.01... 102.08 0.000

Figure 7.3: The correlogram of squared residuals of the model ARFIMA (4,0.0579,4)
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In spite of the ARCH effect, the model was tested for an independent data set
(weekly rainfall series in 2015). The observed values and the predicted values for the
independent data set are shown in Figure 7.4. The absolute error was calculated to

judge the forecasting power of the model (Table 7.4).
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Figure 7.4: Observed and predicted weekly rainfall in 2015 using the ARFIMA
(4,0.0579,4)

A comparison of result in Table 7.4 and Figure 7.4 claimed that the predicted values
are in reasonably agreement with the observed rainfall values with exception for

higher values of rainfall.
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Table 7.4: The analysis of absolute error (in mm) for the weekly rainfall
in 2015 - [ARFIMA (4,0.0579,4)]

Absolute Error in | Number of | Cumulative
mm weeks (%) (%)
00--10 10 (19.2) 10 (19.2)
11--15 6 (11.5) 16 (30.7)
16--20 6 (11.5) 22 (42.2)
21--25 4 (7.7) 26 (49.9)
26--30 6 (11.5) 32 (61.4)
31--35 1 (1.9 33 (63.3)
36--40 4 (7.7 37 (71.0)
41--45 1 (1.9 38 (72.9)
46--50 2 (3.9) 40 (76.8)

More than 50 12 (23.2) 52 (100.0)

The result in Table 7.4 indicated that the weeks with less than 10 mm error is 19.2%
while 30.7% of weeks' absolue error was less than to 15mm. Moveover, the
percentage points with absoulte error greater than 50 mm is 23.2% but this figure is
lower than the corresponding percentage under the best fitted conventional model
described in section 6.4 (28.8%).

7.5. ARFIMA Long Range Dependency Model for Deseasonalized Data

In the point of view of reducing variability of the original series, ARFIMA was
developed to deseasonalized data series. The methodology of deseasonalization
procedure was discussed in the section 6.4. The best fitted model identified for
deseasonalized data is ARFIMA (5,0.05999,5) and the corresponding parameter

estimates are presented in Table 7.5.
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Table 7.5: The parameter estimates of the model ARFIMA (5,0.05999,5)

Parameters Estimates Standard Pvalue
Error

¢y -0.62733 0.06944 0.00000

0, 0.09028 0.04465 0.04272

0?3 0.75049 0.02278 0.00000

Q, 0.64047 0.05544 0.00000

s 0.09181 0.04207 0.04352

0, -0.61462 0.03889 0.00000

0, 0.12104 0.03908 0.00195

0, 0.79656 0.02380 0.00000

0, 0.61783 0.03909 0.00000

0 0.07839 0.03909 0.04374
Constant -0.01061 0.01038 0.30665
d 0.05999 0.04561 0.00000

All model parameters except constant term are significant at the 0.05 level of
significance. The best fitted model is
(L+0.627 B—0.090 B? - 0.576 B* —0.751 B* —0.092 B ) (1— B)**®(Z, +0.011) =
(1— 0.615 B+0.121 B® +0.797 B® +0.618 B* +0.078 B5) €,
(7.16)
Where Z; is the standardized deseasonalized weekly rainfall series and B is the back-

shift operator.

7.5.1. Residual Analysis

The correlogram plot of the residual (Figure 7.5) provided sufficient evidence to
randomness. The correlogram of the squared residuals is depicted by Figure 7.6
indicates the assumption of the constant variance is significantly deviated. Thus,
ARCH LM test is utilized to test the heteroskedasticity of the residuals and the

corresponding test result is presented by the Table 7.6.
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob

0.018 0.018 0.4216 0.516
0.009 0.009 0.5376 0.764
0.009 0.009 0.6406 0.887
0.008 0.007 0.7146 0.950
-0.00... -0.00... 0.7147 0.982
0.008 0.008 0.7976 0.992
0.012 0.012 0.9943 0.995
0.002 0.001 1.0001 0.998
-0.01... -0.01... 1.2573 0.999
.. -0.04... -0.04... 3.4117 0.970
.. -0.02... -0.02... 4.1915 0.964
0.012 0.013 4.3674 0.976
.. -0.03... -0.03... 5.5686 0.960
. -0.03... -0.03... 6.9676 0.936
.. -0.04... -0.04... 9.3669 0.858
..-0.00... 0.002 9.3696 0.897
.-0.01... -0.01... 9.5966 0.920
0.012 0.014 9.7810 0.939
0.022 0.022 10.427 0.942
0.031 0.029 11.708 0.926
..-0.00... -0.00... 11.708 0.947
.-0.02... -0.02... 12.471 0.947
0.002 -0.00... 12.476 0.962
.. -0.01... -0.02... 12.923 0.967
0.019 0.015 13.392 0.971
0.004 0.001 13.412 0.980
0.042 0.040 15.759 0.957
.. -0.02... -0.02... 16.485 0.958
.. -0.00... -0.00... 16.581 0.968
.-0.01... -0.01... 16.757 0.975
0.008 0.009 16.843 0.982
0.017 0.015 17.210 0.985
.-0.02... -0.02... 17.861 0.985
0.051 0.055 21.338 0.955
..-0.01... -0.01... 21.596 0.963
0.011 0.013 21.749 0.971

o e e e e e i e e i . o e e e N N SN e B e e e e
©ooO~NOUAWNEPE
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Figure 7.5: The correlogram of residuals of the model ARFIMA (5,0.0599,5)
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob

i 1] 1 0.029 0.029 1.0877 0.297
1} i} 2 0.052 0.051 4.6040 0.100
i . 3 0.084 0.081 13.723 0.003
i i 4 0.050 0.043 16.937 0.002
i i 5 -0.01.. -0.02... 17.348 0.004
i i 6 -0.01... -0.02... 17.656 0.007
i i) 7 0.009 0.005 17.768 0.013
i T 8 -0.02... -0.02.. 18.477 0.018
i 'l 9 -0.02.. -0.02.. 19.322 0.023
i i 1..-0.03.. -0.02... 20517 0.025
i i 1..-0.03.. -0.02... 21.780 0.026
i ] 1..-0.03.. -0.02... 23211 0.026
i Ll 1..-0.02.. -0.01.. 23.944 0.032
i i 1..-0.03.. -0.02.. 25.206 0.033
i i 1..-0.03.. -0.02.. 26.983 0.029
i i) 1.. 0.011 0.018 27.139 0.040
i 'l 1..-0.03.. -0.02.. 28.322 0.041
ih i) 1.. 0.005 0.010 28.358 0.057
i i 1..-0.00.. -0.00... 28.444 0.075
i i) 2.. 0.002 -0.00.. 28.448 0.099
i Ll 2..-001..-0.01.. 28.624 0.123
i i 2.. 0.001 -0.00.. 28.625 0.156
i 1] 2.. 0.033 0.030 30.069 0.147
i} i} 2.. 0.043 0.041 32497 0.115
o | 2.. 0.181 0.177 76.137 0.000
i i) 2.. 0.033 0.017 77.586 0.000
M 1] 2.. 0.074 0.047 84.811 0.000
il i 2.. 0.025 -0.01.. 85.634 0.000
ifi i 2.. 0.025 0.000 86.494 0.000
i i 3..-0.00.. -0.01... 86.567 0.000
i i 3..-0.00.. -0.00... 86.605 0.000
'l i 3..-0.02.. -0.02... 87.391 0.000
i T 3..-0.02.. -0.01.. 88.152 0.000
i i) 3..-0.01.. -0.00.. 88.410 0.000
i i 3..-0.03.. -0.01... 90.000 0.000
i i 3.. -0.04.. -0.02... 92.158 0.000

Figure 7.6: The correlogram of squared residuals of the model ARFIMA (5,0.0599,5)
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Table 7.6: The result of ARCH LM test of ARFIMA (5,0.0599,5)

Heteroskedasticity Test: ARCH

F-statistic 4.346847 Prob. F(3,1293) 0.0047
Obs*R-squared 12.95027 Prob. Chi-Square(3) 0.0047

Based on the results shown in Table 7.6, it can be concluded that the ARCH effect is

significant (p-value < 0.05).

However, despite the ARCH effect, the model was tested for the same independent
data set (weekly rainfall series in 2015). The observed and the predicted values for

the independent data set is shown in Figure 7.7.
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Figure 7.7: Observed and predicted weekly rainfall in 2015 using the ARFIMA
(5,0.0599,5) for deseasonalized data

The Figure 7.7 depicts the predicted values are in good agreement with the observed

rainfall values in 2015 than the previous model predictions. Consequently, the most
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of the predicted made based on the model is closer with the observed values.
However, still there is a noticeable gap in capturing the extreme values with the
model. To evaluate the degree of the forecasting performance of the model, the
absolute error distribution was taken and the result is presented by the Table 7.7.

Table 7.7: The analysis of absolute error (in mm) for the weekly rainfall in 2015
[ARFIMA (5,0.0599,5)]

Absolute Error in Number of weeks

mm (%) Cumulative (%)
00--10 17 (32.7) 17 (32.7)
11--15 2 (3.8) 19 (36.5)
16--20 6 (11.6) 25 (48.1)
21--25 2 (3.8) 27 (51.9)
26--30 2 (3.8) 29 (55.7)
31--35 4  (7.8) 33 (63.5)
36--40 1 (19 34 (65.4)
41--45 2 (3.8) 36 (69.2)
46--50 3 (5.8 39 (75.0)

More than 50 13 (25.0) 52 (100.0)

Based on the result of the Table 7.7, the weeks which with less than 10mm error is
32.7%. This is a considerable increment of the number of weeks (by 13.5%)
compared with the previous model predicted weeks in the same category. However,
the number of weeks which give more than 50 mm absolute error have been slightly
increased (by 1.9%).

7.6. ARFIMA Long Range Dependency Model with Heteroskedasticity

The long-range dependency models so far discussed showed heteroskedasticity in the
innovation. Thus, GARCH model is employed to capture the stochastic volatility of
mean ARFIMA models. Some properties of the ARFIMA-GARCH model is

discussed by the next section.
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The ARFIMA (p, d, q)-GARCH (r, s) model of a discrete time series process {Y, },.,

is defined by the following formula,

o(B) V' (Y,—n)= 6(B) e, (7.17)
e /F_, ~N(@Oh)

hy =0, + > 0el; + > Bihy (7.18)
i=1 i=1

Where % >0 @10y, 0500, 20,3, B5.B5Bs 20 a0 5 are positive integers, d

is a real number and B is the backward-shift operator. The term Fi+ is the set of

which derived by the © field past information fecuezes oB) and 0(B) are

autoregressive and moving average polynomials of order p and q respectively (Refer
7.2 and 7.3)

Where, d < 1/2 the {Y,},_, is the second order stationary and it can be written as the

following (Ling and Li,1997).

G Z(t.?dd 13' (7.19)

Ifd >-1/2 the {Y,},_, is invertible and &, can be written as follows

k+d-1)!

® _(p(B)e_l(B)z(k'(d 1)

Y, « (7.20)
The maximum likelihood estimates for the parameters A of the model ARFIMA-

GARCH is obtained by maximizing the conditional log likelihood I,

S —8— (7.21)
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Where, L= (y",8") and y=(9;,9;,...0,,0;,0,,...06,,d)" and

8 = (0g, 0y, 0y ey, By s By Be) T

The maximum likelihood estimation (MLE) method was employed to obtain
estimates for model parameters. To evaluate the suitability of the method for
parameter estimation, a Monte Carlo simulation was done with various fractional

differencing values.

7.7. The Results of Monte Carlo Simulation - ARFIMA-GARCH

The simulation results provided fractionally differenced parameter estimations,
variance model parameters estimations along with the corresponding standard error
(SE) and mean square errors (MSE) of the parameters. It was carried out based on
1000 replications with different sizes of samples (n=100, n=200, n=500 and n=1000).
The Monte Carlo experiment was conducted on a simulated ARFIMA (0, d,0)-

GARCH (1,1) series with following parameter combinations.

a,=0.15 0, =02,B,=0.6 h, =0.15+0.2¢2, +06h
d=0.1,0.15,0.3 and 0.45

The simulation was carried out with R programming language (Version 3.4.2) using
HP11 (8GB, 64bit) computer. The package "rugarch” in R optimized the log

likelihood function and obtained the exact maximum likelihood estimators.

Table 7.8-7.11 present the average of the estimated d, a, a,and B, which were

computed based on 1000 replications. Furthermore, the Tables report the standard

error of the estimates SE (d ) (Refer 7.12), SE (a,), SE (4a,)and SE(B,) along with

the mean square error of the estimates MSE(&) (Refer 7.13), MSE(4, ), MSE(a,)

and MSE(ﬁl) respectively such that:

SE(a,) = \/ZR:(&Or —&0)/R (7.22)
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SE(&l) = ZR:(&lr - &1)/R (7.23)

seff,) = > b, —ﬁl)/R (7.24)

Where a,,,a,, and B,, are the MLE of a,,a,and B, for the r'" replication. The value

R denotes the number of replications. The relevant MSE can be expressed as follows,

2
MSE(G,) = 3,(60 ~a0) /R 72
R 2
MSE(,) = 3 (6, ) /R 7.26
A R [~ 2
IVISE(Bl) = rzzl(Brl —Bl) / R (7.27)

Table 7.8: The MLE of d, o,,a,and B, of a generating process of ARFIMA (0,d,0)

- GARCH(1,1) with a, = 0.15, o, =0.2, B, = 0.6 and d=0.1.

n 100 200 500 1000
d 0.07505 0.08082 0.08952 0.09515
SE(d) 0.07783 0.06094 0.04054 0.02700
MSE(d) 0.00668 0.00408 0.00175 0.00075
&, 0.07094 0.10044 0.13805 0.15129
SE( ) 0.11041 0.11266 0.08602 0.05281
MSE(a,) 0.01844 0.01515 0.00754 0.00279
&, 0.11152 0.14204 0.17934 0.19368
SE(4,) 0.15044 0.13060 0.08878 0.05363
MSE(d,) 0.03046 0.02041 0.00831 0.00292
B, 0.80155 0.72727 0.63664 0.60262
SE(B,) 0.25925 0.25851 0.18672 0.11003
MSE(B, ) 0.10783 0.08303 0.03621 0.01211
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Table 7.9: The MLE of d, o,,a,and B, of a generating process of ARFIMA (0,d,0)

- GARCH(1,1) with a, =0.15, o, = 0.2, B, = 0.6 and d=0.15,

n 100 200 500 1000
d 0.11464 0.12679 0.13967 0.14532
SE(d) 0.08943 0.06719 0.04076 0.02699
MSE(d) 0.00925 0.00505 0.00177 0.00075
Og 0.07373 0.10263 0.13947 0.15182
SE(G) 0.11536 0.11276 0.08426 0.05165
MSE(d,) 0.01913 0.01496 0.00721 0.00267
&, 0.11405 0.14460 0.18109 0.19436
SE(d,) 0.15295 0.13012 0.08719 0.05214
MSE(d,) 0.03078 0.02000 0.00796 0.00275
B, 0.79587 0.72149 0.63318 0.60122
SE(B,) 0.26576 0.25888 0.18252 0.10656
MSE(B, ) 0.10899 0.08178 0.11619 0.12755

Table 7.10: The MLE of d, a,,0,and B, of a generating process of ARFIMA
(0,d,0) - GARCH(1,1) with o, =0.15, o, =0.2, B, = 0.6 and d=0.3.

n 100 200 500 1000
d 0.26080 0.27842 0.29125 0.29612
SE(d) 0.10273 0.06993 0.04059 0.02709
MSE(d) 0.01209 0.00536 0.00172 0.00075
0, 0.07279 0.10395 0.14538 0.15580
SE(0) 0.11401 0.11185 0.08353 0.04915
MSE(d.,) 0.01896 0.01463 0.00700 0.00245
a, 0.11525 0.14725 0.18548 0.19766
SE(4,) 0.15669 0.12942 0.08246 0.04560
MSE(4,) 0.03173 0.01953 0.00701 0.00209
B, 0.79651 0.71849 0.62025 0.59233
SE(B,) 0.26847 0.25394 0.17527 0.09419
MSE(B,) 0.11069 0.07853 0.03113 0.00893
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Table 7.11: The MLE of d, o,,a,and B, of a generating process of ARFIMA (0,d,0)

- GARCH(1,1) with a, =0.15, o, = 0.2, , = 0.6 and d=0.45,

n 100 200 500 1000
d 0.40720 0.42797 0.44289 0.44770
SE(d) 0.08894 0.05994 0.03755 0.02646
MSE(d) 0.00974 0.00408 0.00146 0.00071
G, 0.07601 0.12041 0.14941 0.15630
SE(G) 0.11293 0.11916 0.08161 0.04862
MSE(0.,) 0.01823 0.01507 0.00666 0.00240
&, 0.12065 0.15949 0.18873 0.19784
SE(4,) 0.15684 0.12548 0.07863 0.04476
MSE(,) 0.03090 0.01739 0.00631 0.00201
B, 0.78589 0.68169 0.61120 0.59154
SE(B,) 0.26907 0.25938 0.16700 0.09219
MSE(4,) 0.10696 0.07395 0.02835 0.00857

Tables 7.8-7.11 provide evidence to the parameter bias has decreased as with the
increase of the series length irrespective of long memory parameter d. It is also noted
that the parameters become consistent with the increase in series length. Standard
error and the MSE of estimators decrease with the increase in series length as
expected. Thus, we can conclude that a sensible estimation of the maximum
likelihood estimator for the fractional differencing parameters and variance model

parameters. It is noted that the parameters estimates for the d, o,,and «, get much

low value than real at small sample size while B,get much high values than real

parameter value at small size of sample. This feature is highlighted in all above

combinations.

7.8. Modeling Weekly Rainfall Using ARFIMA-GARCH Model

Many ARFIMA-GARCH models were fitted to the weekly rainfall series data with
the size of the sample being 1300. Those fitted were employed to predict the weekly
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rainfall over the year 2015. The best fitted model is selected with minimum mean
absolute error (MAE).

A model ARFIMA (4,0.116577,6)-GARCH (1,1) was found to be the best fitted
model for the weekly rainfall series. The corresponding parameter estimates with

standard errors are presented in Table 7.12.

Table 7.12: The parameter estimates of the model ARFIMA (4,0.116577,6)-

GARCH (1,1)
Parameters Estimates Standard pvalue
Error

! 2.986950 0.00062 0.00000

?, -4.00000 0.000755 0.00000

s 2.927562 0.000603 0.00000

?, -0.968635 0.000313 0.00000

0, -2.952466 0.00007 0.00000

6, 3.855760 0.00006 0.00000

0, -2.678475 0.00006 0.00000

6, 0.729736 0.00003 0.00000

0 0.138485 0.00013 0.00000

06 -0.042142 0.000171 0.00000
Constant 44.6898 0.89140 0.00000
d 0.116577 0.027478 0.01482

0o 829.99100 40.62404 0.00000

oy 0.268774 0.046747 0.00000

p 0.525041 0.031188 0.00000

All the model parameters of the mean and variance model are significant at 0.05

level of significance. The mean and variance model equations can be expressed by

(7.28) and (7.29) respectivel

Y.
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(L-2.987 B+4.000 B — 2.928 B +0.969 B* ) (1— B)***(Y, — 44.690 ) =
(1-2.953 B+3.856 B? — 2.678 B® +0.730 B* +0.138 B* —0.042 B® ) ¢,

(7.28)
Where Y is the weekly rainfall series and
e /F,_, ~ N@O,h,)
h, =829.991 +0.269 ¢, +0.525h_,
(7.29)

7.8.1. Residual Analysis for the Model ARFIMA (4,0.116577,6)-GARCH (1,1)

The residuals analysis was carried out and the corresponding test result of the

residual and squared residual are presented in Table 7.13 and Table 7.14
respectively.

Table 7.13: The result of weighted Ljung-Box test on standardized residuals of the
model ARFIMA (4,0.116577,6)-GARCH (1,1)

Lag order Statistics p-value

Lag [1] 0.01070 0.9176
Lag [29] 13.3572 0.9981
Lag [49] 22.5723 0.7354

Table 7.14: The result of weighted Ljung-Box test on standardized squared
residuals of the model ARFIMA (4, 0.116577,6)-GARCH (1,1)

Lag order Statistics p-value
Lag [1] 0.8163 0.3663
Lag [29] 1.326 0.7824
Lag [49] 2.1558 0.8856

Based on the result of the Table 7.13 and Table 7.14, the residuals as well as squared

residuals derived from the model are not significantly deviated from random.
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However, the ARCH LM test is applied to test the heteroskedasticity of the residuals
and the results is presented by the Table 7.15.

Table 7.15: The result of weighted ARCH LM test of the model ARFIMA
(4,0.116577,6)-GARCH (1,1)

Lag order Statistics | p-value
ARCH Lag [3] | 0.003621 | 0.9520
ARCH Lag [5] | 0.823101 | 0.7861
ARCH Lag [7] | 1.198062 | 0.8794

Based on the results indicated by the Table 7.15, it can be concluded that the there is
no ARCH effect moreover (pvalue > 0.05, the null hypothesis that the there is no
ARCH effect is not rejected). Thus, the model was tested for weekly rainfall data in

2015 and the observed and predicted values are illustrated by the Figure 7.8.
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Figure 7.8: Observed and predicted weekly rainfall in 2015 using the model
ARFIMA (4, 0.116577,6)— GARCH(1,1)
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The Figure 7.8 depicts that there is no much improvement in forecasting result
compared with the ARFIMA model (Section 7.2). However, those predicted values
made based on the model with good accuracy by accounting the heteroskedasticity.
To assess the power of the forecasting the absolute error was calculated and result is
presented by Table 7.16.

Table 7.16: The absolute error in mm for the weekly rainfall in 2015
ARFIMA (4, 0.116577, 6)— GARCH(1,1)

Absolute Forecasting | Number of

Error in mm weeks (%) | Cumulative (%)
0-10 10 (19.2) 10 (19.2)
11-15 03 (5.8 13 (25.0)
16-20 06 (115 19 (36.5)
21-25 06 (115 25 (48.0)
26-30 07 (13.6) 32 (61.6)
31-35 03 (5.8) 35 (67.4)
36-40 01 (1.9 36 (69.3)
41-45 02 (3.8) 38 (73.1)
46-50 02 (3.8) 40 (76.9)

More than 50 12 (23.1) 52 (100.0)

The number of weeks which with less than 10 mm error and more than 50 mm error
are 19.2% and 23.1% respectively. This seems to be much similar result which made
based on the model of ARFIMA. Moreover, the percentage points with absoulte error
less than 15 mm is 25.0% and this considerable lower than the percentage points with
less than 15 mm error which predicted using only mean model ARFIMA (30.7%).

7.9. ARFIMA Long Memory Model for Deseasonalized data with
Heteroskedasticity

To improve the power of forecast performance and model accuracy simultaneously,
the model ARFIMA-GARCH was utilized for the deseasonalized weekly rainfall
series. The best fitted model is identified as ARFIMA (6,0.243588,5)-GARCH (1,1)

and the estimated parameter is presented by Table 7.17.
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Table 7.17: The parameter estimates of the model ARFIMA (6,0.243588,5) -

GARCH (1,1) for deseasonalized series

Parameters | Estimates Standard pvalue
Error

0, 0.760948 0.040762 0.00000

0, 0.354948 0.000021 0.00000

o, -0.019284 0.000003 0.00000

0, 0.367182 0.000022 0.00000

s -0.425125 0.000025 0.00000

0g -0.038733 0.000004 0.00000

0, -0.926677 0.000038 0.00000

0, -0.324362 0.000022 0.00000

0, 0.074596 0.000013 0.00000

0, -0.276101 0.000020 0.00000

0, 0.451520 0.000026 0.00000
Constant 3.625243 0.040762 0.00000
d 0.243588 0.027423 0.00000

o 52.99254 1.834374 0.00000

o, 0.004739 0.000278 0.00000

B 0.977096 0.001344 0.00000

All the parameters, including both mean and variance model parameters are
significant at 0.05 level of significance. The mean and variance model equations can

be expressed by (7.30) and (7.31) respectively.

(L-0.761B +0.355 B2 — 0.019 B +0.367 B* —0.425 B® —0.039 B® ) (1- B)****(Y, —~3.625) =
(1-0.927 B-0.324 B2 +0.075 B® —0.276 B* + 0.452 B® ) ¢,

(7.30)
Where Yt is the deseasonalized weekly rainfall series and
e /F,_, ~ N(@O,h,)
h, =52.9925 +0.0047 &2, +0.9771h
(7.31)
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7.9.1. Residual Analysis for the Model ARFIMA (6,0.243588,5) -GARCH (1,1)
for Deseasonalized Series

The residual analysis was carried out and the residuals and squared residual are not

deviated from the random at 0.05 level of significance. The corresponding results of

the residual analysis are presented by Table 7.18 and 7.19.

Table 7.18: The result of weighted Ljung-Box test on standardized residuals of the
model ARFIMA (6,0.243588,5)-GARCH (1,1)

Lag order Statistics p-value
Lag [1] 0.02113 0.8844
Lag [32] 8.20596 0.9999
Lag [54] 17.2109 0.9988

Table 7.19: The result of weighted Ljung-Box test on standardized squared
residuals of the model ARFIMA (6,0.243588,5)-GARCH (1,1)

Lag order Statistics p-value
Lag [1] 0.5809 0.44595
Lag [19] 7.0749 0.57489
Lag [59] 9.4116 0.63265

According to the result of the Table 7.18 and Table 7.19, the residuals and squared
residuals are not significantly deviated from random. However, the ARCH LM test is
employed to test the heteroskedasticity of the residuals and the corresponding results
is presented by the Table 7.20.
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Based on the results indicated by the Table 7.20, it can be concluded that the there is
no ARCH effect moreover in this model also (pvalue > 0.05). Thus, the model was

tested for weekly rainfall data in 2015 and the observed and predicted values are

Table 7.20: The result of weighted ARCH LM test of the model

ARFIMA (6,0.243588,5)-GARCH (1,1)

Lag order Statistics | p-value
ARCH Lag [3] | 0.006004 0.9382
ARCH Lag [5] | 1.158850 0.6864
ARCH Lag [7] | 1.670715 | 0.7865

presented by the Figure 7.9.
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Figure 7.9: Observed and predicted weekly rainfall in 2015 using the model
ARFIMA (6,0.243588,5)-GARCH (1,1) for deseasonalized data
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According to the forecast result, which depicts from the Figure 7.9, there is a
considerable good agreement with the observed and predicted. However, there is a
still noticeable gap in predicting extreme rainfall events. Thus, to evaluate the degree
of the forecasting performance the absolute errors were calculated and the

corresponding result is presented in Table 7.21.

Table 7.21: The analysis of absolute error in (mm) for the weekly rainfall in 2015
ARFIMA (6,0.243588,5)-GARCH (1,1) for deseasonalized data

Absolute Forecasting | Number of

Error in mm weeks (%) | Cumulative (%)
0-10 16 (30.8) [16 (30.8)
11-15 6 (11.6) [19 (42.49)
16-20 5 9.6) |24 (52.0
21-25 2 (3.8 28 (55.8)
26-30 2 (3.8 28  (59.6)
31-35 1 (19 30 (615)
36-40 3 (5.8 32 (67.3)
41-45 1 (19 37 (69.2)
46-50 4 (1.7 39 (76.9)

More than 50 12 (23.1) |52 (100.0)

The number of weeks which with less than 10 mm error is slightly decreased than the
weeks in the same category predicted based on the ARFIMA for deseasonalized data.
The percentage points less than 15 mm absolute error was 42.4%. This is a good
confirmatory agreement with the observed. It is important to note that those
predictions were made based on the model with good accuracy by accounting the
heteroskedasticity and most of the weeks predictions are get closer values for the

observed.

7.10. Adjusted SARFIMA -GARCH Long Range Dependency
Model

A series that present long memory features and periodic behavior with the

conditional variance, SARFIMA model with GARCH type innovation is much
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suitable for the modeling such a kind of a stochastic process. The adjusted
SARFIMA-GARCH model was utilized to capture the real dynamic of weekly
rainfall series are discussed in this section. Initially, Seasonal Autoregressive
Fractional Moving Average Model (SARFIMA) was applied to capture the long
memory features along with the seasonal behavior of the process and fitted GARCH
model for the residual which derived from the SARFIMA.

The SARFIMA model is a natural extension of the ARFIMA process with an
additional seasonal filter by Porter-Hudak (1990). The model consists of long
memory dependency features with periodic behavior in terms of the data.

A SARFIMA (p,d,q)x(P,D,Q)s model of a process {Y,},., is given by the formula
(7.32)

o(B) W(BSJ v V2 (Y, —p)= 0(B) 0(B%)e, (7.32)
Where u is the mean of the process, {¢,},.,1s a white noise process with zero mean

and constant variance . B is the backward shift operator such that y,_, =B" y,

and S is the seasonal length. ¢(B) and y(B) are the non seasonal and seasonal

autoregressive polynomials of order p and P respectively such that
P
v(B)=> v, B 1<k<P (7.33)
k=1

0(B) and @(B) are the non-seasonal and seasonal moving average polynomials of

order g and Q respectively defined as

0(B)= i@m B™ 1<m<Q (7.34)

m=1

The seasonal operator VS =(1—B®)® can be expressed by the binomial series as,

sy e (k+D-D) ! g
(1-B%) _Z;—k! D11 B (7.35)

When d=0 and D=0, the model is reduced to a classical SARIMA model. If

conditions 0 < d < 0.5 and 0 < D < 0.5 are satisfied, then the process becomes
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stationary. The spectral density function of the SARFIMA model can be written as
follows:

2

f. (7»)— 0, eq(e_ix)2 ‘G)Q(e_mr ‘l_eix“z"‘l_em“w

B “in )2 —inn Y2

2eoy e | osle ™)
The maximum likelihood estimation (MLE) method was employed to obtain
estimates for model parameters of adjusted SARFIMA-GARCH. To evaluate the

(7.36)

suitability of the method for parameter estimation, a Monte Carlo simulation was
done with various combination of seasonal and non-seasonal fractionally differenced

parameter values.

7.11. The Result of Monte Carlo Simulation - Adjusted SARFIMA-GARCH

In order to evaluate the performance of the maximum likelihood method in
estimating the parameters of the model, a number of Monte Carlo experiments were
carried out. The simulation results provided non-seasonally and seasonally
differenced parameter estimations and the corresponding standard error (SE) and
mean square errors (MSE) of the parameters. As well as the variance model
parameters estimations were done by fitting GARCH (1,1) model to the residuals of
the SARFIMA model. It was carried out based on 1000 replications with different
sizes of samples (n=100, n=200, n=500 and n=1000). Seasonal length was
considered as 52 corresponding to weekly rainfall. Monte Carlo experiment was
conducted on a simulated SARFIMA (0, d,0) x (0, D,0)s.-GARCH (1,1) series with

following parameter combinations.

d=0.1 and D=0.45 d=0.15 and D=0.45
d=0.3 and D=0.3 d=0.45 and D=0.10.
0, =0.15a, =0.2,8,=0.6 h, =0.15+0.2¢2, +0.6h,,

Here also, the "arfima™ package (Veenstra and Mcleod; 2012) in R optimized the log
likelihood function and obtained the exact maximum likelihood estimators. The

simulation was carried out with R programming language (Version 3.4.2) using

168



HP11 (8GB, 64bit) computer. Table 7.22-7.25 present the average of the estimated d,

D, a, a,andf, which were computed based on 1000 replications. Furthermore, the

tables report the standard error of the estimates SE (a ) (Refer the equation 7.12), SE
(D) and mean square error of the estimates MSE (a) (Refer the equation 7.13) and
MSE (D ) respectively such that:

SE(D) - ZR:(Dr—Iﬁ)/R (7.37)

r=1
Where D, is the MLE of D for the r'" replication. The value R denotes the number

of replications. The relevant MSE can be expressed as

Mse(®) =3 (B, - D)2 / R (7.39)

r=1

Table 7.22: The MLE of D, d, a,,a,and B, of a generating process of SARFIMA

(0,d,0)%(0,D,0)-GARCH(1,1) with a, = 0.15, o, = 0.2, B, = 0.6 and d=0.1

and D=0.45.

n 100 200 500 1000
d 0.01467 0.05484 0.0843 0.09292
SE(d) 0.08838 0.06595 0.04484 0.03621
MSE(d) 0.01509 0.00639 0.00226 0.00136
5 0.45352 0.45605 0.45416 0.45195
SE(D) 0.01822 0.01225 0.00983 0.00946
MSE(D) 0.00034 0.00019 0.00011 0.00009
Og 0.18195 0.22167 0.1819 0.16081
SE(d,) 0.18514 0.16380 0.09834 0.05415
MSE(a.,) 0.03530 0.03197 0.01069 0.00305
&, 0. 07455 0.12917 0.16441 0.17743
SE(d,) 0.10350 0.08670 0.06012 0.04205
MSE(d,) 0.02645 0.01253 0.00489 0.00228
B, 0.68152 0.56483 0.58804 0.60484
SE(B,) 0.29227 0.26419 0.16632 0.09476
MSE(B,) 0.09207 0.07103 0.0278 0.00900
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Table 7.23: The MLE of D, d, o,,a,and B, of a generating process of SARFIMA
(0,d,0)x(0,D,0)-GARCH(1,1) with a,=0.15, a, =0.2, 3, =0.6 and
d=0.15 and D=0.45.

n 100 200 500 1000
d 0.06048 0.10293 0.13361 0.14238
SE(d) 0.08897 0.06597 0.04649 0.03320
MSE(d ) 0.01593 0.00657 0.00243 0.00116
D 0.45308 0.45579 0.45375 0.45202
Se(D) 0.01843 0.01234 0.00988 0.00914
MSE(D) 0.00035 0.00019 0.00011 0.00008
a, 0.18121 0.22116 0.18212 0.16279
SE(0.,) 0.18684 0.16349 0.09808 0.05617
MSE(d,) 0.03588 0.03179 0.01065 0.00332
a, 0.07384 0.12846 0.16441 0.17651
SE(d,) 0.10309 0.08673 0.06031 0.04232
MSE(d,) 0.02654 0.01264 0.0049 0.00234
B, 0.6848 0.56624 0.5878 0.60321
SE(B,) 0.29133 0.26447 0.16619 0.09872
MSE(B,) 0.09206 0.07109 0.02777 0.00976
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Table 7.24: The MLE of D, d, o,,a,and B, of a generating process of SARFIMA
(0,d,0)x(0,D,0)-GARCH(1,1) with a,=0.15,a, =0.2,,=0.6 and

d=0.3 and D=0.3.

n 100 200 500 1000
d 0.22345 0.25789 0.28404 0.29191
SE(d) 0.09362 0.06618 0.04542 0.03169
MSE(d) 0.01463 0.00615 0.00232 0.00107
D 0.27587 0.29134 0.29554 0.29794
SE(D) 0.07678 0.04156 0.02733 0.01963
MSE(D) 0.00648 0.0018 0.00077 0.00039
0 0.1966 0.20161 0.17253 0.16032
SE(a,) 0.18468 0.14769 0.08641 0.05143
MSE(d,) 0.03628 0.02448 0.00798 0.00275
a, 0.12848 0.15819 0.18011 0.18738
SE(d,) 0.12329 0.09166 0.06233 0.04201
MSE(d,) 0.02032 0.01015 0.00428 0.00192
B, 0.60489 0.56268 0.58478 0.59574
SE(B,) 0.31005 0.24688 0.15138 0.09276
MSE(B,) 0.09615 0.06234 0.02315 0.00862
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Table 7.25: The MLE of D, d, o,,a,and B, of a generating process of SARFIMA
(0,d,0)x(0,D,0)-GARCH(1,1) with a,=0.15,a, =0.2,,=0.6 and
d=0.45 and D=0.1.

n 100 200 500 1000
d 0.36677 0.39857 0.426 0.43861
SE(d) 0.08139 0.05613 0.03725 0.02884
MSE(d) 0.01356 0.0058 0.00196 0.00096
D 0.02071 0.07194 0.09022 0.09427
SE(D) 0.14222 0.06721 0.03566 0.02765
MSE(D) 0.02652 0.0053 0.00137 0.0008
g 0.18613 0.18885 0.16614 0.15776
SE(0) 0.15882 0.13244 0.07836 0.04814
MSE(0,) 0.02653 0.01905 0.0064 0.00238
a, 0.17649 0.1903 0.19467 0.19621

SE(d,) 0.13421 0.09716 0.06178 0.042
MSE(4,) 0.01857 0.00953 0.00384 0.00178
B, 0.56087 0.54565 0.57909 0.59065
SE(B,) 0.29032 0.23251 0.1397 0.0877
MSE(B,) 0.08582 0.05701 0.01995 0.00778

The parameter bias has decreased as with the increase of size of the sample
irrespective of the differencing parameters. Also, it is clearly seen, the parameters
become consistent with the increase in series length. Standard error and the MSE of
estimators decrease with the increase in series length as anticipated. Thus, Tables
7.22-7.25 give evident for a rational estimation of the maximum likelihood estimator
for the non-seasonal and seasonal fractional differencing parameters along with the

variance model parameters.
7.12. Modeling Weekly Rainfall Using Adjusted SARFIMA-GARCH Model

Several SARFIMA models were fitted to the weekly rainfall series data with the size
of the sample being 1300. A model SARFIMA (1, 0.116, 1)x (1, 0.171, 0).,was
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found to be the best fitted model for the weekly rainfall series. Since the
heteroskedasticity existed of the residual derived from the best fitted SARFIMA
model, GARCH model is employed to residual from the SARFIMA. The
corresponding mean and variance model parameter estimates are presented by Table
7.26.

Table 7.26: The parameter estimates of the model SARFIMA (1,0.115677,1)

x(1,0.170750,0)s2 with GARCH(1,1)

Parameters Estimates Standard Pvalue
Error

0y -0.911360 0.14272 0.00000

0, -0.901880 0.14983 0.00000

Y, -0.086060 0.03948 0.00000
Constant 0.004100 0.10213 0.00000
d 0.115677 0.02696 0.00000

D 0.170750 0.02912 0.00000

Oy 0.225230 0.03139 0.00000

oy 0.234890 0.045240 0.00000

p 0.568650 0.042180 0.00000

All the model parameters of the mean as well as variance equation are significant at
0.05 level of significance. The model mean and variance equations can be expressed
by (7.39) and (7.40) respectively.

1+0.9114 B)(1+0.0861 B%2)(1— B)*****"(1— B%2)**"*"*(Z, —0.004100 ) =
( ) t
(1-0.90188 B) ¢,

(7.39)
Where Zt is the standard weekly rainfall series and
e /F._, ~N(,h,)
h, = 0.22523 +0.23489 2, +0.56865h |,
(7.40)
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The residual analysis was carried out for the mean model and the residuals are
random at 0.05 level of significant. However, the squared residual is significantly
deviated from the random. Thus, ARCH LM test was applied to test the ARCH effect
and the based on the test result [Test statistic = 18.48707 (pvalue = 0.04228)], it can
be concluded that the ARCH effect is presented at 0.05 level of significance. Thus, to
capture the stochastic volatility a variance model [GARCH (1,1)] was utilized for the
residual derived from the model SARFIMA. Since the
SARFIMA (1, 0.116, 1)x(1, 0.171, 0),,is selected as best fited mean model to

describe the weekly rainfall behavior, the model was utilized to predict the weekly
rainfall over the year 2015. The Figure 7.10 illustrates the observed weekly rainfall

over the year 2015 along with the predicted estimates.
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Figure 7.10: Observed and predicted weekly rainfall in 2015 using the
SARFIMA (1, 0.116, 1)x(1, 0.171, 0),,

The Figure 7.10 depicts the much agreement with observed and predicted values

except extreme rainfall events. Same as the previous sections, the absolute errors
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were calculated to test the forecasting power of the model and the corresponding

result is presented in Table 7.27.

Table 7.27: The analysis of absolute error in mm for the weekly rainfall in
2015 SARFIMA (1, 0.116, 1)x(1, 0.171, 0),,

Absolute Forecasting | Number of

Error in mm weeks (%) | Cumulative (%)
0-10 12 (23.1) 12 (23.1)
11-15 4 (1.7 16 (30.8)
16-20 4 (1.7 20 (38.5)
21-25 5 (9.6 25 (48.1)
26-30 6 (115 31 (59.6)
31-35 4 (1.7 35 (67.3)
36-40 3 (5.8 38 (73.1)
41-45 1 (19 39 (75.0)
46-50 3 (5.8 42 (80.8)

More than 50 10 (19.2) 52 (100.0)

Based on the above forecasted result, the weeks with less than 10 mm is 23.1%.
Since seasonal pattern was accounted when building the model as an additional
feature, we expect the considerable high percentage for this category. It is noted that
the weeks which with more than 50 mm error is slightly lower than the others.

However, the forecasting performance is not much differ from the ARFIMA.

7.13. Comparison of the Five Long Range Dependency Models

To select the best model, the forecasting performance of the models are evaluated
based on the predicted result which made from 2015 to 2017. All the models were
made using data from 1990 to 2014 and their forecasting performance were assessed
by using an independent data set (from 2015 to 2017). The comparison was done by

accounting model accuracy with the power of the forecasting of the models.

A simple index is introduced to measure the forecasting performance by assigning

weights for the absolute error as follows (Table 7.28).
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Table 7.28: The weights assigned for the absolute forecasting error category

Absolute Forecasting Error
Category Weights
00-10 9
11-15 7
16-20 5
21-25 3
26-30 1
31-35 -1
36-40 -3
41-45 -5
46-50 -7
More than 50 -9

An index (1) was developed by multiplying the frequency of the corresponding
categories with their weights. The model which with highest values of the index was
considered as the model having best forecasting performance. The analysis of the
absolute errors using data from 2015 to 2017 were carried out and the corresponding
results are shown in Appendix -2. The calculated indices are presented in Table 7.29.
The observed and predicted values from the five models for an independent data set
(from 2015 to 2017) are shown by Figures 7.11-Figure 7.15 respectively and the five
long range dependency models are,

Model -1 - ARFIMA (4,0.05792,4)
Model -2 - ARFIMA (5,0.05999,5) for deseasonalized data
Model -3 - ARFIMA (4,0.116577,6)-GARCH (1,1)

Model -4 - ARFIMA (6,0.243588,5)-GARCH (1,1) for deseasonalized

Model -5 - Adjusted SARFIMA (1,0.115677,1) x (1,0.17075,0) -GARCH (1,1)
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Table 7.29: The comparison of five long range dependency models

Indicators Model -1 | Model -2 | Model -3 | Model -4 Model -5

Index (using 2015 data) 40 50 28 68 48

Index (using 2016 data) 12 15 6 20 10

Index (using 2017 data) 26 44 12 52 24
Index (using 2015-2017 data) 78 109 46 140 82
Correlation (using 2015 to 0.4130 0.4137 0.4357 0.4368 0.4077
2017) [pvalue] [0.0000] | [0.0000] | [0.0000] | [0.0000] | [0.0000]
Bias (using 2015 to 2017) 3.965 4.722 3.260 3.032 4.125
RMSE (using 2015 to 2017) 57.17 57.02 57.36 56.27 58.23
MAE (using 2015 to 2017) 37.71 37.43 38.275 36.998 38.456

Out of the five models, Model-4 gives the highest indices for the years 2015, 2016
and 2017. Consequently, the index is for the time span from 2015 to 2017 was 140
and this the highest out of five model. Moreover, all the other measurement confirm
the Model-4 is the best model since the it shows the highest correlation value
between the observed and predicted (0.4368). Also, Model-4 gives the least bias,
MAE and RMSE. Furthermore, it is important to note that the model
ARFIMA(6,0.243588,5)-GARCH(1,1)-[Model-4] is free from ARCH effect
indicated that the no heteroskedasticity moreover, of the residuals which derived
from the Model-4. Thus, by comparing the both aspect which are the high model
accuracy and good forecasting performance, the Model-4 can be selected as the best

fitted model in modeling weekly rainfall series.
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Figure 7.11: Observed and predicted weekly rainfall from 2015 to 2017 using the
model ARFIMA (4,0.05792,4)
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Figure 7.12: Observed and predicted weekly rainfall from 2015 to 2017 using the
model ARFIMA (5,0.05999,5) for deseasonalized data
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Figure 7.13: Observed and predicted weekly rainfall from 2015 to 2017 using the
model ARFIMA (4,0.116577,6)-GARCH (1,1)
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Figure 7.14: Observed and predicted weekly rainfall from 2015 to 2017 using the
model ARFIMA (6,0.243588,5)-GARCH (1,1) for deseasonalized data
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Figure 7.15: Observed and predicted weekly rainfall from 2015 to 2017 using the
adjusted SARFIMA (1,0.115677,1) %(1,0.17075,0) -GARCH(1,1) model

7.14. Summary of the Chapter 7

Long range dependency models are proposed to fit weekly rainfall series since it
exhibits an unbounded spectral density at near to zero frequency. Non seasonal and
seasonal long range dependency models were utilized to capture the persistence
characteristics of the weekly rainfall series. All the models were tested using an
independent data series while forecasting power was assessed through the absolute

forecasting error.

The exact maximum likelihood estimation (MLE) method was utilized to estimate
model parameters. It is important to note that this method was not tested previously
for the model parameter estimation in context of long memory for the rainfall
studies. However, to evaluate the suitability of the method for parameter estimation,

Monte Carlo simulations were carried out with various non seasonally and seasonally
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fractionally differenced parameter values along with the variance model parameters.
It is noted that the parameter bias has decreased as with the increase of the series
length irrespective of the fractional differencing parameters in all the Monte Carlo
Simulations. Also, it is evident from the estimated parameters in different models,
that they become consistent with the increase in size of the sample. Thus, the result
of the Monte Carlo simulations are exhibited the corresponding method is reasonably

accurate.

It can be concluded that the ARFIMA- GARCH for deseasonalized data showed the
highest forecasting performance in modeling weekly rainfall series in context of the
long memory. However, the adjusted SARFIMA-GARCH also showed confirmatory
agreement with the observed values. It is noted that the forecasting performance in
2017 is considerably high in all the models than in 2016. Thus, all the long memory
models show encourage forecasting performance for the weekly rainfall series at

such a high uncertainty level.
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CHAPTER 8

CONCLUSIONS, RECOMMENDATIONS AND FUTURE
STUDIES

The objectives of this study was to develop a statistical model to forecast weekly
rainfall in Colombo city. After a comphensive study on past work carried out by
various researchers, a novel model: ARFIMA(6,0.243588,5)-GARCH(1,1) was
developed to model deseasonalized weekly rainfall to achive the objective. Based on
the inferences derived in this study, the following conclusions, recommendations and

suggestions for further investigation are given below.

8.1. Conclusions

¢ The temporal variability of the weekly rainfall was analyzed during the time
span from 1960 to 2015 and found that the no significant linear or quadratic

trend pattern in weekly rainfall series.

¢ Due to an unbounded spectrum peak existed near to zero frequency on
periodgram of the weekly rainfall, it is not possible to expand the search space

of the model.

¢ Thus, it was forced to restrict to five models within the class of ARFIMA and

SARFIMA long range dependency models.

+ The five selected long range dependency models are:

a) ARFIMA (4,0.05792,4)

b) ARFIMA (5,0.05999,5) for deseasonalized data

c) ARFIMA(4,0.116577,6)-GARCH (1,1)

d) ARFIMA(6,0.243588,5)-GARCH(1,1) for deseasonalized

e) Adjusted SARFIMA(1,0.115677,1) x(1,0.17075,0)s.-GARCH(1,1)
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¢ By validating the forecasting performance and model accuracy of the five
models for the training set as well as for an independent set, the best fitted
model identified is ARFIMA(6,0.243588,5)-GARCH(1,1) for deseasonalized
to forecast weekly rainfall in Colombo city. A separate table was developed

for the weekly seasonal components.

¢ The above model ("the best fitted model”) is more superior than other four

models with respect to statistical aspects as well non statistical aspects.

+ The forecasting performance of the best fitted model is not much diluted with

the increase of the forecasting length.

¢ The long range dependency model parameters were estimated using exact
maximum likelihood estimation method which has not been tested for the

rainfall studies by the previous authors.

¢ The analysis of the results of the Monte Carlo simulations, found that the bias
of the parameters decreases with the increase of the size of the sample
irrespective of the long range dependency model parameters. Also, the
parameters were consistent with the increase of the sample size. Moreover,
the simulation result is shown that the maximum likelihood estimation

method is more reasonably accurate to use to estimate the model parameters.

¢ Weekly rainfall data are positive skewed with longer tail to the right and
those series behaviour were analyzed moreover in context of confidence
interval by using two approaches parametric and bootstrapping. It is found
that the three parameter Weibull distribution is most suitable for the many
weekly rainfall series in SWM and SIM.

¢ Based on the result of the rainfall percentile analysis, it was identified that

the there is a high possibility to form extreme rainfall events during the
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arrival and withdrawal of the SWM. The corresponding weeks were
identified as weeks 18-23 (30" April to 10" June) and 38-39 (17%-30"
September).

There is a much more chance to form extreme rainfall events during the SIM
too, the corresponding weeks identified was 41-45 (8" October to 11%

November).

According to the analysis of the result of simulation which used to compute
the coverage probability of the confidence intervals, it can be concluded that
the most of the coverage probability of 95% confidence intervals of
percentiles is less than 0.95 and the 95% accurate coverage probability can
be attained at the more than 95% average level.

Of the various climate variables, average relative humidity and maximum
temperature are only the two exogenous variable affect on weekly rainfall
significantly, but accuracy of prediction did not significantly improved. Thus,
it can be concluded that exogenous climate variables are not beneficial in
forecasting weekly rainfall.

8.2. Recommendations

¢

When an unbounded spectrum density was formed near to zero frequency, the
models should be selected among the class of ARFIMA and SARFIMA.

The best fitted long range dependency model ARFIMA(6,0.243588,5)-
GARCH(1,1) for deseasonalized is recommended to be used in short term

forecasting weekly rainfall in Colombo city in Sri Lanka.

When modeling weekly rainfall, the other exogenous climate variables are

not required.
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¢ Due to the less coverage probability of 95% confidence intervals for
percentiles, on average more than 95% confidence level should be considered

to get the accurate coverage probability with real confidence bands.

¢ Result obtained from the analysis of rainfall percentiles can be used to
predict the time periods which can have high possibility to form extreme

rainfall events specially two seasons such as SWM and SIM.

¢ The weekly rainfall variation information derived from the percentile
analysis would be useful for policy planners in various fields such as

constructions, climate monitoring, rain water harvesting etc.

¢ The developed novel model to forcast weekly rainfall can be used to make

more inferences to highlight the features of the weekly rainfall.

8.3. Future Studies

+ The novel model developed has to be improved to capture the high peaks in

rainfall which is the challenging task to the statisticians.

¢ The possibility of Gegenbauer models (Gray et al., 1989) can be
investigated ifthe  periodagram of the rainfall series illustrates multiple
unbounded spectral  peaks away from the zero frequency.

¢ It would be better a more accurate model can be developed for non seasonal
weekly rainfall, which | feel that is a another challenging task for an applied

statistician.
¢ A study can be further extended to make more accurate confidence intervals

for rainfall percentiles by accounting the real coverage probabilities which

can derived by bootstrapping calibiration for all weeks distributions.
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¢ A comparison study can be further carried out by changing the time and
frequency domain methods of estimation for fractional differencing

parameters to get best fitted model at different size of sample.

+ Based on the methodology developed in this study, a user friendly computer
software can be developed to estimate the parameters of the SARFIMA-
GARCH models by maximizing the likelihood of the mean and variance

equations jointly in a single step.
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ABSTRACT

Analysis of pattem of weekly rainfall would enhance the management of water resource and
capability to deal with water related issues, which enable us to mitigate the impact of climate
change. This study evaluates the weekly rainfall variability during the South West Monsoon
(SWM) and the Second Inter Monsoon (SIM) in the context of confidence intervals. The
confidence intervals of rainfall quantiles were made using percentile bootstrap approach. Daily
rainfall data from 1960 to 2015 of Colombo in Sri Lanka were used for this study. The Wald
Wolfowiz test was used for the test of independence of weekly data series. It is noted that the 82%
of the weeks pertaining to SWM marked more than 100% coefficient of variation result in the high
fluctuations in weekly rainfall. Conversely, there is much lower variation in weekly rainfall in SIM
than SWM. Based on the 95% confidence intervals for percentiles, the weeks 18-23 and 38-39
which belong to SWM and the weeks 41- 45 which pertaining to SIM showed not only high rainfall,
but also high rainfall variation result cause to the high possibility to form extreme rainfall events.
Key Words: Weekly Rainfall, Rainfall Quantiles, Confidence Intervals, Colombo, Bootstrap
Mathematics Subject Classification: 62G15
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1. INTRODUCTION

The awareness of quantity of rainfall with the variability improves the ability of decision makers to deal
with the consequences of rainfall. Moreover, information on changes in temporal variability of weekly
rainfall of urban areas is useful for the number of fields such as constructions, tourism, health,
electricity, plan urban traffic and sewer system, rainwater harvesting, management of water
resources. Also, consciousness of variability of weekly rainfall constructive, particularly, for reducing
of flood damages. According to Lo and Koralegedera (2015), the more cities including Colombo in Sri
Lanka are in a risk of water related issues due to changes in rainfall patterns, urbanization and
installation of complex infrastructure. Furthermore, they reported that the city Colombo more and
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more vulnerable to several extreme weather events, mainly to heavy rainfall events in the future.
Some of the researchers made attempts to model the extreme rainfall events at the high uncertainty
of atmospheric behavior using different techniques (Hao et al., 2011; Mayooran and Laheetharan.,
2014; Wirnancy et al., 2017). However, It is more vital to consider rainfall modeling at short range
scale as weekly to mitigate the circumstance which exists due to changes of rainfall pattern.

1.1. Rainfall in Sri Lanka
Sri Lanka receives rainfall throughout the year, with the mean annual rainfall varying from 900 mm in

the dries parts to over 5000 mm in the wettest part. The annual rainfall pattern in many parts of Sri
Lanka is bimodal and mainly governed by the seasonally varying monsoon system. Rainy periods of
the country have been classified into four seasons (Domroes, 1974); First Inter Monsoon (FIM) from
March to April, South West Monsoon (SWM) from May to September, Second Inter Monsoon (SIM)
from October to November and North East Monsoon (NEM) from December to February.

1.2. Studies in Weekly Rainfall
Extremely very few attempts were made to analyze the weekly rainfall pattern in Sri Lanka.

Weerasighe (1989) used Markov Chain probability analysis for weekly rainfall in Mapalana area in Sri
Lanka with respect to the agricultural operational planning. Waidyarathne et al. (2006) analyzed
weekly rainfall data to investigate the change of the onset of FIM rain in coconut growing agro
ecological regions in Sri Lanka. However, a number of studies have been conducted by researchers
in other countries to understand the weekly rainfall variability at given region. Most of the studies have
been employed theoretical probability distributions to identify the pattern of rainfall at weekly scale
(Sharma and Singh, 2010, Sharda and Das, 2005,Ghosh et al., 2016).

1.3. Use of Confidence Interval in Rainfall Studies
Confidence intervals for quantiles are depend on the distribution function. However, according to the

Burn (2003) there are several shortcoming of this approach. It is necessary to make the number of
assumptions with respect to the distribution and necessity to larger data series to make inferences are
the main drawbacks of the traditional method. A bootstrapping approach can be proposed as an
alternative approach for calculating confidence intervals through the resampling process. Dunn (2001)
made an attempt to build bootstrap confidence intervals for predicting rainfall quantities. Simultaneous
confidence intervals for a daily minimum rainfall total using a bootstrap resampling method
considering of serial dependency have been produced by Ferro et al., (2005). Lucio (2007) adapted
bootstrap method for the purpose of evaluating of small sample inferences for monthly rainfall
extreme quantiles. Three approaches; Bayesian, Bootstrap and Profile Likelihood were employed to
construct confidence intervals of extreme rainfall quantiles by Chen Si et al., (2016).

1.4. Importance of Weekly Rainfall Variability
In the last decade, more people in urban areas were affected by natural disaster resulting in large

economic losses in the country. Sri Lanka is experiencing changes in climate particularly, rainfall
events which make erratic variation. Weekly rainfall analysis is not only important for agricultural
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activities but also for other administrative purposes particularly, for urban areas. By looking only
analysis of extreme rainfall events is not enable to confront the all human hardships during adverse
rainy seasons. Forecasting weekly rainfall quantiles help to understand the pattern of variation of
weekly rainfall which prominent for plan many activities, particularly, in urban areas. However, no
studies were reported of weekly rainfall quantiles in Sri Lanka, in the context of confidence intervals.
The main goal of this study is to construct reliable rainfall percentiles with the 95% confidence
intervals during SWM and SIM using percentile bootstrap method.

2. MATERIAL AND METHODS

The Colombo is the commercial capital of Sri Lanka with latitudes 6” 9300 N and Longitude 79° 860 E.
The City Colombo is located in the Western part of the country which directly receives rainfall from
SWM and SIM. Due to the Colombo is the commercial capital of Sri Lanka, large population density,
huge construction projects, different industrial activities and various events can be enclosed. Daily
rainfall data of Colombo were collected for fifty six years (1960-2015) from the Department of
Meteorology, Sri Lanka for this study.

Explanatory analysis was carried out for the weekly rainfall pertaining to the SWM and SIM seasons
while the Wald Wolfowiz test was used for the test of independence of weekly data series (Sharda
and Das, 2005). It is formed the 95 % confidence intervals for weekly rainfall percentiles in SWM and
SIM of the Colombo City using percentile bootstrap approach.

2.1. Weekly Rainfall Data
The daily rainfall (mm) data have been converted into weekly rainfall scale such that Week 1
corresponding to 1-7 January, Week 2 related to 8-14 January and so on. A year was divided into 52
weeks by ignoring leap years day (29thof February). The week 18 (30th of April to 06th of May) to
week 48 (26th of November to 02nd of December) has been considered for the analysis. Out of those
weeks, week 18 to week 39 pertaining to SWM while week 40 to week 48 belongs to SIM season
(Table 1 and Table 2).

2.2. Confidence Interval for Parameters Using the Percentile Bootstrap Method
The bootstrap method is used to make inferences by using the information based on a number of
resample from the same sample. This is a nonparametric technique that assists to make conclusions
about the characteristics of a population based on the existing sample unlike the parametric approach
which make assumptions about the estimators. The procedure creates simulated data set by drawing
observations from the original sample with replacement. If a parameter can be expressed as a
function of an unknown distribution, then its bootstrap estimator is also the function of the same
distribution function. Suppose a random sample of size n, X= (X1, X2, X3...., Xn) from an unknown

population with probability distribution function F (X} and let # be the parameter and g be the sample
statistic (estimator) computed from the data set. B is the number of samples with size n generated

from the F (X) then X*= (X*1, X*2, X*3,..., X*n) denote the bootstrap random sample of size n. Let é
be a statistic (an estimator) computed using the bootstrapping sample of X*.
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There are many methods that can be applied to obtain the bootstrapping confidence intervals. Some
of those are the normal approximation, the percentile, the bias corrected accelerated percentile and
percentile t method. The percentile method more popular among applied statistician (Hall, 1992).
Suppose we generate B number of bootstrap samples with size n from the original sample data and

for each sample we computed the statistic of interest ¥ = gé';,é"‘,é“... "§5J. In our study, the rainfall
percentile is the interest in statistic. The ordered bootstrap values are used to compute the bootstrap

confidence intervals from the Percentile method. Suppose 1000 bootstrap replications of ¢ denoted

* *

by (91 ’81"""'9“1”) and after ranking ascending order it can be denoted as (9[]]’9[31’ ’ [moo]).

Then the bootstrap percentile confidence intervals at the 95% level of confidence would be

['9{25" 9{"753'] (Singh and Xie, 2008).

3. RESULTS

The methodology presented above was applied to the 56 years (1960-2015) weekly rainfall data.
Based on the Wald-Wolfowitz test, it can be concluded that the weekly rainfall data series (Week 18-
48) pertaining to the SWM and SIM were independent at the 5% level of significance.

3.1. Explanatory Data Analysis Result of Weekly Rainfall During SWM
The summary statistics of weekly rainfall data pertaining to SWM (Week 18-39) is presented in
Table1. Also Figure.1 depicts the box plot of weekly rainfall in SWM.
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Figure 1. Weekly rainfall (Week 18-39)
(Here "O" denote the outliers and ™" denote the extreme values)
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Table 1: Summary statistics of weekly rainfall total pertaining to SWM (Week 18-39) for the period of

(1960-2015)
Week ) . ) Coefficient
No Date Mean Median Minimum Maximum pf
Variance
18 April 30 - May 06 81.6 42.0 0.0 407.7 (1964) 117.8
19 May 07-13 86.2 556 0.0 470.3 (1977) 111.9
20 May 14-20 75.5 485 0.0 506.8 (2010) 128.2
21 May 21-27 69.5 50.7 0.0 331.8 (1993) 99.5
22 May 28-June 03 69.0 48.0 0.5 239.1 (1995) 89.6
23 June 04-10 52.5 330 5.1 519.8 (1992) 138.4
24 June 11-17 40.6 32.0 2.0 141.0 (1981) 79.0
25 June 18-24 358 20.8 0.0 132.8 (2006) 99.3
26 June 25-July 01 395 282 0.0 196.4 (1988) 106.2
27 July 02-08 342 176 0.1 146.3 (1968) 106.0
28 July 09-15 29.0 162 0.0 135.2 (1970) 111.2
29 July 16-22 37.2 179 0.0 3316 (1960) 163.6
30 July 23-29 227 119 0.0 173.0 (1967) 141.9
31 July 30-August 05 19.5 86 0.0 111.6 (1982) 135.9
32 August 06-12 215 116 0.0 1504 (1987) 133.7
33 August 13-19 308 17.9 0.0 146.6 (2006) 113.7
34 August 20-26 294 200 0.0 2059 (1996) 136.6
35 August 27-September 02 27.7 194 0.0 150.4 (1988) 128.1
36 September 03- 09 36.1 19.3 0.0 170.1 (1996) 120.7
37 September 10 - 16 443 288 0.0 27586 (1997) 119.0
38 September 17-23 62.1 321 0.3 379.9 (1987) 120.1
39 September 24-30 86.6 56.6 0.0 376.4 (2015) 105.2

The values in parenthesis represent the corresponding years

Figure 1 illustrates that the distributions of the weekly rainfall data during SWM and all those
distributions are positive skewed. The lowest (19.5mm) and highest (86.6mm) mean weekly rainfall
were reported in the 31% week and 39" week respectively. It is noted that mean weekly rainfall in
SWM gradually decreases after 19" week up to 31% week and then the pattern has changed to
increase. Maximum weekly rainfall was recorded in the 23" week (519.8mm) in 1992. It is noted that
the 82% of the weeks in SWM marked more than 100% coefficient of variation which indicates the
high variation in weekly rainfall. The figure1 depicts that there is a significant high variation in weekly
rainfall in the week 18-23 and 29. Much lower variation can be seen in weeks 24 and 25. An almost
similar pattern was observed in median weekly rainfall also.

3.2. Explanatory Data Analysis Result of Weekly Rainfall During SIM

Table 2 shows the summary statistics of weekly rainfall in SIM (Week 40-48) as well as Figure 2
indicates the box plot of weekly rainfall in SIM.
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Table 2: Summary statistics of weekly rainfall total pertaining to SIM (Week 40-48) for the period of

(1960-2015)
W':ce'k Date Mean Median Minimum Maximum CD:E:;;:E; of
40  October 01-07 51.9 351 0.2 327.2 (2000) 100.3
41 October 08-14 81.7 46.4 0.0 3701 (1976) 109.3
42 October 15-21 98.6 711 0.0 413.7 (1963) 94.7
43 October 22-28 89.7 73.5 0.0 362.4 (2008) 82.8
44 October 29-November 04 102.9 82.9 0.0 337.0 (1973) 76.0
45  November 05-11 91.1 73.7 0.0 464.0 (2010) 93.1
46  November 12-18 76.8 53.4 0.0 347.3 (2008) 99.7
47 November 19-25 62.4 53.8 0.0 388.5 (2005) 104.1
48 November 26- December 02 55.2 32.0 0.0 2321 (2010) g7.2

The values in parenthesis represent the correé.pondmg years

e
El
»
a
o
<] e
U =
& a a7 T
8 Q ¥ 47
+ =
a
an
0 13 o2 e
2
o s
4 & it 5
o o 5
20|
10|
.

WN:MO W‘as&ﬁ V\heIMQ VWBIHJ Whalud 'NwIHS WBO‘MS WealMY 'J&;MB
Figure 2. Weekly rainfall (Week 40-48)

Mean weekly rainfall of SIM varies from 51.9 mm to 102.90 mm. The lowest and highest mean week
rainfall was reported the 40™ week and the 44" week respectively. The highest weekly rainfall in SIM
was reported in 2010. It can be seen in a similar pattern of weekly rainfall in mean and median in SIM.
Also noted that in all the weeks in SIM higher mean rainfall than median rainfall.

Almost mean and median weekly rainfall during SIM is much higher than the weekly rainfall in SWM. It
can be seen that the high variability in weekly rainfall at the beginning of the seasons. However,
coefficient of variance values indicates that the considerable much low fluctuation in the weekly
rainfall pertaining to SIM than SWM. Thus, this indicated that the much consistent with variation of
weekly rainfall during the SIM season.
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3.3. Confidence Intervals for Weekly Rainfall Percentiles in SWM

Table 3 depicts weekly rainfall percentiles and the corresponding 95% bootstrap confidence intervals.
Those intervals were made for the weekly rainfall percentiles at 50, 60, 70, 80 and 90 based on the
1000 bootstrap samples.

Table 3: The 95% confidence intervals of weekly rainfall percentiles (Based on 1000 bootstrap
samples) pertaining to SWM (Week 18-39)

Week
Number PERCENTILES
Psa Pen P Pw Pao
18 42.0 61.6 100.0 129.4 223.8
(30.9, 66.3)  (34.8, 100.6) (54.1, 130.3) (96.4, 207.1) (128.6, 343.4)
19 55.6 81.1 101.7 142.2 198.1
(32.6 .,86.4) (48.1, 105.1) (78., 144.0) (99.2, 191.8) (144.6, 351.1)
20 48.5 57.9 82.0 121.6 197.5
(26.2, 59.7) (47.4, 84.6) (56.7, 126.8) (68.2, 178.6) (116.5 306.7)
21 50.7 61.3 82.6 99.6 154.6
(41.2,64.5) (50.0, 84.2) (56.3, 101.8) (72.0, 143.9) (102.7, 242.6)
22 48.0 75.7 85.2 142.8 164.6
(29.2,78.1) (43.6,97.2) (67.0, 143.5) (84.6, 163.2) (144.8 184.4)
23 331 426 491 76.5 114.9
(24.0, 44.4) (31.7, 51.5) (41.5,78.1) (49.0, 105.3) (76.5, 135.6)
24 32.0 38.8 48.0 61.9 86.6
(27.2,41.6) (31.0,48.3) (37.0, 63.6) (47.8, 85.5) (60.4, 116.5)
25 20.8 356 49.0 63.5 91.1
(14.0, 36.3) (17.5, 49.9) (32.7, 66.9) (48.0, 84.9) (68.0, 114.8)
26 28.2 475 54.0 65.0 83.2
(14.6,49.4) (22.8, 57.2) (36.7, 65.2) (53.4, 80.6) (66.3, 143.4)
27 17.6 30.4 47.3 59.0 86.1
(11.9, 31.9) (16.8, 49.9) (27.6, 59.4) (46.0, 78.7) (61.8, 123.8)
28 16.2 24.2 33.7 57.6 86.3
(10.1, 25.9) (13.4, 34.5) (20.0, 58.) (31.8, 83.1) (57.9, 92.6)
29 17.9 33.2 40.4 53.5 76.7
(11.7,354) (15.4, 41.0) (27.9, 55.7) (39.1, 70.2) (58.4, 164.2)
30 11.9 18.1 237 339 47.5
(7.7, 21.5) (11.0, 24.6) (15.3, 34.3) (23.5, 45.5) (35.4, 104.2)
3 86 13.3 251 314 62.0
(3.3, 17.2) (6.4, 26.3) (12.1, 31.5) (24.2, 52.3) (32.0, 89.0)
32 11.6 171 237 42.7 57.9
(4.3, 18.1) (9.7, 24.3) (16.2, 45.8) (21.6, 51.9) (46.9, 82.0)
33 17.9 27.4 4.7 54.6 89.3
(10.0, 29.3) (15.0, 46.9) (26.4, 55.7) (41.2, 86.3) (56.0, 106.9)
34 201 229 30.0 54.2 72.8
(9.6, 24.0) (14.0, 30.3) (20.9, 54.7) (29.6, 72.3) (54.8, 115.0)
35 19.4 21.8 28.3 47.2 64.9
(7.6, 25.9) (18.6, 29.1) (22.4, 47.7) (28.0, 62.4) (48.9, 145.9)
36 19.3 27.4 459 68.0 114.7
(7.9, 33.7) (15.8, 58.2) (25.3, 68.2) (43.9, 105.0) (69.0, 142.6)
37 28.8 34.7 44.4 69.9 118.1
(16.2, 37.5) (25.1,45.5) (34.3, 70.7) (44.2, 116.3) (77.8,153.0)
38 321 40.4 58.9 122.8 167.2
(22.3, 42.9) (29.1, 64.1) (38.6, 130.9) (54.8, 164.1) (116.1, 215.4)
39 56.6 85.8 102.8 155.4 2256

(32.2, 89.6)  (48.3,104.3) (77.1, 158.5)  (101.0, 216.1) (164.4, 316.8)
The values in parenthesis represent the corresponding 95% confidence intervals.
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The result indicated that the heavy rainfall at the begins of the SWM. Furthermore, it can be expected
much rainfall from week 18 to week 23. It is evident from Table 3 that 80% or more chances to have
207.1mm maximum weekly rainfall in the weeks 18 - 23. However, after 23rd week it can be seen
clear decline of weekly rainfall up to week 35. It can be expected 86.3 mm maximum week rainfall
with 80% probability at week 33 which showed maximum rainfall variability out of weeks 24-35. The
week 31 and 32 marked much lower rainfall during the SWM. Since week 36 it can be seen much
rainfall till end of the season. The week 39 marked highest rainfall amount during the SWM. The table
depicts a high variability at the weeks 18-23, 29 and 38-39. Also, there is a much higher possibility to
have extreme rainfall during the weeks 18-23, 29 and 38-39.

3.4 Confidence Intervals for Weekly Rainfall Percentiles in SIM

Table 4 depicts weekly rainfall percentiles and the corresponding 95% confidence intervals. The
results indicated that the heavy rainfall over the SIM compare with the SWM. It can be expected
135.6 mm maximum rainfall at 80% probability at week 41 and the value can be varied from 84.6mm
to 222.6mm which indicated that a high variability. It is noted that high rainfall variability at the weeks
41-45 in SIM. Thus, there is a much higher chance to have extreme rainfall events at above weeks.

Table 4: The 95% confidence intervals of weekly rainfall percentiles (Based on 1000 bootstrap
samples) pertaining to SIM (Week 40-48)

Week
Number PERCENTILES

Py Peo P Py Py

40 351 48.8 67.1 99.5 122.7
(20.1,50.3) (323, 73.4) (45.7, 99.6) (64.4, 118.9) (100.4, 165.9)

41 46.4 64.8 87.7 135.6 239.3
(29.8,71.7) (446, 107.4)  (61.7, 143.0) (84.6, 222.6) (137.9, 291.7)

42 7.1 83.1 107.4 156.0 220.1
(52.8,91.5)  (700,131.8)  (79.3,157.7)  (105.1,211.4)  (161.9, 366.0)

43 735 90.8 114.4 135.4 185.7
(51.9,96.6)  (70.0,119.3)  (86.7,138.2) (1087, 166.0)  (139.7, 265.2)

44 83.0 107.9 1325 168.7 212.0
(59.7,119.8)  (78.7,134.1)  (97.6,169.1)  (128.9,201.3)  (169.7, 280.7)

45 73.7 79.2 109.5 125.8 182.7
(61.0,86.1)  (71.0,112.0)  (78.7,126.1)  (107.0,178.9) (1257, 314.8)

46 53.4 75.6 100.8 142.6 192.7
(33.0,80.9) (459 109.5)  (72.0,142.7) (97.0, 185.5) (144.4, 226.2)

47 53.8 733 80.2 90.1 1256
(20.1,74.7) (532, 83.9) (66.2, 90.2) (79.2, 114.8) (90.5, 178.7)

48 32.0 62.7 76.2 105.7 132.3
(24.1,65.6)  (305.77.0) __ (55.2,107.2) (71.8, 129.4) (107.7, 152.1)

The values in parenthesis represent the corresponding 95% confidence intervals.

4. DISCUSSION AND CONCLUSION

Weekly rainfall data pertaining to SWM and SIM are positive skewed with a longer tail widen to the
right. It is observed that a similar pattern of mean and median weekly rainfall in SWM and SIM. Also, it
is noted that the 82% of the weeks pertaining to SWM marked more than 100% coefficient of variation
result in the high fluctuations in weekly rainfall during this time span. Conversely, there is much lower
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variation in weekly rainfall in SIM than SWM. Based on the analysis of rainfall percentiles and
confidence intervals which constructed using bootstrapping approach, it can be expected much heavy
rainfall at the beginning of the SWM. Also, a similar pattern can be identified at the withdrawal of the
monsoon. Thus, there is a high possibility to form extreme rainfall events in the weeks 18-23 (30th
April to 10th June) and 38-39 (17-30 September) during SWM. It is noted that the high intensity
shower over the SIM. The Weeks 41-45 (8th October to 11th November) which pertaining to SIM
showed not only high rainfall, but also high rainfall variation result cause to the high likelihood to form
severe rainfall events.

Confidence intervals of weekly rainfall quantiles which can be made using probability distributions is
not much accuracy due to those forms by assuming normal approximation. However, this can be
employed to describe the mean weekly rainfall variability. Small sample size and positive skewed
distribution of weekly rainfall are some reasons for the poor accuracy rate of confidence intervals of
percentiles which made using traditional methods. As an alternative, distribution free method such as
percentile bootstrap approach can be utilized to describe the uncertainty of rainfall percentiles.
However, we cannot satisfy about the length of the 95% confidence intervals of rainfall percentiles
which made based on the percentiles bootstrap approach also. This can be developed using
parametric bootstrapping approach at an optimal confidence level which can be made using
bootstrapping calibration.
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Abstraci— The modeling of the weekly rainfall percentile is
imperative for better understanding of rainfall patterns in any
region. This study focuses on selecting the most appropriate
probability distributions for weekly rainfall and use those to
make reliable rainfall percentile with the 95% confidence
intervals. Daily rainfall data of 56 vears (1960-2015) during the
South West Monsoon in Colomba City were used for this
analysis. The three parameter Weibull distribution has been
found most probable distribution for most of weekly rainfall
totals. Weibull, two parameter Exponential, Exponential and
Lognormal distributions were well fitted distributions for
remaining totals. Based on the 95% confidence intervals of
percentiles, the weeks 18-23, and 38-39 during SWM showed not
only high rainfall, but alse high rainfall variation results which
caused high possibility to form extreme rainfall events. Heavy
rainfall with great variation during the period of 30% April to
10% June and 17-30% of September was further confirmed by the
result of running total of weekly rainfall.

Keywords—  Weekly  Rainfall;
Percentile; Confidence Intervals

Distriburion;  Colombo;

L INTRODUCTION

Rainfall percentiles are employed in designing of water
related structures in many fields. Sound awareness about the
rainfall pattern is vital to mitigate the various issues derived
from heavy rainfall and long dry spell existence due to climate
change. The probability distribution of the rainfall 1s essential
to examine the pattern of rainfall specially in short range scale
to get the maximum benefit from the rainfall by minimizing
the damages which would be caused by changes of
atmospheric behavior. Numerous people who live in urban
areas are faced with many difficulties due to extreme rainfall
events, especially from floods which oceur from time to time
[1]. Thus, prior knowledge of weekly rainfall behavior will be
helpful to minimize such damages. By analyzing the rainfall
characteristics on a weekly scale would be helpful to plan
many activities which enclose with the wban areas, such as
mdustrial, constructions, rain water harvesting., health and
climate monitoring.

Sri Lanka is a tropical country which is vulnerable to
climate change specially, from erratic rainfall events. The
rainfall of Sr1 Lanka 1s strongly governed by the four seasonal
varying monsoon system. Four major monsoon periods; First
Inter Monsoon (FIM) from March to April. South West

This study was partially funded by the University Research Grant, University
of Sri Jayewardenepura, Sri Lanka under Grant (ASP/01L/RE/MHSS/2016/75).
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Monsoon (SWM) from May to September, Second Inter
Monsoon (SIM) from October to November and North East
Monsoon (NEM) from December to February can be
identified in Sri Lanka [2].

Most of the researchers use point estimates derived from
different theoretical probability distributions for rainfall
percentiles and attempt to make mferences of rainfall amount.
[3] used the Generalized Extreme Value distribution, Gamma
and Log Pearson distributions for the maxinmm weekly
rainfall m the monsoon period at the Pantnagar region in India
to study the temporal variability of maximum weekly rainfall.
According to the review of [4] the Weibull distribution is
more likely fitted for describing weekly rainfall at Dehradun
in India. Also, they used the probability distribution models
for computing minimum assured amount of rainfall at
different probability levels, Beta and Weibull distributions
were fitted for the weekly rainfall during the monsoon and non
monsoon periods, respectively. and those best fit distributions
are employed for computing minimum assured amount of
rainfall at different probability levels for the Command area
by [5].

Moreover, many researchers have fitted theoretically
probability distribution for the rainfall data at different time
scales mainly monthly, seasonally and annually ([6], [7]. [8]
[9]. [10]). However, extremely few studies were reported in
Sri Lanka with respect to the rainfall variation at weekly scale.
As noted in [11], weekly rainfall data were analyzed to
investigate the change of the onset of FIM rain in coconut
growing agro ecological regions in Sri Lanka.

However. it might be more risky depending on a single
value formed from probability distributions to mitigate the
cireumstances which would be existed due to climate change.
Confidence interval is one of the most popular technique that
can be used to measure the uncertainty. Some researchers had
made attempts to construet confidence intervals for rainfall
amounts using different approaches such as Bootstrap and
Bayesian. Bootstrap confidence intervals were made for the
predicted rainfall quantities to show the effects of the Southern
Oscillation Index Phase on rainfall quantiles by [12]. The
three approaches: Bayesian, Bootstrap and Profile Likelihood
were applied to construct confidence intervals of extreme
rainfall quantiles by [13]. A study [14] was carried out to
obtain reliable rainfall quantiles estimates for several return
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periods by using Wakeby Distribution with the method of L-
moments estimates. Also, the 90% confidence intervals for the
quantiles  determined by Wakeby Distribution  were
constructed by using bootstrap resampling technique. To the
best of the authors' knowledge, no study has been conducted
for weekly rainfall quantiles in context of the parametric
confidence interval approach in Sri Lanka.

The main goal of this study is to select the most
appropriate probability distribution of weekly rainfall and use
those selected distributions to make reliable rainfall percentile
with 95% confidence intervals.

II. MATERIALS AND METHODS

The City of Colombo is the commercial capital of Sri
Lanka. It is situated with latitudes 6° 93' N and Longitude 79°
86" E and 1s selected as the study site. Daily rainfall data of
Colombo were collected from 1960 to 2015 from the
Department of Meteorology. Sri Lanka for this study. Weekly
rainfall pertaining to SWM is considered for this analysis due
to this monsoon brings rainfall directly to the Colombo area
during May to September. The Wald Wolfowiz test was used
for the test of independence of weekly data series (Sharda and
Das, 2005). Two goodness of fit test: Anderson Darling and
Kolmogorov-Smimov were used to identify the best fitted
distributions  for weekly ramnfall data separately. Rainfall
percentiles (Pso, Peo. Pro. Pgo and Pag) were derived using best
fitted distribution and constructed the 95% confidence bands
for corresponding rainfall percentiles.

Furthermore, running totals of weekly rainfall were
obtained to identify the pattern of weekly rainfall which start
on any day during SWM. Moreover, 95% confidence intervals
for percentiles based on the best fitted distributions of rumning
totals were constructed.

A.  Weekly Rainfall Data

The daily rainfall (mm) data has been converted into
weekly rainfall by dividing a year into 52 weeks as Week 1.
Week 2, Weeks 3 and others corresponding to 1-7 January., 8-
14 January. 15-21 January and so on respectively. It is noted
that the February 20" wasn't taken into account when marking
52 weeks. The weeks pertaining to SWM is presented in Table
1. Also. running totals of weekly ramnfall were obtamed during
SWM period with Week 1 of the running total corresponding
to 30% of April to 06% of May, Week 2 represent the period. 1-
7 May, Week 3 of the running total corresponding to 2-8
May, Week 4 related to 3-9 May and so on. It is calculated
total of 148 runming totals of weekly rainfall during the SWM.

B. Fittings the Probability Distributions

Weekly rainfall data as well as running weekly rainfall
totals  were fitted to theoretical  probability
distributions such as Normal, Lognormal. Gamma. Weibull,
Exponential, Smallest Extreme Value, Largest Extreme Value,
Logistic. Log logistics and also tried different forms of some
distributions such as 3- parameter Gamma, 2- Parameter
Exponential. 3-Parameter Log logistic and 3-Parameter
Weibull distributions.

various

TABLEL ‘WEEKS PERTAINING TO THE SWM

Weeks Date Weeks Date
18 April 30-May 06 20 July 16-22
19 May 07-13 30 July 23-20
20 May 14-20 31 July 30-August 05
21 May 21-27 32 August 06-12
22 May 28-June 03 33 August 13-19
23 June 04-10 34 August 20-26
24 June 11-17 35 August 27-September 02
25 June 18-24 36 September 03-09
26 June 25- July 01 37 September 10-16
27 July 02-08 38 September 17-23
28 July 09-15 39 September 24-30

Anderson Darling test and Kolmogorov-Smirnov test were
used as goodness of fit tests for parametric distributions. The
computations were done using statistical software, namely
Minitab 17 and Stata 12.1. Selected probability distribution
functions are described by considering X as a random variable
representing weekly rainfall as presented in Table I The
formula used for the percentile and its variance calculation is
also shown in Table III. Furthermore, Table IV depicts the
formulas  that were employed for the confidence bands of
percentiles.

III. RESULTS AND DISCUSSION

A. Modeling Weekly Rainfall

Histogram of dataset provides clear evidence that the
distributions of the weekly rainfall are skewed to the right.
Four randomly selected weeks 18, 24, 30 and 37 are depicted
in Figl. An almost similar pattern was observed in remaining
data series also. Before fitting various probability distributions
to data set, data were tested for normality using Anderson
Darling test and it was revealed that. no data series followed a
normal distribution. Furthermore, aceording to the result of the
Wald-Wolfowitz test. there is no evidence to reject the null
hypothesis which data are independent at the 5% level of
significance for all week. Table V illustrates the best fitted
distribution for weekly rainfall total with estimated maximum
Likelihood estimators (MLE). Also the corresponding
Anderson Darling test statistics (AD) and Kolmogorov-
Smirnov test statistic (KS) were presented in the Table V.
Same procedure was carried out for the running totals and
obtained a similar result.

It is noted that the most of the week belongs to the SWM
were well fitted with the 3 parameter Weibull distribution.
However, weeks 22-24, Exponential. Lognormal and Weibull
distributions were found to be most appropriate distributions.
Two parameter Exponential distributions were most probable
distribution for the Weeks 26. 29, 31 and 34. Morcover, 68%
of the running weekly totals are well fitted with the 3
parameter Weibull distribution while 22% are fitted with the
two parameter Exponential distribution and the remaining are
well fitted with the Exponential. Largest Extreme Value.
Weibull and Lognormal distributions.
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TABLEIL

PROBABILITY DENSITY FUNCTIONS

Distribution Probability Density Function Parameters
Lognormal 1 (" (nx—u)) u - Location Parameter, ¢ -Scale Parameter
flx)=———= exp| -——=—| uz0.0>0.Xz0
Tx2T \ 200 )
Exponential 1 { a -Scale Parameter
f{/"}:_ exXp| —_| a >0
o \
2 Parameter Exponential N | ( (x— ,1}\ « -Scale Parameter. ). -Threshold parameter
Flx)=— ‘ a >0, h<X
o /
Largest Extreme Value \ ( ((x- ’u}‘ﬂ u - Location Parameter. ¢ -Scale Parameter
| CKP'-—CXP| W | nz0.c=0.Xz=0
700 e
Weibull a -Scale Parameter, p -Shape Parameter

B s | 2
x)=—x"" exp| -| =
Flx) o 2| .\gJ

a>0 p>0X=0

3-Patarameter Weibull

o -Scale Parameter, B -Shape Parameter. i -Threshold
parameter
a=0 B=>0 AeX

TABLE IIT

THE FORMULAS USED FOR. PERCENTILES AND VARIANCE ESTIMATES

_p)

Percentiles (‘1

Variance of Percentile Var (AXP )

Largest Extremes Value

Distribution
Lognormal yii +z, a Var(f1) +z,” Var(a) + 2Z ,Cov(yi.a)
—In(-p)& [~In(1- p)f var(é)
Exponential
it[-na-pyé] | var(d) +I-1a0 - p)| var(@) +2|- a1 - p) |cov (4.é
) Parameter Exponeatial At[-na-pya] | ver(d) +[- 100 - pF var@) +2[- a1 - p) Icov (1.)
f+z,6 Var(ii) +z,” Var(d) + 22, Cov(ji. &)

Weibull

& [-Inq-p)Ps

3-Parameter Weibull

A+él-In1-pPh

Var(i) + & Var(@) +:—mZ Var(f) — :}gﬁ_m-‘_—,-‘ Cov(r, B+ 2dCovidh ) -2

']

Z,8 Covif,0)

TABLE IV. THE FORMULAS USED FOR. CONFIDENCE LIMITS FOR. PERCENTILES
Distribution Confidence Bands
Lognormal — - - —
| . JVar(X,) | | YPar(X) ||
Exponential sexpl In(¥ ) - Z‘V ———— | .exp In(X )+ Z‘% — b
. | N “tp | 1 - P |
Weibull L - - o

2-Parameter Exponential

3- Parameter Weibull

A=0 -
[‘X'

Fa<o {_i’,, —ch \.'[l’ar'[)z'r . J:",, +Z
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|

P a4 1J —i—l,, 2

o Jrar(X, Jl

(x,) Var(X )

X,+z, 1|J| 3

|

Largest Extreme Value

{)l'p —Z% V'I"a?'(f(, . _i",, + Z% \,"I’ar‘(f(, }
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TABLE V.

BEST FITTED STATISTICAL MODELS AND MANIVUM LIKELTHOOD ESTIMATES FOR WEEKLY RAINFALL DURING SWM

Week No. Best Fitred Distribution AD KS Esrimarted Paramerers (MLE)
18 3 - Parameter Weibull 0.317 (0.501) 00782 (0.884) | u=77.061. p=0.878., L=-0838
19 3 - Parameter Weibull 0.131 (0.520) 00526 (0.996) | u= 82.249. =0.888. L=-00935
20 3 - Parameter Weibull 0247 (0.510) 00684 (0.956) | u=67.331. B =0.804. L=-0508
21 3 - Parameter Weibull 0362 (0.461) 0.1027 (0.596) | w=73.570, B =1.086. L=-1.752
22 Exponential 0457 (0.540) 0.0857 (0.773) | u=68.989
23 Lognormal 0319 (0.526) 0.0700 (0928) | p =3.518.0=00912
24 Weibull 0291 (0.257) 00691 (0.934) | a = 43.645. p=1.267
25 3 - Parameter Weibull 0498 (0.222) 00752 (0910) | o =34.182. p=0.884. L=-0383
26 2- Parameter Exponential 0912 (0.103) 0.1099 (0.110) | u=40204. L =-0.718
27 3 - Parameter Weibull 0275 (0.521) 0073 (0.926) | u=32535 p=0887 L=-0260
28 3 - Parameter Weibull 0.531 (0.186) 0.069 (0.952) | a=24.822 p=0.741,1=-0.131
29 2- Parameter Exponential 0.873 (0.107) 0.1813 (0.182) | u=37.875, L =-0.676
30 3 - Parameter Weibull 0596 (0.210) 0.1066 (0.548) | a=16.711. p=0626, L=-0038
31 2- Parameter Exponential 0.841 (0.126) 0.1823 (0.232) | a=19.853, L =-0335
32 3 - Parameter Weibull 0.617 (0.113) 0.1002 (0.627) | u=15.263, p=00602, A=-0.029
33 3 - Parameter Weibull 0.445 (0.531) 0004 (0.706) | u=23.975 p=0.651. A=-0.067
34 2- Parameter Exponential 0.694 (0.101) 0.1193 (0.194) | «=29964. . =-0535
35 3 - Parameter Weibull 0.607 (0.120) 0.1186 (0.410) | u=22.408, p=00698 A=-0.082
36 3 - Parameter Weibull 0.544 (0328) 0.0888 (0.770) | «=26.012, p=0.602, h=-0.040
37 3 - Parameter Weibull 0246 (0.531) 0.0662 (0.967) | a=40709. p=0.838 L=-0366
38 3 - Parameter Weibull 0438 (0313) 0.0979 (0.656) | a=357.303, p=0.855 L=-0.261
39 3 - Parameter Weibull 0.397 (0394) 0.0679 (0.958) | u=81.654. p=0.863. A=-0.3831

* The wvalue in parenthesis represent the corresponding P value

Histogram of Week 18, Week 24, Week 30, Week 37
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Fig. 1. Histograms of Weeks

18,24, 30 and 37

B. Percentile and confidence intervals

Weekly rainfall percentiles and the corresponding 95%
confidence intervals are presented in Table VI. Those intervals
were made for the weekly rainfall percentiles at 50, 60, 70, 80
and 90 based on the probability distributions which were
selected as best fitted for corresponding weeks.

The result indicated that there was much heavy ramnfall at
the begins of the SWM. Also, Weeks 18-23 marked
considerable rainfall with high variability. It is noted that 90™
percentiles of Weeks 18-23 varies between 108.4mm to 209.6
mm which bring a greater amount of rainfall to this region.
According to the Table VI. there is a 90% chance to have
209.6 mm maximum rainfall, during the 19% week and this
value can be varied between 144.2 mm and 274.9 mm at 95%
confidence level. However, a clear decreasing pattern of
weekly rainfall can be identified after the 23" week.
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TABLE VL PERCENTILES OF WEEKLY RAINFAIL AND THE CORRESPONDING 95% CONFIDENCE INTERVAL DURING SWM IN COLOMBO

Week
Number PERCENTILES
P50 Pw P'm Pﬂo PDO
18 400 68.9 944 131.7 1985
(32.1, 67.7) (46.5, 91.4) (63.4, 123.3) (92.1,171.3) (136.3, 260.7)
19 535 73.6 10045 130.7 209.6
(34.6, 72.4) (49.9, 97.3) (70.0, 130.9) (98.1, 181.2) (144.2,274.9)
20 422 599 843 1212 1895
(25.9, 58.5) (38.7, 81.0) (56.2, 112.4) (81.5, 160.9) (124.5, 254.6)
21 50.8 66.1 8535 1123 156.8
(359 656) (48.5, 83.8) (64.1, 107.0) (84.8, 139.8) (116.8, 196.8)
22 478 63.2 831 111.0 1589
(36.8, 62.1) (48.6, 82.1) (63.9, 107.9) (85.4, 144.3) (122.3, 206.4)
23 3372 425 544 726 1084
(26.6,42.8) (33.3, 54.1) (421, 70.2) (55.0,959) (78.3, 149.8)
24 327 407 505 63.5 843
(25.6,41.7) (326, 50.9) (41.0,62.3) (31.7, 78.2) (67.8, 104.8)
25 222 306 41.8 582 87.4
(14.3,30.1) (20.7, 40.4) (29.1, 54.5) (40.8, 75.6) (39.8,115.1)
26 272 36.1 477 64.0 919
(19.9 344) (26.5,45.8) (35.0, 60.4) (47.0, 80.9) (67.6, 116.1)
27 213 202 308 554 83.0
(13.8, 28.7) (19.8, 38.6) (27.8, 51.9) (38.9,71.8) (37.1,108.9)
28 15.0 219 318 47.0 76.4
(8.7, 21.3) (13.6, 30.3) (20.3,43.2) (30.3, 63.8) (47.6,105.2)
29 255 340 440 603 86.5
(18.7,325) (24.9 43.1) (33.0, 56.9) (44.3, 76.2) (63.7, 109.4)
30 93 145 225 357 63.4
(4.7, 13.8) (8.0, 21.0) (12.9,32.0) (20.7, 50.7) (35.1, 91.6)
3 134 178 236 316 454
(9.8, 17.0) (13.1, 22.6) (17.3,29.8) 23.2,40.0) (33.4,57.3)
32 83 132 208 33.6 61.0
(4.0, 12.5) (7.0, 19.3) (11.6,29.9) (18.9, 48.3) (32.7,89.2)
33 13.6 209 318 408 86.4
(7.1, 20.0) (11.9,29.9) (18.8, 44.8) (29.6, 69.9) {49.1, 123.6)
34 20.2 269 355 411 G8.5
(14.8 25.7) (19.7, 34.1) (26.1,45.0) (35.1, 60.3) (504, 86.5)
35 13.2 197 202 442 740
(7.3,19.0) (11.7, 27.6) (18.0, 40.3) (27.6, 60.9) (44.4, 103.5)
36 141 225 354 573 103.9
(6.9, 21.3) (12.0,32.9) (19.8, 51.0) (32.3,82.3) (155.6,152.2)
37 250 363 504 715 109.8
(16.3,35.6) (24.0, 48.7) (34.3, 66.6) (49.0, 93.9) (73.6, 146.0)
38 371 515 70.9 997 1519
(23.6, 50.5) (34.4, 68.6) (48.7, 93.1) (69.1, 130.3) (103.1, 200.3)
39 52.6 73.0 100.4 140.9 213.7
(33.6, 71.6) (45.9, 97.0) (69.3, 131.6) (97.8, 184.0) (144.6, 282.8)
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The Weeks 31 and 32 marked lower rainfall amount than
others during SWM. After 35% week. again it can be seen an
mereasing trend of weekly rainfall till the end of the season.
The Week 39 records the highest rainfall amount in the SWM.
The median rainfall of the 39 weeks was 52.6 mm while the
70 percentile of this week marked more than 100 mm rainfall
amount which is a large quantity for the area. Week 38 also
brings much heavy ramnfall with noticeable vanation in this
season for this region.

The rainfall percentiles and corresponding 95% confidence
intervals for running totals of weekly rainfall were constructed
during the SWM in Colombo. Fig.2 represented only 00%
percentile of running total and its 95% confidence bands. It
also depicts the high rainfall variation with the arrival of
SWM. Also, Fig.2 illustrates the nmueh heavy rainfall due to
the withdrawal of the SWM. Based on the result of the
running total of the weekly rainfall. it can be further confirmed
that there was heavy ranfall with great variation during the
period of weeks 18-23 (30% April to 10% June) and weeks 38-
39 (17%-30® of September).

IV. CONCLUSION

Weekly rainfall data pertaining to SWM is skewed with a
longer tail extending to the right. One probability distribution
has not been found to represent all the week. However, three
parameter Weibull distribution was well fitted with the most
of the week. Two parameter Exponential distribution.
Exponential, Weibull and Lognormal are the other best fitted
probability distributions for weekly rainfall data. Based on the
pereentiles and corresponding 95% confidence intervals which
were derived using selected probability distributions, much
heavy rainfall during the weeks 18-23 and 38-39 can be
expected. Founded on the analysis of running weekly totals of
rainfall, it can be further confirmed that there is a  high
possibility of extreme ramnfall events forming within this
period. Based on the analysis of past extreme rainfall events
in Colombo area during SWM., it can be identified that the
many floods oceurred in the months May and June. Most
recently (on 15 May 2016) Sri Lanka was hit by a severe
tropical storm that caused heavy flooding m Colombo.
Furthermore. floods occurred in Colombo in the past years:
1975, 1989, 1992, 2008 from May to June period [15].

30th Percentile of Running Total of Weekly Rainfall and 95% Confidence Intervals during SYWM
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Fig.2. 90% Percentiles of running total of weekly rainfall and 05%
confidence intervals during SWM in Colombo

As shown Fig 2. nweh heavy variation in weekly rainfall
can be identified with the arrival of the monsoon. Thus, the
time onset of the monsoon 15 also important to mark extreme
rainfall events.

However. we cannot be satisfied about the length of the
95% confidence intervals of rainfall percentiles as the
intervals are somewhat wider. Small samiple size and strongly
skewed distribution pattern might be a one of the reasons for
wide confidence bands. Furthermore, heavy skewed
distributions have deviated from the normal distribution which
can affect intervals bands as those are caleulated based on the
normality assumption. As an  alternative, parametric
bootstrapping approach with an optimal confidence level
which can be made by bootstrapping calibration can be
employed.
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MODELING OF WEEKLY RAINFALL USING
CONFIDENCE INTERVAL APPROACH: A CASE STUDY

Silva H.P.TN.'* and Peiris T.S.G.”
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The degree of uncertainty of atmospheric behavior has been increased from time to
time. Rainfall is one of the key climatic variable for surviving the diverse set of
human and natural systems in the world. Awareness about the pattern of rainfall is
essential to mitigate effects derived from climate change which cause to sustainable
development of the country. Modeling rainfall percentile is one of the successful
technique that can be used to describe the rainfall characteristics and its behavior.
The main goal of this study is to model weekly rainfall percentile in the context of
confidence intervals by developing probability distribution functions. Daily rainfall
data from 1960 to 2015 during the period of Second Inter Monsoon (October to
November) in Colombo City were used. Preliminary analysis found that there was
no trend in weekly series. Based on the best fitted probability distributions reliable
rainfall percentiles and corresponding 95% confidence bands were computed. Three
parameter Weibull distribution has been found most probable for many weeks in
considered time span while the rest were well fitted with the two parameter
Exponential and Largest Extreme Value distiibutions. Buased on (e analysis, (he
beginning of the Second Inter Monscon showed low shower with a consistent
pattern. Also. a similar pattern was identified with the withdrawal of the monsoon.
However, it is noted that the Weeks 41-45 (08™ October to 11" November)
marked heavy rainfall with high variabiliry result which caused high possibility to
form extreme rainfall events. Qut of the above weeks, the Week 42 (15™ -21¥
October) has a much higher chance to occur extreme rainfall events during this
monsoon period. A similar approach was carried out for weekly running totals
during Second Inter Monsoon and found consistent result. This information would
be very useful for various stakeholders to plan many activities which influence the
intensity of rainfall.

Keywords: Weekly Rainfall, Percentile, Confidence Intervals, Calombo,
Distribution
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Modeling Weekly Rainfall: Problems Encountered
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Abstract
Rainfall is the main source of the hyvdralogical cvele and able to get more

praciical benefits bv forecasring. However, modeling rainfall is a challenging
rask due to increase in the degree of uncertainty of atmospheric behavior fram
time to time. Relatively, few effarts have been done in modeling weekly rainfall
in Ivdrologic time series. This study mainly focuses on the difficulties that
arise in modeling weekly rainfall. The rainfall data of the commercial capital
of Sri Lanka during the rime span from 1990 to 2015 were emploved for this
analvsis. By stucving the various properties of weekly rainfall three tvpes of
madels: (1) Seasonal autoregressive integrated moving average (SARIMA) (2)
Generalized auloregressive conditional Teteroscedasticity  (GARCH)  for
deseasonalized data (3) Hvbrid SARIMA-GARCH were identified as the most
suitable maodels fo forecast weekly rainfall. However, each model has

statistical drawbacks which needs to pav attention of the applied staristician.

Keywords: GARCH, Heteroscedasticity, SARIMA, Weekly Rainfall
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ABSTRACT

Modeling rainfall percentiles in the context of the confidence interval is an appropriate technique
that can be employed to make inferences about the rainfall characteristic. The coverage
probability of the confidence interval is one of the imperative factor that should be considered
when making inferences. Accurate confidence bands enhance the degree of the awareness level
of rainfall variability at high uncertainty. The main aim of this study is to find the accurate level of
confidence intervals for weekly rainfall percentiles derived from Weibull distributions based on the
real coverage probabilities which are formed using bootstrap calibration. Weekly rainfall data
from 1970 to 2015 in the Colombo city were used for this analysis. A simulation was carried out
hased on the one weekly series (week 24; 11-17 June) using the boolstrapping approach, It was
found that the data series pertaining to the week 24 is well fitted with the two parameter Weibull
disiribution. Furthermore, the result reveals that the real coverage probabiliies of 95% confidence
intervals of ", 60%, 709, 80" and 90" weekly rainfall percentiles which were derived using
maximum likelihood estimators of Weibull distribution can be altained on average at the levels
95.901%, 97.501%, 97.603%, 97.680% and 97.910% respectively.

Key Words: Percentiles, Coverage Probability, Bootstrapping, Confidence Intervals, Weekly Rainfall

Mathematics Subject Classification: 62F25

Journal of Economic Literature (JEL) Classification : C15

1. INTRODUCTION

An accurate analysis of the pattern of rainfall is essential to make effective decisions by utilizing water
resources in many fields. Modelling rainfall percentile is one of the successful technique that can be
applied to describe the rainfall characteristics in  any region. Information on rainfall percentiles would
enhance the level of awareness of rainfall behaviour, which can be used to reduce the difficulties that
exist due to changes of atmospheric behaviour. The complexity of the temporal pattern of the rainfall
is high in the short range scales of weekly and hourly than manthly, seasonal and annual. However, it
is more important to have prior information on weekly rainfall in the urban areas which those were
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engaged with the large number of activities related in many fields such as industrial, constructions,
health, rain water harvesting etc.. Moreover, the occurrences of extreme rainfall events in high
population density areas have had a significant negative impact on the lives of the people and the
infrastructure of the city. Most of the urban cities including the city of Colombo in Sri Lanka were
vulnerable to many water related issues derived from the erratic rainfall events caused by changes in
rainfall patterns, urbanization and installation of complex infrastructure by Lo and Koralegedera
(2015).

The rainfall of the country is strongly governed by the seasonal varying manscon system. According
to Domroes (1974), a seasonal monsoon system of the country can be mainly divided into four major
periods; First Inter Monsoon (FIM) from March to April, South West Monsoon {SWM) from May to
September, Second Inter Monsoon (SIM) from October to November and North East Monsoon (NEM)

from December to February.

Many researchers have made attempts to describe the temporal behaviour of the rainfall based on the
point estimates for rainfall percentiles which derived fitted probability distributions {Sharda and Das,
2005, Sharma and Singh, 2010, Mishra et al., 2013}, However, it is more imperative and practical to
form a range for percentile rather than express it by a single value at the high uncertainty of climatic
behaviour. Confidence intervals can be used to make inferences not only for the rainfall quantity, but
also to have an idea about the its variability at the particular level of uncertainty. Some of the
researchers employed confidence intervals to describe the characteristics of the rainfall quantile
(Dunn, 2002, Park et al., 2001, Silva and Peiris, 2017).

Accurate estimates, either point or intervals is essential for better planning. The coverage probability
of confidence intervals is one of the essential aspects to be considered to make more accurate
interval estimates. In such a situation, the sample size is the other main factor which influences
accurate inferences. In fact, it is more complicated to compose inferences and make decisions based
on the small sample size. Most of the time, estimates derived from the fitted theoretical probability
distributions becomes inaccurate due to the small sample size. To overcome this problem, the
bootstrapping technique can be used. Past studies have shown three parameter and two parameter
Weibull distributions were well fitted to the rainfall data, especially on the weekly scales {(Sharda and
Das, 2005; Silva and Peiris, 2017). In view of the above, the main objective of this study is to find the
accurate confidence interval levels for weekly rainfall percentiles formed from two parameter Weibull

distributions based on the real coverage probability derived from bootstrap calibration.

2. MATERIAL AND METHODS
2.1 Study area and data description

The city Colombo is situated with latitudes 6° 93' N and Longitude 79" 86' E in Sri Lanka and is
selected as the study site . The city Colombo is the commercial capital of Sri Lanka. Daily rainfall data
from 1970 to 2015 during the period of SWM in Colombo city were used for this analysis. These data
were obtained from the Colombo meteorology station which is the only station with available
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meteorology data of Colombo from the Department of Meteorology in Sri Lanka. The daily rainfall
{mm) data has been converted into weekly rainfall as Week 1 corresponding to 1-7 January, Week 2,
Week 3 and so on corresponding to 8-14 January, 15-21 January and so on. Based on the above
classification, the weeks 18-39 (30"™ of April to 30" of September) belongs to the SWM.

To work out the coverage probability, one weekly data series should be considered during the SWM
as the main dala series. In this study, the data which belongs to the week 24 (11-17 June) in SWM
(The weekly data of 46 years for the time span from 1970 to 2015) was considered as the main data
set. Those data were fitted to many theoretical probability distributions and two tests; Anderson

Darling and Kolmogorov -Smirnov were used to test the goodness of fit of the parametric distributions.

2.2, Weibull distribution

The Weibull distribution is widely used for climatic data analysis due to its properties. The probability
density function (Pdf) of a weibully variable, X with scale parameter 'a’ and shape parameter 'B'is

( (xV
f(x}:%xﬁ-l cxpi\_(g} } X20,a >0,p >0 (1}

given by equations (1).

where, 'a’ is the scale parameter and 'B' is the shape parameter of the distribution.

i Distribution Plot
Wbl Scale« 10 Thieshs0 Welbull. Scales 15, Thweste 0

- [ - @ ] " w "
x X
o Plot Distribution Plot
Wellnall, Scabes 20, Thwesh <0 Wil Scale« 31 Thieshs0
o ol o

Figure 1: Probability density functions of Weibull distribution with different scale and
shape parameters
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The shape of the density function of the Weibull distribution changes drastically with the value of the
shape parameter as shown in Figure 1.

2.3. {1-a) % Confidence intervals for the p'"percentile of Weibull distribution
The Weibull distribution can be approximated to the normal distribution when shape parameter is

about 3.6 (Johnson and Kotz,1970). The p™percentile of the Weibull distribution {Xp) and its variance
are defined by equations (2) and (3) {Heo, et al., 2001).

" -~ 1
X,=dl-w1-p 1% 2

. ,? x?
Var(xp)_ Var(@)+ Pza r(,b’n— *’cmm B

where z, =lf-In1-p | and & and 3

respectively. The equations that used to calculate the (1- @)% confidence intervals for the Weibull

are the maximum likelihood estimators for the o and B

percentiles under the normal approximation is given by equation (4);

[ ( o A? ( varl®
lcxp[ln(fp)-zm \'IVHTX‘*) 5 cxp[ln.(ipﬁla_,z %
P

F

(4)

2.4, Coverage probability

The coverage probability of a confidence interval can be briefly explained as the proportion of the time
that interval contains the true value of interest. The coverage probability of a confidence interval can
be calculated using simulation method. Firstly, number of samples of size n are simulated based on
the main data series to compute the confidence intervals for interest parameter for each sample. After
that, it should be computed for the proportion of samples for the known population parameters
contained in the confidence intervals. That proportion is an estimate for the coverage probability for
the confidence interval. However, a discrepancy can occur between the computed coverage
probability and the nominal coverage probability. In this study, our interest parameter is percentile.
The coverage probability will be calculated based on the confidence intervals of percentiles {Pso, Poso,
Pzo, Peoand Pep) .

2.5, Simulation
Assume that the major data series (The week 24) was well fitted with the two parameter Weibull

distribution with scale parameter a and shape parameter . Based on the size of the main data series

(N=46), 2000 random samples (each sample size is also equal to 46) were generated using a
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bootstrapping approach called as Sample1, Sample2, Sampled, ... Sample2000 from the Weibull
distribution {a, ). Furthermore, the scale and shape parameters of data sets pertaining to the

Samplei (&> ﬁ ), Sample2 (&, J@ 1), SampleS-(&3 ’ 'B : )and so on were estimated using
maximurm likelihood (MLE) method. Five percentiles (Psq, P, Pro, Peo and Pgg) were calculated for
each sample {Sample1 to Sample2000). It again generated 300 samples (Same sample size (n=46))
based on the generated Sample1, Sample2, Sample3 etc.. Those 300 samples which derived from
the Sample1 could be indicated as Sam14, Sam1z,...., Sam 13y Here it describes only the coverage
probability of randomly selected four samples (Sample68, Sampled23, Sample802 and Sample1551).
When considering the 300 samples generated based on the Sample1, firstly, the 50" percentiles and
correspanding $5% confidence intervals were calculated of Sam1i. Sam1z Samis and so on. The
coverage probability was calculated based on the 300 confidence intervals (95%). The same
procedure was carried out to calculate the coverage probability of confidence intervals at 95.2%,
95.4%, 95.6%, 95.8%, 96%, 96.2%, 96.4%, 96.6%, 96.8%, 97%, 97.2%, 97.4%, 97.6%, 97.8% and
98% confidence levels. Other samples which were generated from the Sample2,....., Sample2000
were applied the above procedure and the corresponding coverage probabilities for each confidence
level listed above were calculated.

3. RESULTS

The summary statistic of the total rainfall during week 24 is presented in Table 1 along with the
histogram {Figure 2).

Table 1. Descriptive Statistics of the weekly rainfall data (week 24)

No. of Coefficient of Skewn
Variable Data Mean StDev  Median Mini Max Variance(%) £8ss
Week 24 46 36.1 37.2 18.4 0.1 146.3 104.9 1.37

Histogram of Week 24

Frequency

Week 24

Figure 2: Histogram of weekly rainfall data (week 24)

A
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From 1970 to 2015 total weekly rainfall in the 24" week varied from 0.1mm to 146.3mm with a mean
36.1mm. Figure 2 illustrates the weekly rainfall as are positively skewed with a longer tail to the right
and the result was further confirmed as the coefficient of skewness is 1.37. The large coefficient of

variance (104.9%) gives evidence to high fluctuations in weekly rainfall (week24).

The total rainfall during week 24 was fitted to different type of probability distributions such as
Normal, Exponential, Gamma, Weibull and so on and those data were well fitted with the two
parameter Weibull distribution. Corresponding Anderson Darling and Kolmogorov -Smirnov test
statistics were 0.258(P-value =0.256) and 0.0673 (P-value = 0.941) respectively. The maximum
likelihood estimates for the scale and shape parameters of the fitted Weibull distribution were 33.9286
and 0.8775 respectively. The coverage probabiliies of confidence intervals of Sample68 at different
uncertainty levels are presented in Table 2. The corresponding coverage probabilities of the
confidence limits of Sampled23, Sample802 and Sample1551 are presented in Table 3, Table 4 and
Table 5 respectively.

Table 2 : Coverage Probabilities of five Percentiles (Psi-Pa) based on the 300 samples derived from
the Sample68&

Confidence Coverage Probability
Level (%) Pso Pso P Pso Pso
95.0 93.00 93.00 93.00 92.00 92.67
95.2 93.33 93.33 93.00 92.67 93.00
954 93.33 93.67 93.00 93.00 93.00
95.6 93.67 93.67 93.00 93.00 93.67
95.8 94.00 93.67 93.00 93.00 93.67
96.0 94.33 93.67 93.67 93.33 94.00
96.2 95.33 94.33 94.00 94.00 94.67
96.4 05.67 95,00 94.00 94.67 95.00
96.6 06.33 95.33 94,67 94.67 05.00
96.8 96.33 95.67 95.00 94.67 95,00
97.0 96.67 96.00 95.00 95,33 95,00
97.2 96.67 96.33 95.33 96.00 95.00
974 96.67 96.33 95.67 96.00 95.33
97.6 96.67 96.33 96.00 96.00 95.33
97.8 96.67 96.33 96.00 96.33 95.67
98.0 96.67 96.33 96.67 96.33 96.33

According to the above table, it is clear that 95% coverage probability of Psecan be attained at 96.2 %
confidence level. The 95% coverage probability of Pss, Pro, Peo and Powo nan be reached at the
confidence levels 96.4%, 96.6%, 96.8% and 96.4% respectively.
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Table 3: Coverage Probabilities of five Percentiles (Pso-Pat) based on the 300 samples derived from

the Sample 423
Confidence __Coverage Probability
Level (%) Pso Pso P Pso Poo
9510 a4.00 93.67 a0.67 R7.67 oNn.67
95.2 94,00 94,00 91.00 88.67 91.67
95.4 94.00 94.00 91.00 89.00 91.67
95.A a4.00 04.33 91 .67 R9.00 01.67
95.8 94.33 94.33 91.67 89.00 92.00
96.0 94.33 94.33 92.00 89.33 92.00
96.2 94.33 94.67 92.00 89.33 92.33
96.4 94.67 94.67 92.33 90.00 93.00
96.6 95.00 94.67 92.33 91.33 93.67
96.8 95.67 94.67 92.67 91.67 94.00
97.0 95.67 95.00 93.00 92.00 94.67
97.2 96.00 96.00 93.33 92.67 94.67
974 96.67 96.67 93.33 93.00 94.67
97.6 97.00 97.00 93.67 93.67 95.00
97.8 97.33 97.67 94 67 94.33 95.33
98.0 or.67 97.67 95.00 95.00 95.33

Based on the Table 3, the real 95% coverage probability of Pso, Pso, Pro, Pao and Puo can be obtained
atthe 96.6%, 97.0%, 98.0%, 98.0%, and 97.6% respactively.

Table 4: Coverage Probabilities of five Percentiles (Pso-Pat) based on the 300 samples derived from

the Sample 802
Confidence Coverage Probability
Level (%} Psp Pso Pro Pso Pag
95.0 94.33 94.33 90.67 89.33 89.33 |
95.2 94.33 94.33 90.67 89.33 89.67
954 94.33 94.67 90.67 89.67 90.00
95.6 95.33 95.33 91.33 89.67 90.00
95.8 95.67 95.33 91.67 89.67 91.33
96.0 95.67 95.33 91.67 20.00 91.33
96.2 96.00 95.67 92.00 90.00 91.67
96.4 96.00 95.67 92.67 90.00 92.00
96.6 96.33 96.00 92.67 90.67 93.33
96.8 96.33 96.00 92.67 91.00 93.33
97.0 96.33 96.33 93.33 91.33 94.00
97.2 96.67 96.33 94.00 91.67 94.67
or4 97.33 96.67 94.33 92,00 84,67
97.6 97.33 96.67 94.67 93.00 94.67
97.8 97.67 97.00 95.00 94.00 95.00
28.0 97.67 97.00 95.00 95.00 99,33

Table 4 illustrates the 95% coverage probability of Pso, Peo, Pro, Psoand Puo obtained at the 95.6%,
95.4%, 97.8%, 98.0%, and 97.8% confidence levels respectively.
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Table 5: Coverage Probabilities of five Percentiles (Pso-Fsi) based on the 300 samples derived from
the Sample 1551

Confidence _ Coverage Probability _
Level (%) Pso Peo Pro Pso Pso
95.0 02 /7 47.33 92.00 492.00 RA.67
95.2 93.00 92.33 92.00 92.33 89.67
95.4 93.33 92.67 92.00 92.67 89.67
95.6 03.33 a7 /7 93.33 9267 92.33
95.8 94,67 93.00 93.33 93.00 92,33
96.0 95.33 93.00 93.33 93.00 92,33
96.2 96.00 93.00 93.67 93.67 93.33
96.4 96.00 93.33 93.67 93.67 93.33
96.6 96.00 83.33 94.00 94.00 83.67
96.8 96.00 83.67 94.00 94.33 83.67
97.0 96.33 93.67 94.67 94.67 94.67
97.2 96.33 93.67 94.67 94.67 94.67
974 96.67 94.67 95.00 94.67 94.67
97.6 96.67 94.67 95.00 95.00 95.00
97.8 96.67 95.00 95.33 95.00 95.33
98.0 97.67 95.00 95.33 95.33 95.33

Table 5 shows that the 95% coverage probability of Pso, Pso, Pro, Psoand Py obtained at the 95.8%.
97.8%, 97 4%, 97.6%, and 97.6% confidence levels respectively.

The same procedure was applied for the remaining samples and the average accurate coverage
probability were calculated of 300 samples derived from the each 2000 sample and result is

presented in Table 6.

Table 6 : Average accurate confidence level based on the 85% conifidence level for Weibull

percenliles
| Percentiles | Psp | T [ | Pao | Pao |
| Coverage probability | 95801 | 97501 | 97603 | 97680 | 97910 |

Based on the above real confidence levels, the calculated confidence bands of percentiles of week 24
are as follows.
Table 7: Confidence bands of percentiles of week 24 (nominal and actual)

Percentile | Value | Confidence limits at Accurate Confidence limils
level of 95% confidence levels {Actual)

_ (nominal})
Psp 224 15.2 32.9 95.001 14.8 335
Pso 30.7 21.5 43.8 97.501 20.5 46.1
Pro 41.9 30.0 58.6 97.603 | 285 61.6
Pso 58.4 42.0 81.2 97.680 39.8 85.5
Pao 87.8 62.0 124.3 97.910 58.3 132.2

Based on the result formed from the simulation, there is a considerable difference between nominal
and calculated coverage probabilities. Weibull distribution, drastically tends to be skewed to the right

when the shape parameter less than one. Thus, the distribution of weekly rainfall deviates from the
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normal distribution with respect to the lower (less than one) value of shape parameter of the
distribution. The deviation of the normality of the fitted distribution with the small size of sample is

might be one of the reason for the discrepancy of the nominal and calculated coverage probabilities.

4. DISCUSSION AND CONCLUSION

Accurate estimates are important to draw reliable decisions which would be helped to minimize the
issues that are caused due to heavy rainfall events and to utilize the water resources of the country.
Weekly rainfall percentiles with 95% confidence bands are utilized in this study to compute the real
coverage probability of the 95% confidence intervals. Rainfall total during the 24% week (11-17 June)
in SWM was considered as the main data series with size as 46. The data set were well fitted with the
two parameter Weibull distribution and the maximum likelihood estimates for the scale and shape
parameters of the fitted Weibull distribution were 33.9286 and 0.8775 respectively.

Based on the simulation carried out by bootstrapping approach, it is found that the most of the real
cowerage probabilities of 95% confidence intervals of percentiles (500, 80™, 701, 80% and 90M) is less
than 0.95. The accurate coverage probability of 95% confidence interval for the 50" percentile is
attained at the average level of 95.901%. The corresponding accurate coverage probabilities of 95%
confidence intervals of 60,70, 80" and 90" percentiles are given at the average levels of 97.501%,
§7.603%, 97.680% and 97.910% respectively. Based on the above result, it can be concluded that
the most of the coverage probabilities of the 95% confidence intervals for the rainfall percentiles get
less value than the 0.95. This implies that the confidence interval of the percentile which derived fromi
the skewed distribution as two parameter Weibull distribution at small sample size is not always give
actual coverage probability. As a result of this, inferences make based on this facts do not provide
much accurate estimates which require to get decisions at the high uncertainty. Thus, it is more
suitable to consider much greater value for confidence level to get 0.95 coverage probability for
percentiles of skewed distribution as two parameter Weibull distribution along with the small sample
size,
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Abstract. The quantity of rainfall and its related events have become
more and more uncertain due to climatic variability. The complexity
of the rainfall pattern increases due to the changes of the atmospheric
behavior from time to time. Relatively, few measures have been taken
to perform the modeling of rainfall in the context of long memory.
This paper provides an assessment of such a phenomenon by fitting an
appropriate time series model. A long range dependency model i1s pro-
posed to fit weekly rainfall data to explore characteristics of persistence
through an unbounded spectral density. Careful examination of the data
exhibits periodic fluctuations as an additional feature. Since, the rainfall
series exhibits periodic variations and persistence, a seasonal autoregres-
sive fractionally mtegrated moving average (SARFIMA) model 1= fitted.
Parameters of 1t are estimated using maximum hkelihood estimation
(MLE) method. A Monte Carlo simulation was carried out with differ-
ent seasonal and non seasonal fractionally differing parameters to mea-
sure the suitability of the method for parameter estimation. Best fitted
model is chosen based on the minimum of the mean absolute error and
the forecasting performance are compared with the result of Seasonal
autoregressive integrated moving average (SARIMA) using an indepen-
dent sample as a creative contribution.

Keywords: Seasonality - Rainfall - Fractional differencing
Long-memory + Maximum likelihood estimators - Forecasting

1 Introduction

Sri Lanka is highly vulnerable to the impacts of climate change which includes
severe droughts, heavy flash floods and landslides over the past years. These
whether related disasters affects many sectors in the economy and threaten to
sustainable development of the country. Temporal variability of rainfall in the

©) Springer Nature Switzerland AG 2019
¥. Kreinovich and 5. Sriboonchitta (Eds.): TES 2019, 3CI 808, pp. 314-328, 2019.
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country is changing frequently which affect on staple food production such as
rice, coconut and tea (Baba [1], Fernando et al. [17], Wejerathne et al. [41]).
Sri Lanka is on a path of rapid urbanization. Thus, many damages can occur
due to changes in rainfall behavior in urban areas with a high population den-
sity and modern infrastructure. Lo and Koralegedera [25] claimed that the more
cities including Colombo in Sri Lanka are at a risk of water related issues due
to changes in rainfall patterns. Also, each year the government of Sri Lanka
spends huge amount of money to reconstruct and renovate the infrastructures
which damage caused by floods in the wet zone (Sri Lanka Rapid Post Disaster
Needs Assessment [37]). Accurate information on rainfall predictions enhances
the ability to utilize the water resource in a productive manner. Those details of
temporal variahility of rainfall is not only important for agricultural activities,
but also for important subject domains in urban areas such as construction,
industrial planning, urban traffic and sewer systems, health, tourism, rainwater
harvesting and climate monitoring. Furthermore, the importance of analysis of
weekly rainfall pattern is highlighted by Silva and Peiris [34] and they analyzed
weekly rainfall in Sri Lanka using percentiles hootstrap approach. Moreover,
the same authors (Silva and Peiris [35]) carried out another study to explain
the behavior of the south west monsoon rainfall by utilizing the weekly rain-
fall percentiles along with the 95% confidence interval bands using best fitted
distribution for weekly rainfall in Colombo city. However, they emphasized pre-
cise rainfall prediction is verv difficult in the tropical country like Sri Lanka
with the low technology. According to Luk [26] also, quantitative forecasting
of rainfall is extremely difficult. Silva and Peiris [36] discussed the problems
faced when analyzing rainfall amount which has heavy skewed distribution using
Weibull confidence interval for rainfall percentiles. The main goal of this study
is to suggest a best fit long-memory model to capture weekly rainfall hehav-
ior. SARFIMA model is utilized in such a context. The outline of this paper is
as follows. Section 2 describes past works related to long memory models. The
functional form of the SARFIMA model with the maximum likelihood estima-
tion procedure is described by Sect. 3. It 1s followed by Sect. 4 that will present
the Monte Carlo simulation results to assess the accuracy and reliability of the
estimation procedure. Section 5 will provide results of weekly rainfall modeling.
Finally, Sect. 6 provides some concluding remarks.

2 Literature Related to Long Memory Models

Time series models have been developed with an increasing degree of accuracy
over the last few decades. The short memory autoregressive moving average
(ARMA) model introduced by Box and Jenkins [5] has been extensively used
for a variety of applications. Recently, time series models with long memory fea-
tures hecame very popular among researchers in many fields such as statistics
and econometrics. Features of a fractionally integrated autoregressive moving
average (ARFIMA) long memory model was initially introduced by Granger
and Joyeux [20] and Hosking [24]. It was an extension of the traditional ARMA
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process with a fractional differencing parameter. The hyperbolic decay of the
autocorrelation function and an unbounded spectral density are two key fea-
tures of the ARFIMA process. A number of estimation methods of the frac-
tional differencing parameter were proposed by Porter-Hudak and Geweke [19],
Fox and Tagqu [18], Dahlhaus [10], Sowell [38], Chen et al. [7] and Robinson
[33]. Comparison study assessments were done by Cheung and Diebold [8] on
maximum likelihood estimators for fractionally differenced parameters using two
types of maximum likelihood (ML) estimators in the form of frequency-domain
ML and exact domain ML of time series processes with an unknown mean. Small
sample properties of four ML estimators of the ARFIMA model was investi-
gated through a Monte Carlo simulation by Hauser [23]. A study done by Wang
et al. [40] evaluated the ability of detecting existence of long-memory in time
series using four methods: Lo’s modified rescale adjusted range test, Geweke and
Porter Hudak test and two other approximate maximum likelihood estimation
methods. Some of the research done by Chan and Palma [6], Palma [28] and
Beran et al. [3] carried out an assessment of ARFIMA model parameters and
their properties. Dissanayake [11] introduced a rapid lag order detection mech-
amism of the standard long memory ARFIMA process. Due to the practical
suceess of the ARFIMA model, a more generalized fractionally differenced long
memory time series model called the Gegenbauer ARMA (GARMA) was probed
in detail by Gray et al. [21]. Chung [9] extended the work in introducing a grid
hased parameter estimation procedure of an elementary GARMA process. Fresh
interest in the econometric community infused into the process the introduction
of a new class of models with heteroskedasticity in Dissanayake and Peiris [12].
It was followed by the casting of the process driven by Gaussian white noise
in state space by Dissanayake et al. [13] to establish a parameter estimation
based optimal lag order validated by predictive accuracy. A similar experiment
in which the process was driven by Generalized Autoregressive Conditionally het-
eroskedastic (GARCH) errors (instead of Gaussian white noise) was presented
in Dissanayake et al. [14] with the validation of parameter estimation based
optimal lag order done through log likelihood measures. A concise summary of
fractionally differenced Gegenbauer processes with long memory was provided
in Dissanayake [15]. An extensive review of fractionally differenced Gegenbauer
processes with long memory is found in Dissanayake et al. [16]. It refers to cer-
tain conceptual paradigms presented in the survey on long memory by Guegan
[22] in which an extended k-factor Gegenbauer process becomes a highlight of
rigour. Though the ARFIMA model was able to capture the long range depen-
dency, it does not take into account the seasonal variation patterns present in
some real data set. The seasonal autoregressive fractionally integrated moving
average (SARFIMA) of Porter-Hudak [30] is a natural extension of the ARFIMA
process with an additional seasonal filter. The model consists of long memory
dependency features with periodic behavior in terms of the data. SARFIMA
model was utilized for forecasting of the monthly IBM product revenue in Ray
[32]. Peiris and Singh [20] suggested a convenient method to caleulate predie-
tors for seasonal and non seasonal fractional parameters of long memory models
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under certain conditions. The work done by Bisognin and Lopes [4] described
mumber of properties of seasonally fractional ARMA process in detail. SARFIMA
model was applied to forecast Iraqi oil production and model parameters were
estimated using conditional sum of squares by Mostafaei and Sakhabakhsh [27].
Additionally, Reisen et al. [31] proposed a semi parametric approach to estimate
two seasonal fractional parameters in a SARFIMA model and the performance
was evaluated through a Monte Carlo experiment. Very few attempts have heen
made to study the rainfall behavior in context of long memory. A study done
by Yaya and Fashae [42] made an attempt to fit SARFIMA models for rainfall
data in six rainfall zones of Nigeria. However, they could not find significant
SARFIMA models which can capture the seasonal behavior with the long range
dependency of the real data. Utilizing a SARFIMA model to assess seasonal and
persistent properties of weekly rainfall in an emerging Asian economy such as
Sri Lanka is missing in the current literature. Theoretical concepts linked with
the long memory SARFIMA model are provided in the next section.

3  SARFIMA Long Memory Model

Long range dependency features can be identified by two different approaches
but equivalent forms given helow defined in two distinct domains called time
and frequency (Bary [2]). In time domain, the auto correlation function px (.) of
the time series decays hyperbolically to zero. The correlation function, py (k) =~
k%=1 when k — oo and 0.0 < d < 0.5. The frequency domain, spectral density
function fx (.} is unbounded when the frequency is near zero, that is, fx(w) =
w24 when w — 0. A process {Y;}icz is a stationary stochastic process given by
the formula,

$(B)(B)VIVE (Y, — ) = 6(B)O(B%)e; (1)

where p is the mean of the process, {€;}:icz is a white noise process with zero
mean and variance o2, B is the backward shift operator such that ¥, = B™y;
and s is the seasonal length. ¢(B) and v#(B) are the non seasonal and seasonal
autoregressive polvnomials of order p and P respectively such that

L P
6(B)=) B 1<i<p ¢(B)=) uB* 1<k<P (2
i=l1 =1

#(B) and ©(B) are the non-seasonal and seasonal moving average polynomials
of order g and () respectively defined as

4 Q

8(B)=>6,B" 1<j<q O(B)=) 6,B" 1<m<qQ (3
j=1 m=1

The differencing operator V¥ can be expressed as,

Vi—(1-Bi=Y (i) -2 )

k=0
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dy — ___T{l+d)
where (7) = [‘(1+k]1"-('_1+d—k]‘

The seasonal operator TE can he expressed as,

[= =] _D )

vi--B9" =Y (}) B (5)
k=0

where (1) = mria -

The model (1) is specified by SARFIMA(p,d,q)z(P,D.Q)s. When d = 0
and ) = 0, the model is reduced to a classical seasonal SARFIMA model.
If conditions 00 <= d < 0.5 and 0 < D < 0.5 are satisfied the process becomes
stationary. The spectral density function of the SARFIMA model can be written
as follows:

_ etV P [Ogel - VSPE

—iA|—2d _iAg | —2D
= DrjopeC p[pecsE e (6)

fs(A)

An unbounded spectral density around the origin assessed through the
utilization of (6) coupled with the hyperbolic decay of autocorrelation and partial
autocorrelation blended with seasonality features (as shown in Figs. 2, 3 and 4)
prompted towards parameter assessment being done using the exact maximum
likelihood estimation method. It was done by maximizing the log likelihood fune-
tion numerically. The package arfima in R was used to calculate the maximum
likelihood estimators. Durbin-Levinson and Trench algorithms were utilized to
maximize the likelihood and obtain optimal simulation and forecasting results
(Veenstra and McLeod [39]).

4 Results of Monte Carlo Simulation

In order to evaluate the performance of the maximum lhikelihood method in esti-
mating the parameters of the model, a number of Monte Carlo experiments were
carried out. The simulation results provided non-seasonally and seasonally differ-
enced parameter estimations and the corresponding standard and mean square
errors (MSE) of the parameters. It was carried out based on 1000 replications
with different sizes of samples (n = 100, n = 200, n = 500 and n = 1000).
Seasonal length was considered as 52 corresponding to weekly rainfall. Monte
Carlo experiment was conducted on a simulated SARFIMA(0,d,0)x(0, D,0)s52
series with following parameter combinations.

d=01and D=045  d=015and D =045 d=03and D = 0.3,
d =0.45 and D = 0.10.

The simulation was carried out using the R programming Language (Ver-
sion 3.4.2) utilizing a HP11 (8GB, 64 bit) computer. The standard errors of
the estimates Sﬂ{éj, Sﬂ[ﬁ} and mean square error of the estimates M SE{&},
M SE(D) respectively such that:
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- R - " . i - .
SD(d) = \/Zm{df —d)/R, SD(D)=,|>_(Dr - D)/R,

R R
MSE(d) = "(d, — d)*/R, MSE(D)=>"(D. - D)*/R

r=I1

Where -:IA.-,F and fl,p are the MLE of d and D for the rth replication. The value R
denotes the number of replications (R = 1000 for the simulation).

Tables 1, 2 3 and 4 present the average of the estimated d, corresponding
standard error and MSE of the estimator.

Table 1. MLE of d and I? of a generating process of SARFIMA(Q, d,0)x=(0, I}, 052
with d = 0.1 and I = 0.45. The results are based on 1000 Monte Carlo replications

o |d SD(d)| MSE(d) | D SD(D) | MSE(D)
100[0.0333 [ 0.0826 [0.0112  [0.4423[0.0160 [0.0003
200 [ 0.0674 [ 0.0590 [ 0.0045 | 0.4462 [0.0112 [0.0001
500 [ 0.0860 | 0.0350 | 0.0014 | 0.4475 [0.0001 |0.00008
1000 | 0.0927 [ 0.0207 | 0.0000  |0.4503 [0.0118 [0.0001

Table 2. MLE of d and D of a generating process of SARFIMA(D, d, 0)=(0, I3, 0)52
with d = 0.15 and D) = 0.45. The results are based on 1000 Monte Carlo replications

n |d SD(d)| MSE(d) | D SD(D) | MSE(D)
100 [ 0.0671 | 0.0835 [ 0.0138  [0.4502[0.0136 [0.0001

200 | 0.1033 [ 0.0570 [ 0.0054 | 0.4539 [0.0087 |0.00000
500 [ 0.1358 [ 0.0357 [ 0.0014 | 0.4530 [0.0076 |0.00006
1000 | 0.1429 | 0.0260 | 0.0007  |0.4516 [ 0.0070 |0.00005

It can be seen from Tables1. 2, 3 and 4 a reasonable assessment of the
maximum likelihood estimator for the seasonal as well as non-seasonal fractional
differencing parameters. It is noticeable that the parameter bias has decreased
as with the increase of the series length. Also, it is evident from the parameters
in Tables1, 2, 3 and 4 that they become consistent with the increase in series
length. Standard deviation and the MSE of estimators decrease with the increase
in series length as expected.
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Table 3. MLE of d and I} of a generating process of SARFIMA(Q, d,0)=(0, D, 0)sa
with d = 0.3 and D) = 0.3, The results are based on 1000 Monte Carlo replications

n |d SD(d) | MSE(d) | D SD{D)| MSE(LY)
100 0.2236 | 0.0831 |0.0127 |0.2738 | 0.0690 |0.0127
200 | 0.2607 | 0.0586 | 0.0040 | 0.2800 | 0.0386 | 0.0016
500 | 0.2846 | 0.0260 |0.0015 | 0.2047 | 0.0260 | 0.0007
1000 | 0.2007 [ 0.0262 [0.0007 | 0.2078 [ 0.0190 |0.0003

Table 4. MLE of d and D of a generating process of SARFIMA(0, d, 0)z(0, D, 0)s2
with d = 0.45 and [ = 0.1. The results are based on 1000 Monte Carlo replications

n|d SD(d) [ MSE(d)| D SD(D)| MSE(D)
100[0.3607 [ 0.0733 [0.0118  [0.0205]0.1414 [0.0263
200 0.4015 | 0.0493 [0.0047 [ 0.0723 [ 0.0667 | 0.0052
500|0.42823 [ 0.0312 [0.0014  [0.0002[0.0365 | 0.0014
1000 | 0.4391 [ 0.0244 [0.0007 | 0.0936 [ 0.0268 | 0.0007

5 Application for Real Data

5.1 Description of Dataset

Colombo city is the commercial capital of Sri Lanka, situated with latitudes 6
55 N and Longitude 79 51 E and is chosen as the study site. Daily rainfall
data of Colombo were collected from 1990 to 2015 from the Department of
Meteorology, Sr1 Lanka for this study. The daily rainfall {mm) data has been
converted into weekly rainfall by dividing a year into 52 weeks such that week 1
corresponds to 1-7 January, Week 2 corresponds to 814 January and so on. The
data during the time span from 1990 to 2014 was used as to build the models
while the rest was used for the model validation.

5.2 DModel Development

To examine the temporal variability of the rainfall series, time series plots was
taken and it is presented in Fig. 1.

Random behavior of the rainfall pattern can be clearly observed in Fig. 1.
However, it cannot be identified as a decreasing or increasing trend in weekly
rainfall within the considered time span. In order to find out the seasonal hehav-
ior of the data, autocorrelation analysis was carried out and the result is pre-
sented in Figs. 2 and 3. A seasonal behavior ean be clearly recognized from this
plot. Since the data was captured on a weekly basis, identifying the seasonal

length, ACF and PACF were done with 52 lag difference.
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Fig. 1. Time series plot of weekly rainfall series from 1990 to 2014

Based on the ACF and PACF it can be clearly identified that the seasonal
length is 52 since significant sample autocorrelation existed in the 527 Lag.
Figure 5 illustrate the sample spectrum which has the peak at frequency very
closer to zero. The corresponding frequency gives a maximum spectrum density
of 0.0385185. This value 1s not far from zero. ((L0385185 * 100/0.5 = 0.0770
= 7.7%). Thus, we can conclude that the SARFIMA series is suitable for this
data set. The long term serial correlation in the data are accounted for in long
memory modeling. It is very imperative to consider the long memory features
to capture the real dynamics of rainfall. Thus, several SARFIMA models were
fitted to the data with the size of the sample being 1300. Those fitted were uti-
lized to predict the weekly rainfall over the vear 2015. The best fitted model is
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Fig. 2. Autocorrelation plot of the series from 1990 to 2014

selected with minimum mean absolute error (MAE). The MAE can be written
as;]

_ 1 T
MAE = 31 | |eil.
Where e; i1s the forecasting error and n is the length of the forecasting series.
The corresponding result of the fitted long memory model is as follows.
A model SARFIMA (1,0.116,1) = (1,0.171,0)5, was found to be the best fitted
model for the weekly rainfall series. The corresponding parameter estimates with
standard errors are presented in Table 5.
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Fig. 3. Partial autocorrelation plot of the series from 1990 to 2014

323

Table 5. Fitted model for the weekly rainfall series SARFIMA(p, d, q)=( P, D, ()5
withp=1,g=1,d= 01156735 P =1, D =0.1707546, @ = 0 and § = 52

Coefficients e th i Constant | d n

Estimate —0.9113 | —0.9018 | —0.0860 | 0.0041 0.1156 | 0.1707
Standard Error| 0.1427| 0.1498| 0.0394|0.1021 0.0269 | 0.0291
ZL-value —6.3854 | —6.0192 | —2.1796 | 0.0401 4.2900 | 5.8644
Pr(=|Z|} 0.0000 | 0.0000 [ 00000 | 00000 0.0000 | 0.0000
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Autocomelation Function for Rainfall{LagDiff-52)
{with 5% significance limits for the autocomrelations)
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Fig. 4. ACF of the series from 1990 to 2014 with 52 Lag

All model parameters are significant at the 0.05 level of significance. The
residual analysis of the fitted model was performed and found the uncorrelated
at a 5% level of significance. Furthermore, the model was tested for weekly
rainfall data in 2015 and the result is presented in Table 6. Various SARIMA
models also fitted to the same dataset for the purpose of the comparison with
the long memory model SARFIMA. A model SARIM A(1,0,0)z(1,0,1)5; was
found to be the best fitted model for the weekly rainfall series.

Table 6. Absolute Forecasting Error in mm for independent sample 2015

Absclute Forecasting

SARIMA weekly

SARFIMA weekly

Error in mm percentage percentage
0-10 T(13.5) 12(23.1)
11-15 5(9.6) 4(7.7)
16-20 3(5.8) 4(7.7)
21-25 47.7) 5(9.6)
26-30 2(3.8) 6(11.5)
31-35 T(13.5) 4(7.7)
36-40 8(15.4) 3(5.8)
41-45 47.7) 1(1.9)
46-50 1(1.9) 3(5.8)
More than 50 11(21.1) 10(19.2)

Based on the above forecasted result, the model SARFIMA is outperform
SARIMA. It can be seen that the more than 30% of the weeks’ forecasting error
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Fig. 5. The periodogram of the rainfall series from 1990 to 2014

less than to 15mm indicated that a good agreement of the real and forecasted
which derived from the SARFIMA. Then the novel model can be considered
as best fitted for the weekly rainfall series. However, still there is a consider-
able mumber of weeks’ forecasting error more than to 50 mm which need further
improvement to this model.

6 Conclusion
It is evident from the results of this paper that long range dependency character-

istics could couple with periodic variation in a weekly rainfall series. SARFIMA
model can be considered to capture both long memory and seasonality. The
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Monte Carlo simulation provides evidence towards optimal accuracy of parame-
ter estimation. Furthermore, accuracy of the estimators improved with increasing
of the series length. The effectiveness of the SARFIMA model was represented
by using real datasets in the form of weekly rainfall from 1990 to 2014 (1300
size of the sample). SARFIMA (1,0.116,1) = (1,0.171,0)5; model was found
to be the best model to forecast weekly rainfall in Colombo city. Thereafter,
model was used to make independent sample long-range seasonal predictions
of the weekly rainfall for the year 2015. Those result was compared with the
SARIMA(1,0,1)xz(1,0,1); and found that the SARFIMA is superior than the
SARIMA based on the predicted performance which has done for the indepen-
dent data set.
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Abstract. A study of ramfall pattern and its vanability in South Asian
countries is vital as those regions are frequently vulnerable to climate
change. Models for rainfall have been developed with different degrees
of accuracy, since this key climatic variable 1s of importance at local and
global level. This study investigates the rainfall behaviour using the long
memory approach. Since the observed series consists of an unbounded
spectral density at zero frequency, a fractionally integrated auto regres-
aive model (ARFIMA) 1= fitted to explore the pattern and characteristics
of the weekly rainfall in the city of Colombo. The maximum likelihood
estimation (MLE) method was utilized to obtaln estimates for model
parameters. To evaluate the smtability of the method for parameter
estimation, a Monte Carlo simulation was done with various fraction-
ally differenced parameter values. Model selection was done based on
the minimum of the mean absolute error and validated by the forecast-
ing performance that was evaluated using an independent sample. The
experimental result yielded a good prediction accuracy with a best fitted
long range dependency model and a coverage probability of 5% in terms
of prediction intervals that resulted in closer nominal coverage.

Keywords: Rainfall - Fractional differencing - Long-memory
Maximum likelihood estimators - Forecasting

1 Introduction

Modelling rainfall is a challenging task for researchers due to the high degree of
uncertainty in atmospheric behaviour. Ohservational evidence indicates that the
climate change has significantly affected global community at a different level.
Clhimate vulnerabilities are expected to be critical in Sr1 Lanka in the various
sectors as agriculture, fisheries, water, health, urban development, human set-
tlement, economic infrastructure, biodiversity and ecosystem in the country [22].

(€) Springer Nature Switzerland AG 2019
V. Kreinovich et al. (Eds.): ECONVN 2019, SCI 809, pp. 567-580, 2019,
https:/ /doi.org/10.1007 /078-3-030-04200-4_40
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Information on key climatic variable predictions allow to various stakeholders to
prompt themselves for action in order to reduce adverse impacts and enhance
positive effects of climatic variation. Rainfall is the one of the most important
climatic variable to tropical country like Sr1 Lanka and this is the variable which
give erratic variation at any time in the country. Sri Lanka receives rainfall dur-
ing the year. with a mean annual rainfall varving from 900 mm in the dry zone
to over 5000 mm in the wet zone. Annual rainfall pattern in many parts of Sri
Lanka are bimodal and predominantly governed by a seasonally varying mon-
soon system. Sri Lanka needs to address climate change adaptation to ensure the
economic development by the careful investigating of the information on rainfall
pattern and its variability which resulting from the predictions of the best fitted
rainfall models in various regions. Rainfall analysis is not only important for agri-
cultural areas but also for the urban areas since those areas engage with many
activities such as construction, industrial planning, urhan traffic, sewer systems,
health, rainwater harvesting and climate monitoring. Rainfall is the main source
of the hydrological cycle and provides practical benefits through its analysis.
Thus, modelling rainfall is one of the key requirements in the country, some of the
researchers made attempt to analyse weekly rainfall in Sri Lanka using percentile
bootstrap approach to identify the extreme rainfall events [24]. Another study
was carried out by the Silva and Peiris [25] to identify the most likelihood time
period to form the extreme rainfall events during the South west moons time span
by fitting best probability distribution for the weekly rainfall percentiles. Since
the Sr1 Lanka is a developing country which hasn’t high technologyv to sensitive
to some important climatic information with related to rainfall is one of the rea-
son cause to low prediction accuracy. However, researchers made effort to model
rainfall of the country with increasing degree of accuracy using different tech-
niques. Silva and Peiris [26] discussed problems faced in modelling rainfall which
showed positive skewed distribution with longer tail to the right. Rainfall is one
of the most difficult variables of the hydrological cycle to understand and model
due to its high variability in both space and time [13]. However, several modelling
strategies have been applied for the forecasting of rainfall in different areas all
over the world. Box-Jenkins autoregressive integrated moving average (ARIMA)
model has been widely used for rainfall modelling ([11,20,29,30]). Some of the
researchers have made attempts to model rainfall using artificial neural net-
works ([10,18]). However, very few studies on rainfall in context of long memory
can be identified in literature. Granger and Joyeux [15] and Hosking [17] initially
proposed a long memory class of models, known as the fractionally integrated
antoregressive moving average (ARFIMA) process for stochastic processes. The
model defined as ARFIMA (p, d, q) allows the parameter “d” to take fractional
values for differencing. There is a fundamental change in the correlation structure
of the ARFIMA model, when compared with the correlation structure of the con-
ventional ARIMA model ([6]). According to Granger and Joyeux [15], the slowly
decaying autocorrelation exhibited in long range dependency or long memory
maodels differ from stationary ARIMA models that decay exponentially. Many
researchers proposed different methods to estimate the fractional differencing
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parameter. Porter-Hudak and Geweke [14] proposed a method for estimating
the long memory differencing parameters based on a simple linear regression of
the log periodogram. An approximate maximum likelihood method for param-
eter “d” was proposed by Fox and Taqqu [12]. An exact maximum likelihood
estimation method for differencing parameter was introduced by Sowell [27].
Chen et al. [6] developed a regression type estimator of “d” using lag window
spectral density estimators. Number of studies were carried out by comparing
various properties of the ARFIMA model based on the estimation method used
for the fractionally differencing parameter. (See [2,3,7,16,23]). Dissanayake [9]
established a methodology to find an optimal lag order of a standard long mem-
ory ARFIMA series within a short process time duration and applied the theory
to Nile river data.

Though short memory models have been developed for rainfall still there
15 a noticeable gap modeling persistent rainfall in view of long memory. The
main goal of this study is to fit an ARFIMA model for a weekly rainfall data
series in the city of Colombo by capturing the long range dependency features.
The paper outline is shaped as follows. In Sect. 2, the long memory ARFIMA
model is introduced and some properties of the model are discussed. The model
parameter estimation procedure is also described within the section. The results
of the Monte Carlo simulation which was used to evaluate the suitability and
reliability of the parameter estimation procedure is presented in Sect. 3. Section 4
provides brief details on prediction intervals for forecasting values relevant to the
utilized series. The results of weekly rainfall modelling are presented in Sect. 5.
Final section. comprises of the conclusion and proposed suggestions.

2 ARFIMA Long Range Dependency Model

ARFIMA 1s a natural extension of the Box and Jenkins model with non-integer
values assigned for d. The ARFIMA (p, d, q) model of a process {Y; },. z is given
by the formula

S(B)VI(Ye — p) = U(B)= (1)
Where p is the mean of the process, {e }icz is a white noise process with zero
mean and variance o-. B is the backward shift operator such that y_, = By,
¢(B) and #(B) are autoregressive and moving average polynomials of order p
and g respectively.

@{BJ=Z@B* 1<i<p (2)
v
w{B;=Z¢j3f 1<j<gq (3)

where d is called as the long memory parameter and differencing operator V¥ is

defined as,
i |
vi-w-p=Y () -B @)

k=0
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: dy — __ T(i+d)
Where (1) = T(1+k)C(1+d—k) "

If d = —0.5 then the process is invertible and if d < 0.5 then the process
15 stationary. Therefore d = [—%.. %} shows that the process is stationary and
invertible. The spectral density function of the {Y;}icz 18 f(w) that can be
written as

flw) = {Esin%]‘z‘i Dcw<n (5)

flw w2 w0

The spectral density function f{w) is unbounded when the frequency is near
zero. Also, the autocovariance function and correlation function of the process
can be expressed as follows

(—1)*(-2d)!
(k—d)l(—k—d)! ©)
d(1+d)...(k—1+d)
1—d)2—d)(3—d)..(k—d)

T =

e = (k=1,2,3,4...) (7)

Hosking (1981) showed that the auto correlation function of the process satisfies
the expression pp =~ k**~! when 0 < d < 1 /2. Thus, the autocorrelation of the
ARFIMA process decays hyperbolically to zero as k' — oo and in contrast, the
auto correlation function of the ARIMA process has a exponential decay. The
process with d = 0 reduces to a short memory ARMA model.

Let Z denote a series of “n” observations with mean g and variance o%. If
the decay parameter is considered as o, then the natural fractional differencing
parameter “d” can be written as d = (1 — /2.

The log likelihood function of the Exact Gaussian can be written as

1
l(a,05) = —5llog det(Ty) + z'rtzh (8)
The arfima package (See [28]) in R optimized the log likelihood function and
obtained the exact maximum likelihood estimators. Two algorithms namely
Durbin-Levinson and Trench algorithms were utilized to maximize the likeli-
hood and obtain optimal simulation and forecasting results.

3 Result of the Monte Carlo Simulation

A number of Monte Carlo experiments were carried out to evaluate the perfor-
mance of the maximum likelihood method used for parameter estimation. The
simulation was done based on various fractional differencing parameter values
with 1000 replications. The four different series lengths (n = 100, n = 200,
n = 500 and n = 1000) were considered for the simulation. The simulation
results provided fractionally differenced parameter estimates and corresponding
standard and mean square errors. Monte Carlo experiment was conducted on
a simulated ARFIMA(0.d,0) series with parameter values: d = 0.1, d = 0.15,
d =03 and d = 0.45.
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The simulation was carried out using the R programming Language (Ver-
sion 3.4.2) utilizing a HP11(8 GB, 64 bit) computer. The standard errors of
the estimates Sﬂ[éj and mean square error of the estimates M SE[&} can be
expressed as;

R R
SD(d) = \|>_(d, —d)/R MSE(d Z d, — d)?
r=1 r=

Where d, is the MLE of d for the r'® replication. The value R denotes the
number of replications (i = 1000 for all tabulated simulation results of this
paper). Tables 1, 2, 3 and 4 present the average of the estimated d, corresponding
standard error and MSE of the estimator.

According to the results in Tables1, 2, 3 and 4, the performance of the
maximum likelihood estimator is reasonably accurate. It can be clearly seen that
the parameter hias has decreased with the increase in sample size. Furthermore,

Table 1. MLE of d for a generating process of ARFIMA{0,d,0) with d=0.1. The

results are based on 1000 Monte Carlo replications

n |d SD(d) | MSE(d)
100 | 0.0517 | 0.0912 [ 0.0106
200 | 0.0748 | 0.0626 | 0.0045
500 | 0.0885 | 0.0367 | 0.0014
1000 | 0.0949 | 0.0254 | 0.0006

Table 2. MLE of d for a generating process of ARFIMA(D,d,0) with d=10.15. The
results are based on 1000 Monte Carlo replications

n |d SD(d) | MSE(d)
100 | 0.1048 | 0.0915 | 0.0104
200 | 0.1265 | 0.0593 | 0.0040
500 | 0.1408 | 0.0367 | 0.0014
1000 | 0.1456 | 0.0254 | 0.0006

Table 3. MLE of d for a generating process of ARFIMA(0,d,0) with d =0.3. The
results are based on 1000 Monte Carlo replications

n |d SD(d) | MSE(d)
100 | 0.2493 | 0.0877 | 0.0102
200 0.2726 | 0.0575 [ 0.0040
500 0.2802 | 0.0362 [ 0.0014
1000 | 0.2047 [ 0.0251 | 0.0006
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Table 4. MLE of d for a generating process of ARFIMA{0.d,0) with d =0.45. The
results are based on 1000 Monte Carlo replications

n |d SD(d) | MSE(d)
100 | 0.3774 | 0.0605 | 0.0101
200) | 0.4070 | 0.0477 | 0.0040
500 | 0.4310 | 0.0314 | 0.0013
1000 | 0.4435 | 0.0270 | 0.0007

the results provide evidence that the parameters become consistent with the
increase in series length. As we expected the standard deviation and the MSE
of the estimators have decreased with the increase in series length.

4 Forecast and Prediction Intervals

Forecasts are obtained based on the hest fitted long memory model. However,
predicting of future values along with their prediction intervals become more
beneficial in long memory time series analysis. The lower (L} and upper (U)
boundaries covering the forecast values with known probability are simply called
prediction intervals of the form [L, U]. A detailed review of approaches in calcu-
lating interval forecast using time series was described in Chatfield [5]. Charles
et al. [4] made an effort to make prediction intervals to forecast US core inflation
values that provided a unique fractional model. Prediction intervals were utilized
to forecast tourism demand by Chu [8]. Zhou et al. [31] suggested a prediction
interval method to predict ageregates of future values derived from a long mem-
ory model. A new bootstrap method for autoregressive models was proposed
by Hwang and Shin [19]. Ali et al. [1] suggested a Sieve bootstrap approach to
construct intervals for a long memory model. Prediction interval approach was
utilized to measure the uncertainty about long-run predictions by Muller and
Watson [21].

5 Application

Sri Lanka is a tropical country in South Asian region located at the latitudes of
57 556 W and 9° 51 N and the longitudes of 79 41 E and 817 53 E with
an area of 65610km? and the Colombo city is the commercial capital of Sri
Lanka. Daily rainfall data of Colombo were collected from 1990 to 2015 from the
Department of Meteorology, Sri Lanka for this analysis. The daily rainfall (mm)
data has been converted into weekly rainfall by dividing a year into 52 weeks such
that week 1 corresponds to 1-7 January, Week 2 corresponds to 8-14 January
and so on. The data during the time span from 1990 to 2014 was used to build the
model while the rest was used for model validation. To examine the temporal
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Fig. 1. Time series plot of weekly rainfall series from 1990 to 2004

variability of the rainfall series, time series plots were taken and presented in
Fig. 1.

The time series plot explores the random hehaviour of weekly rainfall during
the considered time span from 1990 to 2014, In order to identify the correlation
structure of the ohserved series, the antocorrelation and partial auto correlation
plots were taken and those results are shown in Figs. 2 and 3 respectively.

In order to study the long memory features of the weekly rainfall series,
the periodgram was obtained and presented in Fig. 4. The maximum spectrum
density i1s .0385185 given at a frequency which is very close to zero. Based on
those characteristics the series displays long memory. Thus, we conclude that
the ARFIMA standard long memory model may be suitable for the observed
weekly rainfall series. Long range correlation of observed data were considered
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Fig. 2. Autocorrelation plot of the series from 1990 to 2014

in long memory modelling. Various ARFIMA models were fitted for the data set
that vary from 1990 to 2014 (series length = 1300).

Those fitted models were emploved to predict the weekly rainfall during the
time span from 2014 to 2015 and best fitted model is selected with the minimum
mean absolute error (MAE). The MAE can be written as,

m

MAE = ~Y e/

T
i=1

Where ¢; 1s the forecasting error and n is the length of the forecasting series.
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Fig. 3. Partial autocorrelation plot of the series from 1990 to 2014

The best fitted model and the corresponding parameter estimates are pre-
sented in Table 5. The ARFIMA (4.0.4) model was found to be the best fit for
the weekly rainfall series returning the smallest MAE.

All model parameters except the constant are significant at the (.05 level
of significance. The residual analysis of the fitted model was performed and
found the uncorrelated at a 5% level of significance. Furthermore, the model
was tested for weekly rainfall data in 2015 and the result is presented in Table 6.
Figure 5 illustrates the weekly rainfall over the year 2015 along with the predicted
estimates.
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Fer iodngram

Fig. 4. The periodgram of the rainfall series from 1990 to 2004

Table 5. Fitted model for the weekly rainfall series ARFIMA (4,04} with p = 4,
q = 4,d = 0.05792421

Cocfficionts iy do g By 4

Estimate 1.2059 —0.2403| 0.5765 —0.6752 1.1243

Standard error| 0.0242 0.0454 [6.3240-07 |6.324e-07  |0.0231-Correct value {CV)
Z-value 4.9768e01 | 54803 | 9.1153e05 | —1.0676e06 | 4.863801

Pr(=|Z]) (0.0000 0.0005 | 0.0000 0.0000 0.0000
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Table 5. (continued)
Coefficients Oy A A4 Constant d
Estimate —0.1131 0.5220 —0.6743 —0.0163 0.0579
Standard error | 0.0365 (CV) | 0.0354 (CV) | 0.0215 0.0380 0.0276
Z-value —3.0992 1.4735e01 | —3.1363e01 | —4.2907e-01 | 2.0950
Pr(>|Z]) 0.0019 0.0000 0.0000 0.6678 0.0361

Table 6. Absolute Forecast Error for independent sample (2015)

Absolute forecasting error in mm | ARFIMA number of weeks percentage
0-10 10(19.2)
11-15 6(11.5)
16-20 6(11.5)
21-25 4(7.7)
26-30 6(11.5)
31-35 1(1.9)
36-40 4(7.7)
41-45 1(1.9)
46-50 2(4.0)
More than 50 12(23.1)
400
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Fig. 5. Forecasted and actual weekly rainfall in 2015
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Fig. 6. Prediction intervals for forecasted rainfall values in 2015

According to Fig. 5, 1t can be seen that the predicted values are in consid-
erable good agreement with the actual rainfall values. The result of the 05%
prediction interval also provides encouraging prediction accuracy with a 93.23%
coverage probahility (Fig. 6).

6 Conclusion

Observed rainfall series illustrates long memory features with an unhbounded
spectral density. Therefore a standard long memory ARFIMA model was fitted
to capture the rainfall pattern and its variability. The Monte Carlo simulation
results prove the accuracy of the maximum likelihood method used to estimate
the parameters of the model. Furthermore, it is noticed that the parameter
bias has decreased and the parameters become consistent with the increase of
the simulated series length. ARFIMA(4.0.0579,4) model was found to be the
best fitted model that provided a minimum MAE. The out of sample prediction
values give good conformity with the actual weekly rainfall in 2015. The 95%
prediction intervals also give a promising result to capture the real dynamics of
the persistent rainfall. For future work it is suggested that prediction intervals
using the bootstrap re-sampling approach may forecast estimates with a higher
degree of accuracy.
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DEVELOPMENT OF LONG AMEMORY MODEL TO FORECAST
WEEELY REAINFALL
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Awareness of pattern of weekly ramfall and s vanability facilitate to make effective
decizions with respect to the climate monstormgz. Though vanous stabistical and non
statistical techniques have been developed for ramfall modelng with increasing degree of
aceuracy is still a noticeable zap for predichion of ramfall. The aim of this study was to
model weekly ranfsll in comtext of long memory along with the conditional
heteroskedasticity, Weekly ramfall data (1990-2017) in Colombe city was obtained from
the Department of Meteorology, Sr1 Lanka Of the various types of long memory models
developed for weekly senes, the best fitted model 1z ARFIMA-GARCH for deseasonalized
data. The model was tramed using weekly ramfall data from 1990 to 2014 and validated
usmg weekly data from 2015 to 2017. The forecasting performance of the new model 15
not mmch diduted with the merease of the forecasting length. The exact maximmm
hkehhood estonation method was uhlized to estimate the model parameters and Monte
Carlo smoulstion was camed out with vanous frachional differencing parameters to
evalnate the sumtability of the estmation method. The sipmlation study 15 provided the
empmical evidence to optmal accuracy of parameter estmation The best fitted model
developed 15 ARFIMA-GARCH for deseasenalized data. The forecasting performance of
the model was evaluated based on the novel index developed using absolute ervor for an
mdependent data set in addmion to the classical indicators. The novel long range
dependency model 15 recommended to be used m forecasting weekly ramfall in Colombo
cityin Sn Lanka.

Financial azsistance from the Univerzity of 5ri Jpewardenepura, Sn Lanka,
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APPENDIX -1
WEEKLY RAINFALL PATTERNS AND THEIR
DISTRIBUTIONS

Time series plot of week 1 to week 11
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Figure Al.1: The time series plots of the weekly rainfall of week 1 -11

Time series plot of week 12 to week 19 and week 21 to week 23
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Figure AL1.2: The time series plots of the weekly rainfall of weeks 12-19 and week 21
- 23.
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Time series plot of week 24 to 27, week 29 to 31, week 33 and week 35 to 37

12 a 12 .
Week 24 Week 25 Week 26 Week 27
200 - 160
100 100
100 - 80
50 - 50
0 0 0 0-|
Week 29 Week 30 Week 31 Week 33

300 -

150 -

<1Ra|nfall (mm)
© @ 8
o 8 8
%
o &8 B

Week 35 Week 36 Week 37

o 8
° 9 &
- 8 B

1 22 4

Year Number (1=1960, ... ,56=2015)

S

Figure AL1.3: The time series plots of the weekly rainfall of weeks 24-27, 29-31, 33,
35-37

Time series plot of week 38-40, 42-43,45, 47, 49-52

o2 . L S
400 Week 38 400 Week 39 Week 40 Week 42
400
200 -
200 -| 200 i
100 | 200
0 0- 0 0-
Week 43 Week 45 Week 47 Week 49

200 - 200 -

Rainfall (mm)
= g
- 5 8

%
= g
é
> 8 8

Week 50 Week 51 Week 52

s S 3

- 8 8
p—y N

o 8 8

T T
22 44

Year Number (1=1960, ... ,56=2015)

N
I

Figure Al.4: The time series plots of the weekly rainfall of weeks 38-40, 42-43,
45,47 and 49-52.
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Figure A1.5: Histogram of the total weekly rainfall for week numbers: week 18,19
and 21-24 in SWM
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Figure A1.6: Histogram of the total weekly rainfall for week numbers: week 25-27
and 29-31 in SWM
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Figure A1.7: Histogram of the total weekly rainfall for week numbers: week 33 and
35-39 in SWM
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Figure A1.8: Histogram of the total weekly rainfall for week numbers: week 40, 42,
43,45 and 47 in SIM
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APPENDIX -2

AUTO CORRELATION FUNCTIONS OF WEEKLY RAINFALL
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Figure A2.1: The auto correlation plots of the weeks 18,19 and 21-24 in SWM
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Figure A2.2: The auto correlation plots of the weeks: 25-32 in SWM
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Figure A2.3: The auto correlation plots of the weeks: 33,35-39 in SWM & 40 and

42 in SIM
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Figure A2.4: The auto correlation plots of the weeks: 43 and 45-48 in SIM
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APPENDIX -3
INDICES FORMATION

To evaluate the forecasting performance, an index was developed based on the
absolute forecasting error and the corresponding calculations were listed below for
each model separately.

Table A3.1: Indices for absolute error by Model 1 - ARFIMA (4,0.05792,4)

The number of weeks
Absolute
Forecasting Weights 2015- 2015-
Error in (mm) 2015 | 2016 | 2017 2016 2017
0-10 9 10 7 10 17 27
11--15 7 6 8 4 14 18
16-20 5 6 4 7 10 17
21-25 3 4 8 8 12 20
26-30 1 6 2 2 8 10
31-35 -1 1 4 2 5 7
36-40 -3 4 1 1 5 6
41-45 -5 1 2 2 3 5
46-50 -7 2 4 3 6 9
More than 50 -9 12 12 13 24 37
Index 40 12 26 52 78

Index (using 2015 data) = 9x10+7x6+5x6+3x4+1x6-1x1-3x4-5x1-7x2-9x12 = 40
Index (using 2016 data) = 9x7+7x8+5x4+3x8+1x2-1x4-3x1-5%2-7x4-9x12 = 12
Index
(using 2015-2017 data) = 9%27+7%18+5x17+3x20+1x10-1x7-3x6-5%5-7x9
-9x37
=78
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Table A3.2: Indices for absolute error by Model 2 - ARFIMA (5,0.05999,5) for

deseasonalized data

The number of weeks
Absolute I_:orecasting Weights 2015- 2015-
Error in (mm) 2015 | 2016 | 2017 | 2016 2017
0-10 9 17 9 11 26 37
11--15 7 2 5 7 7 14
16-20 5 6 3 6 9 15
21-25 3 2 7 3 9 12
26-30 1 2 7 6 9 15
31-35 -1 4 4 0 8 8
36-40 -3 1 2 1 3 4
41-45 -5 2 1 1 3 4
46-50 -7 3 3 6 6 12
More than 50 -9 13 12 11 25 36
Index 50 15 44 65 109

Index (using 2015 data) = 9x17+7x2+5x6+3x2+1%2-1x4-3x1-5%2-7x3-9x13 = 50
Index (using 2017 data) = 9x11+7x7+5x6+3%3+1x6-1x0-3x1-5x1-7x6-9x11 = 44

Table A3.3: Indices for absolute error by Model 3 - ARFIMA (4,0.116577,6)-

GARCH (1,1)
The number of weeks
Absolute
Forecasting Weights 2015- 2015-
Error in (mm) 2015 2016 | 2017 2016 2017
0-10 9 10 8 10 18 28
11--15 7 3 5 4 8 12
16-20 5 6 5 4 11 15
21-25 3 6 5 6 11 17
26-30 1 7 7 7 14 21
31-35 -1 3 3 2 6 8
36-40 -3 1 2 1 3 4
41-45 -5 2 2 3 4 7
46-50 -7 2 3 2 5 7
More than 50 -9 12 12 13 24 37
Index 28 6 12 34 46

Index (using 2016 data) = 9x8+7x5+5x5+3x5+1x7-1x3-3%2-5%2-7x3-9%x12 = 6
Index (using 2015-2017 data) = 9%28+7x12+5x15+3x17+1%21-1x8-3x4-5x7-7x7

-9x37

= 46
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Table A3.4: Indices for absolute error by Model 4 - ARFIMA (6,0.243588,5)-

GARCH (1,1) for deseasonalized

The number of weeks

Absolute
Forecasting Error Weights 2015- 2015-
in (mm) 2015 2016 2017 2016 2017
0-10 9 16 8 11 24 35
11--15 7 6 5 7 11 18
16-20 5 5 4 5 9 14
21-25 3 2 6 5 8 13
26-30 1 2 9 5 11 16
31-35 -1 1 3 1 4 5
36-40 -3 3 2 1 5 6
41-45 -5 1 1 3 2 5
46-50 -7 4 3 2 7 9
More than 50 -9 12 11 12 23 35
Index 68 20 52 88 140

Index (using 2015 data)= 9%16+7x6+5x5+3x2+1x2-1x1-3x3-5x1-7x4-9x12 = 68
Index (using 2016 data)= 9%x8+7x5+5x4+3%6+1x9-1x3-3x2-5x1-7x3-9x11 = 20

Table A3.5: Indices for absolute error by Model 5- Adjusted
SARFIMA (1,0.115677,1) x (1,0.17075,0) -GARCH (1,1)

The number of weeks
Absolute
Forecasting Weights 2015- 2015-
Error in (mm) 2015 2016 | 2017 | 2016 2017
0-10 9 12 8 8 20 28
11--15 7 4 5 6 9 15
16-20 5 4 4 6 8 14
21-25 3 5 8 5 13 18
26-30 1 6 4 3 10 13
31-35 -1 4 2 6 6 12
36-40 -3 3 4 2 7 9
41-45 -5 1 3 3 4 7
46-50 -7 3 5 3 8 11
More than 50 -9 10 9 10 19 29
Index 48 10 24 58 82

Index (using 2015 data) = 9x12+7x4+5x4+3x5+1x6-1x4-3%x3-5%1-7x3-9x10 = 48
Index (using 2017 data) = 9x8+7x6+5x6+3x5+1x3-1x6-3%2-5x3-7%3-9x10 = 24
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