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ABSTRACT 
 

Modeling weekly rainfall has become a demanding assignment due to the complexity of 
rainfall pattern. Accurate inferences on weekly rainfall prediction facilitate to fill the 
noticeable gap with respect to the climate monitoring to reduce the climate stress in the 
country. However, relatively, few measures have been taken to perform the modeling of 
rainfall in the context of long memory. This study therefore, provides an assessment of such 
a phenomenon by fitting a novel time series models to weekly rainfall. As the weekly rainfall 
exhibits the blend features of long memory and time dependence variance, various class of 
long memory models were fitted by accounting the heteroskedasticity. The best fitted model 
developed is ARFIMA-GARCH for deseasonalized data. The model was trained using 
weekly rainfall data from 1990 to 2014 and validated using data from 2015 to 2017 in 
Colombo city, obtained from the Department of Meteorology, Sri Lanka. The exact 
maximum likelihood estimation method was utilized to estimate model parameters. For the 
evaluation of the suitability of the method for parameter estimation, Monte Carlo simulations 
were carried out with various non seasonally and seasonally fractionally differenced 
parameter values along with the variance model parameters. The forecasting performance of 
the five types of long memory models developed was evaluated based on the novel index 
developed using absolute error for an independent data set in addition to the classical 
indicators. The rainfall percentiles with the 95% confidence intervals were also developed by 
exploring temporal variability of weekly rainfall based on parametric approach and 
bootstrapping approach. It was found that the high likelihood to form extreme rainfall events 
during beginning of South West Monson (SWM) (30th April to 10th June) and during 
withdrawal of SWM rainfall (17th-30th September) as well as with the time span from 8th 
October to 11th November during Second Inter Monsoon (SIM) rainfall. Based on the real 
coverage probabilities which derived using bootstrap calibration, it was found that there is a 
discrepancy of the nominal and calculated coverage probabilities of the 95% confidence 
intervals of rainfall percentiles. The deviation of the normality of the fitted distribution with 
the small size of sample could be a reason for the such a disparity. The novel long range 
dependency model is recommended to be used in forecasting weekly rainfall in Colombo 
city in Sri Lanka since the forecasting performance of the new model is not much diluted 
with the increase of the forecasting length. The study highlights various challenges for 
applied statisticians in modeling weekly rainfall.  
  
Keywords:  Weekly Rainfall, Long Range Dependency, ARFIMA-GARCH, Forecasting, 
          Coverage Probability, South West Monsoon 
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CHAPTER  1 

INTRODUCTION 

 

1.1.  Background 

Climate change leads to extreme weather conditions which greatly affect the diverse 

set of human and natural systems in the world. The Intergovernmental Panel on 

Climate Change (IPCC) defines climate change as "any change in climate over time, 

whether due to natural variability or as a result of human activity". Observational 

evidence indicated that the climate change has significantly affected in many 

countries at different levels which causes a serious threat to sustainable development.   

 

According to the IPCC report in 2014, many key changes arose on various climatic 

variables, during the period of 1880 to 2012; the average combined land and ocean 

surface temperature went up by of 0.850C, mean sea level rose by 19 cm over the 

period of 1901 to 2010, green gas concentration has increased now higher than ever 

and the number of heavy precipitation events has increased in many regions. Though 

the climate variables are components of natural capital, on the other hand, those are 

the key factors that make severe impact on people wellbeing, economy of the 

country, environment and social stability. Impacts of climate variability depend on 

the intensity of the events which affect the global community at different level. 

Based on the projected changes in the system, IPCC has highlighted alarming trends 

in changes in global climate and has emphasized the importance of the prediction of 

climate variables, particularly precipitation in different time scales (IPCC, 2014).  

 

Rainfall, snowfall and other forms of frozen or liquid water falling from clouds are 

generally known as "Precipitation" (Trenberth, 2005). Solomon et al., (2007) claimed 

that the number of heavy precipitation events cause to increase likelihood of flooding 

events in many regions even those where there has been a reduction in total 

precipitation. According to Dai (2006), the biggest impact on the society may occur 

due to the changes in precipitation patterns and its variability. Information on key 

climatic variable predictions allows to various stakeholders to prompt themselves for 
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action in order to reduce adverse impacts and enhance positive effects of climatic 

variation. Numerous studies have been carried out on climate change and its 

repercussions, in particularly significant trends in precipitation and temperature 

(Portmann et al., 2009; Reiter et al., 2012; Shi et al., 2014; Nam et al., 2016).  At the 

local level, particularly in developing regions, there is a need for better information 

on rainfall patterns and its variability through accurate predictions which help to 

prepare adaptation in advance. 

 

1.2.  Climate Change in Sri Lanka 

South Asian countries are frequently vulnerable to extreme whether events and 

people who live in those regions face a huge challenge to deal with the impact of 

climate change due to the high population density, poverty and lack of resources to 

confront climate stress. (Ahmed and Suphachalasai, 2014). Sri Lanka is also a 

tropical country in South Asian region located at the latitudes of 5055 N and 90 51 N 

and the longitudes of 79041E and 81053 E with an area of 65610 square kilometers 

and the country frequently exposes to erratic weather events.  

 

There is sufficient evidence to claim that climate, in mostly rainfall pattern in Sri 

Lanka has already changed over the past years (Peiris et al., 2000; Waidyarathne et 

al., 2006; Manawadu and Fernando, 2008). This change resulted in substantial 

difference in the atmospheric behavior which inflicts serious consequences on human 

wellbeing. The mean air temperature of the country increased by 0.0160C during the 

time span from 1961 to 1990 while mean annual rainfall decreased by 144 mm 

(Eriyagama et al., 2010). It was revealed that a significant climate change in rainfall 

and temperature of low country wet intermediate region of Sri Lanka. The percentage 

reduction in the mean annual rainfall during 1986 to 2001 compared to the period 

1932 to 1985 was 9% while the corresponding value for the mean annual maximum 

temperature was 1.4% (Piyasiri et al., 2004). Manawadu and Fernando (2008) 

claimed that the number of rainy days in Sri Lanka decreased based on the result of 

analyzing the spatio-temporal trends in the rainfall using the daily rainfall records at 

the 22 meteorological stations during the period 1961-2002. Jayawardene et al., 

(2005) have highlighted that the rate of annual rainfall has increased significantly by 
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3.15 mm/year in Colombo district while it decreased by 4.87 mm/year and 2.88 

mm/year in Nuwara Elliya and Kandy districts respectively.  

 

As in other countries, climate vulnerabilities are expected to be critical in Sri Lanka 

in the various sectors such as agriculture, fisheries, water, health, urban development, 

human settlement, economic infrastructure, biodiversity and ecosystem in the 

country (Mawilmada et al., 2010). Few studies have been carried out to project future 

climate scenarios with respect to the rainfall in Sri Lanka to assess the impact on 

agricultural output, economy and water resource of the country. Based on the studies 

on rainfall projections, Basnayake et al., (2004) highlighted that there is a decreasing 

trend in mean annual rainfall while De Silva (2006) claimed that the increasing trend 

in mean annual rainfall. The changes of delay in monsoon onset and an increase in 

the occurrences of monsoon break period which are caused by enhanced greenhouse 

emission that could have a substantial impact on decreasing summer precipitation in 

key areas of South Asia (Ashfaq et al., 2009). The literature on rainfall projections 

demonstrate the necessity of prediction of rainfall by seasonal basis to obtain 

accurate rainfall for the country. 

 

1.3.  Annual Rainfall Pattern in Sri Lanka 

Sri Lanka is the one of the tropical countries in South Asian region that receives 

rainfall throughout the year.  The mean annual rainfall of the direst part of the 

country is under 900 mm while it is around over 5000 mm in the wettest part of the 

country (Source: www.meteo.gov.lk). Generally, the annual rainfall pattern in many 

parts of Sri Lanka is bimodal and rainy periods have been classified into four seasons 

by Domroes (1974).   

 

The four seasons are:  

1. First Inter Monsoon (FIM) from March to April 

2. South West Monsoon (SWM) from May to September 

3. Second Inter Monsoon (SIM) from October to November 

4. North East Monsoon (NEM) from December to February 
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The rainfall of the country is strongly governed by the seasonal varying monsoon 

system. With the mean annual rainfall 1861mm, 60% of rainfall is received during 

SWM and SIM while 14%, and 26% rainfall is received during FIM and NEM 

respectively (Premalal, 2013). The southwestern part of the country receives rainfall 

at any time of the day during southwest monsoon seasons and the amount of the 

rainfall varies from 100mm to over 3000mm. During the period of NEM, the dry and 

the cold wind blowing from the Indian land occurs result in cool but dry weather 

over many parts of the island and the rainfall amount varies from 177mm to 

1281mm.  

 

FIM rains mostly spread in South-Western region and the rainfall amount varies 

from 250mm to 700mm. It is particularly observed that the thunderstorm type rain 

during the afternoon or evening. SIM enriches from wide spread rain with strong 

winds that sometimes leads to floods or landslides. Rainfall in SIM furnishes balance 

distribution over Sri Lanka and the rainfall amount varies from 750mm to 1200mm 

(Source: www.meteo.gov.lk). Various studies have been conducted on the onset of 

four rainy seasons and the length of spells in the four seasons (Ramesh et al., 1996; 

Peiris et al., 2000; Omotosho et al., 2000; Goswami and Gouda, 2007). However, the 

result of those studies are highly varied. 

 

The large-scale climatic drivers also contribute considerably to rainfall variability in 

the Sri Lanka. The two main large-scale climatic drivers that influence the rainfall 

pattern of Sri Lanka are, the Southern Oscillation (SO) and the Indian Ocean Dipole 

(Zubair, 2002; Zubair et al., 2003; Zubair and Ropelewski, 2006). El Nińo and La 

Nińa are generated due to the changes in the winds, atmospheric pressure and sea 

water in the Pacific Ocean. El Nińo and La Nińa are the opposite phases such that El  

Nińo leads to wetter conditions during October to December and drier conditions 

during January to March and July to August on average (Zubair et al., 2008).  Those 

two climate drivers  are extreme  weather conditions such that El Nińo being the 

warm extreme and La Nińa the cold extreme and those do not change with the 

regularity of the seasons such as winter and summer, however, they might be recur 

on average about every three or four years (Permalal, 2013). Malmgren et al., (2003) 
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have claimed that the no change was observed NEM rainfall with respect to the El 

Nińo Southern Oscillation (ENSO). Also, they reported that the no similar influence 

from ENSO is seen for the two seasons NEM and FIM while there were differences 

in SWM rainfall pattern with respect to the ENSO climate divers.  Furthermore, it is 

important to note that rainfall is the main erratic variable in tropical countries like Sri 

Lanka. 

 

1.4.  Impact of Unpredicted Rainfall  

Rainfall is the one of the most important climatic variables in planning and decision 

making in the agricultural sector, particularly in those regions where livelihood of the 

people concerned depend on rain fed agriculture. According to Jayewardene et al., 

(2005), the 22% of the agricultural exports and 75% of the industrial exports use 

electricity which 62% is generated through hydropower.  

 

Rice cultivation plays an imperative role in Sri Lanka as most of the other countries 

in Asia. It is projected that by 2050, the majority of paddy growing areas in Sri 

Lanka will be faced to water related issues particularly during Maha season and as a 

result, paddy cultivation in those regions will become low down (De Silva et al., 

2007). Furthermore, Amarsinghe et al., (2015) projected that the irrigation 

requirement increased by 10-17% based on the late onset of the rainfall.  According 

to the prediction of climate change for the 2050, De Silva et al., (2007) claimed that 

the paddy irrigation water requirement will be increased by 23% due to the average 

rainfall decreased by 17% during the wet season. Paddy farming output falling by 

20%-30% in the next 20 to 30 years due to the erratic weather conditions will result 

in such a negative impact on agriculture employment in this section which has a 35% 

of the working population in Sri Lanka (Baba, 2010). 

 

Declining rainfall is a serious threat to the tea industry and it is estimated that the tea 

yield would be reduced by 30-80 kg/Ha with a reduction in monthly rainfall by 

100mm (Wijeratne et al., 2007). It was found that the variability of coconut 

production mainly depends on the two key factors, changes in monsoon rainfall and 

increases in maximum air temperature.  Based on the result of the projection under 
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six different climate scenarios, Peiris et al., (2004) claimed that the coconut 

production would not be sufficient to cater the local demand after 2040 when other 

external factors are non-limiting. According to Fernando et al., (2007), the loss of 

income to the economy with respect to coconut production was between US$ 32 

million to US$ 73 due to low rainfall which is caused by climate change. 

 

Changes in rainfall pattern cause to increase the likelihood of short and long run crop 

production decline which leads to a food insecurity in the country. The shifts in the 

monsoonal rainfall pattern due to global warming alarming to South Asian with 

respect to the food production and Sri Lanka is predicted to be one of the countries 

that faces risk of food insecurity in the Asian Pacific region (De Zoysa and Inoue, 

2014). Thus, the change of pattern and the quantity of rainfall most of the time create 

a serious threat to the sustainable development of countries at different levels.  

 

Sri Lanka is also under stress to face such climate changes which result in extreme 

weather conditions, particularly in rainfall events. Rainfall in the Wet Zone is mostly, 

intensive resulting flooding, landslides, soil erosion, damage to properties and 

infrastructures. Lo and Koralegedera (2015) claimed that the cities including 

Colombo in Sri Lanka would be seriously faced to water related issues due to 

changes in rainfall patterns, urbanization and installation of complex infrastructure. 

Furthermore, they reported that the very heavy rainfall may occur in future in the 

Colombo city.  Sri Lanka has witnessed a number of extreme rainfall events in South 

Western region during the south west monsoon season. The most recently, a flood 

event in Sri Lanka was reported in May 2016 and rainfall varied between 74.7mm to 

137.7mm. Sri Lanka was hit by severe tropical storms that caused widespread 

flooding and landslides in 22 districts of the country (OCHA Report, 2016). Each 

year the government of Sri Lanka spends huge amount to reconstruct and renovate 

the infrastructures which damage caused by floods in the wet zone.  

 

Changing in trends of rainfall can potentially increase the transmission of mosquito 

vector born disease, such as Dengue in many districts in the country (Pathirana et al., 

2009). According to Najim et al., (2012), the coastal and marine resources in South 
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Asian region including Sri Lanka have been affected seriously due to the changes of 

climate events. Also, the total climate change cost in South Asia based on the 

economic findings using the integrated assessment model, will increase in the long 

term (Ahmed and Suphachalasai, 2014). Some studies have been carried out to 

highlight the rainfall impact on the country based on the past data, but none of the 

studies were reported to predict rainfall in the short-term basis. 

 

The studies conducted so far with respect to the rainfall in Sri Lanka indicates that 

the properties of rainfall including rainfall trend, amount and intensity have changed 

(Malmgren et al., 2003; Jayawardena et al., 2005; Waidyaratne and Peiris, 2006; 

Wickramagamage, 2010; Mathugama and Peiris, 2011 & 2012) but very few 

attempts were made to predict the amount of rainfall either on short-term or a long 

term basis. Though many authors have used different models to predict rainfall on 

annual, seasonal or monthly basis, either on agro-ecological or district basis (Soltani 

et al., 2007; Kaushik and Singh, 2008; Nirmala and Sundaram, 2010; Ghalhari et al., 

2015) there are many drawbacks with respect to the statistical and non statistical 

aspects. Nevertheless, extremely very few studies have been reported in forecasting 

weekly rainfall (Burt and Weerasinghe, 2014). 

 

1.5.  Motivation to the Study 

Sri Lanka is an agricultural country and its main energy source is hydropower.  Time 

or quantity variations in rainfall could have directly affected on agricultural output 

which would be cased to sever damage to the Gross National Product in the country. 

Prior knowledge of short-range raining behavior will help Sri Lankan farmers to take 

advantage of rainfall by having proper water management practices which cause to 

maximize the crop harvest and minimize the human hardship during erratic rainfalls. 

Due to the fact that Sri Lanka is situated in a tropical location, the high variability of 

weather conditions can be formed which causes unexpected heavy rain, floods, 

lighting, landslides and high winds. Moreover, Sri Lankan economy is directly linked 

with aviation and shipping which mainly depend on exports; tea, rubber, coconut, 

minor agricultural products, apparels and tourism (Rathnayake et al., 2011). Thus, 

the advance knowledge of short range, rainfall is valuable to many fields. 
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Furthermore, advance knowledge of short-term rainfall amount will assist early 

prevention and control as well as future preparation regarding public health issues. 

Information on rainfall could be used in decision making with respect to the spread 

of diseases and pets (Dhiman et al., 2010). Information on short range forecasting in 

rainfall is utilized in the construction field which contributes to the development of 

the country. Most of the time, people who engaged in the construction field need 

short range forecast information to plan their activities to get maximum benefits by 

reducing the unnecessary cost which arises due to unexpected rainy events. Rainfall 

has a strong influence on traffic and sewer system in urban areas in the country. 

Therefore, prior knowledge of short-range rainfall is very essential to make effective 

decisions and planning to prevent future obstacles. 

  

Forecasting rainfall can also be used for climate monitoring, detecting of droughts 

and bad weather conditions. Warning systems specially for floods may require a 

quantitative rainfall forecast to increase the lead time for warning. Frequent floods 

and landslides are already causing extensive damages to our infrastructure in the 

region and threaten to urban development. Hidayah et al., (2011) highlighted that the 

importance of simulation of continuous rainfall in hydrological research, especially 

for flood estimations. 

 

Thus, it is clear that the changes of the pattern and quantity of rainfall has a 

considerable impact on various sectors and human wellbeing in the country at 

different levels. Lack of accurate knowledge about the occurrences and the amount 

of rainfall has significantly affected the growth of the country directly or indirectly. 

Many stakeholders need to make early actions to reduce risk of climate change with 

accuracy prediction of climatic events, especially rainfall events. Therefore, prior 

knowledge is very essential to make effective decisions and planning policies to 

prevent future obstacles. 

 

It has been observed that though the mean annual rainfall pattern is normal, the 

unusual pattern of rainfall with a short period may disturb many activities in the 
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country such as agricultural, drinking water supply, construction, commercial and 

social stability during the recent past years in Sri Lanka. 

 

Various prediction methods have been developed on annual and monthly time scales 

but less attention was given for weekly rainfall prediction. Nevertheless, rainfall 

forecasting on a weekly basis is very essential to the government, businessmen, 

people in the industrial sectors, to increase the productivity, maximize economic 

benefits and minimize losses. Also, it will be useful to policy makers to implement 

new policies which will help to develop the country. Sri Lanka needs to address 

climate change adaptation to ensure the economic development with carefully 

investigated information on rainfall pattern and its variability which result in from 

the predictions of the best fitted rainfall models in various regions. 

 

1.6.  Objectives of the Study 

In view of the above explanation in details, the objectives of this study are: 

 

• To study the temporal variability of weekly rainfall in SWM and SIM 

• To identify extreme weekly rainfall events during the period of SWM and 

SIM 

• To identify the impact of exogenous variables; temperature, relative humidity 

and vapor pressure on weekly rainfall  

• To develop a novel model to forecast weekly rainfall in Colombo city  

• To validate the model 

 

1.7.  Chapter Outline 

Organization structure of the theses is presented in this section as follows. Chapter 2 

will provide the comprehensive literature review on rainfall studies. Various types of 

models such as Box and Jenkins models, Artificial Neural Network models, 

Regression models, Hybrid models and long range dependency models are discussed 

in detail by different time scales in this chapter. Data description of the study and the 

theories used for modeling the rainfall in different context are given in Chapter 3. 
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The result of the explanatory data analysis of the rainfall at different time scales 

along with the impact of exogenous variables for modeling are discussed in Chapter 

4. Temporal variability of SWM and SIM are explained based on parametric and 

bootstrapping methods in the Chapter 5. Modeling via classical time series 

approaches are discussed in Chapter 6. The development of the novel models in 

detail are discussed in Chapter 7. Chapter 8 will provide conclusions and 

recommendations along with suggestions for further researchers. Finally, Chapter 9 

provides list of publications generated by this study. 
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CHAPTER  2  

LITERATURE REVIEW 

  

Rainfall is one of the most complex and difficult elements of the hydrological cycle 

to understand and model due to the its high variability in both space and time (French 

et al., 1992). However, due to the importance of rainfall, over the past decades, 

several models have been developed to predict the rainfall with different degrees of 

accuracy. In this Chapter, a critical evaluation of past studies on modeling rainfall 

amount is carried out with emphasis on forecasting models based on the various time 

scales.  

 

2.1.  Prediction of Rainfall Using ARIMA/SARIMA 

Box and Jenkins (1976) time series approach have been extensively used to model 

and forecast total rainfall in various time scales: annual, seasonal, monthly and 

weekly basis by various authors. The common used models are ARIMA (Auto 

Regressive Integrated Moving Average) and SARIMA (Seasonal ARIMA). 

 

2.1.1.  Prediction of Annual Rainfall  

Ogallo (1986) employed ARMA (3,1) to the areal annual rainfall of two homogenous 

regions in East Africa using rainfall records from 1922 to 1980. In order to determine 

the annual rainfall anomalies, composite indices which were developed through 

empirical orthogonal analysis. The model could be accounted for only 50% of the 

total observed variability. However, Ogallo suggested that the model accuracy would 

be improved by considering seasonal variation. Partheepan et al., (2005) developed   

ARIMA model to forecast the annual rainfall of Batticaloa district in Sri Lanka using 

rainfall data from 1900 to 2003. The data for 100 years were used for the model 

development and   remaining 4 years were used for model validation. Parameters of 

the model are significance at 0.05 level of significance and the correlation coefficient 

between actual and fitted values of the validation period was as 0.82 (p<0.05).  A 

study conducted to predict the annual rainfall of Chattisgarh State in India by 

Chakraborty et al., (2010) and they developed AR (1) for annual rainfall. The model 
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was tested for 2006. The model AR (1) was decided based on the AIC value MFE, 

MAE, MRE and RMSE. However, the time span that used for model building was 

very low and also no attempt has been made to test the significance of the parameters 

of the model. 

 

2.1.2.  Prediction of Seasonal Rainfall 

ARIMA models have been developed to model the pre monsoon rainfall (March, 

April, May) for six stations of the Western region in India using data from 1949 to 

2009 by Narayanan et al., (2013). Based on the predicted result for the time span 

between 2010 to 2030, it was concluded that there would be considerable rise in the 

pre monsoon rainfall over the northwest part of the country. Ghalhari et al., (2015) 

suggested SARIMA (2,0,0) (5,1,0), SARIMA (1,0,1) (5,1,0) and SARIMA (0,0,1) 

(5,1,0) models to seasonal rainfall for the three stations in the South of Kerman 

province in Iran. The seasonal rainfall (Winter and Falls) data from 1963 to 2008 

were used for the model development and the model validity was done using data for 

a period of 5 years (2009-2013). Even though the study claimed the existence of 

correlation between actual and forecasted for the independent series but it failed to 

give the significance levels to get the real idea about the overall accuracies of the 

models. It should also be noted that the prediction for 20 years ahead from such a 

model is not statistically sound.  

 

2.1.3.  Prediction of Monthly Rainfall  

Delleur and Karvas (1978) suggested ARMA (1,1) model to the square root 

transformation of monthly basin average rainfall series over 15 basins located in the 

Midwestern United State. The record lengths varied from 492 to 684 months and the 

basin average rainfall were obtained by the Thiessien Polygon method. However, no 

attempt has been made to give overall model accuracies. Soltani et al., (2007) also 

developed an ARIMA model using monthly rainfall data of 28 main cities of Iran 

during the period of 1970 to 2000. Though they tested the parameters and model 

assumptions, no attempt has been made to validate the model for an independent data 

set. Kaushik and Singh (2008) developed SARIMA (3,0,2) (2,0,1)12 model for 
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prediction of rainfall on monthly scales during the period of 1994-2006. The study 

was conducted at Mirzapur, Uttar Pradesh in India. The study did not check the 

model validity using an independent data set, nevertheless, the authors claim that the 

accuracy of predictions made by the model was fairly less. Another drawback of this 

model is that replacement of missing values by zero. 

 

Kingdom of Saudi Arabia, Momani (2009) developed seasonal ARIMA 

(1,0,0)(0,1,1) 12 model using rainfall records from 1922 to 1999 to forecast monthly 

rainfall 10 years ahead. Significance of the model parameters as well as diagnostics 

of error were carried out. However, it compared the actual and forecasted rainfall 

based on the time series plot only. According to the plot, the model was not able to 

represent the peak values of the rainfall.  A similar study was carried out by Ali 

(2013) to forecast monthly rainfall of Baghdad International airport station in Iraq 

during the period of 1980 to 2012. It should be noted that both studies have not made 

any attempt to find overall model accuracy. SARIMA (0,1,1) (0,1,1)12 has been 

developed for forecasting monthly rainfall of Tamil Nadu in India by using monthly 

rainfall data from 1871 to 2006 (Nirmala and Sundaram, 2010). The parameters were 

estimated and tested for statistical significance, but the accuracy of the model has not 

been done. Nevertheless, authors suggested that the accuracy of the model could be 

improved by adding more input parameters such as El Nińo Southern Oscillation 

(ENSO) and Land surface temperature. A similar type of model has been suggested 

by the same authors to predict monthly rainfall in Tamil Nadu using data time span 

from 1950-2008. 

 

Gerretsadikan and Sharma (2011) suggested SARIMA (0,0,1) (1,1,4)12 to study 

monthly rainfall of Mekele station of Ethiopia using rainfall records from the period 

1975 to 2009. They claimed that the model was adequately fitted to the historical 

data and there was no violation of assumptions in relation to model adequacy. 

However, parameters were not tested for the significance. In the case study of 

Abadeh region in Iran, Shamsnia et al., (2011) modeled the monthly average 

precipitation 1989 to 2009 using seasonal ARIMA (0,0,1) (1,1,1)12 model. However, 

in this study as well, no attempt was made to work out the overall model accuracy 
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and parameters were not tested for the significance. Using data from 2001 to 2013 in 

Central Java region in Indonesia, Nugroho and Simanjuntak (2014) fitted ARIMA 

(6,0,3) for monthly rainfall. Generally, it is not recommended to use higher order AR 

models. Nevertheless, the authors have not justified why they selected higher order 

models.  

 

Yusof and Kane (2012) applied two time series analysis techniques namely, seasonal 

ARIMA and the state space model based on exponential smoothing modeling 

methods for forecasting monthly rainfall of two weather stations in Malaysia using 

monthly rainfall records from 1968 to 2003. The study developed SARIMA (1,1,2) 

(1,1,1)12 and SARIMA (4,0,2) (1,0,1)12 as the best fitted models for the two regions 

and parameters of the seasonal ARIMA were tested for the significance. Though they 

claimed that the exponential smoothing state space models have been adequately 

fitted to the data, it was not given the model accuracies. Mahsin et al., (2012) 

developed seasonal ARIMA (0,0,1) (0,1,1)12 model to monthly rainfall in Dhaka 

Station in Bangladesh using the rainfall data over the period from 1981 to 2010. Aziz 

et al., (2013) developed SARIMA (0,0,0) (2,1,0)12 model for monthly rainfall 

predictions using time span from 1974 to 2010.  

 

In another study in the Eastern region of Ghana by Ampaw et al., (2013) developed 

SARIMA (0,0,1) (2,1,1)12 model for monthly rainfall. However, the detail of the 

diagnostic test statistics did not provide. However, they claimed that the difference 

between actual and predicted rainfall varied   between -6.92 mm to 13.75mm. A 

study done in the Shouguag city, China by Wang et al., (2013) formed SARIMA 

(2,0,2) (1,1,1) 12 using monthly data for the period of 1996 to 2009. However, in this 

study too, no attempt has been made to test the significance of the parameters of the 

model. The percentage error varied within 20%, except for the January, May, 

September and December. It also claimed the reason for the high relative error of 

January and December. This was due to fact that the model is not sensitive. Selvaraj 

et al., (2013) employed ARIMA (0,0,12) model to forecast monthly rainfall in 

Tamilnaudu, India. The training data set made from January 2001 to December 2012. 

No comments are made on diagnostics tests and forecasting. 
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Patrick et al., (2014) used monthly rainfall (1970-2009) to develop ARIMA (5,1,1) 

model to Kinshasa city of Congo in Africa. These authors have not made attempts to 

test the parameters of the model for the significance. Wang et al., (2014) developed 

ARIMA models by accounting both the inter annual and inter monthly variation in 

forecast of monthly rainfall. Preliminary clustering analysis was performed for the 

monthly rainfall data on Lanzhou precipitation station in Lanzhou, China from 1951 

to 2000 and the characteristics of each cluster, namely minimum, maximum and 

truncated mean rainfall of each cluster were fitted with separate ARIMA models. 

  

Etuk and Mohamed (2014) developed SARIMA (0,0,0) (0,1,1)12 to predict monthly 

rainfall in Gezira irrigation scheme in Sudan. They have checked the model 

diagnostic but no attempt had been made to evaluate forecasting accuracy. Dastorani 

et al., (2014) also developed different order of ARIMA and SARIMA models for 

nine stations in North Khorasan, Iran. Babazadeh and Shamsnia (2014) 

recommended SARIMA (0,0,0) (2,1,0)12 to monthly rainfall in area Shiraz in Iran. It 

should be noted again that none of the above three studies made any attempt to test 

the parameters for significance and the percentage errors.  

 

SARIMA (0,0,1) (1,1,1) 12 model was built to forecast monthly rainfall using rainfall 

data from 1980 to 2006 of Sylhet station, Bangladesh (Bari et al., 2015). The data 

(1980 to 2006) were used as the training set and data from 2007 to 2010 were used as 

validation set. No comparison has been done between actual and predicted. Eni and 

Adeyeye (2015) forecasted monthly rainfall in 2013 using SARIMA (1,1,1) (0,1,1)12. 

The study was done in the Warri town of Nigeria using the past rainfall records from 

2003 to 2012. Using pair wise t distribution, they claimed that the differences 

between the actual and observed were not significant at 0.05 level of significance. 

 

Chonge et al., (2015) modeled SARIMA (0,0,0) (0,1,2) 12 for data (1977-2014) in 

Gishu Country, Kenya and forecasted for two years ahead. In this study, Mean 

absolute percentage error (7.78%) was taken as a statistical indicator to judge the 

model. It should be noted that MAPE does not provide any sense of the magnitudes 

of the error for each point. SARIMA (1,1,5) (1,1,2)12 was identified as the best fitted 
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model to forecast monthly rainfall of the Urmia lake catchment area of India by 

Alimirzaie et al., (2015). In this study, 42 years monthly rainfall data (1968-2010) 

were used to train the model but no comparison was done between actual and 

forecast value even for the trained data sets.  

 

Savoe (2015) made an attempt to predict long term precipitation over the Ghanaian 

segment of Ghana using data from 1967 to 2000. SARIMA (2,1,1) (1,1,1)12 was 

proposed as the best fitted model for the average monthly rainfall. The authors have 

predicted for 41 years ahead (2007 to 2047). It should be pointed that prediction of 

such a long period is not statistically valid using ARIMA models. Furthermore, as in 

most of the past studies, the significance of the model parameters as well as 

comparison of actual and forecast values were not done. 

 

A recent study by Mohamed and Ibra (2016) have developed multiplicative seasonal 

autoregressive integrated moving average (MSARIMA) to forecast monthly rainfall 

of Nyala station in Sudan using rainfall data from 1971 to 2010. Those models have 

been selected based on the RMSE and MAE. However, these indicators are not 

suitable to justify the accuracy of a model. Zafor et al., (2016) also developed eight 

different seasonal ARIMA models to predict monthly rainfall in different locations in 

Sylhet district, Bangladesh. Models were developed using rainfall records from 2001 

to 2012 while the performance of the models have been validated using data in 2011 

only. This is not sufficient and further it is not an independent data set. 

 

2.1.4.  Prediction of Weekly Rainfall 

Unlike monthly rainfall, not much studies have been carried out to forecast weekly 

rainfall under ARIMA/SARIMA environment. Zakaria et al., (2012) modeled weekly 

rainfall data from four rainfall stations in the North West of Iraq for the period 1990-

2011 using seasonal ARIMA approach. They considered only 30 rainy weeks every 

year for this study. The four models suggested are ARIMA (3,0,2) (2,1,1)30, ARIMA 

(1,0,1) (1,1,3)30, ARIMA (1,1,2) (3,0,1)30 and ARIMA (1,1,1) (0,0,1)30. They have 

considered that there is a seasonal pattern with the length of 30 weeks and they have 

highlighted about the complexity of representing seasonal periods to the models. The 
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performance of the model was evaluated by using the same data, but not for an 

independent data set. Though, the forecasted values were obtained up to 2006, the 

predicted values were not compared with the actual values. 

 

Popale and Govantiwar (2014) developed seasonal ARIMA (1,1,1) (1,0,1)52 model 

for forecasting weekly rainfall using 31 years (1982-2011) data of Rahuri region in 

India. The length of the seasonality has been assumed as 52 without any statistical 

justification. In this case too, model parameters were not tested for the significance 

and the forecast values were not compared with actual values. 

 

2.2.  Use of Artificial Neural Network for Modeling Rainfalls 

In section 2.1 it was shown that ARIMA (either seasonal or no seasonal) models 

have achieved success in their own linear domains. However, rainfall is a result of 

many complex atmospheric parameters which cannot easily be determined on the 

assumption linearity among variables within the same series. Thus, some authors 

have used Artificial Neural Network (ANN) approach to model rainfall to address 

the problems belonging to nonlinear forecasting.  

 

Kumarasiri and Sonnadara (2006) developed an ANN model for the annual rainfall 

in the Colombo city in Sri Lanka. Rainfall of the past ten years were used as input 

vector and the network was trained from 1869 to 1973 using feed forward back 

propagation algorithm and it was tested using the time span from 1974 to 2003. The 

authors claimed that the proposed model has been successful in forecasting the 

annual rainfall amount one year ahead. However, the proposed model should not be 

able to forecast beyond two years ahead, as accuracy becomes exceedingly low. 

Nanda et al., (2013) proposed ARIMA (1,1,1) and three different ANN namely, 

multilayer perceptron (MLP), legendre polynomial equation (LPE), functional link 

ANN (FLANN) to estimate yearly rainfall. They found that the model FLANN yield 

better prediction in comparison to other models in forecasting yearly rainfall. 

Nirmala (2015) employed ANN to predict annual rainfall of Tamilnadu in India 

using rainfall records for 136 years (1871-2006). Out of those data, 100 years (1871-

1970) were used for training the network using three algorithms, namely gradient 
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descent (GD) algorithm, scaled conjugate gradient (SCG) algorithm and radical basis 

function (RBF) algorithm. The RBF was selected as the best out of the three 

algorithms discussed above due to lower mean absolute percentage error. However, 

the accuracy of the models were not tested for individual forecast values. 

 

Krishnankutty (2006) applied two approaches, namely ANN and multiple linear 

regression (MLR) for forecasting the southwest monsoon rainfall of the 14 districts 

of Kerala in India. Fourteen separate feed forward ANN and MLR models were 

developed for distinct districts in Kerala. The data for 51 years (1941-1991) have 

been used for training the network using back propagation learning algorithm while 

the data for a period 1992-2004 were used for testing purpose. The correlation 

coefficient between the forecasted and actual values for the district area-weighted 

model was 0.95. The author claimed that the ANN models outperformed MLR 

models based on the visual observation of plots. 

 

Kumar et al., (2007) developed an ANN in forecasting regional rainfall of Orissa 

State in India by accounting information on large scale climate tele connections 

namely, El Nińo Southern Oscillation (ENSO), Equatorial Zonal Wind Index 

(EQWIN), Ocean-Land Temperature Contrast (OLTC). The summer monsoon 

seasonal rainfall during the four months period, from June to September were 

considered for this study. Genetic Optimizer algorithm was used to optimize the feed 

forward back propagation network architecture. The result revealed that the 

correlation coefficient of forecasted and actual was 0.8951. But no comparison was 

carried out for individual points. Many studies were carried out to evaluate the 

seasonal rainfall in different regions by using ANN (Mekanik and Imteaz, 2012; 

Gupta et al., 2013; Golabi et al., 2013; Rasel et al., 2015).  

 

Two authors; Kumarasiri and Sonnadara (2006) employed ANN for the purpose of 

predicting monthly rainfall in the Colombo city in Sri Lanka. The monthly rainfall 

was classified into 06 categories based on the rainfall depths since the large error 

have been occurred when using actual depth of rainfall as input. The multilayered 

feed forward network was trained by using the back-propagation algorithm for 50 
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years from 1949 to 1998 and testing was done for 05 years from 1999 to 2003. The 

authors claimed that the model have been reasonably successful in forecasting 

monthly rainfall a month ahead.  

 

In 2008, Mar and Naing applied three-layer feed forward neural network on monthly 

rainfall data for the period of 1970 to 2006 for the purpose of forecasting monthly 

rainfall in Myanmar. Based on the low RMSE (9.881) of the model, the authors 

claimed that ANN has a good ability to forecast monthly rainfall of Myanmar. 

Khodashenas et al., (2010) used ANN model to predict monthly precipitation of 

Mashhad synoptic station in Iran using rainfall data from 1958 to 2008. The 

proposed model consists of 4 hidden neurons with one out put neuron which could 

predict monthly rainfall with a high accuracy. The correlation coefficient of 

predicted values and actual vales of rainfall was reported as 0.84 (P<0.05).  

 

Vamsidhar et al., (2010) developed a multilayered feed forward neural network 

model for forecasting monthly rainfall in India using rainfall data for the period 

1901-2000. Pressure, humidity and dew point were considered as the input of the 

network. The model with 7 hidden neurons was selected as the best model among the 

tested models and the model accuracy has been calculated (94.28%) using the 

formula, Accuracy = 100-MSE. Mekanika et al., (2011) made an attempt to develop 

long term rainfall prediction model (12 months in advance) using ANN to forecast 

monthly rainfall for the West mountainous region in Iran. Three ANN models were 

formed based on the Levemberg-Marquardt algorithm with different inputs using 

monthly rainfall from 1977 to 2002. The model was tested for the year 2003. 

  

Deshpande (2012) employed four distinct ANN models, namely multilayer 

perceptron neural network (MLP), jordon elmann neural network (JENN), Self 

organized feature map (SOFM), recurrent neural network (RNN) for predicting 

monthly rainfall of Maharashtra State in India. Terzi and Cevik (2012) applied ANN 

to forecast monthly rainfall in Isparta and compared with result of multiple linear 

regression model. ANN model was selected as the best model for monthly rainfall 

estimation in the study region based on the correlation coefficient and RMSE.  
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A feed forward neural network model have been employed for forecasting monthly 

rainfall of Mirzapur district, Uttar Pradesh in India by Kumar and Yadav (2013). Ten 

climatic variables monthly temperature (average, diurnal, minimum and maximum), 

evaporation (potential and reference crop), relative humidity, clouds cover and 

frequency (ground frost and wet days) data from 1995 to 2002 have been used as 

model inputs. The authors claimed that the agreement between predicted and 

observed had been good and the determination of coefficient was reported as (R2 

=0.8563).   

 

Gupta et al., (2014) developed ANN model for forecasting monthly rainfall of 

Madhya Pradesh in India. Normalized monthly rainfall data of 10 years from 2000 to 

2010 were used as input variables to the multi layered feed forward neural network.  

In this study, 75% of data were used for training, 15% of data were used for 

validating and 10% data were used for the testing. The model was trained using back 

propagation algorithm. The correlation value of the actual and predicted was 0.9360 

(P value <0.05).  Many researchers all over the world made attempts to model 

monthly rainfall using different ANN with increasing degree of accuracy (Alhashimi, 

2014; Dubey, 2015; Mesgari et al., 2015). 

 

Luk et al., (2001) applied three different ANN, namely multilayer feed forwards 

neural network (MLFNN), partial recurrent neural networks (PRNN) and time delay 

neural networks (TDNN) on rainfall amounts which were taken during 15 minutes 

intervals from 1991 to 1996 of an urban catchment in Western Sydney, Australia for 

the purpose of predicting rainfall. They selected the eight ANN based on NMSE and 

the authors claimed that the all ANN models could make reasonable forecasts 

accuracies for one-time step ahead (15 minutes). Based on the NMSE of the 

validation period, it was reported that the TDNN has more accuracy in predicting 

rainfall in comparison to MLFNN and PRNN. A study was conducted to forecast 

hourly rainfall of Bangkok in Thailand by Hung et al., (2009) using ANN model. 

Eight different ANN models were formulated using different input such as humidity, 

air pressure, wet bulb temperature, rainfall intensities and cloudiness using hourly 
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data from 1977 to 1999. Two simple multilayered ANNs were trained by using 

sigmoid activation function while six generalized feed forward ANN were trained by 

using sigmoid and hyperbolic tangent transformation algorithms. The data of the year 

2003 were used for the testing purpose. Furthermore, sensitivity analysis was 

performed to rank the input contribution and beside the rainfall itself, the most 

important input was the wet bulb rainfall temperature in forecasting rainfall. The 

correlation coefficients between actual and predicted for 1h, 2h and 3h were 

0.99,0.92 and 0.84 respectively. 

  

Charaniya and Dudual (2013) proposed two distinct ANN models namely, 

generalized feed forward (GFNN) and focused time lag delay (FTLNN) neural 

networks for daily rainfall predictions on the basis of preceding events of rainfall 

data. This study has been carried out at Nagpur region in the Central part of India 

using rainfall daily rainfall records for 30 years (1977-2006). The result indicated 

that FTLNN model made better forecast accuracy than the GFNN for learning a 

temporal pattern which gave least normalized Mean Squared Error.  Similar studies 

were carried out for modeling daily rainfall using ANN approach in various countries 

(Weerasinghe et al., 2010; Amesh and Negaresh, 2013; Omidvar, 2015). 

 

2.3.  Use of Multiple Linear Regression for Rainfall Forecasting  

Krishnankutty (2006) applied Multiple Linear Regressing (MLR) for forecasting the 

southwest monsoon rainfall of the 14 districts of Kerala in India using rainfall as 

independent variable and compared those models with the corresponding feed 

forward ANN and concluded that the ANN models ANN models outperformed MLR 

models. Kannan et al., (2010) developed MLR to predict the summer monsoon 

(September to November) rainfall using monthly rainfall data during summer 

monsoon of previous year in Tamil Nadu, India and claimed that accuracy of 

predicting value is low. The study did not provide the corresponding R2 value and 

furthermore, errors of the model were not tested for white noise and nothing has been 

mentioned about the significance of the model parameters. 
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Rasel et al., (2015) applied two statistical approaches; MLR and ANN to forecast 

seasonal rainfall in South Australia using spring rainfall as dependent variable. 

Single and combined lagged large-scale remote climate drivers such as, EI Nino 

Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Southern Annular 

Mode (SAM) were considered as potential predictor variables on long term spring 

rainfall. The study revealed that lagged Dipole Model Index (DMI)-SAM have been 

more effective on spring rainfall predictability than other combination of climate 

drivers and using those predictor variables, ANN model could increase the model 

correlation up to 87% (p < 0.05) whereas, the rainfall predictability of MLR was 

52% (p < 0.05). 

 

Terzi and Cevik (2012) applied MLR technique for monthly rainfall in Isparta and 

compared it with three-layer feed forward ANN model. Based on the R2 value and 

RMSE, they concluded that ANN is more superior than MLR. Alhashimi (2014) also 

developed MLR model to monthly rainfall (1970 - 2008) in Iran taking air mean 

temperature, relative humidity and wind speed as independent variables without 

validation of diagnostic tests related to MLR. They also claimed that ANN model is 

superior than MLR model in forecasting monthly rainfall based on the correlation 

coefficient and RMSE values. It should be mentioned that in ANN models, 

parameters are not tested for statistical significance, though the authors claimed that 

the ANN models are superior than other models. 

  

Armesh and Negaresh (2013) employed MLR model and ANN model to forecast the 

maximum daily rainfall of Saravan in Iran considering various meteorological 

variables and climate indices from 1986 to 2010 as potential predictors. They found 

that the variables; monthly maximum and minimum relative humidity and climate 

indicators have made a significant effect on the maximum daily rainfall in Saravan. 

This regression model was fitted for the purpose of model comparison with radical 

basis function (RBF) NN and multilayered feed forward back propagation (MLFBP) 

NN for forecasting daily maximum rainfall. The correlation coefficient of the models 

RBF, MLFBP and MLR were 0.95.0.95 and 0.89 respectively. Thus, based on the 

correlation coefficient, RMSE and MAE, authors claimed that the ANN model 
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considerably yield better forecasting result. However, no attempt was made to test 

the model assumptions and parameters of the regression model for significance. 

 

2.4.  Hybrid Models for Rainfall Forecasting 

In the previous section three types of modeling approaches were discussed 

independently. Each approach has advantages as well as drawbacks. Therefore, in 

recent years researchers in all over the world have proposed hybrid models which 

combining two or more different types of models to forecast the rainfall at different 

time scales for improving the forecast accuracy. 

 

Yu and Yu (2012) proposed modular radical basis function neural network (M-RBF-

NN) coupled with the singular spectrum analysis (SSA) and partial least square 

(PLS) regression for forecasting monthly rainfall of Liuzhou in China. Monthly 

rainfall data from January 1949 to December 2006 were used to train the model. 

Initially, the technique SSA was applied to the rainfall series to the purpose of 

removing of trends and to reform the new time series. Next, a triple phase non linear 

M-RBF-NN model was utilized for rainfall forecasting by linking different activation 

functions. Then the result in a suitable number of RBF-NN predictors were selected 

using the partial least square technology. Finally, the model was assembled by the 

least squares support vector regression (LS-SVR). Based on the absolute relative 

error (ABRE), root mean square error (RMSE) and Pearson relation coefficient 

(PRC), authors claimed that the M-RBF-NN has the highest accuracy. However, it 

should be pointed out such indicators are not recommended to judge a model for 

forecasting accuracy.  

 

Mahalakshmi et al., (2014) developed a hybrid model with a combination of ARIMA 

and ANN to predict monthly rainfall in Tamil Nadu, India using data from 1950 to 

2012.  The seasonal ARIMA (0,1,1) χ (0,0,1)12 model was fitted to the historical data 

and the residual derived from the ARIMA model was fitted by ANN. For the ANN 

they used a data set 756, out of which, 700 data were used to train the network using 
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feed forward back propagation algorithm. The authors revealed that the better 

forecast result could be obtained using a hybrid model than ARIMA or ANN alone.  

Patel and Parekh (2014) employed a hybrid model by combining the ANN and 

Adaptive Neuro Fuzzy Inference System (ANFIS) to forecast monthly monsoon 

rainfall for Gandhinagar station in India. Various membership functions were utilized 

to derived eight different models and they considered climate parameters as input 

variables for all models. It was found that the hybrid model with seven membership 

functions with three inputs, namely relative humidity, temperature and wind speed 

produced the best performance to forecast the rainfall in this area. It should be 

pointed out that unlike statistical models there is no justification why 8 models were 

considered and also no significance is considered when variables and their 

transformation are included into the model. 

  

Abbot and Marohasy (2014) used ANN model with genetic optimization to find the 

lagged relationships among temperature, atmospheric pressure, climate indices to 

study the monthly rainfall of three geographical distinct regions in Queensland. 

Meteorological data, including rainfall from 1893 to 2012 were used for this study 

and result was compared with Predictive Ocean Atmospheric Model for Australia 

(POAMA) which is the General Circulation Model currently used to produce the 

official seasonal rainfall forecast. The result indicated that the forecasts using ANN 

for three areas were superior compared to forecasts from the best available general 

circulation model (POAMA). 

  

A survey which consists of several artificial intelligence models that have been used 

to forecast the rainfall was conducted by Pallavi and Singh (2016). The ANN, 

combined model of support vector machine (SVM) & Fuzzy logic method and NN-

Fuzzy method were models considered for this study. Based on the survey, the author 

concluded that the hybrid combination of ANN and Fuzzy logic; adaptive neuron 

fuzzy inference system (ANFIS) was the best approach for rainfall forecasting. 

 

A hybrid model combining the self organizing map (SOM) and multilayer perceptron 

neural network (MLPN) have been developed to forecast the typhoon rainfall from 
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July to October in Taiwan by Lin and Chang Wu (2009). In this study, hourly rainfall 

data of 10 rain gauges of Tanshui river basin was used. Firstly, they analyzed input 

data using SOM technique that was used to decompose the input into distinct 

clusters. Then, MLPN was carried out for each cluster. The Proposed model was 

applied and compared with the conventional ANN model result. It was found that the 

forecasting power of the proposed model outperform conventional ANN. 

  

Yusof et al., (2013) developed a hybrid ARIMA (2,1,2)-GARCH (1,1) and ARIMA 

(3,1,1)-GARCH (1,1) to model daily rainfall of Ipoh and Alorestar in Malaysia 

respectively using data for the period from 1968 to 2003. Residuals in both models 

were found to be white noise as well as no ARCH effects. Though they claimed   that 

the models fit the daily rainfall data set at two locations. well, no attempt was made 

to find the accuracy rate of the predictions. 

  

Two hybrid models have been developed to forecast daily precipitation of two 

locations in Iran by Teimoorzadeh et al., (2015). Firstly, single genetic programming 

(GEP) and ANN were applied on daily rainfall data for 9 years (2000-2008). Then, 

two hybrid models, namely wavelet genetic programming (WGEP) and wavelet 

ANN (WANN) were developed using same data set due to low accuracy of first 

models. It was found that the forecast accuracy was significantly increased using the 

hybrid model and also forecast accuracy using WANN outperform using WGEP.  A 

study was carried out to forecast daily precipitation using hybrid models, namely 

wavelet-artificial neural network (WANN) at Verayneh station, Iran and the result 

was compared with adaptive neuro fuzzy inference system (ANFIS) by Solgi et al., 

(2014). Wavelet transformation was applied to the daily precipitation data and 

original time series were decomposed to multiple sub time series which could be 

applied as input data for artificial neural network. Different structures in ANFIS were 

applied to the same dataset for the purpose of comparison. Based on the result, the 

best model was the WANN which had less error than ANFIS along with the high 

correlation coefficient (r =0.95). 
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Faulina and Suhartono (2013) applied different techniques to forecast daily rainfall 

of six area in Indonesia by using rainfall records from 1996 to 2012. This study 

focused to develop both individual and hybrid models, namely Adaptive Neuro 

Fuzzy Inference System (ANFIS), ARIMA, ARIMAX, ARIMA-ANFIS and 

ARIMAX-ANFIS. Traingular, Gaussian and Gbell functions were used as 

membership functions of ANFIS and best model was selected based on the RMSE. It 

was found that the individual ARIMA model yields a more accurate forecast than 

other complex models. Also, the authors mentioned that complicated models do not 

always yield better forecast than the simple one. Furthermore, it should be added that 

complicated models do not recommend the inferences with some confidence and 

consequently most of the complicated models are subjective. 

 

2.5.  Impact of Other Climatic Variables on Rainfall  

Various studies have been carried out to find the dynamic relationship between 

annual or monthly rainfall and other external variables using vector auto regression 

(VAR) models (Adenomon et al., 2013) or regression models (Malmgren et al., 

2003). Kumar et al., (2007) found that seasonal rainfall of Orissa State in India has 

significant association with large scale climate tele connections namely, El Nińo 

Southern Oscillation (ENSO), Equatorial Zonal Wind Index (EQWIN), and Ocean-

Land Temperature Contrast (OLTC). Tularam (2010) found a relationship between 

ENSO and rainfall in South East Queensland. Mekanik and Imteaz (2012) claimed 

that the there is a significant relationship between large climatic drivers; ENSO, 

Indian Ocean Dipole (IOD) and Southern Annular Mode (SAM) with spring rainfall 

of Victoria in Australia. A similar study was carried out by Rasel et al., (2015) 

claimed that the significant relationship between large scales climatic drivers such as 

ENSO, IOD and SAM with seasonal rainfall in South Australia.  

 

The findings of the above studies provided evidences to the significant relationship 

between the large climatic drivers with the seasonal rainfall. Also, it is noted that the 

few studies in literature reported the significant relationship between rainfall and 

other external factors as temperature, relative humidity, vapor pressure etc. 
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2.6.  Long Memory Models 

In recent past, time series models with long memory features became very popular 

among researchers in many fields in particularly in financial time series modeling. 

Features of a autoregressive fractionally integrated moving average (ARFIMA) long 

memory model was initially introduced by Granger and Joyeux (1980) and Hosking 

(1981). It was an extension of the traditional ARMA process with a fractional 

differencing parameter. The model defined as ARFIMA (p,d,q) allows the parameter 

“d” to take fractional values for differencing. There is a fundamental change in the 

correlation structure of the ARFIMA model, when compared with the correlation 

structure of the conventional ARIMA model (See Chen et al., 1994). According to 

Granger and Joyeux (1980), the slowly decaying autocorrelation exhibited in long 

range dependency or long memory models differ from stationary ARIMA models 

that decay exponentially. This is the primary detection for the development of long 

memory models. However, development of such models is not an easy task as there  

are many unsolved problems in this area of research. 

 

2.6.1.  Estimating of Fractional d of ARFIMA Models 

Many researchers proposed different methods to estimate the fractional differencing 

parameter. Gewek and Porter-Hudak (1983) proposed a method for estimating the 

long memory differencing parameters based on a simple linear regression of the log 

periodogram.  An approximate maximum likelihood method for parameter "d" was 

proposed by Fox and Taqqu (1986). Fundamental properties of the ARFIMA family 

and the estimation of the model parameters were discussed by Andel (1986). An 

exact maximum likelihood estimation method for differencing parameter was 

introduced by Sowell (1992). Chen et al., (1994) developed a regression type 

estimator of ‘'d'' using lag window spectral density estimators. A method based on 

the smoothed periodogram for estimating of ARFIMA parameters was proposed by 

Resien (1994). Comparison study assessments were done by Cheung and Diebold 

(1994) on maximum likelihood estimators for fractionally differenced parameters 

using two types of maximum likelihood (ML) estimators in the form of frequency-

domain ML and exact domain ML of time series processes with an unknown mean. 
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2.6.2.  Use of Long Memory Models  

Montanari et al., (1997) proposed fractional differenced ARIMA models for daily 

and monthly inflows of lake Maggiors in Italy and monthly rainfall in Genoa. They 

applied an approximation in the spectral domain of the Gaussian maximum 

likelihood function called Whittle estimators for the model parameter estimation. 

However, authors claimed that though the fractional ARIMA improved the modeling 

of inflows with long range persistence the analysis of monthly rainfall shows that the 

absence of long-term effects. Further, the authors suggested that in fractionally 

difference method with a seasonal component would improve the capability of 

representing both long and short memory persistence of the hydrological time series. 

 

2.6.3.  Use of Gegenbauer ARMA Models 

Due to the practical success of the ARFIMA model, a more generalized fractionally 

differenced long memory time series model called the Gegenbauer 

ARMA(GARMA) was probed in detail by Gray et al., (1989).  This type of long 

memory class illustrates multiple unbounded spectral peaks away from the zero. 

Chung (1996) extended the work in introducing a grid-based parameter estimation 

procedure of an elementary GARMA process. A concise summary of fractionally 

differenced Gegenbauer processes with long memory was provided in Dissanayake 

(2016). An extensive review of fractionally differenced Gegenbauer processes with 

long memory carried out by Dissanayake et al., (2018). 

  

2.6.4.  Use of Seasonal Autoregressive Fractionally Integrated Moving Average 

 (SARFIMA) Models  

Though the ARFIMA model was able to capture the long-range dependency, it does 

not take into account the seasonal variation patterns present in some real data series 

particularly in rainfall series. The SARFIMA (Porter-Hudak, 1990) is a natural 

extension of the ARFIMA process with an additional seasonal filter. The model 

consists of long memory dependency features with periodic behavior in terms of the 

data. SARFIMA model was utilized for forecasting of the monthly IBM product 

revenue in Ray (1993). Peiris and Singh (1996) suggested a convenient method to 



29 
 

calculate predictors for seasonal and non seasonal fractional parameters of long 

memory models under certain conditions. The work done by Bisognin and Lopes 

(2009) described number of properties of seasonally fractional ARMA process in 

detail. SARFIMA model was applied to forecast Iraqi oil production and model 

parameters were estimated using conditional sum of squares by Mostafaei and 

Sakhabakhsh (2011).  Additionally, Reisen et al., (2014) proposed a semi parametric 

approach to estimate two seasonal fractional parameters in a SARFIMA model and 

the performance was evaluated through a Monte Carlo experiment.  

 

However, extremely few attempts have been made to study the rainfall behavior in 

context of long memory.  A study done by Yaya and Fashae (2014) made an attempt 

to fit SARFIMA models for rainfall data in six rainfall zones of Nigeria but they 

claimed that could not develop significant SARFIMA models which the seasonal 

behavior with the long-range dependency of the real data. However, these types of 

models can be developed to tackle to model complex time series such as weekly 

rainfall. 

 

2.6.5.  Models for Capture Heteroskedasticity 

There has been growing interest in modeling time series in many disciplines such as 

finance, economics, environmental science, hydrology etc. having heteroscedasticity 

property. The heteroscedasticty in time series is generally handled using 

autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH 

(GARCH) models (Engle, 1982; Bollerslev, 1986).  Various authors (Ling and Li, 

1997; Henry, 2001; Jenson, 2005; Sena et al., 2006) developed ARFIMA-GARCH 

models for different applications, but less attention was given for short-term or long-

term prediction of the series and thus those work has less importance from practical 

point of view.  

 

Kane and Yusof (2013) employed GARCH (1,1) model to the residual of the 

ARFIMA that fitted for the daily rainfall data from 1975 to 2008 in Malaysia.  They 

estimated the fractional differencing parameter using the method proposed by the 

two researchers Gewek and Porter-Hudak (1983) and claimed that the by adding the 
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GARCH specification for the ARFIMA error helps to capture the serial correlation in 

the squared residual.  Reisen et al., (2014) proposed SARFIMA-GARCH model for 

modeling and forecasting daily average PM10 (Airborne Ambient Particulate Matter) 

concentration. Semi parametric procedure suggested by Reisen et al., (2014a) was 

used to estimate the fractional differencing parameter in along with time dependence 

condition error variance. The authors claimed that some features of the data such as 

seasonality, long memory and volatility were able to capture by the proposed model. 

 

2.6.6.  GARMA Class of Models with Heteroskedasticity 

Fresh interest in the econometric community infused into the process the introduction 

of a GARMA class of models with heteroskedasticity by Dissanayake and Peiris 

(2012). It was followed by the casting of the process driven by Gaussian white noise 

in state space by Dissanayake et al., (2016a) to establish a parameter estimation 

based optimal lag order validated by predictive accuracy. A similar experiment in 

which the process was driven by GARCH errors (instead of Gaussian white noise) 

was presented by Dissanayake et al., (2014) with the validation of parameter 

estimation based optimal lag order done through log likelihood measures.  

 

2.7.  Summary of the Chapter 2   

Many researchers have attempted to predict rainfall at different time scales. The type 

of models used are MLR, ARIMA, SARIMA, ANN, Hybrid and long memory. Of 

those, ARIMA, SARIMA, and ANN were found to be more popular in modeling 

rainfall irrespective of time scales. However, there were various drawback in such 

models with respect to the statistical aspect as well as non-statistical aspects.  Almost 

all models were not tested for an independent data set. Though some studies 

provided correlation coefficient of predicted and observed, most of those failed to 

give p-value which need to get overall judgment about the model. Thus, most of 

those models are not recommended to use. All authors have claimed that prediction 

of weekly rainfall, in particularly in tropical countries is more difficult than 

prediction of annual, seasonal or monthly due to various noisy structure. 
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Nevertheless, very few studies were reported to model weekly rainfall but no proper 

prediction was carried out. 

 

Almost all authors claimed that ANN models are better than MLR. However, the 

main drawback of this methodology is that these model parameters are not tested 

statistically. Many researchers developed hybrid models coupled with artificial 

neural network for the purpose of forecasting rainfall. However, some of them 

claimed that more complicated model not always give better forecast in comparison 

to the simple ones. Another drawback of hybrid models or ANN model is that the 

results depend on the methodology used to estimates parameters and no study has 

been claimed that their results are invariant of the methodology used. 

 

The long memory models with a fractional differencing parameter have been popular 

among the researchers in modeling complicated time series data. Most of the 

researchers applied long memory models for the financial time series. Generally, 

rainfall series in tropical countries are also complex as financial series. There has 

been a still noticeable gap modeling persistent rainfall in view of long memory. It is 

very important to develop a novel model to forecast weekly rainfall series since very 

less attention have been given to model the rainfall at weekly basis. Nevertheless, 

this extensive literature review certainly provides immense information on the 

direction of developing novel model for weekly rainfall in Colombo city.  
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CHAPTER  3 

RESEARCH METHODOLOGY 

 

In order to enrich the understanding of characteristics of the weekly rainfall series, 

many techniques are applied and those methods are described in detail in this 

chapter. Initially, the study site and the data description of the weekly rainfall along 

with the exogenous climatic variables are discussed. 

 

3.1.  Study Site 

Sri Lanka is a tropical country in South Asian region and the Colombo city is the 

commercial capital of Sri Lanka, situated with latitudes 60 55ʹ N and Longitude 790 

51ʹ E and is chosen as the study site. Colombo meteorological location is the main 

station of the department of Meteorology in Sri Lanka. Many meteorological 

variables including daily rainfall data have been recorded without missing values by 

the Colombo station since 1870. The corresponding study site is presented by the 

Figure 3.1. 

 

3.2.  Data Description 

Daily rainfall data and the climatic variables: minimum and maximum temperature, 

relative humidity (AM & PM), minimum and maximum vapor pressure were 

obtained at daily basis from 1960 to 2017 in Colombo city from the Department of 

Meteorology, Sri Lanka.  

 

The daily rainfall (mm) data has been converted into weekly rainfall by dividing a 

year into 52 weeks such that week 1 corresponds to 1-7 January, week 2 corresponds 

to 8-14 January week 3 refer as 15-21 January and so on. The corresponding weeks 

are presented in Table 3.1. In order to make homogenous period irrespective the 

years. February 29th wasn’t taken into account when making 52 weeks.   
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Figure 3.1:  The city of Colombo is in the Colombo district 
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Table 3.1:  Standard weeks in a year 

Week Date Week Date 

1 January 01 -07 27 July 02-08 

2 January 08 -14 28 July 09-15 

3 January 15 -21 29 July 16-22 

4 January 22 -28 30 July 23-29 

5 January 29 -February 04 31 July 30-August 05 

6 February 05 -11 32 August 06-12 

7 February 12 -18 33 August 13-19 

8 February 19-25 34 August 20-26 

9 February 26 -March 04 35 August 27-September 02 

10 March 05-11 36 September 02-09 

11 March 12-18 37 September 10-16 

12 March 19-25 38 September 17-23 

13 March 26 -April 01 39 September 24-30 

14 April 02-08 40 October 01- 07 

15 April 09-15 41 October 08- 14 

16 April 16-22 42 October 15- 21 

17 April 23-29 43 October 22- 28 

18 April 30- May 06 44 October 29- November 04 

19 May 07- 13 45 November 05 -11 

20 May 14-20 46 November 12-18 

21 May  21-27 47 November 19-25 

22 May 28-June 03 48 November 26-December 02 

23 June 04-10 49 December 03-09 

24 June 11-17 50 December 10-16 

25 June 18-24 51 December 17-23 

26 June 25-July 01 52 December 24-31 

 

3.3.  Analysis of the Weekly Rainfall Percentiles for SWM 

The city Colombo is located in the Western part of the country which directly 

receives rainfall from SWM. The rainfall percentiles analysis was utilized on weekly 

rainfall series during SWM to pursue and underline the temporal fluctuations during 

the time span from 1960 to 2015. The weeks 18-39 were pertaining to the SWM is 

presented by Table 3.2. 
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  Table 3.2: The weeks pertaining to the SWM 

 

 

 

 

 

 

 

In addition to standard weeks, running totals of weekly rainfall were also considered 

for the analysis of weekly rainfall percentiles. The running totals of weekly rainfall 

were obtained during SWM period is presented by Table 3.3. It is calculated total of 

148 running weekly totals of weeks which belongs to SWM. 

 

              Table 3.3: The running totals of weeks pertaining to the SWM 

Running totals  of 

weeks during SWM 

Date 

Week 1 April 30-May 06 

Week 2 1-7  May 

Week 3 2-8 May 

Week 4 3-9 May 

......... ......... 

......... ......... 

Week 148 24-30 September 
 

Before analyzing rainfall percentiles, the trend analysis was carried out and tested the 

linear and quadratic trend pattern in weekly rainfall during time period from 1960 to 

2015. Also, the weekly rainfall series pertaining to the SWM checked for the 

randomness using auto correlation plots. Furthermore, the normal probability plots of 

each weekly rainfall series which belong to SWM were obtained to test the 

normality. The weekly rainfall percentile analysis was done in context of confidence 

intervals using two approaches namely, parametric and bootstrapping. Under the 

Weeks Date Weeks Date 

18 April 30-May 06 29 July 16-22 

19 May 07-13 30 July 23-29 

20 May 14-20 31 July 30-August 05 

21 May 21-27 32 August  06-12 

22 May 28-June 03 33 August  13-19 

23 June 04-10 34 August  20-26 

24 June 11-17 35 August 27-September 02 

25 June 18-24 36 September 03-09 

26 June 25- July 01 37 September 10-16 

27 July 02-08 38 September 17-23 

28 July 09-15 39 September 24-30 
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parametric approach, estimates were made by fitting the probability distributions for 

weekly series in SWM and those details are presented from the section 3.5. 

 

3.4.  Analysis of the Weekly Rainfall Percentiles for SIM 

The SIM furnishes considerable shower to the city Colombo during the October to 

November. This analysis mainly focused to assess the temporal variability of the 

weekly rainfall during the SIM. The weeks 40-48 were belongs to the SIM is 

presented by Table 3.4. 

 

    Table 3.4: The weeks pertaining to the SIM 

 

The running totals of weekly rainfall were also considered as SWM for the analysis 

of weekly rainfall percentiles. Those running totals of weekly rainfall were utilized to 

study the variability of the rainfall and those are presented by Table 3.5. It is 

calculated total of 57 running weekly totals of weeks which pertaining to SIM. 

 
 

   Table 3.5: The running totals of weeks pertaining to the SIM 

Running totals of 

Weeks during SIM 

Date 

Week 1 1-7     October 

Week  2 2-8     October 

Week  3 3-9     October 

Week  4 4-10   October 

......... ......... 

......... ......... 

Week  57 26th November to 2nd December 
 

Linear and quadratic trend patterns in weekly rainfall during the SIM was tested 

before carrying out the analysis of rainfall percentile. Moreover, randomness of the 

series was assessed using auto correlation plots. Two approaches: parametric and 

Weeks Date Weeks Date 

40 October 01- 07 45 November 05 -11 

41 October 08- 14 46 November 12-18 

42 October 15- 21 47 November 19-25 

43 October 22- 28 48 November 26-December 02 

44 October 29- November 04  

 



37 
 

bootstrapping were applied to underline the rainfall percentiles along with the 95% 

confidence intervals. 

 

3.5.  The Best Fitted Statistical Distribution for Weekly Rainfall 

Many  known  probability distributions; Log normal, Exponential,  Gamma, Weibull, 

Largest Extreme Value, Smallest Extreme Value, Logistic, Log Logistic along with 

the different forms of some distributions such as 3-parameter Gamma, 2-parameter 

Exponential, 3-parameter Log Logistic and 3-parameter Weibull distributions were 

utilized to fit  probability distribution for the weekly rainfall series and two test 

Anderson-Darling and Kolmogorov-Smirnov test were used to identify the best fitted 

probability distributions. 

 

Weekly rainfall percentiles at 50, 60, 70, 80 and 90 and the corresponding 95% 

confidence intervals were calculated using best fitted distribution for the standard 

weeks.  It is also fitted many probability distributions mentioned above for the 

running weekly totals of 148 weeks in SWM and 57 weeks in SIM and the same 

procedure was carried out to select the best fitted probability distributions and 

calculated the five percentiles and the corresponding 95% confidence intervals for 

the running weekly totals.   

 

3.6.  The Use of Bootstrapping Approach 

This is a non parametric distribution free method. Resampling with replacement 

procedure was utilized to create the number of samples with the same size based on 

the original sample. Here, large number of statistics made based on the large number 

of repeated samples created. The 95% confidence intervals for the weekly rainfall 

percentiles were developed using percentile bootstrap approach.  

 

In order to identify the time period which, form the extreme rainfall events, the 

rainfall percentiles along with the 95% confidence intervals which made using two 

approaches were utilized and those statistics were used to enrich the understanding of 

the weekly rainfall variation during the SWM and SIM. Furthermore, the analysis of 
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the running weekly total with their 95% confidence intervals used to confirm the 

result of the analysis which was made based on the two approaches. 

 

3.7.  Coverage Probability for Weekly Rainfall Percentiles 

The coverage probability of the confidence intervals is one of the measurements that 

can be used to test the accuracy of the confidence interval bands. To compute the 

accurate level of confidence intervals for weekly rainfall percentile, the parametric 

bootstrapping approach was applied based on the real coverage probability which 

derived from the bootstrapping calibration. Under the parametric approach all the 

inferences including confidence interval bands made based on the distribution which 

we selected as best fitted either skewed on symmetric. This attempt has been made to 

test the inferences as confidence interval bands created by using skewed distribution.  

Here, one weekly rainfall series were considered as population and considered the 

95% confidence intervals made based on the best fitted distribution. A simulation 

was carried out to calculate the coverage probability of the 95% confidence interval 

for the rainfall percentiles at the small sample size. It is important to noted that the 

2000 random samples were generated using parametric bootstrapping approach. It 

was compared the calculated coverage probability with the nominal coverage 

probability. Based on the result, it was highlighted that the corresponding accurate 

confidence level for the percentiles to achieve the real coverage probability as 95%. 

 

3.8.  Modeling Weekly Rainfall Using Classical Models 

Before moving to novel approach, it is better to model the rainfall using conventional 

approach since many reasons. The presence of complex models do not give better 

result always and to overcome much difficulties in modeling the weekly rainfall, 

conventional method is initially used. 

 

In this study, an effort is made to model the weekly rainfall series from 1990 to 2014 

using Seasonal Autoregressive Integrated Moving Average (SARIMA) model by 

accounting the correlation structure of the series. Since the heteroskedasticity 

presence of the residuals derived from the above best fitted model a variance model 
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called Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

developed to capture the stochastic volatility. Model assumption were also tested 

simultaneously, to assess the accuracy of the fitted model. In addition to above 

models, an ARIMA-GARCH model was fitted to the deseasonalized weekly rainfall 

series to improve the model accuracy and the forecasting performance. 

 

Furthermore, the study is moved to model the weekly rainfall with exogenous 

variables to identify effect of the exogenous variables on weekly rainfall. Vector 

Auto Regressive (VAR) model was utilized to find the affect the nine variables such 

as minimum, maximum and average of three variables temperature, relative humidity 

and vapor pressure on weekly rainfall.  Also, the Granger causality test was applied 

to test one time series of the exogenous variable is useful in forecasting rainfall.  

 

3.8.1.  Stationary Series 

A stochastic process {Yt} is said to be a stationary if for arbitrary points t1, t2, t3...tn, 

the joint distribution of the random variable {Yt1, Yt2, Yt3...Ytn}and {Yt1+h, Yt2+h... 

Ytn+h} are the same. Observed series was tested for the stationary using Argument 

Dickey Fuller Test (ADF).  This was developed by Dickey and Fuller (1979). This is 

used to test whether a unit root is present in an autoregressive model.  

 

3.8.2.  ARIMA Modeling  

Box-Jenkings Auto-regressive Moving Average (ARMA) is a one of the most 

popular techniques used for rainfall forecasting. An autoregressive model of order p 

is typically classified as AR (p) and a moving average model with q terms is known 

as an MA (q). A model that consists of p autoregressive terms and q moving average 

terms is called ARMA (p, q). Usually, the original time series employs a lag operator 

B to define the ARMA (p, q) and model may be written as  

 

( ) ( )
tt
εBθyBφ =  

B is the backward shift operator defined as ktt

k yyB
−

=  

( ) p
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Bφ....BφBφBφ1Bφ −−−−−=  



40 
 

( ) qBθ....BθBθBθ1Bθ
q

3

3

2

21
+++++=

 

 

The series should be a stationary to model ARMA (p, q). If it is non stationary, the 

series should be transformed into a stationary series by getting differencing d. It is 

defined as ARIMA(p,d,q) and simply it can be written by using a back shift operator, 

 ( ) ( )
tt

d εBθyB)(1Bφ =−
 

 

3.8.3.  SARIMA Modeling 

If a time series exhibit a periodic behavior within certain time intervals then the 

series are said to be a seasonal time series. Those series can be model using seasonal 

ARIMA model and can be denoted by SARIMA(p,d,q)× (P,D,Q)s. The formula can 

be formed as; 
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Where )Θ(Band)Φ(Bθ(B),φ(B), ss
 are polynomial of order p, q, P and Q 

respectively. p and P are the order of non seasonal and seasonal autoregressive and q 

and Q are the order of non seasonal and seasonal moving averages. Also, d and D are 

the number of non seasonal and seasonal differences and s is the length of season. 

 

3.8.4.  Concept of ARCH/GARCH Modeling 

The Autoregressive Conditional Heteroskedasticity (ARCH) model was first 

introduced by Engle (1982) for modeling the time dependent conditional variance. 

This model was generalized by Bollerslev (1986) called as Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models. Time dependent 

variance or conditional variance commonly called as heteroskedasticity cannot be 

captured by the ARIMA/SARIMA models. Thus, GARCH models are utilized to 

capture the conditional variance existed from the residuals derived which from the 

ARIMA/SARIMA models. The GARCH (p, q) model can be written as; 
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where 
ttt

eσε = ,  )1N(0,iiD~e
t

   and 
2

tt
σ)V(ε =  

Here, t indicates the uncorrelated residuals of the SARIMA model that have time 

dependent variance while te is a random variable i.i.d with mean zero and variance 

1. Thus, in SARIMA-GARCH model, the conditional mean is described by the 

SARIMA while conditional variance is described by GARCH model. 

 

3.8.5.  Testing for the Serial Correlation 

The existence of serial autocorrelation violates the standard assumption in 

ARIMA/SARIMA models. Estimates and forecast values are no longer efficient and 

the estimates are biased and inconsistence when ignoring the serial correlations. 

Breusch-Godfrey serial correlation Lagrange Multiplier (LM) test is used to check 

the serial correlation of a given series up to specific lag. 

 

3.8.6.  Testing for the ARCH Effect 

Time dependent variance cannot be tested using ACF of the residuals. Thus, squared 

residuals from the mean model is used to identified the heteroskedasticity of the 

residuals and this is known as the ARCH effect. If the residuals exist an ARCH 

effect, the Lagrange multiplier test is used. Initially, estimate the mean equation: 
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The corresponding hypothesis are;
 

0γ....γγγH
q2100
======   Vs     0γoneleastat H

i1
=  

The test statistic is defined as TR2 (The multiplication of the number of observation 

and the coefficient of the multiple correlation) and under H0, this statistic follows the 

chi squared distribution with q degree of freedom (Engle, 1982). 
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3.8.7.  VAR Modeling 

Vector Autoregressive Model (VAR) are used for multivariate time series and its 

structure is a linear combination of past lags of the same variable along with the past 

lags of the other variables. This type of models examines the dynamic relationship 

among the interrelated variables. The {Yt} is a VAR process order 1 [VAR (1)] and 

for k=2 (k denoted as number of exogenous variables) model can be written as; 

 

 t11t2,121t1,11101t
yφyφφy +++=

−−   

 t21t2,221t1,21202t
εyφyφφy +++=

−−  

 

3.8.8.  Granger Causality Test 

This test is used to find the direction of the relationship among set of time series. The 

causality is away to investigate two variables in a time series. If the variable X is 

necessary to forecast the variable Y, then X is said to Granger Cause Y. 

The corresponding null hypothesis is, 

  

Ho:  X does not Granger Cause Y      Vs H1: X Granger Cause Y  

 

3.9.  Modeling Weekly Rainfall Using Novel Approach 

Modeling rainfall becomes a demanding assignment since the complexity of rainfall 

pattern has changed day by day.  It is noted that the rainfall in Sri Lanka shows the 

erratic variation. Thus, it cannot expect high forecasting accuracy by modeling 

rainfall using conventional approach. Accordingly, we have to move to a new 

technique to address this issue. Relatively, few measures have been taken to perform 

the modeling of rainfall in the context of long memory. This study provides an 

assessment of such a phenomenon by fitting an appropriate time series model by 

counting the long memory features. The long-range dependency model is allowed to 

take fractional values for the differencing. According to the Granger and Joyeux 

(1980), the fractional differencing is the infinite filter that corresponding to the 

expansion of (1-B) d, where B is the backwards shift operator while d is the fractional 

differing parameter. However, according to the Hosking (1981), the fractional 

differencing operator can be defined as an infinite binomial series expansion in 
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power of the backward shift operator. There are several parameters estimation 

methods for the long memory parameter d were proposed by the researchers. The 

spectrum based semi parametric whittle estimation method, regression method, 

wavelet-based method, approximately maximum-likelihood methods based on 

truncations of the infinite autoregressive expansion of the process and the truncation 

of the infinite moving average expansion of the process and exact maximum 

likelihood method with the Cholesky decomposition and with the Durbin-Levinson 

algorithm are some model parameter estimation methods for long memory models. 

 

 A long-range dependency model is proposed to fit weekly rainfall data to explore 

characteristics of persistence through an unbounded spectral density.  Since the 

weekly rainfall exhibited the persistence, initially, autoregressive fractionally 

integrated moving average (ARFIMA) model is fitted.  The exact maximum-

likelihood method with Durbin-Levinson algorithm was utilized to estimate the long 

memory parameter of the model and this was not tested for the previous rainfall 

studies. However, a Monte Carlo simulation was carried out with different 

fractionally differing parameters to measure the suitability of the method for 

parameter estimation. Best fitted model is chosen based on the minimum of the mean 

absolute error.  

 

Careful examination of the data exhibits periodic fluctuations as an additional 

feature. Since, the rainfall series exhibit periodic variations and persistence, a 

seasonal autoregressive fractionally integrated moving average (SARFIMA) model is 

fitted to weekly rainfall series. Here also used MLE method for the parameter 

estimation. Same as above, Monte Carlo simulation was done with different seasonal 

and non seasonal fractionally differencing parameters to measure the aptness of the 

method for parameter estimation.  

 

 In addition to the observed series, the deseasonalized series also considered and 

fitted long memory model for the purpose of the improve the forecasting accuracy. 

Since the heteroskedasticity existence in the all above models, variance models are 
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developed to the above long-range dependency models to gain good modeling 

accuracy.  

 

The number of long range dependency models (5); ARFIMA, ARFIMA for the 

deseasonalized data, ARFIMA-GARCH, ARFIMA-GARCH for the deseasonalized 

and adjusted SARFIMA-GARCH model are developed for the weekly rainfall series 

and selected best fitted model to describe the features of the weekly rainfall by 

accounting forecasting performance of the next year. 

 

3.9.1.  The Discrepancy Between Short and Long Memory Series 

Let  assume that the process {Yt}is a stationary time series with autocorrelation 

( ) )Y,corr(Ykρ
ktt +

=  and the normalized spectral density function is 
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where ω  is the Fourier frequency then can be 

identified the following differences between short memory and long memory series. 

 

        Table 3.6:  The difference between short and long memory series 

Short Memory Series Long Memory Series 
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If the shape of the auto correlation function in between exponentially and 

hyperbolically called as intermediate memory series. 
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 CHAPTER  4  

EXPLONATORY DATA ANALYSIS 

 

Analysis of pattern of weekly rainfall would enhance the management of water 

resources which enables us to face the impact of climate change. A detailed 

explanatory data analysis was carried out to explore the features of rainfall in this 

chapter. The rainfall characteristics are discussed at different time scales such as 

annual, seasonal, monthly and weekly. Also, features of the exogenous variables is 

described in this chapter. 

 

4.1.  Descriptive Analysis of Annual Rainfall 

The summary statistics of fifty-six years of annual rainfall data are presented in 

Table 4.1. Also Figure 4.1 depicts the annual rainfall trend in Colombo city during 

the study period. 

 

Table 4.1: The summary statistics of annual rainfall total (in mm) for the period of 56 

 years (1960-2015) 

 

During the period of 1960 to 2015, the annual rainfall of Colombo city was varied 

from 1456.6 mm to 3934.5 mm. The mean annual rainfall over the 56 year period 

was 2402.2 mm with a coefficient of variance of 19% confirms that the less variation 

in annual rainfall. The minimum annual rainfall amount was recorded in 1986 while 

maximum rainfall was reported in 1963. 

 

 

 

 

 

 

Number 

of Years Mean SD Median Minimum Maximum CV (%) 

56 2402.2 456.1 2395.4 1456.6 (1986) 3934.5 (1963) 18.99 
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Figure 4.1:  Annual rainfall in Colombo city in mm (1960-2015) 

Figure 4.1 illustrates much slight decreasing rainfall pattern during the 56 years 

period.  However, the variation in annual rainfall pattern like to be much consistent 

during the study period. All the years except 1986 enriched from the rainfall with 

more than 1750mm amount in the Colombo city.  

 

4.2.  Descriptive Analysis of Seasonal Rainfall  

The rainfall patterns of the country are predominantly governed by the seasonally 

varying monsoon system. Rainy periods of the country mainly have been classified 

into four seasons. Two monsoon periods and two inter monsoon periods. The 

Colombo city is located in the Western part of the country, Sri Lanka. Due to the 

geographical location, the city of Colombo is influenced by erratic rainfall mainly 

during two seasons namely, SWM and SIM.  The summary statistics of seasonal 

rainfall are presented in Table 4.2 and the seasonal rainfall behavior was graphically 

presented from the Figure 4.2 and Figure 4.3. 
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Table 4.2: The summary statistics of seasonal rainfall total (in mm) from 1960 to 

   2015 

 

Parenthesis indicates the year of which minimum or maximum occurred 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Seasonal rainfall during the time span from the 1960 to 2015 
 

According to the Figure 4.2, the highest rainfall amount was received to the city 

Colombo was reported during the SWM from May to September. Based on the 

statistics of the Table 4.2, the mean seasonal rainfall of SWM was accounted as 

1024.1mm. The maximum seasonal rainfall during the SWM was reported in 1963 

with a 1737.8 mm. Since the heavy shower particularly beginning of the SWM can 

be occurred during this season, sometimes leads to occur the floods events in the 

city. The season SWM enriched from the rainfall with more than 509 mm. The 

second highest rainfall amount was received in the city during the SIM from October 

Season Mean SD CV(%) Median Min Max 

Mean 

Intensity 

First Inter Monsoon (FIM) 

(March to April) 

374.8 158.5 42.3 336.9 101.8 

(2004) 

736.8 

(1961) 

6.2 

South West Monsoon (SWM) 

(May to September) 

1024.1 256.3 25.1 992.8 509.8 

(1986) 

1737.8 

(1963) 

6.7 

Second Inter Monsoon (SIM) 

(October to November) 

695.4 226.7 32.6 684.1 221.9 

(1986) 

1264.4 

(2005) 

11.4 

North East Monsoon (NEM) 

(December to February) 

302.1 155.6 51.5 295.2 58.4 

(1981) 

631.7 

(2014) 

3.4 
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to November. The highest and lowest rainfall amount during the SIM were reported 

in years 1986 and 2005 respectively. The SIM showed the highest intensity rainfall 

which causes to floods and landslides. The lowest rainfall amount was received for 

the Colombo city during the NEM. The mean seasonal rainfall was 302.1 mm during 

this season. It is noticed  that the considerable rainfall amount were received for the 

city Colombo during the NEM in the year 2014. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3:  Distribution of rainfall for the four seasons from 1960 to 2015 

The highest coefficient of the variance is marked as 51.5% for the period of NEM 

indicated that the much variation in seasonal rainfall than the other three for the city 

Colombo. According the Figure 4.3, it can be seen that the much peaks of the 

seasonal rainfall in NEM. However, those peak rainfall values not give much effect 

on the city due to those were in low range.  

 

4.3.  Descriptive Analysis of Monthly Rainfall  

The pattern of the monthly rainfall is more beneficial for the many field in the 

country. To examine the monthly rainfall characteristics, the summary statistics of 

the monthly rainfall during the time span from 1960 to 2015 is obtained and 

presented in Table 4.3. 
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Table 4.3: The summary statistics of monthly rainfall total (in mm) for the period of 

                 56 years (1960-2015) 

Month Mean SD CV(%) Median       Minimum Maximum 

January 70.68 58.78 83.2 68.4        0.0* 211.5 (1984) 

February 72.90 61.38 84.2 64.8        0.0 ** 221.8 (1963) 

March 119.4 78.40 65.6 105.4 0.2 (1996) 356.8 (1977) 

April 255.4 134.6 52.7 231.7 70.9 (2004) 617.9 (1999) 

May 346.2 173.4 50.1 320.6 83.5 (2014) 750.7 (1977) 

June 193.0 93.20 48.3 183.6 63.8 (1986) 602.3 (1992) 

July 132.3 101.6 76.8 109.1 10.5 (1986) 482.2 (1998) 

August 114.3 91.30 79.9 91.6 2.5 (2001) 435.2 (1962) 

September 238.3 138.9 58.3 209.8 29.3 (1976) 631.4 (2015) 

October 363.0 169.8 46.8 358.1 94.8 (1983) 871.2 (1977) 

November 332.5 164.0 49.3 295.1 52 (2000) 971.5 (2010) 

December 163.8 109.5 66.8 156.5 6.6 (2003) 476.5 (2014) 

     

Parenthesis indicates the year of which minimum or maximum occurred        

*(1974,1983,1977), ** (1972,1976,1980,1987,1998) 

 

According to the above table, the two months, January and February showed less 

rainfall than the other months. There was not any rainfall during the months January 

and February in several years (1974,1983 and 1977 for January and 1972, 1976, 

1980, 1987, 1998 for February). The months, April, May, September, October and 

November are enriched from rainfall while out of the those, May, October and 

November give heavy shower to the city. The coefficient of variation in monthly 

rainfall marked noticeably high values than the seasonal and annual. The highest 

variation of coefficients reported during months January and February which 

illustrated the not much consistence rainfall. The highest monthly shower in the city 

recorded in the month November in 2010 which was 971.5 mm during the study 

period. 
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                                      Figure 4.4:  Box plot of the monthly rainfall  

According to the box plot of the monthly rainfall, it can be clearly seen that an 

extreme rainfall event in the month November. Some several months also marked 

extreme rainfall events by which were badly affected on the city. The city of 

Colombo was enriched by the rainfall significantly during the three months May, 

October and November. 

 

4.4.  Explanatory Analysis of Weekly Rainfall  

Descriptive analysis of weekly rainfall with respect to the four seasons are carried 

out separately. 

 

4.4.1.  Descriptive Analysis of Weekly Rainfall for SWM 

In order to examine the pattern and behavior of the weekly rainfall the descriptive 

statistics were obtained and those were presented by seasons. The corresponding 

summary statistics of the weekly rainfall pertaining to the SWM is presented in Table 

4.4 and the box plot of the weekly rainfall in SWM is depicted from the Figure 4.5. 
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Figure 4.5:  Box plot of the weekly rainfall pertaining to the SWM 
 

Table 4.4: The summary statistics of weekly rainfall total pertaining to SWM (week 

     18-39) from 1960 to 2015 

Week No and Period: Mean SD CV(%) Median Min Max 

18   (April 30- May 06) 81.6 96.1 117.8 42.0 0.0 407.7  

19   (May 07- 13) 86.2 96.4 111.9 55.6 0.0 470.3  

20     (May 14-20) 75.5 96.7 128.2 48.5 0.0 506.8  

21  (May  21-27) 69.5 69.2 99.5 50.7 0.0 331.8  

22   (May 28-June 03) 69.0 61.8 89.6 48.0 0.5 239.1  

23     (June 04-10) 52.5 72.7 138.4 33.1 5.1 519.8  

24     (June 11-17) 40.6 32.0 79.0 32.0 2.0 141.0  

25    (June 18-24) 35.8 35.5 99.3 20.8 0.0 132.8  

26     (June 25-July 01) 39.5 41.9 106.2 28.2 0.0 196.4  

27   (July 02-08) 34.2 36.3 106.0 17.6 0.1 146.3  

28     (July 09-15) 29.0 32.3 111.2 16.2 0.0 135.2  

29   (July 16-22) 37.2 60.9 163.6 17.9 0.0 331.6  

30    (July 23-29) 22.7 32.3 141.9 11.9 0.0 173 .0  

31    (July 30-August 05) 19.5 26.5 135.9 8.6 0.0 111.6  

32   (August 06-12) 21.5 28.7 133.7 11.6 0.0 150.4 

33   (August 13-19) 30.8 35.0 113.7 17.9 0.0 146.6  

34    (August 20-26) 29.4 40.2 136.6 20.1 0.0 205.9  

35   (August 27-September 02) 27.7 35.4 128.1 19.4 0.0 150.4  

36   (September 03-09) 36.1 43.6 120.7 19.3 0.0 170.1  

37    (September 10-16) 44.3 52.7 119.0 28.8 0.0 275.6  

38    (September 17-23) 62.1 74.6 120.1 32.1 0.3 379.9  

39    (September 24-30) 86.6 91.1 105.2 56.5 0.0 376.4   
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Figure 4.5 illustrates that the distributions of the weekly rainfall data during SWM 

and all those distributions are positive skewed. Also, this depicts that there is a 

significant high variation in weekly rainfall in the week 18-23 while much lower 

variation in weeks 24 and 25. The lowest (19.5mm) and highest (86.6mm) mean 

weekly rainfall were reported in the 31st week and 39th week respectively. It is noted 

that mean weekly rainfall in SWM gradually decreases from 19th week to 31st week 

and then the pattern has changed to increase. An almost similar pattern was observed 

in median weekly rainfall also. Maximum weekly rainfall was recorded in the 23rd 

week (519.8mm) in 1992. The weeks 23, 24, 27 and 38 received rainfall 

continuously over the 56 year. It is also noted that the 82% of the weeks in SWM 

marked more than 100% coefficient of variation which indicates the high variation in 

weekly rainfall. 

  

4.4.2.  Descriptive Analysis of Weekly Rainfall for SIM 

The summary statistics of the weekly rainfall during the period of SIM is presented 

in Table 4.5 and the box plot of the distribution of the weekly rainfall in SIM is 

illustrated from the Figure 4.6 respectively. 

  

Table 4.5: The summary statistics of weekly rainfall total pertaining to SIM (week 

       40- 48) from 1960 to 2015 

Week No and Period: Mean SD CV(%) Median Min Max 

40   (October 01- 07) 51.9 52.1 100.3 35.1 0.2 237.2  

41   (October 08- 14) 81.7 89.4 109.3 46.4 0.0 370.1  

42   (October 15- 21) 98.6 93.4 94.7 71.1 0.0 413.7  

43   (October 22- 28) 89.7 74.2 82.8 73.5 0.0 362.4  

44   (October 29- November 04) 102.9 78.1 76.0 82.9 0.0 337.0  

45   (November 05 -11) 91.1 84.9 93.1 73.7 0.0 464.0  

46   (November 12-18) 76.8 76.6 99.7 53.4 0.0 347.3  

47   (November 19-25) 62.4 64.9 104.1 53.8 0.0 388.5  

48     (November 26-December 02) 55.2 53.7 97.2 32.0 0.0 232.1  
 

Mean weekly rainfall of SIM varies from 51.9 mm to 102.90 mm. The lowest and 

highest mean week rainfall was reported the 40th week and the 44th week 

respectively. The highest weekly rainfall in SIM was reported in 2010. It can be seen 

in a similar pattern of weekly rainfall in mean and median in SIM. Also noted that in 
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all the weeks in SIM higher mean rainfall than median rainfall. The week 40th 

received rainfall continuously over the period of 1960 to 2015 and minimum of the 

rainfall of this week reported as 0.2mm. Almost mean and median weekly rainfall 

during SIM is much higher than the weekly rainfall in SWM. It can be seen that the 

high variability in weekly rainfall at the middle of the seasons. However, coefficient 

of variance values indicates that the considerable much low fluctuation in the weekly 

rainfall pertaining to SIM than SWM.  

 

Figure 4.6:  Box plot of the weekly rainfall pertaining to the SIM 

 

Figure 4.6 depicts the distributions of the weekly rainfall data during SIM. All the 

weekly rainfall, pertaining to the SIM were positive skewed with longer tail to the 

right. Beginning and the withdrawal of the season shows much low rainfall than the 

middle. Many extreme weekly rainfall events can be seen at the weeks 41-47.  

 

4.4.3.  Descriptive Analysis of Weekly Rainfall for FIM 

Table 4.6 gives the summary statistics of the weekly rainfall during the FIM period. 

Also, distribution of the weekly rainfall in this period is presented from the Figure 

4.7. 
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Table 4.6: The summary statistics of weekly rainfall total pertaining to FIM (Week 

       10-17) for the period of 56 years. 
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 Figure 4.7:  Box plot of the weekly rainfall pertaining to the FIM 

According to the Figure 4.7, there is an increasing trend of weekly rainfall since 

beginning of the season. Positive skewed distribution can be clearly identified in 

weekly rainfall in all the weeks pertaining to the FIM.  The maximum weekly rainfall 

in FIM was recorded in 1999 (336.3mm) at the 16th week. It is noted that the week 

17th received continuous rainfall over the 56 years. The high mean rainfall was 

observed at the weeks 16-17. The high coefficient of variance implies that the much 

heavy variation in weekly rainfall during the FIM. However, the considerable low 

shower can be identified during the FIM than the SWM and the SIM in Colombo 

city.   

Week No and period: Mean SD CV(%) Median Min Max 

10     (March 05-11) 22.3 27.0 121.0 12.9 0.0 113.2  

11     (March 12-18) 29.1 36.7 126.0 14.9 0.0 141.5 

12     (March 19-25) 26.0 38.3 147.4 13.4 0.0 220.9 

13  (March 26 -April 01) 31.5 28.9 91.8 24.9 0.0 129.4 

14   (April 02-08) 50.1 52.9 105.5 34.2 0.0 227.2  

15   (April 09-15) 49.7 47.3 95.2 38.4 0.0 261.4  

16  (April 16-22) 72.0 67.6 93.9 56.8 0.0 336.3  

17   (April 23-29) 71.6 63.3 88.4 55.6 0.2 280.6 
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4.4.4.  Descriptive Analysis of Weekly Rainfall for NEM 

The summary statistics of the weekly rainfall in NEM is presented in Table 4.7. 
 

Table 4.7: The summary statistics of weekly rainfall total pertaining to NEM (week 

      49-52 and week 1-9) for the period of 56 years (1960-2015) 

Week No: Mean SD CV(%) Median Min Max 

49  (December 03-09) 47.1 55.0 116.9 30.9 0.0 259.2 (2010) 

50   (December 10-16) 39.3 40.5 102.9 27.6 0.0 172.7 (2015) 

51   (December 17-23) 30.2 32.0 105.9 17.7 0.0 135.7 (1965) 

52  (December 24-31) 29.9 46.1 154.4 10.7 0.0 268.7 (1969) 

1   (January 01 -07) 16.1 26.1 162.9 4.4 0.0 121.4 (1986) 

2     (January 08 -14) 24.0 36.0 150.2 4.3 0.0 136.5 (1969) 

3    (January 15 -21) 11.3 22.8 201.3 0.1 0.0 108.3 (1999) 

4   (January 22 -28) 12.2 20.3 166.2 1.1 0.0 70.8 (2001) 

5  (January 29 -February 04) 14.5 24.0 165.2 1.2 0.0 110.3 (1990) 

6   (February 05 -11) 21.6 31.9 147.9 2.8 0.0 135.1 (1984) 

7   (February 12 -18) 13.6 23.2 170.8 0.7 0.0 103.6 (2012) 

8  (February 19-25) 20.4 30.6 150.1 9.2 0.0 154.0(1964) 

9   (February 26 -March 04) 25.4 34.0 133.8 11.1 0.0 127.0 (1974) 
 

According to the Table 4.7, maximum weekly rainfall was marked in 1969 (268.7 

mm) during the week 52 in NEM. The mean weekly rainfall during this season 

showed much low amount than the SWM and SIM. Most of the mean weekly rainfall 

was less than 20 mm. It is noted that the much considerable rainfall in weeks 49-52 

than the other weeks in the NEM. Also, all the weeks illustrated the more than 100% 

coefficient of variation indicated that the very high variation in weekly rainfall 

during this season. It is noticed that the coefficient of the variation in week 3 was 

201.3% implies that the much heavy variation in weekly rainfall during this week. 

This is the week which have largest coefficient of variation among the 52 weeks.  
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Figure 4.8:  Box plot of the weekly rainfall pertaining to the NEM 

Figure 4.8 depicts the distribution of weekly rainfall in NEM. As we expect, all 

weekly rainfall distribution positive skewed while many extreme rainfall amounts 

can be seen in weekly rainfall in NEM. It can be clearly seen that the much heavy 

shower in weekly rainfall at the beginning of the season.  As above mentioned, 

Figure 4.8 also showed the high variability in weekly rainfall during the week3 than 

the others. However, though it has high variation it gives much low rainfall to the 

city. 

 

4.5.  Descriptive Analysis of the Weekly Temperature 

Temperature is considered as one of the exogenous climatic variables in modeling 

weekly rainfall. To enrich the understanding of the behavior of temperature a 

descriptive analysis was carried out for minimum, maximum and mean temperature 

during the period from 1990 to 2014.     

 

4.5.1.  Minimum Weekly Temperature  

In order to examine the temporal variability of the minimum weekly temperature, the 

time series plot and the summary statistics were obtained and presented in Figure 4.9 

and Table 4.8 respectively. 
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Figure 4.9: The time series plot of the minimum weekly temperature 

  

             Table 4.8: The summary statistics of the minimum weekly temperature 

 

 

 

 

The Figure 4.9 depicts a random pattern in minimum temperature and based on the 

Table 4.8, the lowest minimum weekly temperature in Colombo city was recorded as 

18.2 0C during the period of 1990 to 2014. The coefficient of variance (6%) provided 

evidence to low fluctuation in minimum weekly rainfall while this has a moderate 

negative skewed distribution. Moreover, the mean minimum weekly temperature was 

considered to describe the pattern of the minimum temperature over the considered 

time span. 

 

 

Mean Median Minimum Maximum CV(%) Skewness 

23.4 23.5 18.2 27.6 6.0 -0.29 
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Figure 4.10: Mean minimum weekly temperature 

Beginning of the year, the mean minimum weekly temperature indicated much lower 

value while it was gradually increased till 13th week. It can be clearly seen that the 

after 31st week, a steady decline until end of the year. 

 

4.5.2.  Maximum Weekly Temperature 

The Table 4.9 and Figure 4.11 depicts the descriptive statistic of the maximum 

weekly temperature and the corresponding maximum mean weekly temperature over 

the 56 years. 

 

Table 4.9: The descriptive statistics of the maximum weekly temperature 

 

 
 

The maximum weekly temperature varies from 29.60C to 36.10C while it can be 

identified low fluctuations in maximum weekly temperature (coefficient of variance 

3.47%). This is also skewed with a tail to positive. 

 

 

 

Mean Median Maximum Minimum CV(%) Skewness 

31.8 31.7 36.1 29.6 3.47 0.74 
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Figure 4.11: Mean maximum weekly temperature 

 

The Figure 4.11 depicts high mean maximum weekly temperature at the beginning of 

the year and the pattern has changed to decline from the weeks 16th to 30th. An 

increasing trend pattern is depicted from the week 30th to until end of the year.  

 

4.5.3.  Average Weekly Temperature 

The summary statistics of mean weekly temperature were presented in Table 4.10.  

 

Table 4.10: The summary statistics of the average weekly temperature 

 

 

 

The lowest average weekly temperature in Colombo city was reported as 24.4 0C 

while the highest was recorded as 30.40C during the study period. The Table 4.10 

shows that the low coefficient of variation than the minimum weekly temperature 

and this indicated that the much consistency pattern. This has slight positive skewed 

distribution.  

 

 

 

Mean Median Minimum Maximum CV(%) Skewness 

27.7 27.6 24.4 30.4 2.84 0.04 
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4.6.  Descriptive Analysis of the Relative Humidity 

Relative humidity is a ratio, express in percent, of the amount of atmospheric 

moisture present relative to the amount that would be presented if the air were 

saturated at the given temperature. This is a function of the both moisture content and 

the temperature. To assess the relationship between relative humidity and rainfall 

three measurements such as the minimum, maximum and average of relative 

humidity were considered and those characteristics were described in the following 

sections. 

 

4.6.1.  Minimum Weekly Relative Humidity 

The some features of the minimum weekly relative humidity (MinRH) is described 

using the time series plot (Figure 4.12) along with the summary statistics table of the 

MinRH. (Table 4.11). 

 

Figure 4.12: The time series plot of the minimum weekly relative humidity 

The Figure 4.12 showed the most of the MinRH in between 40 and 70 while some of 

them were above to 80 and below to 30. 
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Table 4.11: The descriptive statistics of the minimum weekly relative humidity 

 

 

 

The MinRH was reported as 26% while maximum was 90% during the considered 

time span. This is slightly negative skewed distribution while it is noted that the 

much considerable fluctuation (CV=16.37%). To explain the variation of the 

minimum relative humidity with respect to the weeks in a year, the mean minimum 

weekly relative humidity was taken and those are depicted by Figure 4.13. 

 

 

 

 

 

 

 

 

 

Figure 4.13: Mean minimum weekly relative humidity 

According to the Figure 4.13, there was a slight decline in mean minimum weekly 

relative humidity at the beginning of the year and after 4th week it can be clearly 

identified the increasing trend until the 25th week. Also, it depicts steady pattern in 

between the 26-46 weeks and there was a gradual decrease until end of the year from 

46th week.  

 

4.6.2.  Maximum Weekly Relative Humidity 

The summary statistics of the maximum weekly relative humidity (MaxRH) was 

taken to observe features of the MaxRH and result is presented in Table 4.12. 

              

Mean Median Minimum Maximum CV(%) Skewness 

61.87 65.0 26.0 90.0 16.37 -0.82 
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Table 4.12: The descriptive statistics of the maximum weekly relative humidity 

 

 

 

The minimum of the maximum RH was reported as 74% while maximum was 100%. 

This showed the negative skewed distribution with longer tail to the left. However, 

this showed the lowest fluctuation than the minimum and average relative humidity. 

To explain the variation of the maximum relative humidity with respect to the weeks 

in a year, the mean maximum weekly relative humidity was taken and those are 

depicted by Figure 4.14. 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Mean maximum weekly relative humidity 

According to the above Figure 4.14, there is a decreasing trend in mean maximum 

relative humidity from 2nd to 5th week. However, after the 5th week, it showed an 

increasing trend up to 17th week and again displayed the decreasing trend up to the 

week 32 and changed the pattern again to increasing trend.  After that it can be 

identified decreasing trend till end of the year. Though the trend pattern has been 

changed, the amount of the change is considerable low.  

 

Mean Median Minimum Maximum CV(%) Skewness 

95.4 81.2 74.0 100.0 2.9 -1.98 
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4.6.3.  Average Weekly Relative Humidity 

In order to examine the temporal variability of the average weekly relative humidity 

(AvgRH), time series plot and summary statistics of AvgRH were obtained and result 

is presented in Figure 4.15 and Table 4.13 respectively. 

  

Figure 4.15: The time series plot of the average weekly relative humidity 

Based on the above Figure 4.15, there is much low fluctuation in Avg RH than 

MinRH. Most of the AvgRH in between 75%-85%.  
 

Table 4.13: The descriptive statistics of the average weekly relative humidity 

 

 

 

The Table 4.13 showed that the minimum average relative humidity as 64% while 

maximum was 99.1. The coefficient of variation indicated that the much consistent 

variation compared with the minimum weekly relative humidity. This also showed 

negative skewed distribution.  

Mean Median Minimum Maximum CV(%) Skewness 

81.0 81.2 64.0 99.1 5.0 -0.33 
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4.7.  Descriptive Analysis of the Vapor Pressure 

Vapor pressure is the amount of pressure of water vapor in the air and it measured by 

milibars. The maximum amount of moisture that can be in the air is called saturation 

vapor pressure for a given temperature. The relative humidity gets 100% at the 

saturation vapor pressure. The characteristics of the minimum, maximum and mean 

weekly vapor pressure is discussed in detail in the following sections. 

 

4.7.1.  Minimum Weekly Vapor Pressure 

In order to examine the temporal variability of the minimum weekly vapor pressure 

(MinVapPres), the time series plot and the summary statistics were obtained and 

those are presented in Figure 4.16 and Table 4.14 respectively. 

 

Figure 4.16: The time series plot of the minimum weekly vapor pressure 

 

The Figure 4.16 indicates that the most of the minimum vapor pressure in between 

20-34 milibar. Also, it is noted that some weeks' vapor pressure is considerable low 

from the others. 
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              Table 4.14: The descriptive statistics of the minimum weekly vapor pressure 

 

 

 

The minimum and the maximum of the minimum vapor pressure were reported as 

13.8 milibar and 32.8 milibar respectively. This also showed a negative skewed 

distribution with longer tail to the left. To explain the variation of the minimum 

vapor pressure with respect to the weeks in a year, the mean minimum weekly vapor 

pressure was taken and those are depicted by Figure 4.17. 

 

 

 

 

 

 

 

 

 

Figure 4.17: Mean minimum weekly vapor Pressure 

According to the Figure 4.17, the mean weekly minimum vapor pressure showed 

increasing trend pattern from week 4 to week 22 and thereafter it depicted the much 

stable pattern up to week 44. Also, it showed the decreasing trend at the end of the 

year.  

 

4.7.2.  Maximum Weekly Vapor Pressure 

In order to examine the temporal variability of the maximum weekly vapor pressure 

(MaXVapPres) the time series plot and the summary statistics of the variable were 

obtained and result are presented in Figure 4.18 and Table 4.15 respectively. 

Mean Median Minimum Maximum CV(%) Skewness 

27.0 27.9 13.8 32.8 11.1 -1.16 
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Figure 4.18: The time series plot of the maximum weekly vapor pressure 

 

The Figure 4.18 indicates that the most of the maximum vapor pressure in between 

30-34 milibar. Also, it is noted that some weeks' vapor pressure is considerable low 

from the others. 

 

Table 4.15: The descriptive statistics of the maximum weekly vapor pressure 

 

 

 

The maximum vapor pressure was varied from 25.0 milibar to 37.4 milibar. It is 

seems to be much consistent pattern in maximum weekly vapor pressure when 

compared with the minimum and average vapor pressure. This is a slightly negative 

skewed distribution. To explain the variation of the maximum vapor pressure with 

respect to the weeks in a year, the mean maximum weekly vapor pressure was taken 

and those are depicted by Figure 4.19. 

 

Mean Median Minimum Maximum CV(%) Skewness 

32.2 32.2 25.0 37.4 5.0 -0.14 
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Figure 4.19: Mean maximum weekly vapor Pressure 

 

There is a increasing trend at the beginning of the year and after the week 21 it 

changed to the decreasing trend pattern.  

 

4.7.3.  Average Weekly Vapor Pressure 

In order to examine the temporal variability of the average weekly vapor pressure the 

summary statistics of the variable was obtained and result is presented in Table 4.16. 

 

Table 4.16: The descriptive statistics of the average weekly vapor pressure 

 

 

 

The average weekly vapor pressure varied from 22.2 milibar to 31.5 milibar. The 

variation of the series considerable low (CV= 6.5%) compared with the minimum 

vapor pressure.  

 
 

4.8.  Summary of the Chapter 4 

There was a slight decreasing pattern in the annual rainfall in Colombo city. SWM 

and SIM bring more rainfall to the city than FIM and NEM. During 1960 to 2015, 

Mean Median Minimum Maximum CV(%) Skewness 

29.8 30.1 22.2 34.5 6.5 -0.91 
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the total rainfall of SWM varied from minimum of 509.8mm (1986) to maximum of 

1737.8 mm (1963) with the mean of 1024.1mm and standard deviation of 256.3mm.    

Also, it is noted that the rainfall with high intensity in SIM. However, rainfall 

variability is much higher during FIM and NEM than that in other two seasons. 

 

The weekly rainfall by seasons exhibited an increasing trend in weekly rainfall at the 

beginning as well as withdrawal of the SWM. The coefficient of variation is more 

than 100% in 82% of weeks in SWM that provided evidence to high fluctuation in 

weekly rainfall during the SWM. There is a much possibility to form the floods 

during the beginning and the withdrawal of the SWM since heavy shower along with 

the much variation in weekly rainfall. In contrast, low rainfall amount was received 

during the beginning and the end of the SIM. There is much consistence in weekly 

rainfall was observed during the season SIM than SWM. Though an increasing trend 

of weekly rainfall can be seen at the beginning of the season FIM, it provided 

considerable low shower through the season to the city. 
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CHAPTER  5 

COVERAGE PROBABILITY FOR WEEKLY RAINFALL 

PERCENTILES CONFIDENCE LIMITS 

 

Modeling rainfall percentile is one of the successful techniques that can be used to 

describe the temporal variability of the rainfall and to highlight the its behavior. 

However, before modeling the rainfall, it is better to study the temporal variability in 

weekly rainfall in different aspects. Therefore, the main focus of this chapter is to 

model weekly rainfall percentile in the context of confidence intervals and study the 

coverage probability for weekly rainfall percentile confidence intervals. 

 

5.1.  Trend Estimation 

The parametric trend analysis was carried out for all weeks separately and tested the 

linear and quadratic trend pattern during the time span from 1960 to 2015. The plots 

of time series demonstrate the sense about the trend pattern of the weekly rainfall. 

The time series plots for the randomly selected weeks in SWM and SIM are shown in 

Figure 5.1 and Figure 5.2 respectively. Also, the remaining plots were shown in 

Appendix 1.  

 

 

 

 

 

 

 

 

             Figure 5.1: The time series plots of the weekly rainfall of the selected weeks   

                                (20, 28, 32 and 34) in SWM 
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   Figure 5.2: The time series plots of the weekly rainfall of the selected weeks   

                      (41, 44, 46 and 48) in SIM 

 

The Figure 5.1 and Figure 5.2 do not provide any sense about the presence of trend. 

The rest of the time series plots also demonstrate the same pattern (Appendix 1). 

However, to avoid the conclusion subjectively the hypothesis tests were carried out 

for the parameters of the linear and quadratic trend. The result of the test of 

parameters in linear trend is shown in Table 5.1. 
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Table 5.1: The coefficients (slope) of the  linear trend along with the P-values 

 

It can be concluded that no significant linear trend is presented in any week since 

none of coefficients are significantly different from zero since the corresponding p-

values are not less than 5%. Furthermore, no quadratic trend also presence in weekly 

rainfall within the same time period. The some of the weeks' result is presented in 

Table 5.2 and the rest weeks also showed the similar result. 

 

Table 5.2: The coefficients of linear and quadratic along with the P-values of the   

randomly selected weeks 

 

5.2.  Weekly Rainfall Percentiles  

Rainfall percentiles are employed in designing of water related structures in many 

fields. Sound awareness about the rainfall pattern is vital to mitigate the various 

issues derived from heavy rainfall and long dry spell existence due to climate 

Week Slope and      

P-value 

Week Slope and      

P-value 

Week Slope and      

P-value 

Week Slope and       

P-value 

1 0.156 (0.4777) 14 0.126 (0.776) 27 -0.394 (0.191) 40 0.478 (0.271) 

2 0.223 (0.460) 15 0.360 (0.361) 28 -0.355 (0.186) 41 -1.050 (0.157) 

3 0.149 (0.436) 16 0.012 (0.984) 29 -0.369 (0.469) 42 -0.729 (0.350) 

4 -0.026 (0.881) 17 -0.240 (0.651) 30 -0.283 (0.293) 43 -0.305 (0.623) 

5 0.353 (0.076) 18 -0.596 (0.459) 31 -0.067 (0.762) 44 -0.615 (0.346) 

6 0.300 (0.259) 19 -1.831 (0.120) 32 -0.357 (0.134) 45 0.351 (0.622) 

7 0.263 (0.171) 20 -1.052 (0.191) 33 0.121 (0.679) 46 -0.427 (0.505) 

8 -0.724 (0.103) 21 -0.730 (0.204) 34 0.277 (0.410) 47 0.693 (0.200) 

9 -0.157 (0.580) 22 0.798 (0.119) 35 0.206 (0.488) 48 0.392 (0.382) 

10 0.193 (0.392) 23 0.090 (0.882) 36 0.632 (0.079) 49 0.577 (0.207) 

11 0.133 (0.665) 24 0.411 (0.122) 37 -0.140 (0.752) 50 0.141 (0.678) 

12 -0.500 (0.115) 25 -0.035 (0.906) 38 -0.389 (0.533) 51 -0.426 (0.108) 

13 0.281 (0.243) 26 -0.447 (0.200) 39 -0.132 (0.863) 52 -0.199 (0.606) 

Weeks Linear Coefficient (P-Value) Quadratic Coefficient (P-Value) 

11 -1.89 (0.127) 0.0356 (0.093) 

23 3.66 (0.139) -0.0626 (0.137) 

29 -2.40 (0.248) 0.0357 (0.312) 

32 -0.353 (0.715) -0.0001 (0.997) 

46 -3.57 (0.172) 0.0551 (0.214) 

52 -1.80 (0.255) 0.0280 (0.296) 
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change. Based on the result of the explanatory data analysis, it is found that the city 

Colombo was enriched from the heavy shower during the South West Monsoon 

(SWM) and Second Inter Monsoon (SIM). Furthermore, it is explored that the heavy 

intensity rain events over the SIM. Thus, SWM and the SIM are the two rainy 

seasons which can have much possibility to form extreme rainfall events.   Fifty six 

year weekly rainfall series varied from 1960 to 2015 were considered for this 

analysis and weeks 18-39 were pertaining to the SWM while weeks 40-48 belong to 

SIM. Here, the series week 18 was made by taking into consideration of the 18th 

week (April 30-May 06) rainfall in every year.  The remaining weekly series also 

made in the same manner.  

 

5.3.  The 95% Confidence Intervals for the Weekly Rainfall Percentiles using 

Parametric Approach 

Most of the researchers made attempt to make inferences about the rainfall amount 

by using point estimates derived from the different theoretical probability 

distributions for rainfall percentiles. Sharma and Singh (2010) used the Generalized 

Extreme Value distribution, Gamma and Log Pearson distributions for the maximum 

weekly rainfall in the monsoon period at the Pantnagar region in India to study the 

temporal variability of maximum weekly rainfall. According to the review of rainfall 

percentiles carried out by Sharda and Das (2005), the Weibull distribution is more 

likely fitted for describing weekly rainfall at Dehradunin India. Also, they used the 

probability distribution models for computing minimum assured amount of rainfall at 

different probability levels. Beta and Weibull distributions were fitted for the weekly 

rainfall during the monsoon and non monsoon periods, respectively, and those best 

fit distributions are employed for computing minimum assured amount of rainfall at 

different probability levels for the Command area by Mishra et al., (2013). 

Moreover, many researchers have fitted theoretically probability distributions for the 

rainfall data at different timescales mainly monthly, seasonally and annually for the 

purpose of making inferences about the rainfall using point estimates.(Varathan et 

al., 2010; Singh et al., 2012; Alghazali and Alawadi, 2014; Mayooran and 

Laheetharan, 2014; Ghosh et al., 2016).  
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However, extremely few studies were reported in Sri Lanka with respect to the 

rainfall variation at weekly scale. Waidyarathne et al., (2006) analyzed weekly 

rainfall data to investigate the change of the onset of FIM rain in coconut growing 

agro ecological regions in Sri Lanka. However, it might be more risky depending on 

a single value formed from probability distributions to mitigate the circumstances 

which would be existed due to climate change. Confidence interval is one of the most 

popular techniques that can be used to measure the uncertainty. Based on the 

literature, there is no study has been conducted for weekly rainfall quantities in 

context of the parametric confidence interval approach. 

 

5.3.1.  Distribution of Weekly Rainfall 

Many probability distributions were fitted to the weekly rainfall series pertaining to 

the SWM and SIM and five rainfall percentiles; P50, P60, P70, P80 and P90 along with 

the 95% confidence intervals were made based on the best fitted distribution. To get 

the sound knowledge of the distributions of the weekly rainfall initially, histograms 

were obtained and some of those are presented from the Figure 5.3 and Figure 5.4 

respectively.  Moreover, the remaining plots were illustrated in Appendix -1. 

 

 

 

 

 

 

 

 

 

                    

 
 

 
 

Figure 5.3: Histogram of the total weekly rainfall for week numbers: week 20, 28, 32 

       and 34 in SWM 
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Figure 5.4:  Histogram of the total weekly rainfall for week numbers: week 41,44,46 

          and 48 in SIM 

 

Histogram of dataset provides clear evidence that the distributions of the weekly 

rainfall which pertaining to the SWM as well as SIM are skewed with longer tail to 

the right. Four randomly selected weeks 20, 28, 32 and 34 which belong to SWM are 

depicted in Figure 5.3 and weeks 41, 44, 46 and 48 in SIM are presented in Figure 

5.4. An almost similar pattern was observed in remaining data series also.  

 

5.3.2.  Randomness of the Weekly Series 

The randomness of the weekly rainfall series were checked by using the 

autocorrelation plots. The auto correlation plots of the randomly selected four weeks 

which two weeks belongs to SWM and rest pertains to the SIM are presented from 

the Figure 5.5, Figure 5.6, Figure 5.7 and Figure 5.8 respectively. 
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       Figure 5.5:  The auto correlation plot of the week 20 belongs to SWM 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 5.6:  The auto correlation plot of the week 34 belongs to SWM 
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Figure 5.7:  The auto correlation plot of the week 41 pertains  to SIM 

 

Figure 5.8:  The auto correlation plot of the week 44 pertains to SIM 

 

According to the above figures that the corresponding weekly rainfall series for the 

weeks 20, 34, 41 and 44 are in random manner. Also, similar patterns of 
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autocorrelation were observed reaming weekly series (Appendix 2). Thus, it can be 

concluded weekly rainfall series of all the weeks 18-48 have a random pattern. 

 

5.3.3.  Normality of Weekly Rainfall Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9:  The normal probability plot of the week 20 in SWM 

 

 
      

Figure 5.10:  The normal probability plot of the week 34 in SWM 
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Figure 5.11:  The normal probability plot of the week 41 in SIM 

 

Figure 5.12:  The normal probability plot of the week 44 in SIM 

 

The Anderson Darling test confirmed that the distributions of weekly rainfall 

significantly different from the normal distribution. Furthermore, all graphs provide 

the evidence to reject the null hypothesis that the series is followed normal 
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distribution.  A similar result was obtained in remaining data series too. This implies 

that none of the weekly rainfall series belongs to SWM as well as SIM followed 

normal distribution. 

 

5.3.4.  Common Distributions for Weekly Rainfall Totals 

The following known distributions: Log normal, Exponential,  Gamma, Weibull, 

Largest Extreme Value, Smallest Extreme Value, Logistic, Log Logistic along with 

the different forms of some distributions such as 3-parameter Gamma, 2-parameter 

Exponential, 3-parameter Log Logistic and 3-parameter Weibull distributions were 

utilized to select best fitted distribution for the weekly rainfall in 18 to 48. The Table 

5.3 represents some of the selected probability distributions with their probability 

density functions. The distribution parameters were estimated using maximum 

likelihood approach. 

 

Table 5.3: The Probability density functions 

 

 

Distribution Probability Density Function Parameters 

Lognormal 
( )

( )







 −
−=

22

ln
exp

2

1







x

x
xf  

μ  - Location Parameter, 

σ -Scale Parameter 

μ ≥ 0, σ > 0, X ≥ 0 

Exponential 
( ) 








−=


x
xf exp

1
 

α -Scale Parameter 

α  > 0 

2 Parameter 

Exponential 
( )

( )







 −
−=







x
xf exp

1
 

α -Scale Parameter,  

λ -Threshold parameter 

α  > 0,  λ < X 

Largest 

Extreme 

Value 

( )
( )
















 −
−















 −
=











xx
xf expexpexp

1

 

μ  - Location Parameter, 

σ -Scale Parameter 

μ ≥ 0, σ > 0, X ≥ 0 



80 
 

Table 5.3: (Continued...) 

 

The Anderson Darling and Kolmogorov-Smirnov test were used to identify the best 

fitted probability distributions for weekly rainfall series. The Table 5.4 is presented 

the best fitted probability distributions for the weekly rainfall series parting to the 

SWM and the corresponding maximum likelihood estimates along with the two test 

statistics called Anderson Darling test statistics (AD) and Kolmogorov-Smirnov test 

statistic (KS).  
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5.3.4.1. Properties of the Best Fitted Models for Weeks in SWM  

        Table 5.4:  The best fitted statistical models and maximum likelihood estimates 

      for weekly rainfall during SWM 

 

 

 

Week 

No. 

Best Fitted 

Distribution 
AD KS 

Estimated Parameters 

(MLE) 

18 3 - Parameter Weibull 
0.317  

(0.501) 

0.0782  

(0.884) 

α = 77.061,  β = 0.878,   

λ = - 0.838 

19 3 - Parameter Weibull 
0.131  

(0.520) 

0.0526  

(0.996) 

α =  82.249, β = 0.888,   

λ = - 0.935 

20 3 - Parameter Weibull 
0.247  

(0.510) 

0.0684  

(0.956) 

α = 67.331,  β  = 0.804,  

λ = - 0.508 

21 3 - Parameter Weibull 
0.362  

(0.461) 

0.1027  

(0.596) 

Α = 73.570,   β  = 

1.086,  λ = - 1.752 

22 Exponential 
0.457  

(0.540) 

0.0857  

(0.773) 
α= 68.989 

23 Lognormal 
0.319  

(0.526) 

0.0700   

(0.928) 
μ  = 3.518, σ = 0.912 

24 Weibull 
0.291  

(0.257) 

0.0691  

(0.934) 
α  =  43.645, β = 1.267 

25 3 - Parameter Weibull 
0.498  

(0.222) 

0.0752  

(0.910) 

α  = 34.182, β = 0.884, 

λ = - 0.383 

26 
2- Parameter 

Exponential 

0.912  

(0.103) 

0.1099  

(0.110) 

α = 40.204,   

λ  = - 0.718 

27 3 - Parameter Weibull 
0.275  

(0.521) 

0.073  

(0.926) 

α= 32.535, β= 0.887,  

λ = - 0.269 

28 3 - Parameter Weibull 
0.531  

(0.186) 

0.069  

(0.952) 

α= 24.822, β= 0.741, λ 

= - 0.131 

29 
2- Parameter 

Exponential 

0.873  

(0.107) 

0.1813  

(0.182) 

α = 37.875,   

λ  = - 0.676 

30 3 - Parameter Weibull 
0.596  

(0.210) 

0.1066   

(0.548) 

α= 16.711, β= 0.626, 

 λ = - 0.038 

31 
2- Parameter 

Exponential 

0.841  

(0.126) 

0.1823   

(0.232) 

α = 19.853,  λ  = - 

0.355 

32 3 - Parameter Weibull 
0.617  

(0.113) 

0.1002   

(0.627) 

α= 15.263, β= 0.602,  

λ = - 0.029 

33 3 - Parameter Weibull 
0.445 

(0.531) 

0.094    

(0.706) 

α= 23.975, β= 0.651,  

λ = - 0.067 
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Table  5.4:  (Continued...) 

 

* The value in parenthesis represents the corresponding P value 
 

It can be seen that the most of the weeks (15 out of 22) belong to the SWM were well 

fitted with the 3 parameter Weibull distribution. However, weeks 22-24, 

Exponential, Lognormal and Weibull distributions were found to be most appropriate 

distributions. Two parameter Exponential distributions were most probable 

distribution for the weeks 26, 29, 31 and 34.  Moreover, 68% of the running weekly 

totals  are well fitted with the 3 parameter Weibull distribution while 22% are fitted 

with the two parameter Exponential distribution and the remaining are well fitted 

with the Exponential, Largest  Extreme Value, Weibull and Lognormal distributions.  

 

5.3.4.2.  Properties of the Best Fitted Models for Weeks in SIM  

The best fitted probability distribution and the corresponding test statistics during the 

SIM are presented in Table 5.5.  

 

 

 

 

 

 

34 2- Parameter Exponential 
0.694  

(0.101) 

0.1193   

(0.194) 
α =29.964,  λ  = - 0.535 

35 3 - Parameter Weibull 
0.607  

(0.120) 

0.1186   

(0.410) 

α= 22.408, β= 0.698, 

 λ = - 0.089 

36 3 - Parameter Weibull 
0.544  

(0.328) 

0.0888   

(0.770) 

α= 26.012, β=0.602, 

 λ = - 0.049 

37 3 - Parameer Weibull 
0.246  

(0.531) 

0.0662   

(0.967) 

α = 40.709, β= 0.838,  

λ = - 0.366 

38 3 - Parameter Weibull 
0.438  

(0.315) 

0.0979   

(0.656) 

α= 57.303, β= 0.855,  

λ = - 0.261 

39 3 - Parameter Weibull 
0.397  

(0.394) 

0.0679   

(0.958) 

α= 81.654, β= 0.863,  

λ = - 0.831 
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Table 5.5:  The best fitted statistical models and maximum likelihood estimates for 

        weekly rainfall during SIM 

Week 

No. Best Fitted Distribution 

AD    

(Pvalue) 

KS 

(Pvalue) 

Estimated Parameters 

(MLE) 

40 3 - Parameter Weibull 

0.372 

(0.443) 

0.0536 

(0.725) 

α = 49.918,  β = 0.901, 

λ = - 0.403 

41 3 - Parameter Weibull 

0.181 

(0.520) 

0.0156 

(0.973) 

α =  77.341, β = 0.875, 

λ = - 0.832 

42 3 - Parameter Weibull 

0.360 

(0.465) 

0.0002 

(0.999) 

α = 104.811, β  = 1.097, 

λ = -2.583 

43 3 - Parameter Weibull 

0.245 

(0.510) 

0.0179 

(0.965) 

α= 95.553,   β  = 1.189, 

λ = - 0.671 

44 3 - Parameter Weibull 

0.137 

(0.540) 

0.0057 

(0.891) 

α = 113.014, β = 1.309, 

λ = - 1.717 

45 Largest Extreme Value 

0.574 

(0.144) 

0.0730 

(0.926) μ  = 58.397, σ =51.092 

46 2- Parameter Exponential 

0.842 

(0.126) 

0.1180 

(0.417) 

α = 78.205,  λ  = - 

1.397 

47 2- Parameter Exponential 

0.645 

(0.322) 

0.1107 

(0.499) 

α = 63.506,  λ  = - 

1.134 

48 2- Parameter Exponential 

0.692 

(0.103) 

0.1034 

(0.587) 

α = 56.235,  λ  = - 

1.005 
 

* The value in parenthesis represent the corresponding pvalues 
 

Most of the weeks belong to SIM were well fitted with the 3 parameter Weibull 

distribution while 2-parameter Exponential and Largest extreme value distributions 

were found to be most appropriate distributions for remaining. Furthermore, 65% of 

the running weekly totals are well fitted with the 3 parameter Weibull distribution 

while 30% are fitted with the two parameter Exponential distribution and the 

remaining are well fitted with the Largest Extreme Value distributions.  

 

5.3.5.  Confidence Intervals for Weekly Rainfall in SWM 

The formulas used for the percentile and its variance calculation based on the 

probability distribution is also shown in Table 5.6. Furthermore, Table 5.7 depicts 

the formulas   that were employed for the confidence bands of percentiles. 
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Table 5.6:  The formulas used for percentiles and variance estimates 

 

Table 5.7:  The formulas used for confidence intervals for percentiles 

 

Weekly rainfall percentiles and the corresponding 95% confidence intervals which 

calculated using above formulas are presented in Table 5.8. Those intervals were 

made for the weekly rainfall percentiles at 50, 60, 70, 80 and 90 based on the 

probability distributions which were selected as best fitted for corresponding weeks. 
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Table 5.8: The percentiles of the weekly rainfall and the corresponding 95%      

 confidence intervals during SWM in the city Colombo 

 

 

 

 

Week  

Number 
PERCENTILES 

 

P50 P60 P70 P80 P90 

18 49.9 68.9 94.4 131.7 198.5 

 (32.1, 67.7) (46.5, 91.4) (65.4, 123.3) (92.1, 171.3) (136.3, 260.7) 

19 53.5 73.6 100.45 139.7 209.6 

 (34.6, 72.4) (49.9, 97.3) (70.0, 130.9) (98.1, 181.2) (144.2, 274.9) 

20 42.2 59.9 84.3 121.2 189.5 

 (25.9, 58.5) (38.7, 81.0) (56.2, 112.4) (81.5, 160.9) (124.5, 254.6) 

21 50.8 66.1 85.5 112.3 156.8 

 ( 35.9, 65.6) (48.5, 83.8) (64.1, 107.0) (84.8, 139.8) (116.8, 196.8) 

22 47.8 63.2 83.1 111.0 158.9 

 (36.8, 62.1) (48.6, 82.1) (63.9, 107.9) (85.4, 144.3) (122.3, 206.4) 

23 33.72 42.5 54.4 72.6 108.4 

 (26.6, 42.8) (33.3, 54.1) ( 42.1, 70.2) (55.0, 95.9) (78.5, 149.8) 

24 32.7 40.7 50.5 63.5 84.3 

 ( 25.6, 41.7) ( 32.6, 50.9) (41.0, 62.3) (51.7, 78.2) (67.8, 104.8) 

25 22.2 30.6 41.8 58.2 87.4 

 (14.3, 30.1) (20.7, 40.4) (29.1, 54.5) (40.8, 75.6) (59.8, 115.1) 

26 27.2 36.1 47.7 64.0 91.9 

 ( 19.9, 34.4) (26.5, 45.8) (35.0, 60.4) (47.0, 80.9) (67.6, 116.1) 

27 21.3 29.2 39.8 55.4 83.0 

 (13.8, 28.7) (19.8, 38.6) (27.8, 51.9) (38.9, 71.8) (57.1, 108.9) 

28 15.0 21.9 31.8 47.0 76.4 

 (8.7, 21.3) (13.6, 30.3) (20.3, 43.2) (30.3, 63.8) (47.6, 105.2) 

29 25.5 34.0 44.9 60.3 86.5 

 ( 18.7, 32.5) (24.9, 43.1) (33.0, 56.9) (44.3, 76.2) (63.7, 109.4) 

30 9.3 14.5 22.5 35.7 63.4 

 (4.7, 13.8) (8.0, 21.0) (12.9, 32.0) (20.7, 50.7) (35.1, 91.6) 

31 13.4 17.8 23.6 31.6 45.4 

 (9.8, 17.0) (13.1, 22.6) (17.3, 29.8) (23.2, 40.0) (33.4, 57.3) 

32 8.3 13.2 20.8 33.6 61.0 

 (4.0, 12.5) (7.0, 19.3) (11.6, 29.9) (18.9, 48.3) (32.7, 89.2) 

33 13.6 20.9 31.8 49.8 86.4 

 (7.1, 20.0) (11.9, 29.9) (18.8, 44.8) (29.6, 69.9) (49.1, 123.6) 
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  Table 5.8: (Continued...) 

 

The result indicated that there was much heavy rainfall at the begins of the SWM. 

Also, Weeks 18-23 marked considerable rainfall with high variability. It is noted that 

90th percentiles of weeks 18-23 vary between 108.4mm to 209.6 mm which bring a 

greater amount of rainfall to this region. According to the table 5.8, there is a 90% 

chance to have 209.6 mm maximum rainfall, during the 19th week and this value can 

be varied between 144.2 mm and 274.9 mm at 95% confidence level. However, a 

clear decreasing pattern of weekly rainfall can be identified after the 23rd week. 

 

The weeks 31 and 32 marked lower rainfall amount than others during SWM. After 

35th week, again it can be seen an increasing trend of weekly rainfall till the end of 

the season. The week 39 records the highest rainfall amount in the SWM. The 

median rainfall of the 39th week series was 52.6 mm while the 70th percentile of this 

week marked more than 100 mm rainfall amount which is a large quantity for the 

area. Week 38 also brings much heavy rainfall with noticeable variation in this 

season for this region. 

 

The rainfall percentiles and corresponding 95% confidence intervals for running 

totals of weekly rainfall were also constructed during the SWM in Colombo. Figure 

5.13 represented only 90th percentile of running total and its 95% confidence bands. 

It also depicts the high rainfall variation with the arrival of SWM. Also, Figure.5.13 

illustrates the much heavy rainfall due to the withdrawal of the SWM.  Based on the 

34 20.2 26.9 35.5 47.7 68.5 

 (14.8, 25.7) (19.7, 34.1) (26.1, 45.0) (35.1, 60.3) (50.4, 86.5) 

35 13.2 19.7 29.2 44.2 74.0 

 (7.3, 19.0) (11.7, 27.6) (18.0, 40.3) (27.6, 60.9) (44.4, 103.5) 

36 14.1 22.5 35.4 57.3 103.9 

 (6.9, 21.3) (12.0, 32.9) (19.8, 51.0) (32.3, 82.3) (155.6, 152.2) 

37 25.9 36.3 50.4 71.5 109.8 

 (16.3, 35.6) (24.0, 48.7) (34.3, 66.6) (49.0, 93.9) (73.6, 146.0) 

38 37.1 51.5 70.9 99.7 151.7 

 (23.6, 50.5) (34.4, 68.6) (48.7, 93.1) (69.1, 130.3) (103.1, 200.3) 

39 52.6 73.0 100.4 140.9 213.7 

 (33.6, 71.6) (48.9, 97.0) (69.3, 131.6) (97.8, 184.0) (144.6, 282.8) 
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result of the running total of the weekly rainfall, it can be further confirmed that there 

was heavy rainfall with great variation during the period of weeks 18-23 (30th April 

to 10th June) and weeks 38-39 (17th-30th of September). 

 

     Figure 5.13: The 90th percentiles of running total of weekly rainfall and 95%    

                 confidence intervals during SWM in Colombo 

Based on the analysis of   past extreme rainfall events in Colombo area during SWM, 

it can be identified that the many floods occurred in the months May and June. Most 

recently (on 15 May 2016) Sri Lanka was hit by a severe tropical storm that caused 

heavy flooding in Colombo. Furthermore, floods occurred in Colombo in the past 

years; 1975, 1989, 1992, 2008 from May to June period (Jegarascsingam, 1998). 

 

5.3.6. Confidence Intervals for Weekly Rainfall in SIM 

Weekly rainfall percentiles which pertaining to the SIM with the corresponding 95% 

confidence intervals are presented in Table 5.9. Those intervals also were made for 

the weekly rainfall percentiles at 50, 60, 70, 80 and 90 based on the probability 

distributions which were selected as best fitted for corresponding weeks. 
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   Table 5.9:  The percentiles of the weekly rainfall and the corresponding 95%     

            confidence intervals during SIM in the city Colombo 

Week   PERCENTILES 

  P50 P60 P70 P80 P90 

40 32.8 44.9 60.9 84.2 125.5 

 (21.5, 44.2) (30.8, 59.0) (42.8, 79.0) (59.6, 108.9) (86.7, 164.3) 

41 50.1 69.1 94.8 132.4 199.7 

 (32.1, 68.0) 46.6, 91.7) 65.7, 123.9) (92.5, 172.3) (136.5,  262.8) 

42 72.5 94.2 121.6 159.1 221.6  
(51.5, 93.5) (69.4, 119.0) (91.4, 151.7) (120.5, 197.8) (165.4, 277.7) 

43 69.5 88.1 111 141.9 192.9 

 ( 50.6, 88.5) (66.6, 109.7) (85.9, 136.2) (110.5, 173.4) (146.5, 237.7) 

44 83.7 104 128.5 160.9 212.4  
(62.7, 104.7) (80.6, 127.4) (90.8, 131.4) (110.6, 159.4) (166.2, 257.9) 

45 77.1 92.7 111.1 135 173.4  
(61.5, 92.7) (75.2, 110.2) (90.8, 131.4) (110.6, 159.4) (141.7, 205.0) 

46 52.8 70.3 92.8 124.5 178.4 

 (38.6, 67.0) ( 51.5, 89.0) (68.1, 117.4) (91.5, 157.4) (131.5, 225.8 ) 

47 42.9 57.1 75.3 101.1 145.1 

 (31.4, 54.4) (41.8, 72.3) (55.3, 95.4) (74.3, 127.8) (106.8,183.4) 

48 38 50.5 66.7 89.5 128.5 

 ( 27.8, 48.2) (37.0, 64.0) (49.0, 84.4) (65.8, 113.2) (94.6, 162.4) 
 

The result showed in Table 5.9 indicated that there is no much heavy rainfall at the 

beginning of the SIM as SWM. Also, it is noted that low variability at the withdrawal 

of the monsoon. However, the Weeks 41-45 showed the high rainfall amount with 

the large variability result cause to form the extreme rainfall events. The weeks 42 

and 44 record the great amount of rainfall for this region during SIM than others. 

Based on the analysis of the running weekly totals, it can be expected much heavy 

rainfall with high variability during the time span of 16th-22nd October. Figure 5.14 

represented the 90th percentile of running total during SIM and its 95% confidence 

bands. 
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Figure 5.14: The 90th percentiles of running total of weekly rainfall and 95%    

             confidence intervals during SIM in Colombo 

Based on the analysis of both weekly totals as well as running weekly totals during 

the SIM period, there is a high possibility to have heavy rainfall events during the 

Weeks 41-45 (08th October to 11th November). There is a 90% chance to have 221.6 

mm maximum rainfall in the week 42. This value can be varied between 165.4mm to 

277.7 mm at 95% confidence level. Thus, week 42 (15th-21st October) has much 

chance to form extreme rainfall events during this monsoon period.  

 

5.4.  The 95% Confidence Intervals for the Weekly Rainfall Percentiles using 

Bootstrapping Approach 

Confidence intervals for quantiles of a random variable mostly depend on the 

distribution function. However, according to the Burn (2003) there are several 

shortcomings of this approach. The number of assumptions with respect to the 

distribution and necessity of larger data series to make inferences are the main 

drawbacks of this approach. A bootstrapping approach has been proposed as an 

alternative approach for calculating confidence intervals through the resampling 

process. Dunn (2001) made an attempt to build bootstrap confidence intervals for 

predicting rainfall quantities. Simultaneous confidence intervals for a daily minimum 
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rainfall total using a bootstrap resampling method considering of serial dependency 

have been produced by Ferro et al., (2005). Lucio (2007) adapted bootstrap method 

for the purpose of evaluating of small sample inferences for monthly rainfall extreme 

quantiles.  

 

Three approaches Bayesian, Bootstrap and Profile Likelihood were employed to 

construct confidence intervals of extreme rainfall quantiles by Chen Si et al., (2016). 

There are many bootstrapping approaches to calculate the confidence intervals for 

the population parameters. The percentile bootstrap method, parametric 

bootstrapping method, the bootstrap-t intervals and the bias corrected accelerated 

percentile (BCa) method are the some of the methods often used for making 

confidence intervals as alternative to the parametric approach. In this study, the 

percentile bootstrap method is utilized to calculate the 95% confidence intervals for 

the weekly rainfall percentiles. The percentile method is more popular among 

applied statistician (Hall, 1992). 

 

5.4.1.  Percentile Bootstrap Method 

The bootstrap method is used to make inferences by using the information based on a 

number of resample from the same sample. This is a nonparametric technique that 

assists to make conclusions about the characteristics of a population based on the 

existing sample unlike the parametric approach which makes assumptions about the 

estimators. The procedure creates simulated data set by drawing observations from 

the original sample with replacement. If a parameter can be expressed as a function 

of an unknown distribution, then its bootstrap estimator is also the function of the 

same distribution function.  

 

Suppose a random sample of size n, X= (X1, X2, X3,..., Xn) from an unknown 

population with probability distribution function f(x) and let θ  be the parameter and 

θ


 be the estimator forθ   based on data set. B is the number of samples with size n 

generated from the f(x) then X*= (X*1, X*2, X*3..., X*n) denote the bootstrap 



91 
 

random sample of size n. Let *θ


 be an estimator computed using the bootstrapping 

sample of X*.  

 

Suppose we generate B number of bootstrap samples with size n from the original 

sample data and for each sample we computed the statistic of interest 

( )*
B

*
2

*
1

* θ,....,θ,θθ


= . In our study, the rainfall percentile is the interest in statistic. The 

ordered bootstrap values are used to compute the bootstrap confidence intervals from 

the Percentile method. Suppose 1000 bootstrap replications of  θ


 denoted by 

( )*
1000

*
2

*
1 θ,....,θ,θ  and after ranking ascending order it can be denoted as 

     ( )*
1000

*
2

*
1 θ,....,θ,θ . Then the bootstrap percentile confidence intervals at the 95% level 

of confidence would be ( ) ( ) *
975

*
25 θ,θ  (Singh and Xie, 2008). 

 

5.4.1.1.  CI for Weekly Percentiles in SWM 

Table 5.10 depicts weekly rainfall percentiles and the corresponding 95% bootstrap 

confidence intervals. Those intervals also were made for the weekly rainfall 

percentiles at 50, 60, 70, 80 and 90 based on the 1000 bootstrap samples.  

 

  Table 5.10: The 95% confidence intervals of weekly rainfall percentiles (based on 

1000 bootstrap samples) pertaining to SWM (week 18-39) 

Week   PERCENTILES 

 P50 P60 P70 P80 P90 

18 42.0 61.6 100.0 129.4 223.8 

 (30.9, 66.3) (34.8, 100.6) (54.1, 130.3) (96.4, 207.1) (128.6, 343.4) 

19 55.6 81.1 101.7 142.2 198.1 

 (32.6 ,86.4) (48.1, 105.1) (78., 144.0) (99.2, 191.8) (144.6, 351.1) 

20 48.5 57.9 82.0 121.6 197.5 

 (26.2, 59.7) (47.4, 84.6) (56.7, 126.8) (68.2, 178.6) (116.5, 306.7) 

21 50.7 61.3 82.6 99.6 154.6 

 ( 41.2, 64.5) (50.0, 84.2) (56.3, 101.8) (72.0, 143.9) (102.7, 242.6) 

22 48.0 75.7 85.2 142.8 164.6 

 (29.2 , 78.1) (43.6,97.2) (67.0, 143.5) (84.6, 163.2) (144.8, 184.4) 

23 33.1 42.6 49.1 76.5 114.9 

 (24.0, 44.4) (31.7, 51.5) ( 41.5, 78.1) (49.0, 105.3) (76.5, 135.6) 
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       Table 5.10: (Continued...) 

24 32.0 38.8 48.0 61.9 86.6 

 ( 27.2, 41.6) ( 31.0,48.3) (37.0, 63.6) (47.8, 85.5) (60.4, 116.5) 

25 20.8 35.6 49.0 63.5 91.1 

 (14.0, 36.3) (17.5, 49.9) (32.7, 66.9) (48.0, 84.9) (68.0, 114.8) 

26 28.2 47.5 54.0 65.0 83.2 

 ( 14.6, 49.4) (22.8, 57.2) (36.7, 65.2) (53.4, 80.6) (66.3, 143.4) 

27 17.6 30.4 47.3 59.0 86.1 

 (11.9, 31.9) (16.8, 49.9) (27.6, 59.4) (46.0, 78.7) (61.8, 123.8) 

28 16.2 24.2 33.7 57.6 86.3 

 (10.1, 25.9) (13.4, 34.5) (20.0, 59.) (31.8, 83.1) (57.9, 92.6) 

29 17.9 33.2 40.4 53.5 76.7 

 ( 11.7, 35.4) (15.4, 41.0) (27.9, 55.7) (39.1, 70.2) (58.4, 164.2) 

30 11.9 18.1 23.7 33.9 47.5 

 (7.7, 21.5) (11.0, 24.6) (15.3, 34.3) (23.5, 45.5) (35.4, 104.2) 

31 8.6 13.3 25.1 31.4 62.0 

 (3.3, 17.2) (6.4, 26.3) (12.1, 31.5) (24.2, 52.3) (32.0, 89.0) 

32 11.6 17.1 23.7 42.7 57.9 

 (4.3, 18.1) (9.7, 24.3) (16.2, 45.8) (21.6, 51.9) (46.9, 82.0) 

33 17.9 27.4 41.7 54.6 89.3 

 (10.0, 29.3) (15.0, 46.9) (26.4, 55.7) (41.2, 86.3) (56.0, 106.9) 

34 20.1 22.9 30.0 54.2 72.8 

 (9.6, 24.0) (14.0, 30.3) (20.9, 54.7) (29.6, 72.3) (54.8, 115.0) 

35 19.4 21.8 28.3 47.2 64.9 

 (7.6, 25.9) (18.6, 29.1) (22.4, 47.7) (28.0, 62.4) (48.9, 145.9) 

36 19.3 27.4 45.9 68.0 114.7 

 (7.9, 33.7) (15.8, 58.2) (25.3, 68.2) (43.9, 105.0) (69.0, 142.6) 

37 28.8 34.7 44.4 69.9 118.1 

 (16.2, 37.5) (25.1,45.5) (34.3, 70.7) (44.2, 116.3) (77.8, 153.0) 

38 32.1 40.4 58.9 122.8 167.2 

 (22.3, 42.9) (29.1, 64.1) (38.6, 130.9) (54.8, 164.1) (116.1, 215.4) 

39 56.6 85.8 102.8 155.4 225.6 

 (32.2, 89.6) (48.3,104.3) (77.1, 158.5) (101.0, 216.1) (164.4, 316.8) 
 

*The values in parenthesis represent the corresponding 95% confidence   intervals. 

 

The result indicated that the heavy rainfall at the beginning of the SWM. 

Furthermore, it can be expected much rainfall from week 18 to week 23. It is evident 

from Table 5.10 that 80% or more chances to have 207.1mm maximum weekly 

rainfall in the weeks 18 - 23. However, after the 23rd week it can be seen clear 

decline of weekly rainfall up to week 35. It can be expected 86.3 mm maximum 

week rainfall with 80% probability at week 33 which showed maximum rainfall 

variability out of weeks 24-35. The week 31 and 32 marked much lower rainfall 
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during the SWM. Since week 36 it can be seen much rainfall till end of the season. 

The week 39 marked highest rainfall amount during the SWM. The table depicts a 

high variability at the weeks 18-23, 29 and 38-39. Also, there is a much higher 

possibility to have extreme rainfall during the weeks 18-23, 29 and 38-39.  

 

However, almost similar conclusion can be made based on the parametric as well as 

percentile bootstrap approach since both emphasis the same time period to have 

much possibility to form extreme rainfall events to the region during the SWM.  

 

5.4.1.2.  CI for Weekly Percentiles in SIM 

Table 5.11 depicts weekly rainfall percentiles and the corresponding 95% confidence 

intervals which made using percentiles bootstrap approach.  

 

Table 5.11: The 95% confidence intervals of weekly rainfall percentiles (based on 

1000 bootstrap samples) pertaining to SIM (week 40-48)   

 

 *The values in parenthesis represent the corresponding 95% confidence intervals. 

The results indicated that the heavy rainfall over the SIM compared with the SWM. 

It can be expected 135.6 mm maximum rainfall at 80% probability at week 41 and 

 

Week   PERCENTILES 

 P50 P60 P70 P80 P90 

40 35.1 48.8 67.1 99.5 122.7 

 (20.1, 50.3) (32.3, 73.4) (45.7, 99.6) (64.4, 118.9) (100.4, 165.9) 

41 46.4 64.8 87.7 135.6 239.3 

 (29.8, 71.7) (44.6, 107.4) (61.7, 143.0) (84.6, 222.6) (137.9, 291.7) 

42 71.1 83.1 107.4 156.0 220.1 

 (52.8, 91.5) (70.0, 131.8) (79.3, 157.7) (105.1, 211.4) (161.9, 366.0) 

43 73.5 90.8 114.4 135.4 185.7 

 (51.9, 96.6) (70.0, 119.3) (86.7, 138.2) (108.7, 166.0) (139.7, 265.2) 

44 83.0 107.9 132.5 168.7 212.0 

 (59.7, 119.8) (78.7, 134.1) (97.6, 169.1) (128.9, 201.3) (169.7, 280.7) 

45 73.7 79.2 109.5 125.8 182.7 

 (61.0, 86.1) (71.0, 112.0) (78.7, 126.1) (107.0, 178.9) (125.7, 314.8) 

46 53.4 75.6 100.8 142.6 192.7 

 (33.0, 80.9) (45.9, 109.5) (72.0, 142.7) (97.0, 185.5) (144.4, 226.2) 

47 53.8 73.3 80.2 90.1 125.6 

 (29.1, 74.7) (53.2, 83.9) (66.2, 90.2) (79.2, 114.8) (90.5, 178.7) 

48 32.0 62.7 76.2 105.7 132.3 

 (24.1, 65.6) (30.5, 77.0) (55.2, 107.2) (71.8, 129.4) (107.7, 152.1) 
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the value can be varied from 84.6mm to 222.6mm which indicated that a high 

variability. It is noted that high rainfall variability at the weeks 41-45 in SIM. Thus, 

there is a much higher chance to have extreme rainfall events at above weeks. Based 

on the result of Table 5.10, it is clear that the beginning as well as the withdrawal of 

the monsoon season showed much low rainfall amount along with the low variation 

with compared to the middle of the weekly rainfall. Here also, a good agreement is 

seen with the result of parametric approach. 

 

However, it is noted that the width of the 95% confidence intervals made based on 

the percentile bootstrapping approach get much high value than the parametric 

approach. Small sample size and positive skewed distribution of weekly rainfall are 

some reasons for the high width of confidence intervals of percentiles which made 

using those methods. To make accurate confidence intervals, the coverage 

probability should be taken into account.  

 

5.5.  Accurate Confidence Interval Bands 

The coverage probability of the confidence interval is one of the imperative factors 

that should be considered when making inferences using confidence limits. Accurate 

confidence bands enhance the degree of the awareness level of rainfall variability at 

high uncertainty.  To calculate the accurate confidence interval bands, the parametric 

bootstrapping approach is used by utilizing the coverage probability which can made 

bootstrapping calibration.  

 

The main aim of this analysis is to find the accurate level of confidence intervals for 

weekly rainfall percentiles derived from Weibull distributions based on the real 

coverage probability which formed using Bootstrap Calibration. Accurate estimates, 

either point or intervals are essential since many decisions might be depend on those 

values. In such situation, sample size is the other main factor which influences to 

accurate inferences. In fact, it is more complicated to compose inferences and make 

decisions at the small size of the sample. Most of the time, estimates derived from 

the fitted theoretical probability distributions becomes inaccurate at the small sample 
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size. To overcome this problem, the bootstrapping technique can be used. The 

Weibull distribution and its properties are explained by the following section. 

 

5.5.1.  Weibull Distribution 

The Weibull distribution was invented by Waloddi Weibull and this is widely used 

continuous probability distribution. Moreover, life and climatic data are analyzed 

using this versatility distribution. The characteristic of the Weibull distribution is 

varied based on the values of the scale and shape parameters. The shape of the 

density function of the Weibull distribution changes drastically with the value of the 

shape parameter. The Weibull distribution can be approximated to the normal 

distribution when shape parameter is about 3.6 (Johnson and Kotz,1970).  Figure 

5.12 describes the shape of the Weibull distribution with different scale and shape 

parameters. 

 

 

 

 

 

 

Figure 5.15:   Density functions of Weibull distribution with different scale and 

shape parameters 



96 
 

The pth percentile of the Weibull distribution (Xp) and its variance [Var (Xp)] is 

defined as follows (Heo et al., 2001). β̂andα̂
 
are the maximum likelihood estimators 

for the scale and shape parameters of the Weibull distribution. 

The pth Percentile of Weibull Distribution - pX
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The equations that used to calculate the confidence intervals for the Weibull 

percentiles are given as; 
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5.5.2.  The Coverage Probability 

The coverage probability of a confidence interval can be briefly explained as the 

proportion of the time that interval that contains the true value of interest. The 

coverage probability of a confidence interval can be calculated using simulation 

method; firstly, many samples of size n should be simulated from the population and 

compute the confidence intervals for interest parameter for each sample. After that, 

the proportion of samples should be computed for the known population parameters 

is contained in the confidence interval. That proportion is an estimate for the 

coverage probability for the confidence interval. However, a discrepancy can be 

occurred between the computed coverage probability and the nominal coverage 

probability due to many reasons such as approximating a discrete distribution with a 

continuous distribution, when the population is not normal etc. In this study, our 

interest parameter is percentile and based on the confidence intervals of percentiles 

(P50, P60, P70, P80 and P90) the coverage probability will be calculated. 
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5.5.3.  Data for the Simulation 

To work out the coverage probability, here considered one weekly data series during 

the SWM as the population. In this study, the data which belong to the week 24 (11-

17 June) in SWM (The weekly data of 46 years for the time span from 1970 to 2015) 

was considered as the population. Here, small sample size (n=46) was considered for 

this analysis to distinguish the real and nominal confidence bands clearly. The 

summary statistic of the total rainfall during week 24 is presented in Table 5.12 along 

with the histogram (Figure 5.16). 

 

  Table 5.12: Descriptive statistics of the weekly rainfall data (week 24) 

Variable 

No. of 

Data Mean Median Min 

           

Max 

C.V 

(%) Skewness  

Week 24 46 36.1 18.4 0.1   146.3 104.9 1.37 

 

 

 

 

 

 

 

 

 

 

 Figure 5.16:  Histogram of weekly rainfall data (week 24) 
 

From 1970 to 2015 total weekly rainfall in the 24th week varied from 0.1mm to 

146.3mm with a mean 36.1mm. Figure 5.16 illustrates the weekly rainfall as 

positively skewed with a longer tail to the right and the result was further confirmed 

as the coefficient of skewness is 1.37. The large coefficient of variance (104.9%) 

gives evidence to high fluctuations in weekly rainfall (week 24). 
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The total rainfall during week 24 was fitted to different type of probability 

distributions and those data were well fitted with the two parameter Weibull 

distribution. Corresponding Anderson Darling and Kolmogorov-Smirnov test 

statistics were 0.258 (P-value =0.256) and 0.0673 (P-value = 0.941) respectively. 

The maximum likelihood estimates for the scale and shape parameters of the fitted 

Weibull distribution were 33.9286 and 0.8775 respectively. 

 

5.5.4.  The Simulation Procedure 

Weekly rainfall series for the 24th week from 1970 to 2015 was taken as population 

having 46 points and well fitted with the two parameter Weibull distribution. Based 

on the population data (N=46), 2000 random samples (each sample size is also equal 

to 46) were generated using bootstrapping approach called as Sample1, Sample2, 

Sample3, ... Sample2000 from the Weibull distribution (α, β). Furthermore, it is 

estimated the maximum likelihood estimates (MLE) for  the scale and shape 

parameters of  data sets pertaining to the Sample1 )β̂,α̂( 11 , Sample2 )β̂,α̂( 22 , 

Sample3 )β̂,α̂( 33 and so on. Five percentiles (P50, P60, P70, P80 and P90) were 

calculated for each sample (Sample1 to Sample2000). 

 

Again 300 samples were generated (Same sample size (n=46)) based on the 

generated Sample1, Sample2, Sample3 etc. Let denote those 300 samples derived 

from the Sample1, as Sam11, Sam12...., Sam1300. Here, it describes only the coverage 

probability of randomly selected four samples (Sample68, Sample423, Sample802 

and Sample1551). Let us consider the 300 samples generated based on the Sample1. 

Firstly, it is calculated the 50th percentile and corresponding 95% confidence 

intervals of Sam11, Sam12, Sam13 and so on. The coverage probability was 

calculated based on the 300 confidence intervals (95%). The same procedure was 

carried out to calculate the coverage probability of confidence intervals at 95.2%, 

95.4%, 95.6%, 95.8%, 96%, 96.2%, 96.4%, 96.6%, 96.8%, 97%, 97.2%, 97.4%, 

97.6%, 97.8% and 98% confidence levels. Other samples which generated from the 

Sample1, Sample2...., Sample2000 were applied using the above procedure and 
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calculated the corresponding coverage probabilities for each confidence level listed 

above. 

 

5.5.5.  Results Obtained from the Simulation 

For the interpretation purpose the computed coverage probabilities of confidence 

intervals of randomly selected four samples (Samples 68, 423, 802 and 1551)) at 

different uncertainty levels are presented in Tables 5.13-5.16 respectively. 

 

     Table 5.13:  The coverage probabilities of five percentiles (P50-P90) based on the       

       300 samples derived from the Sample68 

Confidence 

Level (%) 

Coverage Probability 

P50 P60 P70 P80 P90 

95.0 93.00 93.00 93.00 92.00 92.67 

95.2 93.33 93.33 93.00 92.67 93.00 

95.4 93.33 93.67 93.00 93.00 93.00 

95.6 93.67 93.67 93.00 93.00 93.67 

95.8 94.00 93.67 93.00 93.00 93.67 

96.0 94.33 93.67 93.67 93.33 94.00 

96.2 95.33 94.33 94.00 94.00 94.67 

96.4 95.67 95.00 94.00 94.67 95.00 

96.6 96.33 95.33 94.67 94.67 95.00 

96.8 96.33 95.67 95.00 94.67 95.00 

97.0 96.67 96.00 95.00 95.33 95.00 

97.2 96.67 96.33 95.33 96.00 95.00 

97.4 96.67 96.33 95.67 96.00 95.33 

97.6 96.67 96.33 96.00 96.00 95.33 

97.8 96.67 96.33 96.00 96.33 95.67 

98.0 96.67 96.33 96.67 96.33 96.33 
 

Thus, 95% confidence interval for 95% coverage probability for the sample size 46 

was found as (0.89, 1.00). The Table 5.13 shows that the 95% coverage probability 

of P50 can be attained at 96.2 % confidence level. Similarly, the 95% coverage 
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probability of P60, P70, P80 and P90 can be reached at the confidence levels 96.4, 96.6, 

96.8 and 96.4 respectively. 

 

  Table 5.14:  The coverage probabilities of five percentiles (P50-P90) based on the   

            300 samples derived from the Sample 423  

Confidence 

Level (%) 

Coverage Probability 

P50 P60 P70 P80 P90 

95.0 94.00 93.67 90.67 87.67 90.67 

95.2 94.00 94.00 91.00 88.67 91.67 

95.4 94.00 94.00 91.00 89.00 91.67 

95.6 94.00 94.33 91.67 89.00 91.67 

95.8 94.33 94.33 91.67 89.00 92.00 

96.0 94.33 94.33 92.00 89.33 92.00 

96.2 94.33 94.67 92.00 89.33 92.33 

96.4 94.67 94.67 92.33 90.00 93.00 

96.6 95.00 94.67 92.33 91.33 93.67 

96.8 95.67 94.67 92.67 91.67 94.00 

97.0 95.67 95.00 93.00 92.00 94.67 

97.2 96.00 96.00 93.33 92.67 94.67 

97.4 96.67 96.67 93.33 93.00 94.67 

97.6 97.00 97.00 93.67 93.67 95.00 

97.8 97.33 97.67 94.67 94.33 95.33 

98.0 97.67 97.67 95.00 95.00 95.33 
 

As explained above (Table 5.13), the real 95% coverage probability of P50, P60, P70, 

P80 and P90 can be obtained at the 96.6, 97.0, 98.0,98.0, and 97.6 respectively. 
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Table 5.15:  The coverage probabilities of five percentiles (P50-P90) based on the 300 

           samples derived from the Sample 802 

Confidence 

Level (%) 

Coverage Probability 

P50 P60 P70 P80 P90 

95.0 94.33 94.33 90.67 89.33 89.33 

95.2 94.33 94.33 90.67 89.33 89.67 

95.4 94.33 94.67 90.67 89.67 90.00 

95.6 95.33 95.33 91.33 89.67 90.00 

95.8 95.67 95.33 91.67 89.67 91.33 

96.0 95.67 95.33 91.67 90.00 91.33 

96.2 96.00 95.67 92.00 90.00 91.67 

96.4 96.00 95.67 92.67 90.00 92.00 

96.6 96.33 96.00 92.67 90.67 93.33 

96.8 96.33 96.00 92.67 91.00 93.33 

97.0 96.33 96.33 93.33 91.33 94.00 

97.2 96.67 96.33 94.00 91.67 94.67 

97.4 97.33 96.67 94.33 92.00 94.67 

97.6 97.33 96.67 94.67 93.00 94.67 

97.8 97.67 97.00 95.00 94.00 95.00 

98.0 97.67 97.00 95.00 95.00 95.33 

 

Table 5.15 illustrates the 95% coverage probability of P50, P60, P70, P80 and P90 

obtained at the 95.6, 95.4, 97.8, 98.0, and 97.8 confidence levels respectively. 
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Table 5.16:  The coverage probabilities of five percentiles (P50-P90) based on the 300 

         samples derived from the Sample 1551 

Confidence 

Level (%) 

Coverage Probability 

P50 P60 P70 P80 P90 

95.0 92.67 92.33 92.00 92.00 89.67 

95.2 93.00 92.33 92.00 92.33 89.67 

95.4 93.33 92.67 92.00 92.67 89.67 

95.6 93.33 92.67 93.33 92.67 92.33 

95.8 94.67 93.00 93.33 93.00 92.33 

96.0 95.33 93.00 93.33 93.00 92.33 

96.2 96.00 93.00 93.67 93.67 93.33 

96.4 96.00 93.33 93.67 93.67 93.33 

96.6 96.00 93.33 94.00 94.00 93.67 

96.8 96.00 93.67 94.00 94.33 93.67 

97.0 96.33 93.67 94.67 94.67 94.67 

97.2 96.33 93.67 94.67 94.67 94.67 

97.4 96.67 94.67 95.00 94.67 94.67 

97.6 96.67 94.67 95.00 95.00 95.00 

97.8 96.67 95.00 95.33 95.00 95.33 

98.0 97.67 95.00 95.33 95.33 95.33 
 

As explained above (Table 5.13), the Table 5.16 shows that the 95% coverage 

probability of P50, P60, P70, P80 and P90 obtained at the 95.8, 97.8, 97.4, 97.6, and 97.6 

confidence levels respectively. Same procedure was carried out for the remaining 

samples and calculated the average accurate coverage probability based on the 300 

samples derived from each 2000 samples presented in Table 5.17.  

 

Table 5.17: Average accurate confidence level based on the 95% confidence level 

         for Weibull percentiles 

Percentiles P50 P60 P70 P80 P90 

Coverage Probability 95.901 97.501 97.603 97.680 97.910 
 

Results in Table 5.17 indicate that the real 95% CI does not attain for any of the 

percentile values under Weibull distributional though analysis found Weibull is the 
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best fitted distribution.  The accurate confidence level is closer to 95% at P50 and gap 

increases as percentile value increases. Based on the above real confidence levels, it 

is calculated the confidence bands of percentiles of week 24 as follows. 

 

  Table 5.18: The confidence bands of percentiles of week 24 (nominal and  

          actual values) 

Percentile Value Confidence 

limits at level of 

95% 

(Nominal) 

Accurate confidence 

levels attend the real 

coverage probability 

of 95% 

Confidence 

limits at 

coverage 

probability 

(Actual) 

P50 22.4 15.2 32.9 95.901 14.9 33.5 

P60 30.7 21.5 43.8 97.501 20.5 46.1 

P70 41.9 30.0 58.6 97.603 28.5 61.6 

P80 58.4 42.0 81.2 97.680 39.8 85.5 

P90 87.8 62.0 124.3 97.910 58.3 132.2 

 

The asymptotic behavior of bootstrap confidence limits for weekly rainfall 

percentiles were found to be more useful than normal confidence intervals from 

practical and decision point of view. Due to development of computing power in 

statistics, it is not difficult task to compute coverage probabilities of percentiles if the 

distribution is known. However, based on the result formed from the simulation, 

there is a considerable difference between nominal and calculated coverage 

probabilities. Weibull distribution, drastically tends to be skewed to the right when 

the shape parameter less than one.  Thus, the distribution of weekly rainfall deviates 

from the normal distribution with respect to the lower (less than one) value of shape 

parameter of the distribution.  The deviation of the normality of the fitted distribution 

with the small size of sample could be the reason for the discrepancy of the nominal 

and calculated coverage probabilities.  

 

5.6.  Summary of the Chapter 5 

Weekly rainfall data pertaining to SWM is skewed with a longer tail extending to the 

right to all the weeks in SWM. However, a common probability distribution was not 

found to represent all the weeks, but three parameter Weibull distribution was well 
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fitted with the most of the weeks. Based on the results of percentiles and 

corresponding 95% confidence intervals analysis which derived using parametric and 

bootstrapping approach,  it can be expected that  much heavy rainfall with high 

variability during arrival of SWM  in the weeks 18-23 (30th April to 10th June) and 

withdrawal of the SWM in the weeks of 38-39 (17-30 September).  

 

Based on the parametric analysis of the both weekly totals as well as running weekly 

totals during the SIM period, there is a high possibility to have heavy rainfall events 

during the Weeks 41-45 (08th October to 11th November). A similar result was 

obtained from the bootstrapping approach also. 

 

However, the lengths of the 95% confidence intervals were not in satisfactory level. 

Small sample size and strongly skewed distribution pattern might be a one of the 

reasons for wide confidence bands. In addition to the weekly rainfall percentile 

analysis, the 95% confidence bands of percentiles are utilized to compute the real 

coverage probability of the 95% confidence intervals. Rainfall total during the 24th 

week (11-17 June) in SWM was considered as the study population and those data 

series was well fitted with the Weibull distribution. Based on the simulation using 

bootstrapping approach, it is found that the most of the coverage probability of 95% 

confidence intervals of 50th percentile is less than 0.95 and the 95% accurate 

coverage probability is attained at the average level of 95.901%. The corresponding 

accurate coverage probabilities of 95% confidence intervals of 60th,70th, 80th and 90th 

percentiles are given at the average levels of 97.501%, 97.603%, 97.680% and 

97.910% of respectively.  
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CHAPTER  6 

MODELING OF WEEKLY RAINFALL: CLASSICAL TIME 

SERIES APPROACHES 

 

The main goal of this chapter is to find the possibilities of forecasting weekly rainfall 

using conventional time series models. An attempt was made to model the weekly 

rainfall series with exogenous variables such as weekly temperature, relative 

humidity and vapor pressure in this chapter. The data series from 1990 to 2014 (1300 

points) were used to train the models and an independent data set were used to 

validate the models.  Furthermore, the draw backs of the time series modeling are 

discussed in detail in this chapter as those drawbacks would be useful for creating 

new types of models.  

 

6.1.  Variability of Weekly Rainfall during 1990-2014 

The modeling weekly rainfall was done using 1352 data points during the time span 

from 1990 to 2015. Here, the series with length 1300 was considered model forming 

while rest was used for the model validation. In order to examine the temporal 

variability of the weekly rainfall, the time series plot was obtained and it is presented 

by Figure 6.1. 

 

 

 

 

 

 

 

 

Figure 6.1: Time series plot of the weekly rainfall {Yt} from 1990 to 2014 
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Based on the above plot, random behavior of the rainfall pattern can be clearly 

observed. However, it cannot be identified decreasing or increasing trend in weekly 

rainfall during the considered time span.  

 

6.2.  Identification of ARIMA Model  

In order to identify the correlation structure of the observed series, the 

autocorrelation was taken and those result is shown in Figure 6.2. 

 

 

 

 

 

 

 

 

 

Figure 6.2: Autocorrelation plot of the series from 1990 to 2014 

 

A seasonal behavior can be clearly recognized from this plot. Since the data were 

captured on a weekly basis and also seasonality of length 52 can be seen, new series 

was obtained by taking one long-term difference. That is Zt, {Zt}={Yt-Yt-52}. Thus, 

to identifying the seasonal length, autocorrelation function (ACF) and Partial auto 

correlation function (PACF) were obtained with 52 lag difference. The plot of ACF 

of the new series {Zt} is shown in Figure 6.3. 
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Figure 6.3:  ACF of the Zt series from 1990 to 2014 with 52 lag 
 

The plot of ACF of the series with 52 lags showed one significant spike at 52 lag. 

This pattern identified that the new series can be considered as stationary series. In 

order to identify the suitable models for weekly rainfall, firstly, observed series was 

tested for the stationary using Argument Dickey Fuller Test (ADF).  The result is 

illustrated in Table 6.1. 

 

Table 6.1: Result of Dickey Fuller test 

 
 

 

 

 

 

 

Based on the above result, the null hypothesis that the there is a unit root is rejected 

indicates that the series is stationary at 0.05 level of significance. The Partial Auto 

Null Hypothesis: ZT has a unit root  

Exogenous: Constant   

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -33.17186  0.0000 

Test critical values: 1% level  -3.435381  

 5% level  -2.863649  

 10% level  -2.567943  

     
     *MacKinnon (1996) one-sided p-values.  
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correlation plot of new series {Zt} is obtained and those result is presented in Figure 

6.4.  

 

 

 

 

 

 

 

 

 

Figure 6.4: PACF of the series from 1990 to 2014 with 52 lag 
 

According to the plot of PACF it can be clearly identified that the seasonal length is 

52 since significant sample autocorrelation existed in the 52nd lag and lag multiplier 

of 52 (52,104,156, 208...). Thus, many Box and Jenkins models were developed for 

the new data series and models were selected based on the Akaike Information 

Criterion (AIC), Schwarz Criterian (SC), Durbin-Watson (DW) statistics, Root Mean 

Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute 

Percentage Error (MAPE) criteria. Based on the criteria, selected models are listed in 

the Table 6.2. 
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 Table 6.2: Selected models and values of the selection criteria 

 

Based on the model selected criteria, it is selected SARIMA (1,0,0) (1,1,0)52 as a best 

fitted since this returns the smallest RMSE and MAD. Diagnostic tests were carried 

out for the best selected model. The residuals are random at 0.05 level of significant 

and the corresponding result is depicted by Figure 6.5. However, the assumption 

which is residuals are normally distributed are highly deviate at the level of 0.05 

significance and the normality test result of the selected model SARIMA (1,0,0) 

(1,1,0)52 is presented from the Figure 6.6. 

 

  

 

 

Model AIC  SC DW RMSE MAD MAPE 

SARIMA (1,0,0) (0,1,0)52 11.55 11.56 2.00 77.54 49.46 885.57 

SARIMA (1,0,2) (0,1,0)52 11.55 11.57 2.00 77.42 49.48 897.37 

SARIMA (2,0,1) (0,1,0)52 11.55 11.57 2.00 77.45 49.50 896.94 

SARIMA (1,0,0) (1,1,0)52 11.55 11.56 2.00 77.40 49.01 895.24 

SARIMA (1,0,1) (1,1,0)52 11.55 11.57 2.00 77.45 49.90 896.94 
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Sample: 1 1300

Included observations: 1246

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.001 0.001 0.0014

2 0.000 0.000 0.0015

3 -0.02... -0.02... 1.0314 0.310

4 0.035 0.035 2.5826 0.275

5 -0.00... -0.00... 2.5848 0.460

6 0.034 0.033 3.9932 0.407

7 0.026 0.028 4.8562 0.434

8 -0.01... -0.01... 5.0236 0.541

9 -0.00... -0.00... 5.1182 0.646

1... -0.01... -0.02... 5.5754 0.695

1... -0.03... -0.03... 7.1194 0.625

1... 0.011 0.011 7.2826 0.699

1... -0.00... -0.00... 7.2846 0.776

1... -0.04... -0.04... 10.011 0.615

1... -0.07... -0.07... 17.314 0.185

1... -0.02... -0.02... 18.223 0.197

1... -0.01... -0.01... 18.374 0.243

1... -0.05... -0.05... 21.596 0.157

1... 0.026 0.028 22.440 0.168

2... 0.007 0.011 22.506 0.210

2... 0.009 0.013 22.600 0.255

2... -0.05... -0.04... 26.374 0.154

2... -0.00... -0.00... 26.387 0.192

2... -0.03... -0.03... 27.555 0.191

2... 0.017 0.007 27.905 0.219

2... 0.023 0.018 28.596 0.236

2... 0.050 0.048 31.794 0.164

2... 0.001 0.003 31.797 0.200

2... -0.00... -0.00... 31.797 0.240

3... -0.01... -0.02... 32.267 0.264

3... 0.007 -0.00... 32.328 0.306

3... 0.008 -0.00... 32.417 0.348

3... -0.01... -0.02... 32.640 0.386

3... 0.044 0.047 35.128 0.322

3... -0.01... -0.01... 35.511 0.351

3... 0.008 0.006 35.583 0.394

 

Figure 6.5: The correlogram plot of the residual of the model SARIMA   

(1,0,0)×(1,1,0)52 
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Std. Dev.   77.96263
Skewness  -0.165784
Kurtosis   10.97831

Jarque-Bera  3310.382
Probability  0.000000

 

Figure 6.6: The normality test of the residuals of the model SARIMA (1,0,0)(1,1,0)52 

 

The best fitted model was tested for the serial correlation using the Breusch-Godfrey 

serial correlation LM test and the corresponding result is presented in Table 6.3. 
 

       Table 6.3: Test result of the Breusch-Godfrey serial correlation LM test 

              

Based on the result shown in the Table 6.3, the residuals derived from the model do 

not show the any significant serial correlation. However, the assumption that the 

squared residuals are random is significantly deviated at 0.05 significant level and 

the corresponding test result is described by Figure 6.7 and this indicates the non 

constant variance. Thus, in order to examine the presence of the heteroskedasticity, 

ARCH effect was tested  using the ARCH test and the test result is presented in 

Table 6.4. 

 

 

 

Model F statistics Prob. 

F(2,1241) 

Prob. Chi-

Square (2) 

SARIMA (1,0,0) (1,1,0)52 1.06 0.3467 0.3456 
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.059 0.059 4.3284 0.037

2 0.078 0.074 11.853 0.003

3 0.070 0.062 17.955 0.000

4 0.057 0.045 22.092 0.000

5 -0.02... -0.03... 22.580 0.000

6 -0.01... -0.02... 22.960 0.001

7 0.000 -0.00... 22.960 0.002

8 -0.02... -0.01... 23.605 0.003

9 -0.03... -0.02... 25.277 0.003

1... -0.04... -0.03... 27.526 0.002

1... -0.03... -0.03... 29.467 0.002

1... -0.05... -0.04... 33.744 0.001

1... -0.03... -0.01... 35.027 0.001

1... -0.02... -0.01... 35.860 0.001

1... -0.04... -0.03... 38.223 0.001

1... -0.03... -0.02... 39.745 0.001

1... -0.04... -0.04... 42.588 0.001

1... -0.01... -0.00... 42.886 0.001

1... -0.00... 0.000 42.984 0.001

2... 0.001 0.003 42.985 0.002

2... -0.03... -0.03... 44.460 0.002

2... 0.012 0.006 44.637 0.003

2... 0.069 0.066 50.683 0.001

2... 0.063 0.054 55.768 0.000

2... 0.194 0.181 103.94 0.000

2... 0.055 0.016 107.79 0.000

2... 0.102 0.056 121.04 0.000

2... 0.049 0.009 124.06 0.000

2... 0.057 0.024 128.16 0.000

3... -0.01... -0.02... 128.29 0.000

3... 0.004 -0.00... 128.31 0.000

3... -0.02... -0.03... 129.16 0.000

3... -0.04... -0.03... 131.60 0.000

3... -0.02... -0.00... 132.54 0.000

3... -0.05... -0.02... 136.19 0.000

3... -0.03... -0.00... 137.47 0.000

 

Figure 6.7: The correlogram of squared residuals of the model 

 SARIMA(1,0,0)(1,1,0)52 

 

                Table 6.4: Test results of the heteroskedasticity ARCH effect 

 

 

 

Model F 

statistics 

Prob. 

F(3,1289) 

Prob. Chi-

Square(3) 

SARIMA (1,0,0) (1,1,0)52 5.621 0.0037 0.0038 
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Based on the above result, there is no evidence to accept the null hypothesis that the 

there is no ARCH effect at the 0.05 level of significance.  Thus, we can conclude that 

the ARCH effect is presented in the residuals which derived from the best fitted 

model. 

 

However, despite the ARCH effect, the model was tested for the independent data set 

(The weeks in 2015) and the observed and predicted values is presented by the 

Figure 6.8. 

 

 

 

   Figure 6.8:  Observed and predicted weekly rainfall in 2015 using the       

                      model SARIMA (1,0,0) (1,1,0)52 

According to the above figure, there is not much good agreement with the forecasted 

and observed values in weekly rainfall. Since the heteroskedasticity existed in the 

mean models, thus it is required to fit a variance model in addition to the mean 

equation. The section 6.3 describes the model which can be used to capture the not 

only mean behavior but also variation in the weekly rainfall series. 
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6.3.  Development of GARCH/ARCH Model 

Many GARCH models were employed to capture the conditional variance existed 

from the best fitted mean model. The model SARIMA (1,0,0) (1,1,0)52-GARCH (1,2) 

is selected as the best fitted hybrid model for the weekly rainfall series. The 

parameters estimation is presented in Table 6.5. Based on the result shown in the 

Table 6.5, all the model parameters are significant except constant term. Thus, model 

assumptions are tested and the residuals and squared residuals derived from the 

model are in random order at the 0.05 level of significance. 

 

 Table 6.5: Parameter estimation of the model SARIMA (1,0,0) (1,1,0)52-GARCH 

(1,2) 

 

 
 
 

 

 

 

 

 

The model was tested for the independent data set (The weeks in 2015) and the 

observed and the predicted values are presented by the Figure 6.9.  

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     C 1.592860 1.775992 0.896885 0.3698 

AR(1) -0.189212 0.087144 -2.171262 0.0299 

SAR(1) 0.245646 0.083604 2.938202 0.0033 

     
      Variance Equation   

     
     C 813.5964 68.23715 11.92307 0.0000 

RESID(-1)^2 0.191982 0.016442 11.67666 0.0000 

GARCH(-1) 1.128340 0.032597 34.61500 0.0000 

GARCH(-2) -0.410790 0.019678 -20.87536 0.0000 
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 Figure 6.9:  Observed and predicted weekly rainfall in 2015 using the                        

                   model SARIMA (1,0,0) (1,1,0)52- GARCH (1,2) 

According to the Figure 6.9, we cannot see much agreement between the observed 

weekly rainfall with the predicted. Thus, to improve the power of the forecasting 

auto regressive integrated moving average models were fitted for the deseasonalized 

series. The corresponding details of the deseasonalized series is explained the next 

section. 

 

6.4.  Modeling for Deseasonalized Data 

As it was found difficult to fit GARCH models with high forecasting performance, as 

an alternative method seasonality was removed from the original series, assuming 

that the observed series can be represented as 

 

 Yt = Sti + Tt + et (t=1,2…  1300; i=1,2….52) 

 

Initially, detrended series was calculated and by getting the averages for the 52 

weeks over the period of 1990 to 2014 make the seasonal index by assuming the 
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additional model. Thus, deseasonalized series was made based on the calculated 

seasonal index.  

 

Different Box-Jenkins models were applied for the deseasonalized series to capture 

the mean behavior.  Finally, AR (1) model is selected as the best fitted model to 

describe the deseasonalized data. Diagnostic tests were carried out and it was found 

that the selected model residual is random at 0.05 level of significant. But the 

assumption which is residual is normally distributed is still deviated at the 0.05 

significant level. Also, the squared residuals are significantly deviated (Figure 6.10) 

and indicated that the time dependence variance. Thus, the heteroskedasticity test 

was applied to test the ARCH effect and the result is presented in Table 6.6. 

Furthermore, Table 6.7 describes the test result of the serial correlation of the 

selected AR (1) model for the deseaonalized data. 

 

        Table 6.6: The result of ARCH effect of AR (1) for deseasonalized data 

Heteroskedasticity Test: ARCH (AR (1) for deseasonalized Data)   

     
     F-statistic 4.056724     Prob. F(3,1292) 0.0070 

Obs*R-squared 12.09393     Prob. Chi-Square(3) 0.0071 

           

The result shown in Table 6.6 indicates that the presence of the ARCH effect at 0.05 

level of significance.  

 

              Table 6.7: The result of serial correlation of AR (1) for deseasonalized data 

Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 0.242785     Prob. F(3,1294) 0.8665 

Obs*R-squared 0.730758     Prob. Chi-Square(3) 0.8659 

     
          

Based on the test result of the serial correlation LM test, there is no evidence to reject 

the null hypothesis that the no serial correlations at 0.05 level of significance. This 

implies that the there is no serial correlation.  
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     Figure 6.10:  The correlogram of squared residuals of the model                      

AR (1) for deseasonalized data 

Since the squared residuals is not random and the ARCH effect is presented, the 

various GARCH models are utilized to capture the non constant variance by keeping 

the mean model as AR (1) for deseasonalized data series. Out of the various models, 

AR (1)-GARCH (1,1) model is selected as the best model for the forecasting weekly 

rainfall in Colombo city. The diagnostic test was carried out for the best fitted model 

as done for the pervious. The model parameter estimates are presented in Table 6.8.  
 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.031 0.031 1.2274 0.268

2 0.051 0.050 4.5642 0.102

3 0.080 0.077 12.873 0.005

4 0.060 0.054 17.643 0.001

5 -0.01... -0.02... 18.025 0.003

6 -0.01... -0.02... 18.266 0.006

7 0.010 0.004 18.407 0.010

8 -0.02... -0.02... 19.201 0.014

9 -0.02... -0.02... 20.111 0.017

1... -0.03... -0.02... 21.489 0.018

1... -0.03... -0.02... 22.723 0.019

1... -0.03... -0.02... 24.219 0.019

1... -0.02... -0.01... 24.982 0.023

1... -0.03... -0.02... 26.231 0.024

1... -0.03... -0.02... 28.004 0.022

1... 0.013 0.021 28.231 0.030

1... -0.03... -0.02... 29.412 0.031

1... 0.004 0.009 29.433 0.043

1... -0.00... -0.00... 29.493 0.059

2... -0.00... -0.00... 29.498 0.078

2... -0.01... -0.01... 29.619 0.100

2... -0.00... -0.00... 29.619 0.128

2... 0.033 0.030 31.089 0.121

2... 0.044 0.042 33.622 0.092

2... 0.180 0.175 76.382 0.000

2... 0.034 0.018 77.931 0.000

2... 0.072 0.045 84.801 0.000

2... 0.021 -0.01... 85.366 0.000

2... 0.031 0.003 86.671 0.000

3... -0.00... -0.01... 86.719 0.000

3... -0.00... -0.00... 86.763 0.000

3... -0.02... -0.02... 87.508 0.000

3... -0.02... -0.01... 88.303 0.000

3... -0.01... -0.00... 88.569 0.000

3... -0.03... -0.01... 90.119 0.000

3... -0.04... -0.02... 92.338 0.000
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            Table 6.8: The result of the estimated AR (1)-GARCH (1,1) model for      

deseasonalized   series 

Variable Coefficient Std. Error z-Statistic Prob.   

     
     C 45.76302 1.285538 35.59835 0.0000 

AR(1) 0.111689 0.028697 3.892002 0.0001 

     
      Variance Equation   

     
     C 676.1237 56.75019 11.91403 0.0000 

RESID(-1)^2 0.342132 0.029182 11.72395 0.0000 

GARCH(-1) 0.515348 0.029095 17.71282 0.0000 

     
      

 

Based on the above result all the parameters are significant at 0.05 level of 

significance.  The residual analysis was carried out and the residuals as well as 

squared residuals are not significantly deviated from the randomness. The 

corresponding correlogram plots are presented by Figure 6.11 and Figure 6.12 

respectively.  Based on the test result of the ARCH test (Table 6.9), it can be 

concluded that the there is no ARCH effect moreover. 

 

Table 6.9: The result of ARCH effect of AR(1)-GARCH(1,1) for deseasonalized data 

 

Heteroskedasticity Test: ARCH  (AR(1)-GARCH(1,1))   

     
     F-statistic 0.509352     Prob. F(3,1292) 0.6759 

Obs*R-squared 1.530976     Prob. Chi-Square(3) 0.6751 

     
     



119 

 

 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob...

1 0.000 0.000 0.0003

2 0.021 0.021 0.5715 0.450

3 -0.01... -0.01... 0.6971 0.706

4 0.044 0.043 3.1691 0.366

5 -0.00... -0.00... 3.1693 0.530

6 -0.00... -0.00... 3.1693 0.674

7 0.040 0.041 5.3105 0.505

8 0.004 0.002 5.3337 0.619

9 -0.04... -0.04... 8.0276 0.431

1... -0.04... -0.04... 10.320 0.325

1... -0.02... -0.02... 10.902 0.365

1... 0.010 0.011 11.044 0.440

1... -0.03... -0.03... 12.635 0.396

1... -0.03... -0.02... 13.822 0.387

1... -0.06... -0.05... 18.738 0.175

1... -0.00... 0.003 18.738 0.226

1... -0.00... -0.00... 18.835 0.277

1... 0.002 0.003 18.838 0.338

1... 0.028 0.029 19.839 0.342

2... 0.016 0.015 20.193 0.383

2... -0.00... -0.00... 20.202 0.445

2... -0.03... -0.02... 21.516 0.428

2... 0.004 -0.00... 21.542 0.487

2... -0.02... -0.03... 22.383 0.497

2... 0.006 -0.00... 22.432 0.553

2... 0.003 0.001 22.444 0.610

2... 0.006 0.002 22.488 0.662

2... -0.04... -0.04... 25.200 0.563

2... -0.01... -0.01... 25.673 0.591

3... -0.00... -0.00... 25.767 0.638

3... 0.019 0.018 26.235 0.663

3... 0.010 0.013 26.356 0.704

3... -0.02... -0.02... 27.153 0.711

3... 0.043 0.047 29.642 0.635

3... -0.02... -0.02... 30.474 0.641

3... 0.012 0.011 30.673 0.677

 

Figure 6.11: The correlogram of residuals derived from the model AR (1)-     

GARCH (1,1) for the deseasonalized data 
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob...

1 -0.03... -0.03... 1.1966 0.274

2 -0.01... -0.01... 1.4894 0.475

3 -0.00... -0.00... 1.4895 0.685

4 0.022 0.022 2.1314 0.712

5 -0.02... -0.02... 2.8797 0.719

6 -0.01... -0.01... 3.2039 0.783

7 0.018 0.016 3.6319 0.821

8 -0.01... -0.01... 4.0573 0.852

9 -0.02... -0.02... 4.8189 0.850

1... -0.03... -0.04... 6.7078 0.753

1... -0.02... -0.03... 7.6216 0.747

1... -0.02... -0.02... 8.5398 0.742

1... -0.01... -0.02... 9.0339 0.770

1... -0.02... -0.02... 9.6627 0.786

1... -0.03... -0.03... 11.277 0.733

1... 0.015 0.011 11.593 0.772

1... -0.02... -0.02... 12.318 0.781

1... 0.013 0.009 12.530 0.819

1... -0.00... -0.00... 12.531 0.862

2... -0.00... -0.01... 12.553 0.896

2... -0.01... -0.01... 12.752 0.917

2... -0.01... -0.01... 12.905 0.936

2... 0.025 0.017 13.744 0.934

2... 0.020 0.016 14.248 0.941

2... 0.123 0.120 34.174 0.104

2... 0.042 0.049 36.523 0.082

2... 0.026 0.030 37.408 0.088

2... -0.00... -0.00... 37.460 0.109

2... -0.00... -0.01... 37.495 0.134

3... 0.004 0.005 37.516 0.163

3... 0.008 0.012 37.594 0.193

3... -0.02... -0.02... 38.450 0.200

3... -0.01... -0.00... 38.619 0.231

3... -0.01... -0.00... 38.787 0.263

3... -0.03... -0.02... 40.544 0.239

3... -0.03... -0.02... 42.411 0.214

 

Figure 6.12: The correlogram of squared residuals derived from the model AR (1)-

GARCH (1,1) for the deseasonalized data 

Thus, the best selected model was tested for the independent data set and the 

observed and the predicted weekly rainfall is depicted from the Figure 6.13. 

Furthermore, the forecasting result was evaluated by calculating the absolute error in 

mm as shown in the Table 6.10. 
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Figure 6.13: Actual and predicted weekly rainfall in 2015 using AR (1)- 

GARCH (1,1) for deseasonalized data 

 

Table 6.10: The absolute error in mm for the weekly rainfall in 2015  

              [AR (1) - GARCH (1,1)] model for deseasonalized data 

Absolute Error in 

mm 

Number of 

weeks  Cumulative 

00--10 11  (21.2) 11  (21.2) 

11--15   6   (11.5) 17   (32.7) 

16--20 4   (7.7) 21   (40.4) 

21--25 3   (5.8) 24   (46.2) 

26--30 3   (5.8) 27   (52.0) 

31--35 3   (5.8) 30   (57.8) 

36--40 5   (9.6) 35   (67.4) 

41--45 0   (0.0) 35   (67.4) 

46--50  2    (3.8) 37   (71.2) 

More than 50 15   (28.8)  52  (100.0) 
 

The Figure 6.13 depicts the much good agreement between the observed and the 

predicted except extreme values. According to the Table 6.10, 21.2% of weeks 

rainfall can be predicted very closely with less than 10mm error bound from the 

observed values.  Also, it is clear that the weekly rainfall can be predicted with less 
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than 15mm error bound of 32.7% weeks in 2015. However, in 28.8% weeks in 2015 

showed more than 50mm error. 

 

6.5.  Modeling Weekly Rainfall with Exogenous Variables using VAR 

Minimum, maximum and the average of the three variables temperature, relative 

humidity and vapor pressure were taken to account as exogenous predictor variables 

in modeling weekly rainfall.  The dynamic relationships among the climatic variables 

including rainfall are assessed based on the Vector Autoregressive model (VAR). 

VAR is often used for multivariate time series modeling specially in the fields as 

finance and agriculture. Relatively few studies can be found in literature in modeling 

climatic variables using VAR (Farook and Kannan, 2015). 

 

Initially all the variables are tested for the stationary using Augmented Dickey Fuller 

Test and those result are presented in the Table 6.11. 

 

 Table 6. 11: Result of Augmented Dickey Fuller (ADF) test for determining 

          the stationary of the time series 

 

 

 

 

 

 

 

 

 

 

Variable ADF test 

Statistics 

p-value Integration 

of order 

Rainfall -20.11381 0.0000 I(o) 

MinTemp -8.064293 0.0000 I(o) 

AvgTemp -9.404993 0.0000 I(o) 

MaxTemp -7.361883 0.0000 I(o) 

MinRH -9.341557 0.0000 I(o) 

AvgRH -8.217019 0.0000 I(o) 

MaxRH -19.68546 0.0000 I(o) 

MinVapp -9.920362 0.0000 I(o) 

AvgVapp -11.39427 0.0000 I(o) 

MaxVapp -9.606267 0.0000 I(o) 
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Table 6.11 clearly indicated that those climatic variables including the rainfall are 

stationary in their level form.  To examine the correlation structure among the 

variables at various lag lengths, Pearson correlation matrix along with the 

corresponding p values were taken and those result is presented in the Table 6.12. 

 

Table 6.12: The correlation between rainfall and exogenous climatic variables at lag 

1 and lag 2    

 

Based on the above table, average temperature does not give significant correlation 

with rainfall at the lag 1 as well as lag 2. The average relative humidity at lag 1 

showed maximum significant correlation to the rainfall out of the all other variables 

(0.241). The second highest correlation is presented in average vapor pressure at lag 

1(0.213). It is noted that the correlation between the weekly rainfall series and 

exogenous climatic variables are fairly low but significant except the variable 

average temperature at 0.05 level of significance. Stepwise regression was carried 

out with the above variables with lag 1 and lag 2 except average temperature. The 

corresponding result is presented in Table 6.13 and Table 6.14 respectively. 

 

  

 

 

 

Variable Correlation pvalue Variable Correlation pvalue 

Tmin(-1) 0.055 0.048 Tmin(-2) 0.065 0.020 

AvgTemp(-1) 0.004 0.883 AvgTemp(-2) 0.012 0.677 

Tmax(-1) -0.064 0.020 Tmax(-2) -0.066 0.017 

MinRH(-1) 0.169 0.000 MinRH(-2) 0.148 0.000 

AvgRH(-1) 0.241 0.000 AvgRH(-2) 0.153 0.000 

MaxRH(-1) 0.134 0.000 MaxRH(-2) 0.124 0.000 

MinVap(-1) 0.186 0.000 MinVap(-2) 0.181 0.000 

AvgVap(-1) 0.213 0.000 AvgVap(-2) 0.184 0.000 

MaxVap(-1) 0.184 0.000 MaxVap(-2) 0.131 0.000 
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Table 6.13: Analysis of Variance of stepwise regression at lag 1 

Analysis of Variance 

Source          DF      Adj SS  Adj MS  F-Value  P-Value 

 

Regression       4      356212    89053     26.89        0.000 

AvgRH(-1)      1      70652      70652     21.33        0.000 

AvgVap(-1)     1      64496      64496     19.47        0.000 

Tmax(-1)         1        7810        7810       2.36        0.125 

Tmin(-1)         1      27914       27914      8.43         0.004 

 

Error            1293   4282289     3312 

Total            1297   4638500 

 

 Model Summary  S          R-sq       R-sq(adj)    R-sq(pred) 

                          57.5491  7.68%       7.39%       6.93% 
 

According to the Table 6.13, only four variables at lag1 are selected as best fitted 

variables to the rainfall. Also, low R2 value indicated that the 7.68% variation of 

weekly rainfall only explained by the other exogenous climatic variables which is 

very small. 

 

            Table 6.14: Analysis of Variance of stepwise regression at lag 2 

 

  

 

 

 

 

 

 

 

 

Analysis of Variance 

 

Source             DF   Adj SS    Adj MS     F-Value     P-Value 

Regression        8     417558      52195      15.94       0.000 

AvgRH(-1)       1       54809      54809       16.74      0.000 

AvgVap(-1)      1       34235      34235       10.45      0.001 

Tmax(-1)          1       14039      14039         4.29      0.039 

Tmin(-1)           1       20203      20203         6.17      0.013 

Tmin(-2)           1         7451        7451         2.28      0.132 

MaxRH(-2)       1        16849      16849         5.15     0.023 

MinVap(-2)      1        37323      37323       11.40     0.001 

MaxVap(-2)      1         7776        7776          2.37     0.124 

 

Error         1289  4220943    3275 

Total         1297  4638500 

Model Summary    S             R-sq    R-sq(adj)  R-sq(pred) 

                             57.2240    9.00%   8.44%      7.82% 
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Eight variables are selected as predictor variables to the weekly rainfall series.  

However, the low R2 value indicated that the 9% of variation in weekly rainfall 

explained by the other exogenous climatic variables is also small. 

 

To find the optimal lag value to select best order of the VAR model, the selection 

criteria are obtained and the result are presented in Table 6.15. 

 

Table 6.15: Values of the selection criterion for selecting the optimal lag order 

       
        Lag LogL LR FPE AIC SC HQ 

       
       0 -27140.15 NA   12685234  41.89684  41.93273  41.91031 

1 -25787.94  2683.564  1783698.  39.93509   40.29391*  40.06974 

2 -25582.75  404.3669  1472632.  39.74344  40.42520   39.99927* 

3 -25465.23  229.9459  1392008.  39.68709  40.69179  40.06412 

4 -25365.44   193.8826*   1352330.*   39.65809*  40.98574  40.15631 

       
   

 

 

 

 

 

 

 

 

 

 

 

 

    

 

      
Table 6.15 provides the values of different criterion for the different lag length order 

and selected lag 2 as optimal lag length based on the HQ (Hannan-Quinn Information 

Criterian). Based on the optimal lag length, the VAR was applied and the 

corresponding result is presented by Table 6.16. 
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  RAINFALL TMIN TMAX AVGRH MAXRH MINVAP AVGVAP MAXVAP 

           

RAINFALL 

(-1)  0.114147 -0.001294 -0.002113  0.001444 -0.000764  0.001658  0.000727  0.001177 

   (0.03255)  (0.00061)  (0.00043)  (0.00191)  (0.00157)  (0.00120)  (0.00068)  (0.00067) 

  [ 3.50656] [-2.1060] [-4.8846] [ 0.75592] [-0.4864] [ 1.37871] [ 1.07647] [ 1.74997] 

           
RAINFALL 

(-2)  0.073526 -0.000359 -0.000164  1.38E-05  0.000372 -0.00059  6.81E-05 -0.000574 

   (0.03285)  (0.00062)  (0.00044)  (0.00193)  (0.00159)  (0.00121)  (0.00068)  (0.00068) 

  [ 2.23792] [-0.5783] [-0.3756] [ 0.00717] [ 0.23472] [-0.4866] [ 0.10001] [-0.84505] 

           

TMIN(-1) -3.466618  0.331014 -0.001399  0.228930  0.135557  0.194435  0.028017 -0.029825 

   (1.89205)  (0.03570)  (0.02515)  (0.11104)  (0.09132)  (0.06988)  (0.03924)  (0.03909) 

  [-1.83220] [ 9.27162] [-0.0556] [ 2.06167] [ 1.48444] [ 2.78237] [ 0.71397] [-0.76289] 

           

TMIN(-2) -3.664593  0.201666  0.015203  0.363688  0.247954  0.120818  0.035938 -0.002809 

   (1.86433)  (0.03518)  (0.02478)  (0.10941)  (0.08998)  (0.06886)  (0.03867)  (0.03852) 

  [-1.96564] [ 5.73261] [ 0.61355] [ 3.32397] [ 2.75564] [ 1.75463] [ 0.92945] [-0.07291] 

           

TMAX(-1)  2.717274  0.018661  0.459521  0.217488  0.732540  0.017819  0.079054  0.186847 

   (2.08428)  (0.03933)  (0.02770)  (0.12232)  (0.10060)  (0.07698)  (0.04323)  (0.04307) 

  [ 1.30370] [ 0.47448] [ 16.5878] [ 1.77798] [ 7.28195] [ 0.23148] [ 1.82877] [ 4.33853] 

           

TMAX(-2) -3.85025 -0.008167  0.331459 -0.127484  0.294272 -0.17194  0.060786  0.188907 

   (2.09235)  (0.03948)  (0.02781)  (0.12280)  (0.10099)  (0.07728)  (0.04340)  (0.04323) 

  [-1.84016] [-0.2068] [ 11.9188] [-1.0381] [ 2.91399] [-2.2249] [ 1.40076] [ 4.36946] 

           

AVGRH(-1)  1.308890 -0.009177 -0.020952  0.379513  0.221560 -0.02097 -0.014687 -0.01269 

   (0.63147)  (0.01192)  (0.00839)  (0.03706)  (0.03048)  (0.02332)  (0.01310)  (0.01305) 

  [ 2.07277] [-0.7701] [-2.4963] [ 10.2406] [ 7.26963] [-0.8990] [-1.1214] [-0.97255] 

  

-1.498058  0.017092  0.009009  0.137909  0.090803  0.011202 -0.009271  0.016320 AVGRH(-2) 

   (0.63678)  (0.01202)  (0.00846)  (0.03737)  (0.03073)  (0.02352)  (0.01321)  (0.01316) 

  [-2.35256] [ 1.42247] [ 1.06442] [ 3.69022] [ 2.95450] [ 0.47632] [-0.701] [ 1.24035] 

           

MAXRH(-1) -0.045762  0.015426 0.040348 0.109782  0.188727 -0.00033 0.002127 -0.001478 

   (0.63110)  (0.01191)  (0.00839)  (0.03704)  (0.03046)  (0.02331)  (0.01309)  (0.01304) 

  [-0.07251] [ 1.29540] [ 4.81018] [ 2.96406] [ 6.19601] [-0.0140] [ 0.16248] [-0.11336] 

           

MAXRH(-2)  0.875696  0.016573  0.049957  0.082326  0.187653 -0.03195  0.001197 -0.000951 

   (0.62913)  (0.01187)  (0.00836)  (0.03692)  (0.03036)  (0.02324)  (0.01305)  (0.01300) 

  [ 1.39191] [ 1.39603] [ 5.97442] [ 2.22969] [ 6.17997] [-1.3751] [ 0.09170] [-0.07314] 

Table 6.16 : VAR model for weekly rainfall series 
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Table 6.16 (Continued) 

MINVAP(-1)  0.900472 -0.057213  0.017785  0.012091 -0.049677  0.003423 -0.0498 -0.028474 

   (1.34247)  (0.02533)  (0.01784)  (0.07879)  (0.06479)  (0.04958)  (0.02784)  (0.02774) 

  [ 0.67076] [-2.2585] [ 0.99674] [ 0.15347] [-0.7667] [ 0.06904] [-1.7886] 

[-

1.02651] 

           

MINVAP(-2)  2.316140 -0.040715 -0.035085  0.117999  0.055295 -0.01574 -0.00663 -0.052218 

   (1.33987)  (0.02528)  (0.01781)  (0.07863)  (0.06467)  (0.04949)  (0.02779)  (0.02769) 

  [ 1.72863] [-1.6103] [-1.9701] [ 1.50060] [ 0.85505] [-0.3181] [-0.2385] 
[-

1.88612] 

           

AVGVAP(-1)  3.569213  0.352814 -0.029773 -0.001409 -0.127685  0.817008  0.673464  0.430800 

   (3.03359)  (0.05724)  (0.04032)  (0.17804)  (0.14641)  (0.11204)  (0.06292)  (0.06268) 

  [ 1.17657] [ 6.16355] [-0.7384] [-0.0079] [-0.8720] [ 7.29196] [ 10.7041] [ 6.87280] 

           

AVGVAP(-2)  2.910134 -0.017603 -0.013006 -0.116066 -0.189934  0.239285  0.255720  0.260364 

   (3.11163)  (0.05871)  (0.04136)  (0.18262)  (0.15018)  (0.11492)  (0.06454)  (0.06429) 

  [ 0.93524] [-0.2998] [-0.3144] [-0.6355] [-1.2647] [ 2.08210] [ 3.96249] [ 4.04955] 

           

MAXVAP(-1) -0.16089 -0.040276  0.000845  0.010000 -0.083543 -0.08684 -0.02291  0.075961 

   (1.90928)  (0.03603)  (0.02538)  (0.11205)  (0.09215)  (0.07052)  (0.03960)  (0.03945) 

  [-0.08427] [-1.1179] [ 0.03332] [ 0.08924] [-0.9066] [-1.2315] [-0.5785] [ 1.92546] 

           

MAXVAP(-2) -3.052905  0.030094  0.015523  0.110554  0.140071 -0.0009  0.000219  0.000489 

   (1.92530)  (0.03633)  (0.02559)  (0.11299)  (0.09292)  (0.07111)  (0.03993)  (0.03978) 

  [-1.58568] [ 0.82837] [ 0.60660] [ 0.97842] [ 1.50739] [-0.0126] [ 0.00547] [ 0.01229] 

           

           

 R-squared  0.098321  0.421221  0.532502  0.336899  0.031768  0.509402  0.624012  0.474170 

 Adj. R-squared  0.087771  0.414449  0.527032  0.329141  0.020440  0.503662  0.619613  0.468017 

 Sum sq. resids  4182438.  1489.177  738.8438  14405.55  9742.790  5705.335  1799.071  1785.674 

 S.E. equation  57.11770  1.077777  0.759158  3.352130  2.756752  2.109583  1.184623  1.180204 

 F-statistic  9.319479  62.20042  97.35051  43.42276  2.804234  88.74249  141.8454  77.06996 

 Log likelihood -7084.291 -1930.954 -1476.075 -3403.788 -3149.973 -2802.68 -2053.646 -2048.795 

 Akaike AIC  10.94036  2.999929  2.299037  5.269319  4.878233  4.343107  3.188976  3.181502 

 Schwarz SC  11.00407  3.063640  2.362748  5.333030  4.941945  4.406819  3.252687  3.245213 

 Mean 

dependent  45.47195  23.49615  31.84831  80.97042  95.39599  27.03043  29.83451  32.19052 

 S.D. dependent  59.80243  1.408467  1.103866  4.092655  2.785365  2.994385  1.920733  1.618111 

 

According to the Table 6.16, the effects of the exogenous climatic variables on the 

rainfall are considerably small. Though the adjusted R2 8.8%, the fitted model 

explained only 9.8% (R2=0.098) of the total variation in the rainfall. The Granger 

causality test was applied to examine the direction of causality among the variables. 
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This is the technique can be used to determine to one time series is useful in 

forecasting another.  The test result is displayed from the Table 6.17. 

 

  Table 6.17: Result of Granger Causality test 

 

 

 

 

 

 

 

  

 

According to the above test result, the most of the null hypothesis that the exogenous 

climatic variables do not Granger-cause the rainfall do not reject. Average Relative 

humidity and maximum temperature are the only two variables made significant 

impact on rainfall and useful in forecasting rainfall at the 0.05 level of significance. 

Impulse response function was taken and corresponding graphs are presented from 

the Figure 6.14.  

VAR Granger Causality/Block Exogeneity Wald tests 

    
    Dependent variable: RAINFALL  

    
    Excluded Chi-sq df Prob. 

    
    TMAX  11.12273 2  0.0038 

TMIN  3.403311 2  0.1824 

AVGRH  7.208089 2  0.0272 

MAXRH  1.981949 2  0.3712 

MINVAPPRES  3.675845 2  0.1591 

AVGVAPPRES  3.063885 2  0.2161 

MAXVAPPRE  2.565040 2  0.2773 

    
    

All 

         

260.4913 14  0.0000 
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Figure 6.14: Impulse response function of average relative humidity to rainfall 

According to the above figures, there is a positive effect on rainfall in the future with 

increasing of average relative humidity in the current period. Also, it can be seen a 

decreasing trend of positive effect until the 10th week.  The forecasting in weekly 
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rainfall is made based on the fitted VAR model. However, the forecasting 

performance is not in satisfactory level. 

 
 

6.5.1.  Modeling Deseasonalized Weekly Rainfall with Exogenous Variables 

Initially deseasonalized rainfall is tested for the stationary using Augmented Dickey 

Fuller Test and those result is presented in the Table 6.18. 

 

 Table 6.18.  Result of Augmented Dickey Fuller (ADF) test for the deseasonalized 

rainfall series 

 

 

 

 

 

 

To find the most favorable lag value for the VAR model the selection criterion are 

used and those result are presented in Table 6.19. 

 

 

Table 6.19: Values of the selection criterion for selecting the optimal lag order 

       
        Lag LogL LR FPE AIC SC HQ 

       
       0 -23241.97 NA   527846.0  35.87958  35.91147  35.89155 

1 -21955.63  2554.803  80036.91  33.99326   34.28032*  34.10098 

2 -21760.72  384.7076  65396.96  33.79124  34.33346   33.99471* 

3 -21652.87  211.5483  61119.13  33.72356  34.52094  34.02278 

4 -21567.13   167.0985*   59106.29*   33.69002*  34.74257  34.08500 
       
        

Table 6.19 shows of different selection criterion for the different lag length order and 

selected lag 2 as optimal lag length based on the HQ (Hannan-Quinn Information 

Criterion). 

 

 

Null Hypothesis: DESEARAINFALL has a unit root 

Exogenous: Constant   

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -33.92381  0.0000 

Test critical values: 1% level  -3.434980  

 5% level  -2.863472  

 10% level  -2.567848  

     
     *MacKinnon (1996) one-sided p-values.  
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Table 6.20: VAR model for the deseasonalized data 

DESEARAI

NFALL TMIN TMAX MAXRH AVGRH MINVAP AVGVAP MAXVAP

DESEARAINF

ALL(-1)  0.040687  0.000310 -0.001808 -0.001742  0.000250  0.001068  0.000216  0.000676

 (0.03160)  (0.00062)  (0.00043)  (0.00156)  (0.00193)  (0.00123)  (0.00069)  (0.00069)

[ 1.28737] [ 0.50187] [-4.2404] [-1.1180] [ 0.12937] [ 0.86629] [ 0.31238] [ 0.98111]

DESEARAINF

ALL(-2)  0.015567  0.000786  1.69E-05 -0.000418 -0.000926 -6.71E-05  3.77E-05 -0.000831

 (0.03161)  (0.00062)  (0.00043)  (0.00156)  (0.00193)  (0.00123)  (0.00069)  (0.00069)

[ 0.49255] [ 1.27230] [ 0.03962] [-0.2681] [-0.4789] [-0.0544] [ 0.05449] [-1.20602]

TMIN(-1) -1.098819  0.282457 -0.065415 -0.139305  0.003032  0.166319  0.003570 -0.060858

 (1.82917)  (0.03575)  (0.02468)  (0.09015)  (0.11192)  (0.07133)  (0.04004)  (0.03987)

[-0.60072] [ 7.90041] [-2.6503] [-1.5452] [ 0.02709] [ 2.33167] [ 0.08916] [-1.52634]

TMIN(-2) -2.733121  0.142952 -0.054216 -0.016182  0.152894  0.113821  0.021673 -0.026915

 (1.82685)  (0.03571)  (0.02465)  (0.09004)  (0.11177)  (0.07124)  (0.03999)  (0.03982)

[-1.49608] [ 4.00348] [-2.1994] [-0.1797] [ 1.36788] [ 1.59771] [ 0.54194] [-0.67590]

TMAX(-1)  2.434270 -0.082116  0.350049  0.354190 -0.076543  0.000707  0.059152  0.154855

 (2.13024)  (0.04164)  (0.02874)  (0.10499)  (0.13034)  (0.08307)  (0.04663)  (0.04643)

[ 1.14272] [-1.9721] [ 12.1781] [ 3.37358] [-0.5872] [ 0.00851] [ 1.26847] [ 3.33489]

TMAX(-2) -1.213717 -0.098667  0.251906  0.027541 -0.333099 -0.189296  0.047133  0.168991

 (2.08046)  (0.04066)  (0.02807)  (0.10254)  (0.12729)  (0.08113)  (0.04554)  (0.04535)

[-0.58339] [-2.4264] [ 8.97349] [ 0.26860] [-2.6168] [-2.3332] [ 1.03491] [ 3.72639]

MAXRH(-1) -0.240489 -0.010287  0.014838  0.106858  0.047498 -0.003666 -0.001391 -0.007652

 (0.62495)  (0.01222)  (0.00843)  (0.03080)  (0.03824)  (0.02437)  (0.01368)  (0.01362)

[-0.38481] [-0.8421] [ 1.75958] [ 3.46929] [ 1.24217] [-0.1504] [-0.1016] [-0.56174]

MAXRH(-2)  0.770743 -0.008909  0.024349  0.105139  0.019601 -0.036938 -0.003016 -0.007337

 (0.62278)  (0.01217)  (0.00840)  (0.03069)  (0.03810)  (0.02429)  (0.01363)  (0.01358)

[ 1.23758] [-0.7318] [ 2.89756] [ 3.42538] [ 0.51441] [-1.5209] [-0.2212] [-0.54049]

AVGRH(-1)  1.759521 -0.039324 -0.044925  0.154067  0.330562 -0.020755 -0.015322 -0.015443

 (0.61992)  (0.01212)  (0.00836)  (0.03055)  (0.03793)  (0.02417)  (0.01357)  (0.01351)

[ 2.83830] [-3.2454] [-5.3706] [ 5.04263] [ 8.71519] [-0.8585] [-1.1290] [-1.14280]

AVGRH(-2) -1.32544 -0.012459 -0.017027  0.009466  0.076492  0.003344 -0.013847  0.010172

 (0.62910)  (0.01230)  (0.00849)  (0.03101)  (0.03849)  (0.02453)  (0.01377)  (0.01371)

[-2.10688] [-1.0132] [-2.0058] [ 0.30530] [ 1.98727] [ 0.13632] [-1.0054] [ 0.74174]
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Table 6.20: (Continued...) 

MINVAPPRES(-

1) -0.042881 -0.055376  0.019338 -0.041285  0.019411  0.004069 -0.04914 -0.027469

 (1.27248)  (0.02487)  (0.01717)  (0.06271)  (0.07786)  (0.04962)  (0.02786)  (0.02774)

[-0.03370] [-2.2264] [ 1.12625] [-0.6583] [ 0.24932] [ 0.08201] [-1.7641] [-0.99031]

MINVAPPRES(-

2)  1.841315 -0.038222 -0.033937  0.063208  0.125414 -0.014315 -0.005843 -0.050938

 (1.27021)  (0.02483)  (0.01714)  (0.06260)  (0.07772)  (0.04953)  (0.02781)  (0.02769)

[ 1.44961] [-1.5395] [-1.9800] [ 1.00967] [ 1.61373] [-0.2889] [-0.2101] [-1.83971]

AVGVAPPRES

(-1)  0.111385  0.397388  0.013577  0.043512  0.136947  0.832626  0.686051  0.447533

 (2.89384)  (0.05656)  (0.03905)  (0.14262)  (0.17706)  (0.11285)  (0.06335)  (0.06308)

[ 0.03849] [ 7.02573] [ 0.34770] [ 0.30508] [ 0.77346] [ 7.37826] [ 10.8298] [ 7.09471]

AVGVAPPRES

(-2)  0.073927  0.013406  0.020954 -0.039661  0.008109  0.251368  0.267729  0.275898

 (2.95293)  (0.05772)  (0.03984)  (0.14554)  (0.18067)  (0.11515)  (0.06464)  (0.06437)

[ 0.02504] [ 0.23228] [ 0.52590] [-0.2725] [ 0.04488] [ 2.18291] [ 4.14172] [ 4.28628]

MAXVAPPRE(-

1)  0.590670 -0.048671 -0.003547 -0.095244  0.001536 -0.089669 -0.02363  0.075440

 (1.81035)  (0.03538)  (0.02443)  (0.08922)  (0.11077)  (0.07060)  (0.03963)  (0.03946)

[ 0.32627] [-1.3754] [-0.1452] [-1.0674] [ 0.01387] [-1.2701] [-0.5962] [ 1.91171]

MAXVAPPRE(-

2) -1.799875  0.016848  0.001790  0.090411  0.071254 -0.005049 -0.003074 -0.004285

 (1.82766)  (0.03572)  (0.02466)  (0.09008)  (0.11182)  (0.07127)  (0.04001)  (0.03984)

[-0.98480] [ 0.47164] [ 0.07257] [ 1.00371] [ 0.63720] [-0.0708] [-0.0768] [-0.10757]

C -6.908218  16.53217  16.26530  52.97403  40.44586  2.681531  2.519121  4.048911

 (116.606)  (2.27913)  (1.57340)  (5.74695)  (7.13446)  (4.54718)  (2.55260)  (2.54177)

[-0.05924] [ 7.25370] [ 10.3377] [ 9.21777] [ 5.66909] [ 0.58971] [ 0.98689] [ 1.59295]

 R-squared  0.023866  0.442506  0.567446  0.093633  0.352998  0.509021  0.623969  0.474648

 Adj. R-squared  0.011673  0.435543  0.562043  0.082312  0.344917  0.502889  0.619272  0.468086

 Sum sq. resids  3754697.  1434.410  683.6181  9120.281  14055.80  5709.765  1799.277  1784.049

 S.E. equation  54.13933  1.058186  0.730520  2.668269  3.312480  2.111225  1.185153  1.180127

 F-statistic  1.957448  63.54890  105.0298  8.270919  43.68141  83.00456  132.8520  72.33536

 Log likelihood -7014.272 -1906.636 -1425.656 -3107.122 -3387.837 -2803.181 -2053.72 -2048.204

 Akaike AIC  10.83401  2.964000  2.222891  4.813747  5.246282  4.345425  3.190631  3.182132

 Schwarz SC  10.90170  3.031694  2.290584  4.881441  5.313975  4.413118  3.258325  3.249826

 Mean 

dependent  45.43667  23.49615  31.84831  95.39599  80.97042  27.03043  29.83451  32.19052

 S.D. dependent  54.45812  1.408467  1.103866  2.785365  4.092655  2.994385  1.920733  1.618111
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Based on the Table 6.20, the effects of the exogenous climatic variables on the 

deseasonalized rainfall is considerably small. The Granger causality test was applied 

to examine the direction of causality among the variables. The test result is displayed 

from the Table 6.21. 

 

  Table 6.21: Result of Granger Causality test 

 

VAR Granger Causality/Block Exogeneity Wald Tests 

Date: 01/30/19   Time: 16:17  

Sample: 1 1300   

Included observations: 1298  

    
        

Dependent variable: DESEARAINFALL  

    
    Excluded Chi-sq df Prob. 

    
    TMIN  3.352485 2  0.1871 

TMAX  1.308047 2  0.5199 

MAXRH  1.599714 2  0.4494 

AVGRH  10.07149 2  0.0065 

MINVAPPRES  2.110683 2  0.3481 

AVGVAPPRES  0.002786 2  0.9986 

MAXVAPPRE  1.028125 2  0.5981 

    
    All  21.88885 14  0.0809 

    
     

According to the above test result, the average relative humidity is the only variable 

that gives significant impact on rainfall and useful in forecasting deseasonalized 

rainfall at the 0.05 level of significance. Impulse response function was taken and 

corresponding graphs are presented from the Figure 6.15. 
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 Figure 6.15: Impulse response function of average relative humidity to  

                  deseasonalized rainfall 

According to the above figures, there is a positive effect on rainfall in the future with 

increasing of average relative humidity in the current period. Also, it can be seen that 

the decreasing trend of positive effect until the 10th week. The forecasting in weekly 

rainfall is made based on the fitted VAR model and actual and fitted weekly rainfall 

series is presented from the Figure 6.16. 
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     Figure 6.16: Actual and predicted rainfall in 2015 using VAR model for         

desesonalized data 

According to the Figure 6.16, there is a much agreement of predicted values with the 

actual rainfall values. But still there is a noticeable gap in predicting weekly rainfall 

at extreme rainfall events. 

 

6.6.  Summary of the Chapter 6 

The autocorrelation structure of the weekly rainfall provided the evidence to have a 

seasonal behavior with length of 52. Many autoregressive integrated moving average 

models were utilized to model weekly data series. Some models were identified as 

suitable models for weekly rainfall series based on the selection criteria and those 

models are successful in their linear domain. However, the weekly rainfall does not 

follow the simple linear regulations. Neither of the GARCH models were successful 

to model weekly data due to statistical complexity. 
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Thus, as an alternative, the seasonal index was calculated by assuming the additional 

model with length of 52 and AR (1)-GARCH (1,1) model was well fitted for the 

deseasonalized data series. However, forecasting accuracy was not satisfactory level. 

Though two exogenous variables namely, average relative humidity and maximum 

temperature significantly effect on weekly rainfall, give low contribution in 

forecasting weekly rainfall. Thus, inclusion of exogenous variables too did not 

improve forecasting accuracy much more and then the importance of new type of 

model was recommended.  
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CHAPTER  7 

NOVEL APPROACH TO MODEL WEEKLY RAINFALL  

 

7.1.  Concept for New Modeling 

As explained in the section 6.6 weekly rainfall exhibited mixed features of the non 

linearity phenomenon and thus, it is necessary to move to a new class of models 

which are beyond the conventional time series approaches. Then, long range 

dependency models which have been used to capture the blend features of the 

complex time series are considered as initial step in developing new models. The 

features of such models can be identified by two different approaches: (i) The 

spectral density function with an unbounded peak at the frequency is near to zero and 

(ii) The autocorrelation function decay the hyperbolically to zero. The periodigram 

of weekly rainfall series is shown in Figure 7.1. 

Figure 7.1: The periodgram of the rainfall series from 1990 to 2014 

The Figure 7.1 exhibits unbounded spectral density at the near to zero. The 

maximum spectrum density of the weekly rainfall series can be seen at a frequency 

which is very close to zero (0.0385185). Consequently, different types of long-range 
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dependency models are applied with some modifications to capture the real dynamic 

of weekly rainfall series. The exact maximum-likelihood method with Durbin-

Levinson algorithm was utilized to estimate the long memory parameters and this 

approach has not been tested by the previous authors for rainfall studies. The exact 

maximum likelihood method is used to develop for all types of long-range 

dependency models. Five types of long-range dependency models:  ARFIMA, 

ARFIMA for deseasonalized data, ARFIMA-GARCH, ARFIMA-GARCH for the 

deseasonalized data and adjusted SARFIMA-GARCH are developed to decide the 

best fitted model.   

 

7.2.  ARFIMA Long Range Dependency Model 

The autoregressive fractionally integrated moving average (ARFIMA) long memory 

model is an extension of the conventional ARMA process. The model ARFIMA (p, 

d, q) allows the parameter "d" to take the fractional values for differencing and is 

known as long memory parameter. 

 

The ARFIMA (p,d,q) model of a process Ζtt }{Y   is given by (7.1) 

  ( ) ( ) ( ) tt

d εBθμYBφ =−           (7.1) 

 

Where μ  is the mean of the process, Ζtt }{ε  is a white noise process with zero mean 

and constant variance 2

εσ , B is the backward shift operator, such that tyBy n

nt =− , 

( )Bφ and ( )Bθ are autoregressive and moving average polynomials of order p and q 

respectively such that 

 

  ( ) pi1BφBφ i
p

1i

i =
=

         (7.2)  

  

( ) qjBB j
q

j

j =
=

1
1

     (7.3)  
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The differencing operator, such that  
dd B)1( −=   can be expressed by the binomial 

series as, 

  

k

0k

d B
1)!(dk!

1)!d(k
B)(1 



= −

−+
=−

     

(7.4) 

Where d is defined as the long memory parameter. 

 

The ARFIMA (0, d,0) process is a discrete time series process  Ζtt }{Y  that satisfies 

the following equation. 

   tt

d εY =
                  

(7.5) 

 

Where d < 1/2, {Yt} is a stationary process and has the infinite moving average 

representation  

  
( ) 



=

−==
0k

ktktt εψεBψY
                   

(7.6) 

Where    1)!(dk!

1)!d(k
ψk

−

−+
=

   

It can be easily shown that   ( ) !1d
k~ψ

1d

k −

−

  
as

→k
 

Where d >-1/2, {Yt} is an invertible process and has the infinite autoregressive 

representation (7.7)  

  tεYπYπ(B)
0k

ktkt == 


=

−                    
(7.7) 

Where    1)!d(k!

1)!d(k
π k

−−

−−
=

   

As   above it is clear   ( ) !1d
k~π

1d

k −−

−−

   
as  

→k
 

 

Thus, 







−

2

1
,

2

1
d  exhibits the process is stationary and invertible. The spectral 

density function of the ARFIMA (0, d,0) process 
Ζtt}{Y 

is ( )ωf  that can be written 

as (7.8)  
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( ) πω0

2

ω
sin2ωf

2d









=

−

                      
(7.8) 

  
( ) 0̀ωωωf 2d → −

 

The spectral density function ( )ωf   is unbounded when the frequency is near zero. 

Also, the auto covariance function at lag k (
kγ ) and auto correlation function (

kρ ) of 

the process can be expressed as follows
   

  
( )

( ) ( )
( ) ( )!dk!dk

!2d1
yyE)y,(yCovγ

k

kttkttk
−−−

−−
=== −−          

(7.9) 

and
 

 
4...)3,2,1,(k

d)d)...(k(3d)(2d)(1

d)1...(kd)(1d
)y,Corr(yρ kttk =

−−−−

+−+
== −    

(7.10)
 

Hosking (1981) showed that the above auto correlation function of the process 

satisfies the expression ( ) 12dkkρ −
 
when 21d0    and it decays  hyperbolically 

to zero as →k  for  ARFIMA model. In contrast, k  decays exponential for 

ARIMA model. The process with d = 0 reduces to a short memory ARMA model 

and under the assumption of stationary Gaussian with zero mean the log-likelihood 

function of this process is given by 

  

 

( ) ( ) yΓy
2

1
Γdetlog

2

1
θL 1

θθ

−−−=
          

(7.11)
 

Where ( )= n321 ,......yy,y,yy ,  and  θΓ  is the variance co-variance matrix of Ζtt }{Y   

and θ  is the parameter vector. The MLE for  θ̂
 
 was obtained by maximizing the 

( )θL  

 

As explained in the section 7.1, the exact maximum likelihood estimation method 

was utilized for the parameter estimating and Monte Carlo simulation was carried out 

for different "d" values to evaluate the suitability of the estimation method before 

applying it for parameter estimation of the weekly rainfall series. 



 
 
 
 

141 
 

7.3.  Results of Monte Carlo Simulation - ARFIMA (0, d,0) 

A number of Monte Carlo experiments were carried out to evaluate the performance 

of the maximum likelihood method used for parameter estimation. The simulation 

was done based on various fractional differencing parameter values with 1000 

replications. The four different series lengths (n=100, n=200, n=500 and n=1000) 

were considered for the simulation.  The simulation results provided fractionally 

differenced parameter estimates and corresponding standard and mean square errors. 

Monte Carlo experiment was conducted on a simulated ARFIMA (0, d,0) series with 

parameter values: d=0.1, d=0.15, d=0.3 and d=0.45. 

 

The simulation was carried out using the R programming language (Version 3.4.2) 

utilizing a HP11(8GB, 64bit) computer. The "arfima" package (Veenstra and 

Mcleod; 2012) in R optimized the log likelihood function and obtained the exact 

maximum likelihood estimators. Two algorithms namely Durbin-Levinson and 

Trench algorithms were utilized to maximize the log likelihood and obtain optimal 

simulation and forecasting results. The standard errors of the estimates SE ( d̂ ) and 

mean square error of the estimates MSE ( d̂ )  can be expressed as; 

 

    ( ) ( ) Rd̂d̂d̂SE
R

1r

r
=

−=      (7.12) 

  ( ) ( ) Rdd̂d̂MSE
2R

1r
r −=

=      
(7.13) 

 

Where rd̂ is the MLE of d for the rth replication and R is the number of replications. 

Tables 7.1 present the average of the estimated )d̂(SE),d̂( and MSE )d̂( for 

d=0.1,0.15,0.3 and 0.45 for a generating process of ARFIMA(0,d,0)  and for 1000 

Monte Carlo replications. 
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Table 7.1: Result for exact maximum likelihood estimator of d for a generating   

       process of ARFIMA (0, d,0)  

d n d̂  SE( d̂ ) MSE( d̂ ) 

0.1 
100 0.05175 0.09127 0.01066 

 200 0.07485 0.06268 0.00456 

 500 0.08856 0.03679 0.00148 

 1000 0.09499 0.02546 0.00067 

0.15 
100 0.10487 0.09158 0.01042 

 200 0.12658 0.05936 0.00407 

 500 0.14084 0.03680 0.00144 

 1000 0.14560 0.02541 0.00067 

0.3 
100 0.24931 0.08773       0.01027 

 200 0.27264 0.05750 0.00405 

 500 0.28922 0.03624 0.00143 

 1000 0.29474 0.02518 0.00067 

0.45 
100 0.37742 0.06959        0.01011 

 200 0.40795 0.04772 0.00405 

 500 0.43103 0.03142 0.00135 

 1000 0.44359 0.02707 0.00077 

 

 

The results in Tables 7.1 clearly indicates that the parameter bias has decreased with 

the increase in sample size irrespective of long memory parameter d. Furthermore, 

the results provide evidence that the parameters become consistent with the increase 

in series length. Also, as we expected the standard error and the MSE of the 

estimators have decreased with the increase in series length. Thus, it can be 

concluded that the performance of the maximum likelihood estimator is reasonably 

accurate.   
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7.4.  Modeling Weekly Rainfall Using ARFIMA Model 

The weekly rainfall series from 1990 to 2014 was used to train the model while the 

rest was used for validation. Various ARFIMA models were fitted for the data set 

and forecasting performance of the models were evaluated by using an independent 

sample size 52 (2015). The best fitted model was selected based on the minimum 

MAE (7.14). 

    
=

=
n

1i

ie
n

1
MAE

                      

(7.14) 

 

The ARFIMA (4,0.057924,4) was selected as the best fitted model and the 

corresponding estimates are presented in Table 7.2. The constant term was included 

irrespective of significant. 

 

Table 7.2: The parameter estimates of the model ARFIMA (4, 0.05792421, 4) 

Parameters Estimates Standard 

Error 

Pvalue 

1φ  1.20698 0.024232 0.00000 

2φ  -0.24938 0.045421 0.00052 

3φ  0.57650 6.32e-07 0.00000 

4φ  -0.67522 6.32e-07 0.00000 

1θ  1.12444 0.023116 0.00000 

2θ  -0.11315 0.03651 0.00194 

3θ  0.52201 0.03542 0.00000 

4θ  -0.67435 0.02150 0.00000 

Constant -0.01633 0.03808 0.66787 

d 0.05792 0.02765 0.03616 

 

It can be concluded with 95% confidence that all model parameters except constant 

term are significantly different from zero. The best fitted model can be expressed by 

(7.15).  
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( ) ( ) ( )

( ) t

432

t

0.058432

εB0.674B0.522B0.113B1.1241

0.016ZB1B0.675B0.576B0.249B1.2061

−+−+

=+−+−+−

             

(7.15) 

Where Zt is the standardized weekly rainfall series and B is the back-shift operator. 

 

7.4.1.  Residual Analysis for the Model ARFIMA (4, 0.05792421, 4)   

The residual of the model was not significantly deviated from the random and the 

corresponding correlogram is depicted by Figure 7.2.  The significance of p-values in 

Figure 7.3 confirms that there is a significant ARCH effect. The heteroskedasticity of 

the residual was also confirmed by ARCH LM test (Table 7.3) 

 

Table 7.3: The result of ARCH LM test of ARFIMA (4,0.0579,4) 

 

 

 

 

Heteroskedasticity Test: ARCH   
     

     

F-statistic 3.721605     Prob. F(3,1293) 0.0111 

Obs*R-squared 11.10348     Prob. Chi-Square(3) 0.0112 
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.02... -0.02... 0.8901 0.345

2 0.060 0.060 5.6392 0.060

3 -0.00... -0.00... 5.6540 0.130

4 0.016 0.012 5.9822 0.200

5 0.009 0.010 6.0966 0.297

6 0.013 0.012 6.3180 0.389

7 0.010 0.010 6.4583 0.487

8 0.008 0.007 6.5438 0.587

9 -0.01... -0.01... 6.8279 0.655

1... -0.03... -0.04... 8.7697 0.554

1... -0.01... -0.01... 8.9043 0.631

1... 0.013 0.017 9.1252 0.692

1... -0.02... -0.02... 9.9500 0.698

1... -0.02... -0.02... 10.671 0.712

1... -0.05... -0.04... 14.148 0.514

1... -0.00... -0.00... 14.184 0.585

1... -0.03... -0.02... 15.403 0.566

1... -0.00... -0.00... 15.499 0.627

1... -0.00... -0.00... 15.602 0.684

2... 0.007 0.007 15.661 0.737

2... -0.02... -0.02... 16.601 0.735

2... -0.05... -0.05... 20.025 0.581

2... -0.01... -0.01... 20.470 0.613

2... -0.04... -0.04... 23.124 0.512

2... 0.005 0.002 23.161 0.568

2... -0.02... -0.01... 23.789 0.588

2... 0.034 0.033 25.370 0.554

2... -0.04... -0.03... 27.553 0.488

2... -0.01... -0.02... 27.809 0.528

3... -0.02... -0.02... 28.434 0.547

3... -0.00... -0.00... 28.437 0.599

3... 0.011 0.006 28.612 0.639

3... -0.03... -0.03... 29.990 0.618

3... 0.050 0.045 33.353 0.499

3... -0.02... -0.02... 34.235 0.505

3... 0.019 0.008 34.717 0.530

 

Figure 7.2: The correlogram of residuals of the model ARFIMA (4,0.0579,4) 
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.041 0.041 2.2125 0.137

2 0.055 0.053 6.0893 0.048

3 0.068 0.064 12.116 0.007

4 0.046 0.039 14.884 0.005

5 -0.01... -0.02... 15.336 0.009

6 -0.01... -0.02... 15.696 0.015

7 0.008 0.007 15.790 0.027

8 -0.02... -0.02... 16.615 0.034

9 -0.02... -0.02... 17.498 0.041

1... -0.03... -0.02... 18.759 0.043

1... -0.03... -0.02... 20.189 0.043

1... -0.03... -0.02... 21.481 0.044

1... -0.02... -0.01... 22.434 0.049

1... -0.03... -0.02... 24.175 0.044

1... -0.04... -0.03... 26.336 0.035

1... 0.024 0.032 27.072 0.041

1... -0.02... -0.02... 28.103 0.044

1... 0.003 0.006 28.116 0.060

1... -0.01... -0.01... 28.257 0.079

2... -0.00... -0.00... 28.274 0.103

2... -0.01... -0.01... 28.442 0.128

2... -0.00... -0.00... 28.442 0.161

2... 0.023 0.020 29.154 0.175

2... 0.040 0.037 31.246 0.147

2... 0.198 0.194 83.481 0.000

2... 0.041 0.021 85.711 0.000

2... 0.088 0.062 95.925 0.000

2... 0.018 -0.01... 96.358 0.000

2... 0.020 -0.00... 96.897 0.000

3... -0.00... -0.00... 96.905 0.000

3... -0.01... -0.01... 97.102 0.000

3... -0.02... -0.02... 97.892 0.000

3... -0.02... -0.00... 98.504 0.000

3... -0.01... -0.00... 98.966 0.000

3... -0.03... -0.01... 100.50 0.000

3... -0.03... -0.01... 102.08 0.000

 

Figure 7.3: The correlogram of squared residuals of the model ARFIMA (4,0.0579,4) 
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In spite of the ARCH effect, the model was tested for an independent data set       

(weekly rainfall series in 2015). The observed values and the predicted values for the 

independent data set are shown in Figure 7.4. The absolute error was calculated to 

judge the forecasting power of the model (Table 7.4).  

 

 

Figure 7.4: Observed and predicted weekly rainfall in 2015 using the ARFIMA 

(4,0.0579,4) 

A comparison of result in Table 7.4 and Figure 7.4 claimed that the predicted values 

are in reasonably agreement with the observed rainfall values with exception for 

higher values of rainfall. 
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 Table 7.4: The analysis of absolute error (in mm) for the weekly rainfall 

  in 2015 - [ARFIMA (4,0.0579,4)] 

Absolute Error in 

mm 

Number of 

weeks (%) 

Cumulative 

(%) 

00--10 10   (19.2) 10   (19.2) 

11--15 6  (11.5) 16   (30.7) 

16--20 6   (11.5) 22   (42.2) 

21--25 4   (7.7) 26   (49.9) 

26--30 6   (11.5) 32   (61.4) 

31--35 1   (1.9) 33   (63.3) 

36--40 4   (7.7) 37   (71.0) 

41--45 1   (1.9) 38   (72.9) 

46--50 2   (3.9) 40  (76.8) 

More than 50 12   (23.2)   52   (100.0) 
 

The result in Table 7.4 indicated that the weeks with less than 10 mm error is 19.2%  

while 30.7% of weeks' absolue error was less than to 15mm. Moveover, the 

percentage points with absoulte error greater than 50 mm is 23.2% but this figure is 

lower than the corresponding percentage under the best fitted conventional model 

described in section 6.4 (28.8%).  

 

7.5.  ARFIMA Long Range Dependency Model for Deseasonalized Data 

In the point of view of reducing variability of the original series, ARFIMA was 

developed to deseasonalized data series. The methodology of deseasonalization 

procedure was discussed in the section 6.4. The best fitted model identified for 

deseasonalized data is ARFIMA (5,0.05999,5) and the corresponding parameter 

estimates are presented in Table 7.5. 
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   Table 7.5: The parameter estimates of the model ARFIMA (5,0.05999,5) 

Parameters Estimates Standard 

Error 

Pvalue 

1φ  -0.62733 0.06944 0.00000 

2φ  0.09028 0.04465 0.04272 

3φ  0.75049 0.02278 0.00000 

4φ  0.64047 0.05544 0.00000 

5φ  0.09181 0.04207 0.04352 

1θ  -0.61462 0.03889 0.00000 

2θ  0.12104 0.03908 0.00195 

3θ  0.79656 0.02380 0.00000 

4θ  0.61783 0.03909 0.00000 

5θ  0.07839 0.03909 0.04374 

Constant -0.01061 0.01038 0.30665 

d 0.05999 0.04561 0.00000 

 
 

All model parameters except constant term are significant at the 0.05 level of 

significance. The best fitted model is 

( ) ( ) ( )

( ) t

5432

t

0.0605432

εB0.078B0.618B0.797B0.121B0.6151

0.011ZB1B0.092B0.751B0.576B0.090B0.6271

++++−

=+−−−−−+

          

           (7.16) 

Where Zt is the standardized deseasonalized weekly rainfall series and B is the back-

shift operator.   

 

7.5.1.  Residual Analysis 

The correlogram plot of the residual (Figure 7.5) provided sufficient evidence to 

randomness. The correlogram of the squared residuals is depicted by Figure 7.6 

indicates the assumption of the constant variance is significantly deviated. Thus, 

ARCH LM test is utilized to test the heteroskedasticity of the residuals and the 

corresponding test result is presented by the Table 7.6.  
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.018 0.018 0.4216 0.516

2 0.009 0.009 0.5376 0.764

3 0.009 0.009 0.6406 0.887

4 0.008 0.007 0.7146 0.950

5 -0.00... -0.00... 0.7147 0.982

6 0.008 0.008 0.7976 0.992

7 0.012 0.012 0.9943 0.995

8 0.002 0.001 1.0001 0.998

9 -0.01... -0.01... 1.2573 0.999

1... -0.04... -0.04... 3.4117 0.970

1... -0.02... -0.02... 4.1915 0.964

1... 0.012 0.013 4.3674 0.976

1... -0.03... -0.03... 5.5686 0.960

1... -0.03... -0.03... 6.9676 0.936

1... -0.04... -0.04... 9.3669 0.858

1... -0.00... 0.002 9.3696 0.897

1... -0.01... -0.01... 9.5966 0.920

1... 0.012 0.014 9.7810 0.939

1... 0.022 0.022 10.427 0.942

2... 0.031 0.029 11.708 0.926

2... -0.00... -0.00... 11.708 0.947

2... -0.02... -0.02... 12.471 0.947

2... 0.002 -0.00... 12.476 0.962

2... -0.01... -0.02... 12.923 0.967

2... 0.019 0.015 13.392 0.971

2... 0.004 0.001 13.412 0.980

2... 0.042 0.040 15.759 0.957

2... -0.02... -0.02... 16.485 0.958

2... -0.00... -0.00... 16.581 0.968

3... -0.01... -0.01... 16.757 0.975

3... 0.008 0.009 16.843 0.982

3... 0.017 0.015 17.210 0.985

3... -0.02... -0.02... 17.861 0.985

3... 0.051 0.055 21.338 0.955

3... -0.01... -0.01... 21.596 0.963

3... 0.011 0.013 21.749 0.971

 

 

Figure 7.5: The correlogram of residuals of the model ARFIMA (5,0.0599,5) 
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Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.029 0.029 1.0877 0.297

2 0.052 0.051 4.6040 0.100

3 0.084 0.081 13.723 0.003

4 0.050 0.043 16.937 0.002

5 -0.01... -0.02... 17.348 0.004

6 -0.01... -0.02... 17.656 0.007

7 0.009 0.005 17.768 0.013

8 -0.02... -0.02... 18.477 0.018

9 -0.02... -0.02... 19.322 0.023

1... -0.03... -0.02... 20.517 0.025

1... -0.03... -0.02... 21.780 0.026

1... -0.03... -0.02... 23.211 0.026

1... -0.02... -0.01... 23.944 0.032

1... -0.03... -0.02... 25.206 0.033

1... -0.03... -0.02... 26.983 0.029

1... 0.011 0.018 27.139 0.040

1... -0.03... -0.02... 28.322 0.041

1... 0.005 0.010 28.358 0.057

1... -0.00... -0.00... 28.444 0.075

2... 0.002 -0.00... 28.448 0.099

2... -0.01... -0.01... 28.624 0.123

2... 0.001 -0.00... 28.625 0.156

2... 0.033 0.030 30.069 0.147

2... 0.043 0.041 32.497 0.115

2... 0.181 0.177 76.137 0.000

2... 0.033 0.017 77.586 0.000

2... 0.074 0.047 84.811 0.000

2... 0.025 -0.01... 85.634 0.000

2... 0.025 0.000 86.494 0.000

3... -0.00... -0.01... 86.567 0.000

3... -0.00... -0.00... 86.605 0.000

3... -0.02... -0.02... 87.391 0.000

3... -0.02... -0.01... 88.152 0.000

3... -0.01... -0.00... 88.410 0.000

3... -0.03... -0.01... 90.000 0.000

3... -0.04... -0.02... 92.158 0.000

 

Figure 7.6: The correlogram of squared residuals of the model ARFIMA (5,0.0599,5) 
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Table 7.6: The result of ARCH LM test of   ARFIMA (5,0.0599,5) 

Heteroskedasticity Test: ARCH   

     
     F-statistic 4.346847     Prob. F(3,1293) 0.0047 

Obs*R-squared 12.95027     Prob. Chi-Square(3) 0.0047 

     
      

Based on the results shown in Table 7.6, it can be concluded that the ARCH effect is 

significant (p-value < 0.05). 

 
 

However, despite the ARCH effect, the model was tested for the same independent 

data set (weekly rainfall series in 2015). The observed and the predicted values for 

the independent data set is shown in Figure 7.7. 

 

 

Figure 7.7: Observed and predicted weekly rainfall in 2015 using the ARFIMA 

(5,0.0599,5) for deseasonalized data 

The Figure 7.7 depicts the predicted values are in good agreement with the observed 

rainfall values in 2015 than the previous model predictions. Consequently, the most 
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of the predicted made based on the model is closer with the observed values. 

However, still there is a noticeable gap in capturing the extreme values with the 

model. To evaluate the degree of the forecasting performance of the model, the 

absolute error distribution was taken and the result is presented by the Table 7.7. 

 

Table 7.7: The analysis of absolute error (in mm) for the weekly rainfall in 2015 

[ARFIMA (5,0.0599,5)] 

Absolute Error in 

mm 

Number of weeks 

(%) Cumulative (%) 

00--10 17   (32.7) 17   (32.7) 

11--15 2       (3.8) 19   (36.5) 

16--20 6     (11.6) 25   (48.1) 

21--25 2       (3.8) 27   (51.9) 

26--30 2       (3.8) 29   (55.7) 

31--35 4       (7.8) 33   (63.5) 

36--40 1       (1.9) 34   (65.4) 

41--45 2       (3.8) 36   (69.2) 

46--50 3       (5.8) 39  (75.0) 

More than 50 13    (25.0)   52   (100.0) 
 

Based on the result of the Table 7.7, the weeks which with less than 10mm error is 

32.7%. This is a considerable increment of the number of weeks (by 13.5%) 

compared with the previous model predicted weeks in the same category. However, 

the number of weeks which give more than 50 mm absolute error have been slightly 

increased (by 1.9%).   

 

7.6.  ARFIMA Long Range Dependency Model with Heteroskedasticity 

The long-range dependency models so far discussed showed heteroskedasticity in the 

innovation. Thus, GARCH model is employed to capture the stochastic volatility of 

mean ARFIMA models. Some properties of the ARFIMA-GARCH model is 

discussed by the next section. 
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The ARFIMA (p, d, q)-GARCH (r, s) model of a discrete time series process ttY }{  

is defined by the following formula, 

  

( ) ( ) ( ) tt

d εBθμYBφ =−
                                                  

(7.17) 

)hN(0,~/Fε t1tt −
 

it

s

1i

i

2

it

r

1i

i0t hβεααh −

=

−

=

 ++=

                                                 

(7.18) 

Where 
0,....ββ,β,β,0....αα,α,α0,α s321r3210 

  r and s are positive integers, d 

is a real number and B is the backward-shift operator. The term 1tF −  is the set of 

which derived by the
σ

 field past information 
 ...ε,ε,ε 3t2t1t −−− . 

( )Bφ and ( )Bθ are 

autoregressive and moving average polynomials of order p and q respectively (Refer 

7.2 and 7.3) 

 

Where, d < 1/2 the Ζtt }{Y  is the second order stationary and it can be written as the 

following (Ling and Li,1997). 

 

  

( ) kt

0k

1

t ε
1)!(dk!

1)!d(k
B (B)φY −



=

− 
−

−+
= 

                                           

(7.19) 

If d > -1/2 the Ζtt }{Y  is invertible and  t can be written as follows

 

  
kt

0k

1

t Y
1)!(dk!

1)!d(k
(B)φ(B)θε −



=

− 
−

−+
=

                                           

(7.20) 

The maximum likelihood estimates for the parameters λ
 
 of the model ARFIMA-

GARCH is obtained by maximizing the conditional log likelihood tl
 

 

 
( )
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2

t

tt

n

1t

t
2h

ε
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2

1
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n

1
λL −−== 

=                     

(7.21) 
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Where, 
TTT )δ,(γλ = and  

T

p21p21 d),,...θθ,θ,,...φφ,(φγ =
 
and 

T

s21r210 ),...ββ,β,,...αα,α,(αδ =
 

The maximum likelihood estimation (MLE) method was employed to obtain 

estimates for model parameters. To evaluate the suitability of the method for 

parameter estimation, a Monte Carlo simulation was done with various fractional 

differencing values. 

 

7.7.  The Results of Monte Carlo Simulation - ARFIMA-GARCH 

The simulation results provided fractionally differenced parameter estimations, 

variance model parameters estimations along with the corresponding standard error 

(SE) and mean square errors (MSE) of the parameters. It was carried out based on 

1000 replications with different sizes of samples (n=100, n=200, n=500 and n=1000). 

The Monte Carlo experiment was conducted on a simulated ARFIMA (0, d,0)-

GARCH (1,1) series with following parameter combinations. 

 

0.6β0.2,α0.15,α 110 ===
     1t

2

1tt 0.6h0.2ε0.15h −− ++=  

d= 0.1,0.15,0.3 and 0.45 

 

The simulation was carried out with R programming language (Version 3.4.2) using 

HP11 (8GB, 64bit) computer. The package "rugarch" in R optimized the log 

likelihood function and obtained the exact maximum likelihood estimators. 

 

Table 7.8-7.11  present the average of the estimated  d,
 0α , 1α and 

1β   which were 

computed based on 1000 replications. Furthermore, the Tables report the standard 

error of the estimates SE ( d̂ ) (Refer 7.12), SE (
0α̂ ), SE (

1α̂ )and SE( 1β̂ ) along with 

the mean square error of the estimates MSE( d̂ ) (Refer 7.13), MSE(
0α̂ ), MSE(

1α̂ ) 

and MSE( 1β̂ ) respectively such that:  

  

( ) ( ) Rα̂α̂α̂SE
R

1r

00r0 
=

−=                                          (7.22) 
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( ) ( ) Rα̂α̂α̂SE
R

1r

11r1 
=

−=

            
                                    (7.23) 

  

( ) ( ) Rβ̂β̂β̂SE
R

1r

11r1 
=

−=

             

(7.24) 

 

Where 0rα̂ ,
1rα̂ and 1rβ̂  are the MLE of 0α ,

1α and 
1β  for the rth replication. The value 

R denotes the number of replications. The relevant MSE can be expressed as follows, 

 

            ( ) ( ) Rαα̂α̂MSE
2R

1r
0r00  −=

=           
(7.25) 

            
( ) ( ) Rαα̂α̂MSE

2R

1r
1r11  −=

=
                  (7.26) 

             ( ) ( ) Rββ̂β̂MSE
2R

1r
1r11  −=

=           
(7.27) 

Table 7.8: The MLE of d, 0α ,
1α and 

1β  of a  generating process of ARFIMA (0,d,0)  

- GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and d=0.1.  

n 100 200 500 1000 

d̂  0.07505 0.08082 0.08952 0.09515 

SE( d̂ ) 0.07783 0.06094 0.04054 0.02700 

MSE( d̂ ) 0.00668 0.00408 0.00175 0.00075 

0α̂  0.07094 0.10044 0.13805 0.15129 

SE( 0α̂ ) 0.11041 0.11266 0.08602 0.05281 

MSE( 0α̂ )
 0.01844 0.01515 0.00754 0.00279 

1α̂  0.11152 0.14204 0.17934 0.19368 

SE( 1α̂ )
 

0.15044 0.13060 0.08878 0.05363 

MSE( 1α̂ )
 

0.03046 0.02041 0.00831 0.00292 

1β̂  0.80155 0.72727 0.63664 0.60262 

SE( 1β̂ ) 0.25925 0.25851 0.18672 0.11003 

MSE( 1β̂ ) 0.10783 0.08303 0.03621 0.01211 
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Table 7.9: The MLE of d, 0α ,
1α and 

1β  of a  generating process of ARFIMA (0,d,0)   

- GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and d=0.15.  

n 100 200 500 1000 

d̂  0.11464 0.12679 0.13967 0.14532 

SE( d̂ ) 0.08943 0.06719 0.04076 0.02699 

MSE( d̂ ) 0.00925 0.00505 0.00177 0.00075 

0α̂  0.07373 0.10263 0.13947 0.15182 

SE( 0α̂ ) 0.11536 0.11276 0.08426 0.05165 

MSE( 0α̂ )
 0.01913 0.01496 0.00721 0.00267 

1α̂  0.11405 0.14460 0.18109 0.19436 

SE( 1α̂ )
 

0.15295 0.13012 0.08719 0.05214 

MSE( 1α̂ )
 

0.03078 0.02000 0.00796 0.00275 

1β̂  0.79587 0.72149 0.63318 0.60122 

SE( 1β̂ ) 0.26576 0.25888 0.18252 0.10656 

MSE( 1β̂ ) 0.10899 0.08178 0.11619 0.12755 

 

Table 7.10: The MLE of d, 0α ,
1α and 

1β  of a  generating process of ARFIMA   

(0,d,0) - GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and d=0.3.  

n 100 200 500 1000 

d̂  0.26080 0.27842 0.29125 0.29612 

SE( d̂ ) 0.10273 0.06993 0.04059 0.02709 

MSE( d̂ ) 0.01209 0.00536 0.00172 0.00075 

0α̂  0.07279 0.10395 0.14538 0.15580 

SE( 0α̂ ) 0.11401 0.11185 0.08353 0.04915 

MSE( 0α̂ )
 0.01896 0.01463 0.00700 0.00245 

1α̂  0.11525 0.14725 0.18548 0.19766 

SE( 1α̂ )
 

0.15669 0.12942 0.08246 0.04560 

MSE( 1α̂ )
 

0.03173 0.01953 0.00701 0.00209 

1β̂  0.79651 0.71849 0.62025 0.59233 

SE( 1β̂ ) 0.26847 0.25394 0.17527 0.09419 

MSE( 1β̂ ) 0.11069 0.07853 0.03113 0.00893 
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Table 7.11: The MLE of d, 0α ,
1α and 

1β  of a  generating process of ARFIMA (0,d,0) 

- GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and d=0.45.  

n 100 200 500 1000 

d̂  0.40720 0.42797 0.44289 0.44770 

SE( d̂ ) 0.08894 0.05994 0.03755 0.02646 

MSE( d̂ ) 0.00974 0.00408 0.00146 0.00071 

0α̂  0.07601 0.12041 0.14941 0.15630 

SE( 0α̂ ) 0.11293 0.11916 0.08161 0.04862 

MSE( 0α̂ )
 0.01823 0.01507 0.00666 0.00240 

1α̂  0.12065 0.15949 0.18873 0.19784 

SE( 1α̂ )
 

0.15684 0.12548 0.07863 0.04476 

MSE( 1α̂ )
 

0.03090 0.01739 0.00631 0.00201 

1β̂  0.78589 0.68169 0.61120 0.59154 

SE( 1β̂ ) 0.26907 0.25938 0.16700 0.09219 

MSE( 1̂ ) 0.10696 0.07395 0.02835 0.00857 
 

Tables 7.8-7.11 provide evidence to the parameter bias has decreased as with the 

increase of the series length irrespective of long memory parameter d. It is also noted 

that the parameters become consistent with the increase in series length. Standard 

error and the MSE of estimators decrease with the increase in series length as 

expected. Thus, we can conclude that a sensible estimation of the maximum 

likelihood estimator for the fractional differencing parameters and variance model 

parameters. It is noted that the parameters estimates for the d, 0α ,and 
1α  get much 

low value than real at small sample size while 
1β get much high values than real 

parameter value at small size of sample. This feature is highlighted in all above 

combinations. 

 

7.8.  Modeling Weekly Rainfall Using ARFIMA-GARCH Model 

Many ARFIMA-GARCH models were fitted to the weekly rainfall series data with 

the size of the sample being 1300. Those fitted were employed to predict the weekly 
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rainfall over the year 2015. The best fitted model is selected with minimum mean 

absolute error (MAE).   

 

A model ARFIMA (4,0.116577,6)-GARCH (1,1) was found to be the best fitted 

model for the weekly rainfall series. The corresponding parameter estimates with 

standard errors are presented in Table 7.12.  

 

    Table 7.12:   The parameter estimates of the model ARFIMA (4,0.116577,6)-

GARCH (1,1)  

Parameters Estimates Standard 

Error 

pvalue 

1φ  2.986950 0.00062 0.00000 

2φ  -4.00000 0.000755 0.00000 

3φ  2.927562 0.000603 0.00000 

4φ  -0.968635 0.000313 0.00000 

1θ  -2.952466 0.00007 0.00000 

2θ  3.855760 0.00006 0.00000 

3θ  -2.678475 0.00006 0.00000 

4θ  0.729736 0.00003 0.00000 

5θ  0.138485 0.00013 0.00000 

6θ  -0.042142 0.000171 0.00000 

Constant 44.6898 0.89140 0.00000 

d 0.116577 0.027478 0.01482 

0α  829.99100 40.62404 0.00000 

1α  0.268774 0.046747 0.00000 

β  0.525041 0.031188 0.00000 
 

All the model parameters of the mean and variance model are significant at 0.05 

level of significance. The mean and variance model equations can be expressed by 

(7.28) and (7.29) respectively. 
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( ) ( ) ( )

( ) t

65432

t

0.1166432

εB0.042B0.138B0.730B2.678B3.856B2.9531

44.690YB1B0.969B2.928B4.000B2.9871

−++−+−

=−−+−+−
  

                        (7.28) 

Where  Yt is the weekly rainfall series and
 

)hN(0,~/Fε t1tt −  

1t

2

1tt h0.525ε0.269829.991h −− ++=

                                                (7.29) 

 

7.8.1.  Residual Analysis for the Model ARFIMA (4,0.116577,6)-GARCH (1,1)  

The residuals analysis was carried out and the corresponding test result of the 

residual and squared residual are presented in Table 7.13 and Table 7.14 

respectively. 

 

Table 7.13:  The result of weighted Ljung-Box test on standardized residuals of the 

model ARFIMA (4,0.116577,6)-GARCH (1,1) 

Lag order Statistics p-value 

Lag [1] 0.01070 0.9176 

Lag [29] 13.3572 0.9981 

Lag [49] 22.5723 0.7354 

 

Table 7.14:  The result of weighted Ljung-Box test on standardized squared      

residuals of the model ARFIMA (4, 0.116577,6)-GARCH (1,1) 

Lag order Statistics p-value 

Lag [1] 0.8163 0.3663 

Lag [29] 1.326 0.7824 

Lag [49] 2.1558        0.8856 

 

Based on the result of the Table 7.13 and Table 7.14, the residuals as well as squared 

residuals derived from the model are not significantly deviated from random. 
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However, the ARCH LM test is applied to test the heteroskedasticity of the residuals 

and the results is presented by the Table 7.15.  

 

Table 7.15: The result of weighted ARCH LM test of the model ARFIMA 

(4,0.116577,6)-GARCH (1,1) 

         

 

 

 

Based on the results indicated by the Table 7.15, it can be concluded that the there is 

no ARCH effect moreover (pvalue > 0.05, the null hypothesis that the there is no 

ARCH effect is not rejected). Thus, the model was tested for weekly rainfall data in 

2015 and the observed and predicted values are illustrated by the Figure 7.8. 

 

          

Figure 7.8: Observed and predicted weekly rainfall in 2015 using the model  

( ) GARCH(1,1)60.116577,4,ARFIMA −  

Lag order Statistics p-value 

ARCH Lag [3] 0.003621 0.9520 

ARCH Lag [5] 0.823101 0.7861 

ARCH Lag [7] 1.198062 0.8794 
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The Figure 7.8 depicts that there is no much improvement in forecasting result 

compared with the ARFIMA model (Section 7.2). However, those predicted values 

made based on the model with good accuracy by accounting the heteroskedasticity. 

To assess the power of the forecasting the absolute error was calculated and result is 

presented by Table 7.16. 
 

 Table 7.16: The absolute error in mm for the weekly rainfall in 2015  

       ( ) GARCH(1,1)60.116577,4,ARFIMA −  

Absolute Forecasting 

Error in mm 

Number of 

weeks (%) Cumulative (%) 

0-10 10     (19.2) 10  (19.2) 

11-15 03       (5.8) 13   (25.0) 

16-20 06      (11.5) 19   (36.5) 

21-25 06      (11.5) 25   (48.0) 

26-30 07      (13.6) 32   (61.6) 

31-35 03        (5.8) 35  (67.4) 

36-40 01        (1.9) 36   (69.3) 

41-45 02        (3.8) 38   (73.1) 

46-50 02        (3.8) 40  (76.9) 

More than 50 12      (23.1)    52   (100.0) 

 

The number of weeks which with less than 10 mm error and more than 50 mm error 

are 19.2% and 23.1% respectively. This seems to be much similar result which made 

based on the model of ARFIMA. Moreover, the percentage points with absoulte error 

less than 15 mm is 25.0% and this considerable lower than the percentage points with 

less than 15 mm error which predicted using only mean model ARFIMA (30.7%).  

 

7.9.  ARFIMA Long Memory Model for Deseasonalized data with   

Heteroskedasticity 

To improve the power of forecast performance and model accuracy simultaneously, 

the model ARFIMA-GARCH was utilized for the deseasonalized weekly rainfall 

series. The best fitted model is identified as ARFIMA (6,0.243588,5)-GARCH (1,1) 

and the estimated parameter is presented by Table 7.17. 
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Table 7.17: The parameter estimates of the model ARFIMA (6,0.243588,5) -

GARCH (1,1) for deseasonalized series
 

Parameters Estimates Standard 

Error 

pvalue 

1φ  0.760948 0.040762 0.00000 

2φ  0.354948 0.000021 0.00000 

3φ  -0.019284 0.000003 0.00000 

4φ  0.367182 0.000022 0.00000 

5φ  
-0.425125 0.000025 0.00000 

6φ  
-0.038733 0.000004 0.00000 

1θ  
-0.926677 0.000038 0.00000 

2θ  -0.324362 0.000022 0.00000 

3θ  0.074596 0.000013 0.00000 

4θ  -0.276101 0.000020 0.00000 

5θ  
0.451520 0.000026 0.00000 

Constant 3.625243 0.040762 0.00000 

d 0.243588 0.027423 0.00000 

0α  
52.99254 1.834374 0.00000 

1α  
0.004739 0.000278 0.00000 

β  0.977096 0.001344 0.00000 
 

All the parameters, including both mean and variance model parameters are 

significant at 0.05 level of significance. The mean and variance model equations can 

be expressed by (7.30) and (7.31) respectively. 

 

( ) ( ) ( )

( ) t

5432

t

0.243665432

εB0.452B0.276B0.075B0.324B0.9271

3.625YB1B0.039B0.425B0.367B0.019B0.355B0.7611

+−+−−

=−−−−+−+−

       

             (7.30) 

Where Yt is the deseasonalized weekly rainfall series and 

)hN(0,~/Fε t1tt −  

1t

2

1tt h0.9771ε0.004752.9925h −− ++=

                                             (7.31) 
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7.9.1.  Residual Analysis for the Model ARFIMA (6,0.243588,5) -GARCH (1,1)   

  for Deseasonalized Series
 

The residual analysis was carried out and the residuals and squared residual are not 

deviated from the random at 0.05 level of significance. The corresponding results of 

the residual analysis are presented by Table 7.18 and 7.19. 

 

Table 7.18:  The result of weighted Ljung-Box test on standardized residuals of the 

model ARFIMA (6,0.243588,5)-GARCH (1,1) 

Lag order Statistics p-value 

Lag [1] 0.02113 0.8844 

Lag [32] 8.20596 0.9999 

Lag [54] 17.2109 0.9988 

 

Table 7.19:  The result of weighted Ljung-Box test on standardized squared      

residuals of the model ARFIMA (6,0.243588,5)-GARCH (1,1) 

Lag order Statistics p-value 

Lag [1] 0.5809 0.44595 

Lag [19] 7.0749 0.57489 

Lag [59] 9.4116        0.63265 

 

According to the result of the Table 7.18 and Table 7.19, the residuals and squared 

residuals are not significantly deviated from random. However, the ARCH LM test is 

employed to test the heteroskedasticity of the residuals and the corresponding results 

is presented by the Table 7.20.  
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Table 7.20:   The result of weighted ARCH LM test of the model       

                ARFIMA (6,0.243588,5)-GARCH (1,1) 

 

         

 

 

Based on the results indicated by the Table 7.20, it can be concluded that the there is 

no ARCH effect moreover in this model also (pvalue > 0.05). Thus, the model was 

tested for weekly rainfall data in 2015 and the observed and predicted values are 

presented by the Figure 7.9. 

 

 

Figure 7.9: Observed and predicted weekly rainfall in 2015 using the model 

                      ARFIMA (6,0.243588,5)-GARCH (1,1)  for deseasonalized data 

Lag order Statistics p-value 

ARCH Lag [3] 0.006004 0.9382 

ARCH Lag [5] 1.158850 0.6864 

ARCH Lag [7] 1.670715 0.7865 
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According to the forecast result, which depicts from the Figure 7.9, there is a 

considerable good agreement with the observed and predicted. However, there is a 

still noticeable gap in predicting extreme rainfall events. Thus, to evaluate the degree 

of the forecasting performance the absolute errors were calculated and the 

corresponding result is presented in Table 7.21.  

 

Table 7.21: The analysis of absolute error in (mm) for the weekly rainfall in 2015 

ARFIMA (6,0.243588,5)-GARCH (1,1) for deseasonalized data 

Absolute Forecasting 

Error in mm 

Number of 

weeks (%) Cumulative (%) 

0-10 16     (30.8) 16      (30.8) 

11-15 6      (11.6) 19      (42.4) 

16-20 5        (9.6) 24      (52.0) 

21-25 2       (3.8) 28      (55.8) 

26-30 2       (3.8) 28      (59.6) 

31-35 1       (1.9) 30      (61.5) 

36-40 3       (5.8) 32      (67.3) 

41-45 1       (1.9) 37      (69.2) 

46-50 4       (7.7) 39      (76.9) 

More than 50 12    (23.1) 52    (100.0) 

 

The number of weeks which with less than 10 mm error is slightly decreased than the 

weeks in the same category predicted based on the ARFIMA for deseasonalized data. 

The percentage points less than 15 mm absolute error was 42.4%. This is a good 

confirmatory agreement with the observed. It is important to note that those 

predictions were made based on the model with good accuracy by accounting the 

heteroskedasticity and most of the weeks predictions are get closer values for the 

observed. 

 

7.10.  Adjusted SARFIMA -GARCH Long Range Dependency   

  Model 

A series that present long memory features and periodic behavior with the 

conditional variance, SARFIMA model with GARCH type innovation is much 
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suitable for the modeling such a kind of a stochastic process. The adjusted 

SARFIMA-GARCH model was utilized to capture the real dynamic of weekly 

rainfall series are discussed in this section. Initially, Seasonal Autoregressive 

Fractional Moving Average Model (SARFIMA) was applied to capture the long 

memory features along with the seasonal behavior of the process and fitted GARCH 

model for the residual which derived from the SARFIMA. 

 

The SARFIMA model is a natural extension of the ARFIMA process with an 

additional seasonal filter by Porter-Hudak (1990). The model consists of long 

memory dependency features with periodic behavior in terms of the data. 

A SARFIMA (p,d,q)×(P,D,Q)s model of a process Ζtt }{Y   is given by the formula 

(7.32) , 

  ( ) ( ) ( ) ( ) t
S

t

D

S

d BΘBθμYSBψBφ =−




                       (7.32) 

Where   is the mean of the process, Ζtt }{ε  is a white noise process with zero mean 

and constant variance 2

 . B is the backward shift operator such that tyBy n

nt =−  

and S is the seasonal length. ( )Bφ  and ( )Bψ  are the non seasonal and seasonal 

autoregressive polynomials of order p and P respectively such that 

  

( ) P=
=

k1BψBψ k
P

1k

k                                                         (7.33) 

 ( )Bθ  and ( )BΘ  are the non-seasonal and seasonal moving average polynomials of 

order q and Q respectively defined as 

          ( ) Qm1BΘBΘ m
Q

1m

m =
=

                                                               (7.34) 

   The seasonal operator DSD

S )B(1−=  can be expressed by the binomial series as, 

  

Sk

0k

DS B
!1)(Dk!

!1)D(k
)B(1 



= −

−+
=−

            

(7.35) 

When d=0 and D=0, the model is reduced to a classical SARIMA model. If 

conditions 0 < d < 0.5 and 0 < D < 0.5 are satisfied, then the process becomes 
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stationary. The spectral density function of the SARFIMA model can be written as 

follows: 

 

( )
( ) ( )

( ) ( )
D2

iλλ
2d

iλ

2
iλλ

P

2
iλ

p

2
iλλ

Q

2
iλ

q

2

ε

s e1e1
eψeφ2π

eΘeθσ
λf

−−

−−

−−

−−=         (7.36) 

The maximum likelihood estimation (MLE) method was employed to obtain 

estimates for model parameters of adjusted SARFIMA-GARCH. To evaluate the 

suitability of the method for parameter estimation, a Monte Carlo simulation was 

done with various combination of seasonal and non-seasonal fractionally differenced 

parameter values.  

 

7.11.  The Result of Monte Carlo Simulation - Adjusted SARFIMA-GARCH  

In order to evaluate the performance of the maximum likelihood method in 

estimating the parameters of the model, a number of Monte Carlo experiments were 

carried out. The simulation results provided non-seasonally and seasonally 

differenced parameter estimations and the corresponding standard error (SE) and 

mean square errors (MSE) of the parameters. As well as the variance model 

parameters estimations were done by fitting GARCH (1,1) model to the residuals of 

the SARFIMA model. It was carried out based on 1000 replications with different 

sizes of samples (n=100, n=200, n=500 and n=1000). Seasonal length was 

considered as 52 corresponding to weekly rainfall. Monte Carlo experiment was 

conducted on a simulated SARFIMA (0, d,0) x (0, D,0)52-GARCH (1,1) series with 

following parameter combinations. 

 

  d=0.1 and D=0.45  d=0.15 and D=0.45  

   d=0.3 and D=0.3   d=0.45 and D=0.10. 

0.6β0.2,α0.15,α 110 ===
           1

2

1tt 0.6h0.2ε0.15h −− ++= t  

 

Here also, the "arfima" package (Veenstra and Mcleod; 2012) in R optimized the log 

likelihood function and obtained the exact maximum likelihood estimators. The 

simulation was carried out with R programming language (Version 3.4.2) using 
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HP11 (8GB, 64bit) computer. Table 7.22-7.25 present the average of the estimated d, 

D, 0α , 1α and
1β   which were computed based on 1000 replications. Furthermore, the 

tables report the standard error of the estimates SE ( d̂ ) (Refer the equation 7.12), SE 

( D̂ ) and mean square error of the estimates MSE ( d̂ ) (Refer the equation 7.13) and 

MSE ( D̂ ) respectively such that:  

 ( ) ( ) RD̂D̂D̂SE
R

1r

r
=

−=

                   

(7.37) 

Where  rD̂  is the MLE of D for the rth replication. The value R denotes the number 

of replications. The relevant MSE can be expressed as 

 ( ) ( ) RDD̂D̂MSE

2R

1r

r
=

−=

                

(7.38) 

 

Table 7.22: The MLE of D, d, 0α ,
1α and 

1β  of a  generating process of SARFIMA 

        (0,d,0)×(0,D,0)-GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and d=0.1  

         and D=0.45.  

n 100 200 500 1000 

d̂  0.01467 0.05484 0.0843 0.09292 

SE( d̂ ) 0.08838 0.06595 0.04484 0.03621 

MSE( d̂ ) 0.01509 0.00639 0.00226 0.00136 

D̂  0.45352 0.45605 0.45416 0.45195 

SE( D̂ ) 0.01822 0.01225 0.00983 0.00946 

MSE( D̂ ) 0.00034 0.00019 0.00011 0.00009 

0α̂  0.18195 0.22167 0.1819 0.16081 

SE( 0α̂ ) 0.18514 0.16380 0.09834 0.05415 

MSE( 0α̂ )
 0.03530 0.03197 0.01069 0.00305 

1α̂  0. 07455 0.12917 0.16441 0.17743 

SE( 1α̂ )
 

0.10350 0.08670 0.06012 0.04205 

MSE( 1α̂ )
 

0.02645 0.01253 0.00489 0.00228 

1β̂  0.68152 0.56483 0.58804 0.60484 

SE( 1β̂ ) 0.29227 0.26419 0.16632 0.09476 

MSE( 1β̂ ) 0.09207 0.07103 0.0278 0.00900 
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Table 7.23: The MLE of D, d, 0α ,
1α and 

1β  of a  generating process of SARFIMA 

        (0,d,0)×(0,D,0)-GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and       

         d=0.15 and D=0.45.  

n 100 200 500 1000 

d̂  0.06048 0.10293 0.13361 0.14238 

SE( d̂ ) 0.08897 0.06597 0.04649 0.03320 

MSE( d̂ ) 0.01593 0.00657 0.00243 0.00116 

D̂  0.45308 0.45579 0.45375 0.45202 

Se( D̂ ) 0.01843 0.01234 0.00988 0.00914 

MSE( D̂ ) 0.00035 0.00019 0.00011 0.00008 

0α̂  0.18121 0.22116 0.18212 0.16279 

SE( 0α̂ ) 0.18684 0.16349 0.09808 0.05617 

MSE( 0α̂ )
 0.03588 0.03179 0.01065 0.00332 

1α̂  0.07384 0.12846 0.16441 0.17651 

SE( 1α̂ )
 

0.10309 0.08673 0.06031 0.04232 

MSE( 1α̂ )
 

0.02654 0.01264 0.0049 0.00234 

1β̂  0.6848 0.56624 0.5878 0.60321 

SE( 1β̂ ) 0.29133 0.26447 0.16619 0.09872 

MSE( 1β̂ ) 0.09206 0.07109 0.02777 0.00976 
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Table 7.24: The MLE of D, d, 0α ,
1α and 

1β  of a  generating process of SARFIMA 

         (0,d,0)×(0,D,0)-GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and        

          d=0.3 and D=0.3.  

n 100 200 500 1000 

d̂  0.22345 0.25789 0.28404 0.29191 

SE( d̂ ) 0.09362 0.06618 0.04542 0.03169 

MSE( d̂ ) 0.01463 0.00615 0.00232 0.00107 

D̂  0.27587 0.29134 0.29554 0.29794 

SE( D̂ ) 0.07678 0.04156 0.02733 0.01963 

MSE( D̂ ) 0.00648 0.0018 0.00077 0.00039 

0α̂  0.1966 0.20161 0.17253 0.16032 

SE( 0α̂ ) 0.18468 0.14769 0.08641 0.05143 

MSE( 0α̂ )
 0.03628 0.02448 0.00798 0.00275 

1α̂  0.12848 0.15819 0.18011 0.18738 

SE( 1α̂ )
 

0.12329 0.09166 0.06233 0.04201 

MSE( 1α̂ )
 

0.02032 0.01015 0.00428 0.00192 

1β̂  0.60489 0.56268 0.58478 0.59574 

SE( 1β̂ ) 0.31005 0.24688 0.15138 0.09276 

MSE( 1β̂ ) 0.09615 0.06234 0.02315 0.00862 
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Table 7.25: The MLE of D, d, 0α ,
1α and 

1β  of a  generating process of SARFIMA 

         (0,d,0)×(0,D,0)-GARCH(1,1) with 0.6β0.2,α0.15,α 110 === and       

          d=0.45 and D=0.1.  

n 100 200 500 1000 

d̂  0.36677 0.39857 0.426 0.43861 

SE( d̂ ) 0.08139 0.05613 0.03725 0.02884 

MSE( d̂ ) 0.01356 0.0058 0.00196 0.00096 

D̂  0.02071 0.07194 0.09022 0.09427 

SE( D̂ ) 0.14222 0.06721 0.03566 0.02765 

MSE( D̂ ) 0.02652 0.0053 0.00137 0.0008 

0α̂  0.18613 0.18885 0.16614 0.15776 

SE( 0α̂ ) 0.15882 0.13244 0.07836 0.04814 

MSE( 0α̂ )
 0.02653 0.01905 0.0064 0.00238 

1α̂  0.17649 0.1903 0.19467 0.19621 

SE( 1α̂ )
 

0.13421 0.09716 0.06178 0.042 

MSE( 1α̂ )
 

0.01857 0.00953 0.00384 0.00178 

1β̂  0.56087 0.54565 0.57909 0.59065 

SE( 1β̂ ) 0.29032 0.23251 0.1397 0.0877 

MSE( 1β̂ ) 0.08582 0.05701 0.01995 0.00778 

 

The parameter bias has decreased as with the increase of size of the sample 

irrespective of the differencing parameters. Also, it is clearly seen, the parameters 

become consistent with the increase in series length. Standard error and the MSE of 

estimators decrease with the increase in series length as anticipated.  Thus, Tables 

7.22-7.25 give evident for a rational estimation of the maximum likelihood estimator 

for the non-seasonal and seasonal fractional differencing parameters along with the 

variance model parameters. 

 

7.12.  Modeling Weekly Rainfall Using Adjusted SARFIMA-GARCH Model 

Several SARFIMA models were fitted to the weekly rainfall series data with the size 

of the sample being 1300. A model SARFIMA ( ) ( )
52

0,171.0,11,116.0,1  was 
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found to be the best fitted model for the weekly rainfall series. Since the 

heteroskedasticity existed of the residual derived from the best fitted SARFIMA 

mode1, GARCH model is employed to residual from the SARFIMA. The 

corresponding mean and variance model parameter estimates are presented by Table 

7.26. 

 

 Table 7.26: The parameter estimates of the model SARFIMA (1,0.115677,1)   

 ×(1,0.170750,0)52 with GARCH(1,1) 

Parameters Estimates Standard 

Error 

Pvalue 

1φ  -0.911360 0.14272 0.00000 

1θ  -0.901880 0.14983 0.00000 

1ψ  -0.086060 0.03948 0.00000 

Constant 0.004100 0.10213 0.00000 

d 0.115677 0.02696 0.00000 

D 0.170750 0.02912 0.00000 

0α  0.225230 0.03139 0.00000 

1α  0.234890 0.045240 0.00000 

β  0.568650 0.042180 0.00000 
 

All the model parameters of the mean as well as variance equation are significant at 

0.05 level of significance. The model mean and variance equations can be expressed 

by (7.39) and (7.40) respectively. 

 

( )( )( ) ( ) ( )

( ) t

t

0.17075520.1156752

εB0.901881

0.004100ZB1B1B0.08611B0.91141

−

=−−−++
  

             (7.39) 

Where Zt is the standard weekly rainfall series and 

)hN(0,~/Fε t1tt −  

1t

2

1tt 0.56865h0.23489 ε0.22523h −− ++=

                                                (7.40) 
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The residual analysis was carried out for the mean model and the residuals are 

random at 0.05 level of significant. However, the squared residual is significantly 

deviated from the random. Thus, ARCH LM test was applied to test the ARCH effect 

and the based on the test result [Test statistic = 18.48707 (pvalue = 0.04228)], it can 

be concluded that the ARCH effect is presented at 0.05 level of significance. Thus, to 

capture the stochastic volatility a variance model [GARCH (1,1)] was utilized for the 

residual derived from the model SARFIMA. Since the 

SARFIMA ( ) ( )
52

0,171.0,11,116.0,1  is selected as best fitted mean model to 

describe the weekly rainfall behavior, the model was utilized to predict the weekly 

rainfall over the year 2015. The Figure 7.10 illustrates the observed weekly rainfall 

over the year 2015 along with the predicted estimates.  

 
 

 

Figure 7.10: Observed and predicted weekly rainfall in 2015 using the 

( ) ( )
52

00.171,1,10.116,1,SARFIMA    

The Figure 7.10 depicts the much agreement with observed and predicted values 

except extreme rainfall events. Same as the previous sections, the absolute errors 
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were calculated to test the forecasting power of the model and the corresponding 

result is presented in Table 7.27.  

 

 Table 7.27: The analysis of absolute error in mm for the weekly rainfall in 

        2015 ( ) ( )
52

00.171,1,10.116,1,SARFIMA   

Absolute Forecasting 

Error in mm 

Number of 

weeks (%) Cumulative (%) 

0-10 12    (23.1) 12   (23.1) 

11-15 4       (7.7) 16   (30.8) 

16-20 4       (7.7) 20   (38.5) 

21-25 5       (9.6) 25   (48.1) 

26-30 6      (11.5) 31   (59.6) 

31-35 4       (7.7) 35  (67.3) 

36-40 3       (5.8) 38   (73.1) 

41-45 1       (1.9) 39   (75.0) 

46-50 3       (5.8) 42  (80.8) 

More than 50 10    (19.2)   52   (100.0) 
 

Based on the above forecasted result, the weeks with less than 10 mm is 23.1%. 

Since seasonal pattern was accounted when building the model as an additional 

feature, we expect the considerable high percentage for this category. It is noted that 

the weeks which with more than 50 mm error is slightly lower than the others. 

However, the forecasting performance is not much differ from the ARFIMA. 

 

7.13.  Comparison of the Five Long Range Dependency Models 

To select the best model, the forecasting performance of the models are evaluated 

based on the predicted result which made from 2015 to 2017.  All the models were 

made using data from 1990 to 2014 and their forecasting performance were assessed 

by using an independent data set (from 2015 to 2017). The comparison was done by 

accounting model accuracy with the power of the forecasting of the models. 

 

A simple index is introduced to measure the forecasting performance by assigning 

weights for the absolute error as follows (Table 7.28). 
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Table 7.28: The weights assigned for the absolute forecasting error category 

Absolute Forecasting Error 

Category Weights 

00-10 9 

11-15 7 

16-20 5 

21-25 3 

26-30 1 

31-35 -1 

36-40 -3 

41-45 -5 

46-50 -7 

More than 50 -9 
 

An index (I) was developed by multiplying the frequency of the corresponding 

categories with their weights. The model which with highest values of the index was 

considered as the model having best forecasting performance. The analysis of the 

absolute errors using data from 2015 to 2017 were carried out and the corresponding 

results are shown in Appendix -2. The calculated indices are presented in Table 7.29. 

The observed and predicted values from the five models for an independent data set 

(from 2015 to 2017) are shown by Figures 7.11-Figure 7.15 respectively and the five 

long range dependency models are, 

 

Model -1 - ARFIMA (4,0.05792,4)  

Model -2 - ARFIMA (5,0.05999,5) for deseasonalized data 

Model -3 - ARFIMA (4,0.116577,6)-GARCH (1,1) 

Model -4 - ARFIMA (6,0.243588,5)-GARCH (1,1) for deseasonalized 

Model -5 - Adjusted SARFIMA (1,0.115677,1) × (1,0.17075,0) -GARCH (1,1) 
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    Table 7.29: The comparison of five long range dependency models 

Indicators Model -1 Model -2 Model -3 Model -4 Model -5 

Index (using 2015 data) 40 50 28 68 48 

Index (using 2016 data) 12 15 6 20 10 

Index (using 2017 data) 26 44 12 52 24 

Index (using 2015-2017 data) 78  109 46 140 82 

Correlation (using 2015 to 

2017) [pvalue] 

0.4130 

[0.0000] 

0.4137 

[0.0000] 

0.4357 

[0.0000] 

0.4368 

[0.0000] 

0.4077 

[0.0000] 

Bias (using 2015 to 2017) 3.965 4.722 3.260 3.032 4.125 

RMSE (using 2015 to 2017) 57.17 57.02 57.36 56.27 58.23 

MAE (using 2015 to 2017) 37.71 37.43 38.275 36.998 38.456 

 

Out of the five models, Model-4 gives the highest indices for the years 2015, 2016 

and 2017. Consequently, the index is for the time span from 2015 to 2017 was 140 

and this the highest out of five model.  Moreover, all the other measurement confirm 

the Model-4 is the best model since the it shows the highest correlation value 

between the observed and predicted (0.4368).  Also, Model-4 gives the least bias, 

MAE and RMSE. Furthermore, it is important to note that the model 

ARFIMA(6,0.243588,5)-GARCH(1,1)-[Model-4] is free from ARCH effect 

indicated that the no heteroskedasticity moreover, of the residuals which derived 

from the Model-4. Thus, by comparing the both aspect which are the high model 

accuracy and good forecasting performance, the Model-4 can be selected as the best 

fitted model in modeling weekly rainfall series.  
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Figure 7.11: Observed and predicted weekly rainfall from 2015 to 2017 using the 

model ARFIMA (4,0.05792,4) 

 

Figure 7.12: Observed and predicted weekly rainfall from 2015 to 2017 using the 

model ARFIMA (5,0.05999,5) for deseasonalized data 
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Figure 7.13: Observed and predicted weekly rainfall from 2015 to 2017 using the     

         model ARFIMA (4,0.116577,6)-GARCH (1,1) 

 

Figure 7.14: Observed and predicted weekly rainfall from 2015 to 2017 using the  

 model ARFIMA (6,0.243588,5)-GARCH (1,1) for deseasonalized data 
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Figure 7.15: Observed and predicted weekly rainfall from 2015 to 2017 using the  

         adjusted SARFIMA (1,0.115677,1) ×(1,0.17075,0) -GARCH(1,1) model 

 

7.14.  Summary of the Chapter 7 

Long range dependency models are proposed to fit weekly rainfall series since it 

exhibits an unbounded spectral density at near to zero frequency. Non seasonal and 

seasonal long range dependency models were utilized to capture the persistence 

characteristics of the weekly rainfall series. All the models were tested using an 

independent data series while forecasting power was assessed through the absolute 

forecasting error. 

 

The exact maximum likelihood estimation (MLE) method was utilized to estimate 

model parameters. It is important to note that this method was not tested previously 

for the model parameter estimation in context of long memory for the rainfall 

studies. However, to evaluate the suitability of the method for parameter estimation, 

Monte Carlo simulations were carried out with various non seasonally and seasonally 
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fractionally differenced parameter values along with the variance model parameters. 

It is noted that the parameter bias has decreased as with the increase of the series 

length irrespective of the fractional differencing parameters in all the Monte Carlo 

Simulations. Also, it is evident from the estimated parameters in different models, 

that they become consistent with the increase in size of the sample. Thus, the result 

of the Monte Carlo simulations are exhibited the corresponding method is reasonably 

accurate. 

 

It can be concluded that the ARFIMA- GARCH for deseasonalized data showed the 

highest forecasting performance in modeling weekly rainfall series in context of the 

long memory. However, the adjusted SARFIMA-GARCH also showed confirmatory 

agreement with the observed values. It is noted that the forecasting performance in 

2017 is considerably high in all the models than in 2016. Thus, all the long memory 

models show encourage forecasting performance for the weekly rainfall series at 

such a high uncertainty level. 
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CHAPTER  8 

CONCLUSIONS, RECOMMENDATIONS AND FUTURE 

STUDIES 

 

The objectives of this study was to develop a statistical model to forecast weekly 

rainfall in Colombo city.  After a comphensive study on past work carried out by 

various researchers, a novel model: ARFIMA(6,0.243588,5)-GARCH(1,1) was 

developed to model deseasonalized weekly rainfall to achive the objective. Based on 

the inferences derived in this study, the following conclusions, recommendations and 

suggestions for further investigation  are given below. 

 

8.1.  Conclusions  

 The temporal variability of the weekly rainfall was analyzed during the time 

span from 1960 to 2015 and found that the no significant linear or quadratic 

trend pattern in weekly rainfall series.  

 

 Due to an unbounded spectrum peak existed near to zero frequency on 

periodgram of the weekly rainfall, it is not possible to expand the search space 

of the model.  

 

 Thus, it was forced to restrict to five models within the class of ARFIMA and  

SARFIMA long range dependency models. 

 

 The five selected long range dependency models are: 

a) ARFIMA (4,0.05792,4)  

b) ARFIMA (5,0.05999,5)  for deseasonalized data 

c) ARFIMA(4,0.116577,6)-GARCH (1,1)  

d) ARFIMA(6,0.243588,5)-GARCH(1,1)  for deseasonalized  

e) Adjusted SARFIMA(1,0.115677,1) ×(1,0.17075,0)52-GARCH(1,1) 
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 By validating  the forecasting performance and model accuracy of the five 

models for the training set as well as for an independent set, the best fitted 

model identified is ARFIMA(6,0.243588,5)-GARCH(1,1) for deseasonalized 

to forecast weekly rainfall in Colombo city. A separate table was developed 

for the weekly seasonal components. 

 

 The above model ("the best fitted model") is more superior than other four 

models with respect to statistical aspects as well non statistical aspects.  

 

 The forecasting performance of the best fitted model is not much diluted with 

the increase of the forecasting length. 

 

 The long range dependency model parameters were estimated using exact 

maximum likelihood estimation method which has not been tested for the 

rainfall studies by the previous authors. 

 

 The analysis of the results of the Monte Carlo simulations, found that the bias   

of the parameters decreases with the increase of the size of the sample 

irrespective of the long range dependency model parameters. Also, the 

parameters were consistent with the increase of the sample size. Moreover, 

the simulation result is shown that the maximum likelihood estimation 

method is more reasonably  accurate to use to estimate the model parameters. 

 

 Weekly rainfall data are positive skewed with longer tail to the right and 

those series  behaviour were analyzed moreover in context  of  confidence 

interval by using two approaches parametric and bootstrapping. It is found 

that the three parameter Weibull distribution is most suitable for the many 

weekly rainfall series in SWM and SIM. 

 

 Based on the result of the rainfall percentile analysis,  it was identified that 

the there is a high possibility to form extreme rainfall events during the 
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arrival and withdrawal of the SWM. The corresponding weeks were 

identified as weeks 18-23 (30th April to 10th June) and 38-39 (17th-30th 

September). 

 

 There is a much more chance to form extreme rainfall events during the SIM 

too, the corresponding weeks identified was 41-45 (8th October to 11th 

November). 

 

 According to the analysis of the result of simulation which used to compute 

the coverage probability of the confidence intervals, it can be concluded that 

the most of the coverage probability of 95% confidence intervals of 

percentiles is less than 0.95 and the 95% accurate coverage  probability can 

be attained  at the more than 95% average level. 

 

 Of the various climate variables, average relative humidity and maximum 

temperature are only the two exogenous variable affect on weekly rainfall 

significantly, but accuracy of prediction did not significantly improved. Thus, 

it can be concluded that exogenous climate variables are not beneficial in 

forecasting weekly rainfall. 

 

8.2.  Recommendations 

 When an unbounded spectrum density was formed near to zero frequency, the 

models should be selected among the class of ARFIMA and SARFIMA. 

 

 The best fitted long range dependency model ARFIMA(6,0.243588,5)-

GARCH(1,1) for deseasonalized is recommended to be used in short term 

forecasting weekly rainfall in Colombo city in Sri Lanka. 

 

 When modeling weekly rainfall, the other exogenous climate variables are   

not required. 
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 Due to the less coverage probability of 95% confidence intervals for 

percentiles, on average more than 95% confidence level should be considered 

to get the accurate coverage probability with real confidence bands. 

 

 Result obtained from the analysis of rainfall percentiles can be used to  

predict the time periods which can have high possibility to form extreme 

rainfall events specially  two seasons such as SWM and SIM. 

 

 The weekly rainfall variation information derived from the percentile  

analysis would be  useful for policy planners in various fields such as 

constructions, climate monitoring, rain water harvesting etc. 

 

 The developed novel model to forcast weekly rainfall can be used to make 

more inferences to highlight the features of the weekly rainfall. 

 

8.3. Future Studies 

 The novel model developed has to be improved to capture the high peaks in 

rainfall which is the challenging task to the statisticians.  

 

 The possibility of Gegenbauer  models  (Gray et al., 1989) can be 

investigated  if the  periodagram of the rainfall series illustrates multiple 

unbounded spectral  peaks away from the zero frequency. 

 

 It would be better a  more accurate model can be developed for non seasonal 

weekly rainfall, which I feel that is a another challenging task for an applied 

statistician. 

 

 A study can be further extended to make more accurate confidence intervals 

for rainfall percentiles by accounting the real coverage probabilities which 

can derived by bootstrapping calibiration for all weeks distributions. 
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 A comparison study can be further carried out by changing the time and 

frequency domain methods of estimation for fractional differencing 

parameters to get best fitted model at different size of sample. 

 

 Based on the methodology developed in this study, a user friendly computer 

software can be developed to estimate the parameters of the SARFIMA-

GARCH models by maximizing the likelihood of the mean and variance 

equations jointly in a single step. 
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CHAPTER  9 

PUBLICATIONS BASED ON THIS STUDY 

 

The list of publications generated by this study are given below. 

 

9.1.   Publications 

1. Silva, H.P.T.N., & Peiris, T.S.G. (2017). Analysis of Weekly Rainfall using 

Percentile Bootstrap Approach, International Journal of Ecology & 

Development, 32 (3): 97-106.  

 

2.  Silva, H.P.T.N., & Peiris, T.S.G. (2017). Statistical Modeling of Weekly 

Rainfall: A case Study in Colombo City in Sri Lanka, In Proceedings of the 

3rd Moratuwa Engineering Research Conference (MERCon), Sri Lanka, 10-

12 May, 241-246, IEEE. 

 

3. Silva, H.P.T.N., & Peiris, T.S.G. (2017). Modeling of Weekly Rainfall using 

Confidence Interval Approach: A Case Study, In Proceedings of the 4th 

International Conference on Multidisciplinary Approaches, Sri Lanka, 20-22 

September, 28. 

 

4. Silva, H.P.T.N., & Peiris, T.S.G. (2017). Modeling Weekly Rainfall: 

Problems Encountered, In Proceedings of the International Statistics 

Conference. Sri Lanka, 28-29 December, 91. 

 

5. Silva, H.P.T.N., & Peiris, T.S.G. (2018). Accurate confidence intervals for 

Weibull percentiles using bootstrap calibration: A case study of weekly 

rainfall in Sri Lanka, International Journal of Ecological Economics and 

Statistics, 39 (3): 67-76. 
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6. Silva, H.P.T.N., Dissanayake, G.S., & Peiris, T.S.G. (2019). Modeling 

persistent and periodic weekly rainfall in an environment of an emerging Sri 

Lankan economy, In Proceedings of the 12th International Conference of the 

Thailand Econometric Society (TES 2019), 9-11 January. Thailand. Springer 

Book Series: Structural Changes and Their Econometric Modeling. 

  

7. Silva, H.P.T.N., Dissanayake, G.S., & Peiris, T.S.G. (2019). The use of 

fractionally autoregressive integrated moving average for the rainfall 

forecasting, In Proceedings of the 2ndh International Econometric 

Conference in Vietnam (ECONVN 2019), 14-16 January. Vietnam. Springer 

Book Series: Beyond Traditional Probabilistic Methods in Economics. 

 

8. Silva, H.P.T.N and Peiris T.S.G. (2020). Development of long memory 

model to forecast weekly rainfall, In Proceedings of the international 

Conference on Environmental and Medical Statistics at the University of 

Peradeniya, Sri Lanka, (ICEMS 2020), 9-10 January. 
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APPENDIX - 1 

WEEKLY RAINFALL PATTERNS AND THEIR 

DISTRIBUTIONS 

       Figure A1.1: The time series plots of the weekly rainfall of week 1 -11 

Figure A1.2: The time series plots of the weekly rainfall of weeks 12-19 and week 21 

         - 23. 
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Figure A1.3: The time series plots of the weekly rainfall of weeks 24-27, 29-31, 33, 

35-37  

Figure A1.4: The time series plots of the weekly rainfall of weeks 38-40, 42-43, 

45,47 and 49-52.  
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Figure A1.5: Histogram of the total weekly rainfall for week numbers: week 18,19 

   and 21-24 in SWM 
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Figure A1.6: Histogram of the total weekly rainfall for week numbers: week 25-27

   and 29-31 in SWM 
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Figure A1.7: Histogram of the total weekly rainfall for week numbers: week 33 and 

   35-39 in SWM 
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Figure A1.8: Histogram of the total weekly rainfall for week numbers: week 40, 42, 

  43, 45 and 47 in SIM 
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APPENDIX - 2 

AUTO CORRELATION FUNCTIONS OF WEEKLY RAINFALL  
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Figure A2.1: The auto correlation plots of the weeks 18,19 and 21-24 in SWM 
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Figure A2.2: The auto correlation plots of the weeks: 25-32 in SWM 
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Figure A2.3: The auto correlation plots of the weeks: 33,35-39 in SWM & 40 and  

 42 in SIM 
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Figure A2.4: The auto correlation plots of the weeks: 43 and 45-48 in SIM   
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APPENDIX - 3 

INDICES FORMATION 

 

To evaluate the forecasting performance, an index was developed based on the 

absolute forecasting error and the corresponding calculations were listed below for 

each model separately. 

 

  Table A3.1: Indices for absolute error by Model 1 - ARFIMA (4,0.05792,4) 

 

Index (using 2015 data) = 9×10+7×6+5×6+3×4+1×6-1×1-3×4-5×1-7×2-9×12 = 40 

Index (using 2016 data) = 9×7+7×8+5×4+3×8+1×2-1×4-3×1-5×2-7×4-9×12 = 12 

Index  

(using 2015-2017 data) = 9×27+7×18+5×17+3×20+1×10-1×7-3×6-5×5-7×9 

            -9×37 

        = 78 

  

 

 

 

 

 

Absolute 

Forecasting 

Error in (mm) 

 

Weights 

The number of weeks 

2015 2016 2017 

2015-

2016 

2015-

2017 

0-10 9 10 7 10 17 27 

11--15 7 6 8 4 14 18 

16-20 5 6 4 7 10 17 

21-25 3 4 8 8 12 20 

26-30 1 6 2 2 8 10 

31-35 -1 1 4 2 5 7 

36-40 -3 4 1 1 5 6 

41-45 -5 1 2 2 3 5 

46-50 -7 2 4 3 6 9 

More than 50 -9 12 12 13 24 37 

  Index 40 12 26 52 78 
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Table A3.2: Indices for absolute error by Model 2 - ARFIMA (5,0.05999,5) for  

  deseasonalized data 

 

Index (using 2015 data) = 9×17+7×2+5×6+3×2+1×2-1×4-3×1-5×2-7×3-9×13 = 50 

Index (using 2017 data) = 9×11+7×7+5×6+3×3+1×6-1×0-3×1-5×1-7×6-9×11 = 44 

 

Table A3.3: Indices for absolute error by Model 3 - ARFIMA (4,0.116577,6)- 

   GARCH (1,1) 

 

Absolute 

Forecasting 

Error in (mm) 

 

Weights 

The number of weeks 

2015 2016 2017 

2015-

2016 

2015-

2017 

0-10 9 10 8 10 18 28 

11--15 7 3 5 4 8 12 

16-20 5 6 5 4 11 15 

21-25 3 6 5 6 11 17 

26-30 1 7 7 7 14 21 

31-35 -1 3 3 2 6 8 

36-40 -3 1 2 1 3 4 

41-45 -5 2 2 3 4 7 

46-50 -7 2 3 2 5 7 

More than 50 -9 12 12 13 24 37 

  Index 28 6 12 34 46 
 

Index (using 2016 data) = 9×8+7×5+5×5+3×5+1×7-1×3-3×2-5×2-7×3-9×12 = 6 

Index (using 2015-2017 data) = 9×28+7×12+5×15+3×17+1×21-1×8-3×4-5×7-7×7

        -9×37  

      = 46 

 

Absolute Forecasting 

Error in (mm) 

 

Weights 

The number of weeks 

2015 2016 2017 

2015-

2016 

2015-

2017 

0-10 9 17 9 11 26 37 

11--15 7 2 5 7 7 14 

16-20 5 6 3 6 9 15 

21-25 3 2 7 3 9 12 

26-30 1 2 7 6 9 15 

31-35 -1 4 4 0 8 8 

36-40 -3 1 2 1 3 4 

41-45 -5 2 1 1 3 4 

46-50 -7 3 3 6 6 12 

More than 50 -9 13 12 11 25 36 

 Index 50 15 44 65 109 
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Table A3.4: Indices for absolute error by Model 4 - ARFIMA (6,0.243588,5)- 

  GARCH (1,1) for deseasonalized  

 

 

Absolute 

Forecasting Error 

in (mm) 

 

Weights 

The number of weeks 

2015 2016 2017 
2015-
2016 

2015-
2017 

0-10 9 16 8 11 24 35 

11--15 7 6 5 7 11 18 

16-20 5 5 4 5 9 14 

21-25 3 2 6 5 8 13 

26-30 1 2 9 5 11 16 

31-35 -1 1 3 1 4 5 

36-40 -3 3 2 1 5 6 

41-45 -5 1 1 3 2 5 

46-50 -7 4 3 2 7 9 

More than 50 -9 12 11 12 23 35 

  Index 68 20 52 88 140 
 

Index (using 2015 data)= 9×16+7×6+5×5+3×2+1×2-1×1-3×3-5×1-7×4-9×12 = 68 

Index (using 2016 data)= 9×8+7×5+5×4+3×6+1×9-1×3-3×2-5×1-7×3-9×11 = 20 

 

 Table A3.5: Indices for absolute error by Model 5- Adjusted    

    SARFIMA (1,0.115677,1) × (1,0.17075,0) -GARCH (1,1) 

 

 

Absolute 

Forecasting 

Error in (mm) 

 

Weights 

The number of weeks 

2015 2016 2017 
2015-
2016 

2015-
2017 

0-10 9 12 8 8 20 28 

11--15 7 4 5 6 9 15 

16-20 5 4 4 6 8 14 

21-25 3 5 8 5 13 18 

26-30 1 6 4 3 10 13 

31-35 -1 4 2 6 6 12 

36-40 -3 3 4 2 7 9 

41-45 -5 1 3 3 4 7 

46-50 -7 3 5 3 8 11 

More than 50 -9 10 9 10 19 29 

  Index 48 10 24 58 82 
 

Index (using 2015 data) = 9×12+7×4+5×4+3×5+1×6-1×4-3×3-5×1-7×3-9×10 = 48 

Index (using 2017 data) = 9×8+7×6+5×6+3×5+1×3-1×6-3×2-5×3-7×3-9×10 = 24 


