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ABSTRACT 

This project is aimed at designing, simulating and constructing a wearable device 

capable of performing activity recognition to track and monitor activities specific to 

the manufacturing industry. 

This was done by designing data capturing glove to capture all necessary signals from 

the human body and provide necessary filtering to obtain low noise data. This is then 

passed through suitable pre-processing algorithms to create distinguishing features 

between activities. The best suited classification and post-processing algorithms were 

then designed and implemented to classify the captured data in to a specified set of 

activities. 

The device was designed with an ESP8266 and a Raspberry Pi coded in C++ and 

Python respectively. Accelerometer & gyroscope sensors were used to collect data 

from the human body while a number of classical machine learning algorithms and 

convolutional neural networks were tested to classify the data. 

For the activities pointing, wiping, tightening, loosening, picking, holding, pulling, 

pushing, hammering, walking, holding and walking and turning, the system was 

capable of classifying the test data with accuracies between 86% - 91%. The null set 

was classified with an accuracy of 100% with support vector machines with a linear 

kernel and the post processing algorithm. The same algorithm reached an accuracy of 

91.3% for the activity classification while the support vector machine with RBF kernel 

and post processing algorithm reached an accuracy of 89.7%. The convolutional neural 

network trained on pre-processed 3D activity images and the post processing algorithm 

reached an accuracy of 86.2%. 

The successfully created device will be used to obtain necessary analysis in the 

manufacturing space to optimize performance of the workers. 

 

 

Key Words: Hand, Activity Recognition, Machine Learning, Convolutional Neural 

Network, Kalman Filter, Manufacturing, Industry 
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1. INTRODUCTION 

 Background Information 

Activity recognition or gesture recognition is the of task extracting meaningful data 

from series of biological body movements to analyze and identify tasks performed at 

a given time. These movements or expressions can be done as a form of 

communication [1], usage of tools, travel or general behavior that can be studied to 

identify different attributes such as intention, efficiency, fatigue level, repetitiveness 

and ergonomics. It is one of the most researched topics today in the field of health, 

lean manufacturing, medicine and sociology. Using activity recognition by methods 

of on-body sensors or visual inputs such as cameras and depth sensors, a number of 

different aspects about the human body can be identified for varying purposes. 

Being in a data-focused world, tracking gestures via information from activity 

recognition is a very common trend in devices and services in the market today. One 

of the most popular industries in this field is the health and fitness industry. With the 

global wearable device revenue for 2018 at US$ 26.43 billion [2]; the number is only 

predicted to increase in the future [3] by almost double in two years. A very similar 

trend is seen in most other industries where activity tracking is used as a tool to identify 

possible opportunities for improvement in human motion. 

In the midst of the rapidly growing wearable technology market, the benefits of 

wearable technology are not often reflected within the industrial environment. As 

wearable technology is used to enhance the personal lives of the wearer, the same 

paired with Lean manufacturing methodologies should be used to enhance the work 

life of workers in industries. Lean manufacturing is used in many manufacturing plants 

around the world that is focused on reducing waste through methods such as Toyota 

Production System, production scheduling and Kanban [4]. This results in 

improvements in speed of operation, hand motion, ergonomics, productivity and so 

on. Manual tracking is currently used by the manufacturing industry for planning and 

optimizing by consensually tracking the movements of a worker performing a set of 

predefined tasks. A Lean manufacturing tool known as a standardized work 
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combination chart is used to measure the different time values in performing a series 

of tasks [5]. This shows the wasted or non-productive movements that can be 

optimized to make the observed process more efficient. The process of creating a work 

combination chart is simple, focused, heavily time consuming and repetitive. As such 

this process can be automated and will be the focus of this thesis. 

 Project Description 

This project is aimed at designing and building a wearable device to recognize 

common activities performed by workers at industrial manufacturing lines using 

machine learning (ML) such that these activities can be monitored, tracked and used 

for planning and optimizing in the future. 

This is approached by designing a wearable device with sensors that can be worn by, 

factory production line workers, technicians or mechanics. The device will be capable 

of capturing the data required and sending them to a central processing unit to be 

classified in real-time or in batches. The data is then stored with appropriate time 

stamps in order to be used for further analyzing and optimizing. 

 Project Scope 

Scope: To design a low-cost solution that is capable of monitoring the hand activities 

made by a worker in an industrial manufacturing/assembling environment without 

interfering with the motion of the worker. 

Given the nature of consensual data collection, simultaneous usage was limited at five 

gloves which allows recording from up to five points in the same assembly line. 

Aim: To track and monitor the movements of the hand in order to estimate and record 

the activity that is being done from a list of predefined activities common to the 

manufacturing industry. 

The project scope is achieved by a number of deliverables. 

 Sensor selection – Select the most suitable sensors for the task. 

 Data filtering – Collect and process data from sensors. 

 Mechatronic design – Design wearable device optimized for worker. 

 Data collection – Collect suitable data for training and testing. 
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 Modeling – Employ an ML algorithm for activity recognition. 

 Testing – Test the glove with test data. 

 Initial Assumptions 

A number of assumptions were made based on simple practical experiments and prior 

knowledge.  

 Measuring the activity on the dominant hand for industrial activities can often 

be sufficient compared to measuring throughout the body or from both hands. 

 Most basic hand gestured are performed within a window of 0.75 seconds. 

 Movement of fingers for industrial applications is such that the 

metacarpophalangeal  (MCP) joint provides the yaw movement of the finger 

and the MCP, proximal interphalangeal (PIP) and distal interphalangeal (DIP) 

joints act together to provide the roll movement (see section 3.1.2).  

 Collecting data from the back of hand, thumb, index and middle fingers are 

sufficient to recognize activities in the scope of this thesis (see section 1.3).  

 Hypothesis / Project Contribution 

1. All activities were monitored at an equal window of 0.75 seconds. To ensure 

sufficient data is available within the window 30 samples were selected. 

2. As per the paper by Huang et al. [6] in section 2.2, sensors on the dominant 

hand of the wearer can be used to determine the activity up to 80% accuracy. 

This is also backed up to a certain extent by the paper by Bruno et al. [7] where 

Activities of daily life are monitored. 

3. Determine the skill / identity of the worker based on performance 

 Activity detection scope 

As the project is aimed at identifying activities made by workers in an industrial 

environment, a number of activities that will fall within this scope was identified. 

These selected activities will be trained to the classification algorithm and only these 

activities will be monitored by the device during operation.  

A list of common activities that can be identified in industry are shown in Table 1-1. 

These activities were then further ranked based on the complexity of the motion. Table 
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1-1 also provides a reference at the end of the row to a research paper that has used the 

same activity. 

1. Temporal data – Gestures have a range of movement through time. 

2. Hand orientation – Gestures have a unique hand orientation. 

3. Finger position – Gestures have a unique finger position/bend. 

4. One-time movement – Gestures do not repeat itself over time. 

Table 1-1 – Selected hand gestures common to industry 

A
ct

iv
it

y
 

In
d

ex
 

 
Temporal 

data 

Hand 

orientation 

Finger 

position 

One-time 

movement 
 

0 Point ✗ ✗ ✓ ✗ [8] 

1 Wipe ✓ ✗ ✓ ✗ [9] 

2 Tighten ✓ ✓ ✓ ✗ [10] 

3 Loosen ✓ ✓ ✓ ✗  

4 Pick (tool) ✓ ✓ ✓ ✓  

5 Hold (frame) ✗ ✗ ✓ ✗ [10] 

6 Pull (drawer) ✓ ✓ ✓ ✗  

7 Push (cart) ✓ ✓ ✓ ✗  

8 Hammer ✓ ✓ ✓ ✓ [10], [9] 

9 Walk ✓ ✗ ✗ ✗ [6], [8] 

10 Hold & walk ✓ ✓ ✓ ✗ [11] 

11 Turn ✓ ✗ ✗ ✓  

By observing the movement of each section of the hand when performing activities in 

Table 1-1, it can be observed that the movement of the ring and little fingers are the 

same as the middle finger. This justifies the assumption made in section 1.2.2. The 
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measurement of thumb, index and middle fingers in reference the back of the hand 

(see section 3.1.2) is sufficient to identify the activities in Table 1-1. 

 Project Architecture 

Using the basic structure for human activity recognition devices used by the paper by 

Attal et al. [12] a similar data flow was designed for this project is shown in Figure 

1-1. The figure shows the processes involved in both training the classification 

algorithm and running the same. 

 Blue – tasks that need to be conducted by the processor on the glove. 

 Green – process for transmitting data between glove & classification processor. 

 Red – processes for capturing data for training, training the model. 

 Grey – processes for classification of data. 

 Orange – processes to correct abnormalities and evaluate the performance. 

 

Figure 1-1 - Project architecture 
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2. LITERATURE REVIEW 

This section briefly describes the current developments in human activity recognition 

and the recent research contributions similar to that of this thesis. 

 Types of Activity Recognition 

The concept of Monitoring as a service (MaaS) is a service to keep track of activities 

such as step count, calorie intake, sleeping patterns and travel. Monitoring as a service 

uses GPS (global positioning system) and IMU (inertial measurement unit) sensors or 

built-in devices in phones, tablets and smart watches to identify basic human motion 

during day to day activities such as running or walking or repetitive workout patterns. 

These tracking applications includes iOS health [13] and Google fit [14] and third 

party such as ASICS Runkeeper [15]. 

Apart from the health-conscious general public, there is a special portion of the market 

that require health and fitness monitoring as a part of tracking the progress of 

rehabilitation [16]. In competitive sports such as swimming, underwater cameras such 

as those from Qualisys AB and motion analysis software are used to track body 

movements and optimize body movements for the most streamlined and faster strokes 

[17]. Moov [18] is a smart wearable device that can be worn either on the wrist or the 

ankles and provides the user with more general health and fitness data when 

performing day-to-activities. Moov devices can track activities such as running, 

cycling and gym workouts to provide detailed analysis on aspects such as cadence, 

power output, impact to knees and workout defects. Similar to Moov, Nexus [19] and 

Atlas [20] are gym specific wearable devices that keep track of the user’s activities, 

power output and workout time. For professional athletes and rehabilitating athletes, 

the product Athos [21] allows the wearer or coach to monitor the individual muscle 

using electromyography (EMG) sensors. 

Gest [22] is a wearable device on the hand, similar to the device in this project, with 

the objective of replacing the keyboard. The users finger movements and monitored 

as they type in air and the device estimates which key has been pressed by the user. 
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Many devices like anthropomorphic arms and services like 3-D CAD software are 

constantly made intuitive with the integration of control of inputs using natural human 

gestures. The uses span from mimicking robotic arms and systems, 3-D modeling and 

viewing, gaming/ virtual reality (VR)/ augmented reality (AR) control, computer 

mouse control and machinery control. Devices such as the Microsoft Kinect [23] have 

the capability of studying the body motions and using certain key motions to trigger 

specific control inputs. Gesture recognition is now used in the control of machinery, 

computer simulations and robotics. A paper by Mi et al. [24] describes the use of 

gesture recognition to tele-operate the motions of a robotic fish in water. The gestures 

are programmed in to natural motions that can be picked up by a sensor to instruct the 

robot to accelerate, decelerate, turn and stop1. 

Sense Glove [25], Xsens [26] and Cyberglove [27] are wearable devices on the hand 

which monitors the users hand movements in the domain of AR and VR. It provides 

motion tracking, force feedback and tactile feedback when the user is interacting with 

digital world. This glove is currently being used in preparation of animated movies 

that require natural movement of hands. The Myo armband by Thalmic Labs is a 

wearable gesture control arm band which spiked in popularity with researches and 

developers due to its easy use and functionality. The device uses surface EMG (sEMG) 

sensors to monitor the muscle movements from the forearm to control devices such as 

computers and drones.  

Everyday there are new developments in activity recognition. Although activity 

recognition and health and fitness are becoming a saturated market, there are new 

research being conducted in activity recognition to achieve other objectives such as 

sign language detection [28], fall detection, health monitoring for medical analysis, 

arthritis rehabilitation [29], robot control and computer mouse control. 

                                                 

1 More information on available devices: https://johnsamarasinghe.blogspot.com/2019/04/hand-

activity-recognition-literature.html 
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 Similar Research 

The paper by Cornacchia et al. [30] provides a survey on activity recognition using 

wearable sensors. Another paper by Attal et al. [12] also looks at the different 

classification algorithms used in many researches to perform hand activity recognition 

(HAR). The findings of these two papers were summarized. 

Pre-processing Algorithms - mean, median, variance, standard deviation, skewness, 

kurtosis, index of min/max, range, discrete Fourier transform (DFT), power spectral 

density (PSD), DC component for frequency domain features. 

Classification Algorithms - threshold based reasoning, fuzzy rules, adjustable fuzzy 

clustering (AFC), K-nearest neighbor (k-NN), LogitBoost, support vector machine 

(SVM), random forests (RF), neural networks (NN), multinomial logistic 

discrimination (MLD), multilayer perceptron (MLP), Gaussian mixture models 

(GMM). 

There are very few practical implementations of human activity recognition on 

industrial applications. One of the papers by Stiefmeler et al. [31] uses 27 sensors on 

the human body which include 7 IMU’s, 8 Force Sensitive Resistors and 4 Ubisense 

tags. The tools used by the workers are also equipped with RFID (radio-frequency 

identification) tags and IMU’s to provide additional data when the tool is being used. 

A new string matching-based segmentation and classification method was designed. 

This method encodes the signal properties in characters to create a string which can be 

compared against templates. 

A dissertation by Hartmann [32] looks in a to an industrial scenario where a wrist 

mounted IMU sensor is used along with a top mounted camera which observes the 

movement of patterns on a block worn on the wrist. A similar research done by Tao et 

al. [10] on worker activity recognition and a paper by Benalcàzar et al. [33] uses sEMG 

sensors and the IMU sensors on the Myo armband. Tao uses this to form a stacked 

signal image. The image is then fed in to a CNN for feature extraction. The data 

classified using this method are simple operations such as hammering, tightening, 

grabbing and resting. Benalcàzar instead uses the kNN classifier to detect the hand 

activities; making a fist, wave in, wave out, open hand and pinching. The accuracy of 
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the data was found to be better than the Myo band proprietary algorithm showing the 

impact of sEMG sensors for human activity recognition. Another similar paper by 

Jiang et al. [34] uses both sEMG and IMU sensors are used to determine the hand 

gestures. The okay sign, peace sign, hand loose, finger snap, thumbs up, thumbs down, 

turn palm and walking fingers were air gesture activities recognized by this device. 

The surface gestures included the force levels exerted by index finger, all 5 fingers and 

the fist in different orientations. 

The research by Koskimaki et al. [35] describes the use of a single wrist mount 

accelerometer used in industrial applications to detect use of power drill, hammering, 

screwing and spanner use with an accuracy of almost 90% in a 1.5 second window. 

The standard statistical and frequency domain details were used as feature extraction 

while k-NN was used as the classification algorithm 

A conference paper by Luzhnica et al. [8] uses a custom-built glove similar to the 

glove designed in this project to detect a number of everyday gestures. These include 

number one, two, three, four, five, thumbs up, thumbs down, point to self, shoot, 

scissor, cutthroat, continue, counting, knocking, waving, come here, go away, push 

away, never mind, talking, calling, walking, shoulder pat, point, swipe left, swipe right, 

swipe up, swipe down, turn, zoom and grasp. The paper uses linear discriminant 

analysis and logistic regression to achieve an accuracy of 98.5% 

The Table 2-1 provides a brief summary of other similar research that has been found 

similar to the project in this thesis. 

Table 2-1 - Summary of further similar research 

Ref. Sensors Pre-processing Classifier Accuracy 

[10] 

Myo Armband 

(IMU and 

sEMG) 

Discrete Fourier 

transform 
CNN 

98% half-

half 

[6] 

Koala MEMS 

based 9-axis 

motion sensor 

Mean, variance, 

skewness, kurtosis 

and root mean 

square 

RF, decision tree & 

SVM 

81% (DT), 

73.2% 

(SVM non-

dominant 

hand) 
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Ref. Sensors Pre-processing Classifier Accuracy 

[33] 

Myo armband 

(sEMG sensors 

and IMU) 

Low-pass 4th order 

Butterworth filter w/ 

cut off at 5Hz. 

K-NN with DTW 

algorithm 
89.5% 

[9] 

MS Kinect, 

InvenSense 

MPU9150 

Moving average 

window 

Hidden Markov 

model and DTW 
93% 

[34] 

8 sEMG sensors 

(Tringo wireless 

EMG, Delsys) 

Mean absolute value 
Linear discriminant 

analysis 

92.6% air 

& 88.8% 

surface 

[8] 

7 Motion, 13 

bending, 5 

pressure & 

magnetometer 

Sliding window, 

FFT, complementary 

filter 

Linear discriminant 

analysis 
98.5% 

[36] Smart Watch Autocorrelation 
CRF, FR, HMM, 

SVM, DT 
>90% 

[37] 
Beaglebone 

Accelerometer 

Mean, RMS, 

standard deviation of 

accelerometer 

RF 90-94% 

[24] 
Leap Motion 

Controller 

Leap motion 

program 
Thresholding N/A 

[38] 

Accelerometer 

(ADXL202) on 

hip & wrist, GPS 

Time domain: 

variance, median, 

skew, kurtosis, 25% 

and 7% percentile 

Frequency domain: 

peak, power 

Custom decision 

tree, automatically 

generated decision 

tree, ANN, hybrid 

model 

89% 

[39] Accelerometer 

Mean, variance, 

skewness, kurtosis, 

RMS 

RF, SVM, 3-NN 
76.1% or 

71.3% 

A paper by Huang et al. [6] studies the impact of wearing a number of sensors, namely 

on the right wrist, left wrist and waist for the accuracy of activity classification. The 

study looks at machine learning (ML) algorithms in decision tree, random forest and 

support vector machines. In this study the actions; standing, lying, walking, sitting and 

dining are monitored. Although the study proves the general logic in stating that using 

multiple sensors on multiple parts of the body for activity recognition improves the 

accuracy compared to using only a sensor at one part of the body, a key takeaway is 
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also highlighted. It is shown that using the decision tree classifier only on the sensors 

for the dominant hand is only sacrificing 1% accuracy compared to using the same ML 

algorithm for all three locations of the human body. 

Another interesting research by Maekawa et al. [40] looks at a different approach in 

measuring the cycle time of a factory worker without analyzing the individual 

activities. The procedure includes looking at the sequence of activities and identifying 

repeating patterns. This has resulted in an accuracy of about 96.5%. 

The paper by Jain and Kanhangad [41] describes how a smart phone can be used to 

perform human activity recognition. The built-in sensors within the phone which 

include the accelerometer and gyroscope are used with histogram of gradient and 

centroid signature-based Fourier descriptor for pre-processing and multiclass SVM 

and k-NN classifiers to obtain a 97% accuracy. Using this method, activities such as 

walking, climbing stairs, sitting, standing and laying can be identified. 

In conclusion, there are a large number of methods and algorithms used to identify 

hand and full body activity recognition both in and out of industrial environments. 

Table 2-1 shows the effectiveness of each of the algorithms used and provides a good 

indicator for this project and the algorithms that can be effectively used. In addition, a 

number of key learnings such as the ability to use the movement of the dominant hand 

to derive the movement of the body has been used to structure this project. 
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3. SMART GLOVE DESIGN 

The design of the glove comprised of bringing together a number of concepts and 

components to ensure its function. This section describes each component shown in 

Figure 3-1. 

 

Figure 3-1 –Components of the smart glove design 

The glove design is essentially two systems liked together via Wi-Fi communication 

(see section 3.7). The first system comprises of the wearable glove which contains the 

sensors (see section 3.1) and the processing unit (see section 3.2.1) running the 

algorithm explained in section 3.5.1. The second system contains the classification 

processor (see section 3.2.2) running the algorithm explained in section 3.5.2 which 

allow it to perform the classification (see sections 3.8 and 4) 

 Sensors 

 Sensor Selection 

In order to classify activities listed in Table 1-1, a specific set of motions and poses 

from the hand must be obtained. These can be roughly separated to two criteria. 

1. Static data 

a. Pose of the hand in free space 

b. Bending of each finger 

Classification processor (3.2.2) 

Processor algorithm (3.5.2) 

Data processing (3.8 and 4) 

Glove processor (3.2.1) 

Processor algorithm (3.5.1) 

Data filtering (3.6) 

Sensors 
Selection (3.1.1) 

Placement (3.1.2) 

IMU selection (3.1.3) 

 

Wi-Fi 

communication (3.7) 

Glove design (3.3) 
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c. Adduction and abduction of each finger 

d. Rotation of the thumb 

2. Motion data 

a. Linear motion of the hand in free space 

b. Rotational motion of the hand in free space 

Vision based sensing is the most popular choice for activity recognition based on the 

number of research papers. However, there are some concerns using cameras for 

activity recognition. As the application for the device in this thesis is mainly based on 

activity recognition that is designed for industry, it is not ideal to use vision [6]. In 

industrial environments, the worker is always moving from one area to another as per 

their job requirement. As such, very good image processing is needed to isolate the 

correct worker from the moving and mostly noisy background. The camera needs to 

be positioned to obtain complete range of the worker in one frame and this may not be 

possible when the hands of the worker are within machinery or in any way out of direct 

line of sight of the camera. 

Sensors placed on the body of the person being tracked is a suitable option given the 

application of the device. The commonly explored sensors were electromyography 

sensors, flex sensors and IMU sensors. Although other wearable flexible sensors could 

have provided a similar result, these sensors were found to be most direct and non-

intrusive method of obtaining data without obstructing the movement of the worker or 

introducing additional tasks to the workers’ job description. 

Electromyography sensors are a very effective sensor that can be used to determine 

the exact muscle activity of hands by placing sensors away from the hand itself so as 

not to be intrusive to the wearer. This can be seen in the paper by Tao et al. [10] where 

a Myo armband placed close to the elbow is used for this purpose. However, due to 

the cost of these sensors, they had to be deprioritized. 

Flex sensors are being used in many of the motion tracking gloves used in the market 

(see section 2.1). As the flex of a flex sensor is given by the deformation of the material 

which can be measured in terms of resistance, the response is close to the zeroth order 

response system making the usage straightforward. Flex Sensors were used in the first 
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prototype of this project (See Appendix 1). However, as these flex sensors are costly 

and are limited to 1 degree of freedom, a high cost is incurred when a flex sensor needs 

to be added for each degree of freedom of the fingers. This also makes the glove 

difficult to use. As such, these sensors were discontinued from this project. 

IMU sensors are used for obtaining motion and orientation information. However, 

these sensors which typically consists of an accelerometer and gyroscope tend to be 

noisy and thus good filtration is needed to extract the actual signal (see section 3.6). 

For this project, the IMU sensor was chosen to provide the orientation and movement 

of the hand and also the orientation and movement of the fingers. This was due to the 

relatively low cost of the IMU and the ability to obtain information on more than one 

degree of freedom (DoF) of a finger from one sensor. 

Table 3-1 - Summary of Sensor Types explored for HAR 

Sensor type Robustness Cost Accuracy Selection 

Vision Low High High No 

EMG High High High No 

Flex Mod-High High High No 

IMU High Low Mod-High Yes 

 Sensor Placement 

In order to obtain the most relevant data to classify the actions in Table 1-1, the correct 

sensors must be placed at the correct locations to extract the most relevant information 

from the human body. 

The orientation of the hand is important for activity recognition and can be measured 

with a sensor placed at the back of the hand as it is the most static part of the hand. 

The sensor placed here will be able to act as a base measurement in order to determine 

the general motion through pose  and also it will provide a reference position of the 

hand to extrapolate the position of the fingers (see section 3.8.2). 
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Figure 3-2 – Illustration of finger joints 

The main DoF of the fingers are 

 1 DoF - Distal interphalangeal (DIP) joint of each filter (flexion/extension) 

 1 DoF - Proximal interphalangeal (PIP) joint of each finger (flexion/extension) 

 2 DoF - Metacarpophalangeal (MCP) joints (flexion/extension and 

abduction/adduction) 

 1 DoF - Trapeziometacarpal (TMCP) joint of the thumb to rotate [42] 

For the application defined in this scope, two significant independently actuated joints 

can be identified. These are the joint at the knuckle (MCP and TMCP Joint) and the 

joint after the knuckle (PIP Joint). The DIP joint cannot be easily independently 

actuated, the motion of this joint relies on the PIP joint in many scenarios. 

For the project the IMU sensor was used at the backhand a single IMU sensor for each 

finger was placed between the PIP and DIP joints. This can measure both the yaw of 

the finger created by the MCP joint and the roll of the all joints in that finger with 

reference to the IMU on the backhand. This can be seen in Figure 3-19 and Figure 3-20 

The finger sensors were only measured with one sensor, although it is common to see 

that sensors are placed on each joint in other HAR gloves to measure all DoF [42]. In 

addition, the project only measures the thumb, index and middle fingers. This is 

MCP 

TMCP 

PIP 

DIP 
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because an assumption was made that for this application, selected activities do not 

require the remaining two fingers to be actuated independently (see section 1.2.2). 

 Inertial Measurement Unit (IMU) 

In section 3.1.1 the IMU sensor was selected for this project. The IMU model selection 

is important to ensure precise orientation and movement values are obtained for each 

measurement. The requirements needed by the IMU device are 

 Suitable accelerometer with full scale range no more than 2g 

 Suitable gyroscope with full scale range more than ±500°/s 

 Suitable magnetometer 

 Precise data transfer more than 12 bits per reading. 

Prioritizing the cost, the MPU6050 [43] was selected as the most suitable IMU device. 

This was selected based on the specifications and the popularity of the sensor in the 

electronics community. However, the MPU6050 does not have a built-in 

magnetometer, resulting in the inability to obtain a fixed reference parallel to the earth. 

This also results in the inability to calibrate the yaw of the device. Thus, there is a slow 

drift in the yaw axis due to the influence of external noise, as seen in Figure 3-12. 

The specifications of the MPU6050 device were programmed based on the trial and 

error and limitations to human motion for the selected activities in Section 1.3 [43] 

 Angular rate with full-scale range of ±500°/s 

 Accelerometer with a full-scale range of ±2g 

 Sampling frequency of 10 kHz 
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Figure 3-3 - GY521 board & custom-built breakout board size comparison [original in 

color] 

Due to the criteria to reduce the size of the glove to improve comfort and range of 

motion, the GY521 board for the MPU6050 was redesigned to a smaller form factor 

(see Appendix 2). The board was designed such that the dimensions of the board are 

small enough to fit to the width at the mounting point of each finger and the mounting 

points are placed such that the critical components of the device do not move as much 

when the finger movements deflect the fabric of the glove. The backhand processor 

board was also designed with the IMU device built in to save space (see Appendix 2).  

Additional to designing the sensors, the sensors were to be wired with conductive yarn2 

that is sewn in to the fabric of the glove in order improve the usability of the glove and 

to act as an additional mounting point for the board. 

 Processors 

The selection of the processors are completely dependents on the type of tasks 

required. Processor is selected to closely match the requirement while keeping the 

costs and form factor as low as possible. For the project two processors are used with 

2 different applications. 

 Glove processor  

 Training & classification processor 

                                                 

2 Conductive yarns were not added to the intermediate prototype. 

10mm 20mm 30mm 0mm 

20mm 

0mm 

40mm 

10mm 
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 Glove Processor 

The main application of the glove processor is to collect data from all sensors on the 

glove, filter the data to obtain meaningful information and transmit the data to a 

centralized processor for further data analysis. The processor requirements for the 

glove processor are 

 Required voltage for sensors: >3.3V 

 Number of digital pins: 4 

 I2C communication needed for IMU interfacing 

 Wi-Fi communication needed for data transmission 

 Small form factor 

Based on these mandatory specifications, The WEMOS D1 Mini (ESP8266) was 

selected. The WEMOS D1 Mini is a moderately cheap, low power microcontroller and 

Wi-Fi board with 4MB flash based on ESP-8266EX [44]. The processor runs on 

80MHz clock. 

 Classification processor 

The application of this processor is to manage all the gloves processors as a central 

control platform, perform data collection and classification of the data collected. 

Collection of data, training and classifying data with a machine learning algorithm is 

a very computationally expensive task which require 

 Ability to run Linux based operating system 

 Ability to run Python-based applications 

 Processor speed – More than 1GHz 

 RAM – more than 512MB 

 Wi-Fi enabled 

In order to meet these requirements, the Raspberry Pi was selected for this application. 

The Raspberry Pi 4 model B (referred to as RPi) is a small, affordable computer with 

a much higher processing power than the glove processor. 
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 Glove 

The selection and design of the glove is important in order for the user to work with 

the device unhindered by it. The glove selected was a standard pair of cotton dotted 

gloves that is used in many industries to protect the hand from cuts, blisters and dirt. 

The glove is also stretchable and comes in a single size to fit all hands. This is 

important to match with the devices requirement to be universal. 

Certain tasks in industry require delicate handling of equipment or the feel of the item 

in the operator’s fingertips. For example, picking up paper or fabric require the tactile 

feedback to the user and delicate control to lift the item. In order to enable this, the 

fingertips of the cotton dotted gloves were carefully cut. This also enables the glove to 

be worn comfortably by any person despite the size of the hand or the length of the 

fingers. 

The glove in Figure 3-5 was designed as an intermediate glove to enable quick data 

collection with existing components due to the delay in obtaining the final components 

due to the CoViD-19 lockdown in 2020. 

 

Figure 3-4 – Prototype 1 design 

[original in color] 

 

Figure 3-5 – Porotype 2 intermediate design 

[original in color] 

 Circuit Design 

The main components of the glove are connected together as per the diagram in Figure 

3-6. Each of the IMU devices for the fingers are placed on their own PCB’s and 
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attached to the finger. The IMU for the backhand and the glove processor is attached 

to a single PCB for easy connectivity and attached to the back hand of the glove.  

 

Figure 3-6 – Glove circuit diagram 

Back-hand IMU 

Finger 1 IMU 

Finger 2 IMU 

Finger 3 IMU 
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 Algorithm 

 Glove Algorithm 

The software running on the processor on 

the glove is dedicated to do a number of 

specific tasks. 

 Maintain connection to all 4 IMU 

devices 

 Collect data from the IMU devices 

 Perform data filtering 

 Maintain MQTT (See section 3.7) 

connection through Wi-Fi to the 

MQTT server  

 Send and receive status messages 

to and from the MQTT server. 

 Send filtered data to the MQTT 

server when requested. 

The basic process flow diagram to achieve 

these tasks can be seen in Figure 3-7.  

When the device is powered on, the IMU 

devices are initiated and connived to the 

predefined MQTT server through the 

selected Wi-Fi network. The glove 

processor will then enter a continuous 

loop which 

1. Refreshes the MQTT connection 

2. Acquires raw IMU data 

3. Processes roll, pitch and yaw 

4. Passes data through data filtering 

5. Publishes data to MQTT server 

 

Figure 3-7 –Glove algorithm 

Power on 

Initiate IMU Devices 

Connect Wi-Fi 

 Connected to 

MQTT? 

No 

Initialize Filters 

Refresh Connection 

Read MQTT 

Acquire IMU Data 

Yes 

  

Run Filter 

Publish Data 

Sample time 

passed? 

No 

Yes 
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 Classification Processor Algorithm 

The software for the algorithm run on the Raspberry Pi is dedicated to execute 

 Connect to Wi-Fi and run Mosquitto as the MQTT server 

 Manage connection to all gloves attached to the central processor 

 Manage status messages to and from the gloves 

 Request, collect and store training data from each glove 

 Request, collect and classify live data from all gloves. 

In order to achieve these tasks, an algorithm was developed as seen in Figure 3-8 where 

“<glove>/data”, “<glove>/status” and “<glove>/command” are MQTT topics which 

are used to broadcast different data types. The states 0 to 4 maintained for each glove 

and are 

Status 0: Glove is offline – Glove has not published that the glove is online. 

Status 1: Glove is online (listening) – Glove has signaled online status. 

Status 2: Receiving data – Data is being received from the glove. The data is saved in 

a log file or classified depending on training data or data classification is requested. 

Status 3: Data time-out – Data is not being sent to glove at required time. 

Status 4: Refresh connection – Intermediate state informing the user if an interruption 

had taken place in the operation. 

The algorithm in Figure 3-8 was then implemented in Python with the use of the Kivy 

library to display a user-friendly graphical user interface. This is a dashboard that can 

be used to view the status of all connected gloves at once and control each of the gloves 

that are connected. Currently the dashboard can connect up to 5 gloves (see Figure 

3-9). 
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Figure 3-8 –Processor state diagram 

 

Figure 3-9 - Glove dashboard v2 [Original in color] 
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 Data Filtering 

The program for the processing unit on the glove is responsible for recording, filtering 

and transmitting data from the sensors on the glove. The captured data is filtered to 

eliminate the noise to receive a smooth signal. It should also be noted that the filtering 

was done on the glove processor rather than the central processor due a number of 

reasons summarized in Table 3-2. 

Table 3-2 – Implementing filtering on glove processor/Classification processor 

 Filtering on Glove Filtering on Classification 

Processor 

Impact to software High Low 

Chance of errors Low High 

Access to raw data Fast Slow 

Dependencies None Stable MQTT Connection 

The sensors were initialized at the specifications detailed in section 3.1.3. The data 

capturing on all sensors is done at its maximum speed although the data is not 

transmitted at the same rate. This is done primarily to ensure the filtering algorithms 

described in section 3.6 can continue to run and maintain better prediction when data 

is needed. 

The raw data obtained from the IMU is shown in Figure 3-10. Digital filtering will be 

required to remove noises embedded in the signal and obtain reliable values. 

Accelerometers are very high sensitivity devices due to their structure. It produces a 

lot of noise in the very short-term results. However, the noise can be assumed to be 

random and Gaussian distributed. This means that an accurate value of the 

accelerometer can be obtained by using a low pass filter. As gyroscopes are reliable in 

the short-term and accelerometers are reliable in the long-term, it is needed to combine 

both accelerometer and gyroscope to obtain the ground truth of the orientation of the 

sensor. 
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Figure 3-10 – Accelerometer & Gyroscope on a flat table (knock at t=0) 

 Kalman Filter 

The Kalman filter is a method of linear quadratic estimation which observe a series of 

measurements that are engulfed in statistical noise and other inaccuracies over a period 

to provide an estimate of the underlying unknown variable. Kalman filters are capable 

of combining the readings from the accelerometer and gyroscope from their 

probabilities and obtaining a more accurate reading. Compared to digital low/high pass 

filtering, Kalman filters do not have time delay in providing the measurement as the 

filter will always predict future values based on the past. 

The MPU6050 IMU device, with the accelerometer and the gyroscope provide 6 

independent data values (excluding temperature) to measure the pose of the unit. These 

can be considered as our inputs, 𝑥 and measurement, 𝑦. 

Inputs Measurements 

𝑎𝑐𝑐𝑥: Acceleration in the x-axis 𝑔𝑦𝑟𝑜𝑥: Angular velocity about the x-axis 

𝑎𝑐𝑐𝑦: Acceleration in the y-axis 𝑔𝑦𝑟𝑜𝑦: Angular velocity about the y-axis 

𝑎𝑐𝑐𝑧: Acceleration in the z-axis 𝑔𝑦𝑟𝑜𝑧: Angular velocity about the z-axis 
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To derive the mathematical model for the yaw, pitch and roll of the IMU device, 

equation (1) and (2) [45] were used. The roll and pitch of the that is obtained from the 

mathematical equation are predicted state estimates, �̂�𝑡−1 (Priori estimates).  

α̂t−1 = tan−1 [
accy

accz
] (1) 

β̂t−1 = tan−1

[
 
 
 

−accx

√accy
2 + accz

2

]
 
 
 

 (2) 

The accelerometer only has one signal to determine the orientation, which is gravity. 

Hence it is not straightforward to determine the yaw of the device as yaw will be the 

rotation about the axis of gravity and reading on the accelerometer for this axis will 

not change for this motion.  

The measurement of the system is also used to derive the measured output of the 

system. Equation (3) and (4) result in roll and pitch are the measurement from the 

system. 

αt = αt−1 + (gyrox × ∆time) (3) 

βt = βt−1 + (gyroy × ∆time) (4) 

γt = γt−1 + (gyroz × ∆time) (5) 

The yaw can be approximated with only the gyroscope reading along with roll and 

pitch. This reading is prone to drift over time due to the nature of the gyroscope and 

the accumulation of errors as correcting this reading with the accelerometer is not 

possible. This can be seen clearly in Figure 3-11 and Figure 3-12.  

A Kalman filter is designed with equations (6) to (10) with initial estimates x̂t−1/t & 

Pt−1/t. 

Stage 1.1: Predict: Projecting the state ahead 

x̂t/t−1 = Ax̂t−1/t+1 + But (6) 
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Stage 1.2: Predict: Projecting the error covariance ahead 

Pt/t−1 = APt−1/tA
T + Q (7) 

Stage 2.1: Correction: Computing the Kalman gain 

Kt = Pt/t−1H
T(HPt/t−1H

T + R)
−1

 (8) 

Stage 2.2: Correction: Updating the estimate with the measurement 

x̂t/t = x̂t/t−1 + Kt(zt − Hx̂t/t−1) (9) 

Stage 2.3: Correction: Updating the error covariance 

Pt/t = (1 − KtH)Pt/t−1 (10) 

The code in software was written with the help of code by Kristian Lauszus [46], [47].  

 x̂t−1 – Priori Estimate (Angle) is taken from the Accelerometer reading 

 xt – Measurement (Angular Velocity) is taken from the Gyroscope reading 

 A – State transition model = [
1 −∆t
0 1

] 

 B – Control-input model = [
∆t
0

] 

 H – Observation model = [1 0] 

 P – Initial error Covariance = [
0 0
0 0

] 

 Q – Process noise variance - accelerometer & gyroscope = [
0.001 0

0 0.003
] 3 

 R – Measurement noise variance = [
0.03 0
0 0

] 4 

Using the Kalman filter, the noise values in the roll and pitch calculation can be greatly 

filtered and a real time, accurate signal can be obtain as shown in Figure 3-115. A 

further calibration routine was programmed to initialize the values of the IMU at zeros 

at the start in order to remove any static bias in the device [48].  

                                                 

3 Tested through trial and error and supported with work by Lauszus [51] 

4 Tested through trial and error and supported with work by Lauszus [51] 

5 Video demonstrating the performance of the Kalman filter: https://youtu.be/idYYBqs3buA. 
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Figure 3-11 – Kalman filter performance 

 

Figure 3-12 – Drift of signals while stationary on flat surface. Yaw axes drift with time. 

The cycle time with 4 IMU sensors running real-time Kalman filter was found to be 

12.5ms (80Hz). However, the sampling time was set to 25ms (40Hz) while eight 

Kalman filters were operating at max capacity in the background 

 Verification of angles 

A simple test rig was made to verify the angles output by the Kalman filter designed. 

The roll and pitch figures of all 4 Kalman filters was measured at the same time by 

fixing it on to the same breadboard as shown. 
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Figure 3-13 - IMU testing setup [original in color] 

The test rig was fixed at different angles and the readings on the Kalman filter was 

recorded. Figure 3-14 and Figure 3-15 show the readings with their reference signals. 

It can be seen that all 4 IMU devices provide an accurate reading with relatively low 

error. 

 

Figure 3-14 – Verification of roll angles 

against fixed reference 

 

Figure 3-15 – Verification of pitch 

angles against fixed reference 

Although over a short period of time the angles appear to be accurate, the drift of each 

sensor while maintaining the same angle must be closely measured. This can be seen 

in Figure 3-16 over a period of 25 seconds. It can be seen that the drift is very small 

and can be considered negligible. The range between the minimum and maximum 

values recorded were 0.25, 0.2, 0.14 0.14 degrees respectively for each of the sensors. 
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Figure 3-16 – Roll stability over a period of 25 seconds 

The accuracy of the sensors should be measured while they are in motion. It can be 

seen from Figure 3-17 that the sensors closely match to the value of each other. The 

reference in this graph is estimated by manual observation through a slow-motion 

video. All the IMU values are very close to the reference value and there seems to be 

a second order response from each device. There is also a very important phenomenon 

that is seen by the graph in Figure 3-17. There is a phase delay between the each IMU 

where IMU 1 has the largest phase delay and IMU 4 has almost no delay. This occurs 

due the execution of the Kalman filter. As the program is written sequentially, IMU1 

is calculated before IMU2 readings are monitored and so on. As a result, when the 

IMU data is requested, IMU 1 will have a reading that is in the past compared to the 

reading in IMU 2 and so on. However, for this test, the readings are within tolerance. 

 

Figure 3-17 – Verification of roll angle accuracy in rapid motion 
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 Wi-Fi Communication 

Wireless communication is important in this project in order to enable the connectivity 

between the glove and the processing unit driving the classification algorithm. The 

glove comprises of its own processor which conducts the filtering of the data in real-

time. The data is then transferred in packets to the RPi. 

For this project multiple gloves require connectivity to a single centralized processor. 

This is enabled by transmitting data over Wi-Fi. To achieve the same connectivity, the 

paper by Mukhopadhyay et al. [49] summarizes 3 other networks which include 

ZigBee, Bluetooth and WiMAX. With reference to this list it can be decided that given 

the application, data rate and the general availability of the technology, Wi-Fi is the 

best suited technology to be used. Out of the protocols used to communicate over Wi-

Fi, the MQTT (Message queuing telemetry transport) communication protocol is one 

of the most used methods which is also majorly used in the field of IoT devices. MQTT 

is an extremely light weight machine to machine connectivity protocol which works 

on the principle of publishing and subscribing to messages [50]. 

In order to prevent the complete bandwidth of the communication protocol getting 

used up during transmission, burst communication and continuous communication 

was used based on bandwidth usage. The transmission method is completely 

controlled by the user or the RPi that is receiving the data. 

 Burst mode (20 - 30 Samples sent at 40Hz) - Used when multiple gloves are 

used at once or collecting specific data samples. 

 Continuous mode (Continuous at 40Hz) - Used for continuous classification 

when only one gloves is operational. 

The worst case scenario (WCS) for one transmitting device over MQTT is calculated. 

Number of bits in a single reading = (7 × 8) = 56 bits 

Number of bits in a single sample WCS  = (56 × 16) + (8 × 15) = 1,016 bits 

Number of bits in a sample with header = 1016 + (25 × 8) = 1,216 bits 

Number of samples per second at 40Hz = (1216 × 40) = 48,640 bits/sec 
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The access point hardware used to enable the communication has a transfer speed up 

to 1,200,000 bits/second. As a result, 48,640 bits/second published by 1 glove over 

MQTT or 243,200 bits/second published by all 5 gloves over MQTT is not a strain to 

the Wi-Fi network (Header size estimated to be 25 bytes for this example [51]). 

However, the limitation lies within the speed of the RPi and the data transferring 

efficiency of the MQTT protocol itself. As per the experiments carried out by the team 

Flespi platform [52] it can be seen that the RPi with MQTT over Wi-Fi with SSL has 

a data transfer speed of approximately 48,003 bits/s. This means that only one glove 

can be used in its full capacity at time without saturating the network. The control over 

which glove can transmit at a time will be given to the RPi to ensure collision 

avoidance. 

The glove will continuously publish the status messages over different topics of the 

MQTT network in order to provide necessary information. These signals include  

 “GLOVE STARTED” to indicate the glove in online. It is also be used to 

determine if the glove processor has forcibly undergone an automatic reboot to 

an error in the program or hardware. 

 “MQTT RECOVERED” to indicate when the glove connects to the MQTT 

server. This also signify if and when the signal dropped during transmission. 

 “INTERRUPT CRASH” to indicate the Kalman filters on the glove has not 

have sufficient time to execute which results in duplication of previous values. 

 Data Pre-processing 

Data pre-processing is the step of formatting and adjusting the data such that it is 

understandable to the learning algorithm and that differentiable features are 

highlighted. The raw data that is filtered can be passed through a number of different 

algorithms in order to obtain values that are able to give a better overview of the data. 

 Data Preparation 

The data sent from the glove for pre-processing are the raw data and filtered data (see 

section 3.6) from the IMU devices on the gloves. The four IMU devices output 36 raw 

signals monitored on the glove and are listed in Table 3-3. Out of the 36 data monitored 

on the glove, there are 15 values that are sent from the glove. The data prefixed include 
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the value of the data collection iteration and the serial number of the person collecting 

the data. The data suffixed includes the type of activity being collected. 

Table 3-3 - Raw glove signals selected for Pre-processing (dark shade) 

Middle finger 

(IMU1) 

Index finger 

(IMU2) 

Thumb 

(IMU3) 

Backhand 

(IMU4) 

𝒂𝒄𝒄𝒙 ✗ 𝑎𝑐𝑐𝑥 ✗ 𝑎𝑐𝑐𝑥 ✗ 𝑎𝑐𝑐𝑥 ✓ 

𝒂𝒄𝒄𝒚 ✗ 𝑎𝑐𝑐𝑦 ✗ 𝑎𝑐𝑐𝑦 ✗ 𝑎𝑐𝑐𝑦 ✓ 

𝒂𝒄𝒄𝒛 ✗ 𝑎𝑐𝑐𝑧 ✗ 𝑎𝑐𝑐𝑧 ✗ 𝑎𝑐𝑐𝑧 ✓ 

𝒈𝒚𝒓𝒐𝒙 ✗ 𝑔𝑦𝑟𝑜𝑥 ✗ 𝑔𝑦𝑟𝑜𝑥 ✗ 𝑔𝑦𝑟𝑜𝑥 ✗ 

𝒈𝒚𝒓𝒐𝒚 ✗ 𝑔𝑦𝑟𝑜𝑦 ✗ 𝑔𝑦𝑟𝑜𝑦 ✗ 𝑔𝑦𝑟𝑜𝑦 ✗ 

𝒈𝒚𝒓𝒐𝒛 ✗ 𝑔𝑦𝑟𝑜𝑧 ✗ 𝑔𝑦𝑟𝑜𝑧 ✗ 𝑔𝑦𝑟𝑜𝑧 ✗ 

𝜶 ✓ 𝛼 ✓ 𝛼 ✓ 𝛼 ✓ 

𝜷 ✓ 𝛽 ✓ 𝛽 ✓ 𝛽 ✓ 

𝜸 ✓ 𝛾 ✓ 𝛾 ✓ 𝛾 ✓ 

The data collected will have a dimension of (μ, 18) (15 signals + 1 user data + 1 

activity), where μ is the number of data points. This dataset is then fed in to the training 

algorithm where it is split to 2 segments, Input data denoted by Xraw and output data 

denoted by yraw. yraw contains the output or the reference number of the activity. 

dim (Xraw) = (μ, 17) 

dim (yraw) = (μ, 1) 

As the data collected for this project are from a practical scenario using physical 

sensors, there are instances where the sensors, hardware, network connectivity or 

software have failed and there are missing data in the observations. The SciKit-learn 

library set providers an imputer class which provides 4 simple methods to handle 

missing data [53]. These include replacing the missing data with the mean, median, 

modal value or a constant value. For the designed glove, when there is an error in the 

sensors, hardware or the network connection, there is a time-out triggered by the 

central processor as seen in section 3.5.2. As a result of this, any missing data in the 

observations will be from the last section of collected data. Therefore, it was decided 

to ignore the final row of the observation if it contains any missing values. Missing 

data can also be identified in the form of lack of data points. There is an activity time 
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window defined for detecting a gesture in section 1.2.2. If the collected data in an 

iteration has less data points than the required data points in the window of 

observation, the entire iteration will be ignored. 

Categorical data such as the type of activity in output cannot be computed by machines 

unless they are converted to numerical values. The output here is given as one of the 

selected gestures in Table 1-1. These values were transformed to numerical values by 

the data collection process by encoding each value in this category to the number seen 

in the first column in Table 1-1. 

dim (𝑦𝑀𝐿) = (𝜇, 1) 

This method is suitable for most classical machine learning algorithms. However, 

assigning a column for each output category is beneficial for neural networks as each 

output category can be assigned to an individual output node on the neural network. 

This converts the output array of dimension (μ, 1) to an output array of (μ, 12), where 

x is the number of data points. 

dim (yNN) = (μ, 12) 

Once the data is prepared, the input data, X is preprocessed to obtain meaningful 

information from the data. The feature extraction/pre-processing is done in two stages 

in order to make maximum use of the processing capabilities and processing time. 

 

Figure 3-18 – Stages of Data Pre-processing 

Dataset, 𝑋𝑟𝑎𝑤 

(𝜇, 17) 

Stage 

1 

Stage 

2 

Expand with finger bend, 𝑋𝐸𝑓 

Expand with gradients, 𝑋𝐸𝑑 

Separate data to windows 

Expand with stats & FFT, 

𝑋𝐸𝑠, 𝑋𝐹𝑖 
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 Stage 1: Includes functions that transform the entire array of data without any 

regard for the output value or collection iteration of the data. 

 Stage 2: Includes functions that dissect the data in to individual iterations and 

further dissect the data to windows to ensure that window contains exactly the 

number predefined data points needed. 

 Pre-processing: Stage 1 

This stage of pre-processing includes functions that apply to the entire dataset 

irrespective of the output value of the iteration number. For example: The raw, pitch 

and yaw data received from the IMU processed to determine finger pose. 

Finger bend 

The placement of the sensors for the glove described in section 3.1.2 was such that the 

bend of the thumb, index and middle fingers can be determined by equation (11), 

where α is roll. 

finger_bend𝑡 = backhand αt − finger αt (11) 

 

Figure 3-19 – Finger angle determination 

Finger Rotation 

The thumb has 3 DOF (see section 3.1.2) which allows the thumb to move around to 

the front of the hand. This motion is measured similar to equation (11) where β is pitch. 

Backhand 

IMU 

Finger 

IMU β1 
β2 

β3 

Knuckle 

MCP joint 

PIP joint 

DIP joint 
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thumb_rotationt = backhand βt − thumb βt (12) 

The 3 finger bend and 1 thumb rotation calculation output values are added to the input 

array, 𝑋𝑟𝑎𝑤, which expands this array by 4 columns. 

dim (XEf) = (μ, 21) 

Gradients of raw values, accelerometer magnitude and averaging 

The gradient or the differential of values is an important to calculate for certain data 

columns. As seen in section 3.6, the yaw axis of the IMU does not provide a steady 

signal respect to a fixed reference. The signal is arbitrary and is prone to drift over 

time. Therefore, equation (13) was used to obtain the change in yaw between two data 

points than the yaw provided by the glove, where γ is yaw. 

∆γt = γt − γt−1 (13) 

Calculating the same for all roll and pitch angles shows the amount of absolute 

movement in a unit measured time. This is also done for each of the finger bends and 

the thumb rotation 

∆finger_bendt = finger_bendt − finger_bendt−1 (14) 

∆thumb_rotationt = thumb_rotationt − thumb_rotationt−1 (15) 

3-point averaging 

The accelerometer data obtained from the glove is unfiltered data. In order to remove 

certain amount of noise from the accelerometer data the averaging method was found 

to be reasonably effective. The accelerometer data is sent through a 3-point window 

average to obtain the filtered accelerometer data. 

acct =
acct−1 + acct + acct+1

3
 (16) 

The accelerometer raw data and filtered data are both used to calculate the magnitude 

of the accelerometer readings [36] in each data point. 



 
37 

|acct| = √accx
2 + accy

2 + accz
2 (17) 

In order to execute the gradients and averaging functions a number of past data and 

future data is required. As a result, the algorithm cannot be run throughout the entire 

dataset as the data is not a continuous collection of data. As a result, the data is 

temporarily split to individual iterations as each iteration consists of 1 attempt to 

capture data. The data in each iteration is then sent through the algorithms. This results 

in the loss of 1 data point each from the beginning of each iteration and end of each 

iteration, resulting in the rows in the dimension of array, 𝑋𝐸𝑓 being reduced to μ − 2i, 

where 𝑖 is the number of iterations of data collection  

Finger Abduction and Adduction 

The movement of the fingers closer and further apart can be measured as the motion 

in yaw axis. As the motion in the yaw axis, as described earlier is arbitrary in relative 

position, the difference in motion in yaw axis is used for this. 

finger_abduction = backhand ∆γt − finger ∆γt (18) 

 

Figure 3-20 – Finger angle determination 
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With the addition of all the data calculated from equations (11) to (18), a total of 27 

new data columns are added to the input array, 𝑋𝐸𝑓.  

dim (XEd) = (μ − 2i, 48) 

 Pre-processing: Stage 2 

In this stage important information or features are extracted from the sensor data by 

passing it through a number of algorithms. As most of the algorithms in this stage are 

designed to evaluate the data point, the input dataset, 𝑋𝐸𝑑 is first split to individual 

iterations and then again split to individual windows of data. 

As this is the final step in pre-processing, the initial columns of the input data which 

provides the serial number of the user and the iteration number are separated. 

dim (XEdw) = (μ − 2i, 46) 

Pre-processing for Machine Learning 

Some of the feature extraction methods used commonly in activity recognition are 

shown in section 2.2. These feature extraction methods along with some customized 

algorithms for feature extraction from the designed glove is mentioned in this section. 

The algorithms in this section were implemented in Python using pre-defined libraries 

in order to ensure the calculation of the features were efficient. These pre-defined 

libraries were used from the built in libraries NumPy [54] and SciPy [55]. For 

algorithms that do not have pre-defined functions, a function was written. 

Raw Values 

One of the values that are used for the input dataset are the actual raw values obtained 

from the glove and stage 1 pre-processing. The list of values in the window are 

flattened to a 1-dimensional array of data. 

Histograms 

Histogram method, specifically histogram of gradient is generally an algorithm used 

in human detection in images and it has been used in a paper by Jain et al. [41]. In this 

algorithm, the data of each 1-dimentional array are binned to non-overlapping bins, 



 
39 

where 𝜌 is the threshold. Use of histograms allows the ML algorithm to prioritize 

certain range of values over others. 

High negative: xt − xt−1 < −ρ 

static motion:−ρ ≥ xt − xt−1 ≥ ρ 

High positive: xt − xt−1 > ρ 

(19) 

 3-bin Histogram of data – Histogram of data split to 3 bins with varying 𝜌 

o Accelerometer data (bin threshold at ±1000) 

o Differential roll and pitch values (bin threshold at ±5) 

o Differential yaw values (bin threshold at ±10) 

 3-bin Histogram of gradients (HOG) - Histogram of gradient data split to 3 bins 

 12-bin Histogram of absolute bends (HOB) - Histogram of bends calculated 

for angles from 0° – 180° at bin sizes of 15°. 

Statistical Values 

Calculating various statistical values within the window of data is important to obtain 

different information about the datasets that will allow each output to be distinguished 

from each other. A number of algorithms were used as seen in Table 3-4, along with a 

number of algorithms unique to this project. 

Table 3-4 – Statistical formula for pre-processing 

 Equation Ref 

Median: of each column denotes 

midpoint of its frequency distribution. 

med (x) [36] 

Mean: The mean provides the average 

value of each column in the dataset 

Equation 20 

x̅ =
∑ xi

N
i=1

N
 

[6], 

[39], 

[56] 
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Variance: The power of the given 

column of values with its mean 

removed 

Equation 21 

Varx =
∑ (xi − x̅)2N

i=1

N
 

[6], 

[36], 

[56] 

Standard Deviation: The deviation of 

the values from the mean value in a 

window. 

Equation 22 

SDx = √
∑ |xi − x̅|2N

i=1

N
 

[37], 

[8], 

[56] 

Minimum/Maximum: Provides the 

min and max values in a given window 

min (x) 

max (x) 

[8], 

[35] 

RMS: Square root of the average power 

of a dimension. 

Equation 23 

RMSx = √
1

N
∑ (xi)2

N

i=1
 

[6] , 

[36], 

[39] 

Skewness: Indicates the lack of 

symmetry in a dimension 

Equation 24 

Skewx =

1
N

∑ (xi − x̅)3N
i=1

(
1
N

∑ (xi − x̅)2N
i=1 )

3 

[6], 

[39] 

Kurtosis: indicates the shape of 

distribution of the data in a given 

dimension 

Equation 25 

Kurtx =

1
N

∑ (xi − x̅)4N
i=1

(
1
N

∑ (xi − x̅)2N
i=1 )

2 

[6], 

[36], 

[39] 

Median Absolute Deviation: This 

provides the absolute deviation of the 

data from the central value. 

Equation 26 

MedADx

= √
∑ |xi − med(x)|2N

i=1

N − 1
 

 

Mean Absolute Deviation: This 

provides the absolute deviation of the 

data from the average value. 

Equation 27 

MADx = √
∑ |xi − x̅|2N

i=1

N − 1
 

[36], 

[57], 

[56] 
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*custom algorithm 

Zero Crossing rate: This is a count of 

times the data changes its’ sign in a 

given window 

*custom algorithm 

Equation 28 

count if xtxt−1 < 0 

[56], 

[34] 

Slope sign change: This is a count of 

times the gradient of the data changes 

its sign in a given window 

*custom algorithm 

Equation 29 

count if (xt − xt−1)(xt−1 − xt)

< 0 

[34] 

Waveform Length: This calculates the 

area under the curve of the differential 

value graph. 

*custom algorithm 

Equation 30 

l = ∑ |xk − xk−1|
L

k=2
 

[34] 

The statistical calculations are performed on each of the raw values and the finger bend 

values. 

Linear Velocity 

A number of activities such as “push” and “pull” have very similar hand spatial 

orientations and equal but opposite temporal movements. There are not many 

significant features that are identified to distinguish between similar activities of this 

nature. As such linear velocity algorithm was introduced which calculated the area 

under the curve for each of the accelerometer descriptors in order to obtain the velocity 

in a given window. 

ẋ = ∑ xt

N

t=0
 (31) 

Fourier Descriptors 

Fourier descriptors have also been referenced in [41], [10] and [8]. Using the variables 

in the frequency domain adds many advantages to the classification algorithm. As the 
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data collected here are invariant to translation, rotation and scaling in the time axis 

[41], the data collected in any orientation and hand size can be captured. To achieve 

the suitable FD’s for this project; 

1. The mean of the selected data window is obtained 

2. The centroid distance is found using equation (32). 

d(t) = √(∆αt − ∆α̅̅̅̅ )2 + (∆βt − ∆β̅̅̅̅ )
2
+ (∆γt − ∆γ̅̅̅̅ )2 (32) 

3. The Fourier coefficients are then calculated using the fast Fourier transform 

(FFT) which is a computationally equivalent to discrete frequency 

transformation equation in (33). 

DFTN =
1

N
∑ d(t)e

−j2πnt
N

N

t=1
 (33) 

Pre-processing for Convolutional Neural Network 

The data for a convolutional neural network is prepared in images to match the 

standard convolution neural network frameworks. A 3-channel image is prepared for 

each data point. 

 Channel 1: Raw values obtained from stage 1 pre-processing 

 Channel 2: Magnitude of FFT values from values from stage 1 pre-processing 

 Channel 3: Phase of FFT values from values from stage 1 pre-processing 

The data pre-processed for machine learning at stage 2 cannot be used as the values 

obtained from this are up to 12-point values and cannot be used to fill an entire column 

on an image with meaningful patterns. 

Standard applications for CNN use 2-dimensional FFT to pre-process data. However, 

as individual columns contain no related information to each other, any meaningful 

data may be lost if FFT is applied across the columns. Therefore, 1-dimensional FFT 

is applied across individual rows where rows denote the temporal space. 

FFT = {
n = 2r        if even
n = 2r + 1  if odd

 (34) 
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Where 𝑟 = 1,2,⋯
𝑁

2
− 1 

This results in a 4-dimensional array, 𝑋𝐹𝑖; 

 First Dimension:  Data points 

 Second Dimension: Window size (height of image) (20 or 30) 

 Third Dimension: Width of pre-processed dataset (width of image) 

 Fourth Dimension: Channel 

dim (XFi) = (μ − 2i , window , 46 ,3) 

Table 3-5 – 3-channel activity images derived from raw data and FFT values of data 

00 
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Examples of the 30 window activity images identified by these projected to the RGB 

color space is shown in Table 3-5 (also see Appendix 4). It can be seen that, although 

all the RGB images look in differentiable, the patterns on the each of the images shown 

in Appendix 4 have distinctly identifiable structures that have formed for each activity. 

At the end of pre-processing the data is ready to be passed to the ML algorithms. The 

dimensions of the final data depend on the number of data points collected per 

iteration. A data point is considered as a row of input information containing the 

dimension (1, 17). Considering 35 data points in 1 iteration. There will be 33 data 

points once the pre-processing is complete. If the classification window size is 30, this 

results in 4 data windows for classification. This segmentation is done 

programmatically by looping through the data. 
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 Feature Scaling 

Feature scaling is a critical step in both machine learning and neural network 

algorithms. This involves scaling all the data in the input dataset to the same range of 

data in order for the learning algorithm to not have any bias. 

Standard Scaler 

The standard scaler algorithm is a built-in Gaussian scaling algorithm in the SciKit-

learn preprocessing class which standardizes the features by removing the mean and 

scaling the values to unit variance [58]. 

x̂ =
x − x̅

std(x)
 (35) 

Majority of the values are varying close to the center of the range and the extremities 

are used very rarely. This resembles a standard Gaussian distribution (normal 

distribution). Passing these values through a Gaussian scaler which will apply a larger 

scale factor to the center of the distribution and a smaller scale factor to the extremities 

will result in in a linear series of sensor data for easy classification. 

Maximum Absolute Scaler 

This scaler was designed for the pre-processing of activity images. This method scales 

the entire dataset from +1 to -1 in order to ensure that the images formed have the same 

maximum and minimum values. 

x̂̂ =
x̂

max(|x̂|)
 (36) 

Using the data preprocessing explained in the section, the raw data from the sensors 

were cleaned to remove missing data and they were processed in to more meaningful 

data that can be used to discriminate activities from each other. New algorithms were 

introduced in order to reinforce the discrimination of data value between activities. 

Further all data fields were scaled between the fixed values in order to remove any 

bias in the classification process. 
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4. LEARNING MODEL DEVELOPMENT AND RESULTS 

This section of the thesis is mainly a discussion of the results from the performance of 

machine learning algorithm for the Prototype 2 glove designed for this project. 

 Data Collection 

The testing data was collected on a simulated industrial environment. The overall data 

collection summary can be seen in Table 4-1. 

Table 4-1 – Test data points collected by participants 

Participant 1 2,637 Participant 5 2,829 Participant 8 2,396 

Participant 2 1,955 Participant 6 2,038 Participant 9 2,038 

Participant 3 2,123 Participant 7 2,246 Participant 10 2,098 

Participant 4 2,322     

A total of 54,303 training data points were collected from my hand in all orientations 

of each activity to ensure the machine learning algorithm can be properly trained. Each 

test participant has up-to two random and different orientations for each activity. As 

the training data is only collected from only one participant, there is a general bias in 

the data and may not be able to accurately capture the differences from one participant 

to another in a wider participant scope.  

Based on prior research detailed in section 2.2, a number of machine learning 

algorithms have been selected to classify the preprocessed data 

Classical machine learning 

 Support vector machine (SVM) 

 K-nearest neighbors (k-NN) 

 Random forest (RF) 

 Decision tree (DT) 

 Linear discriminant analysis (LDA) 

Deep learning 

 Convolutional neural 

network (CNN) 
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The machine learning algorithms were implemented in Python with the help of SciKit 

libraries while the deep learning/neural network algorithms were implemented in 

Python with the help of SciKit, Tensor Flow and Keras libraries. 

 Classical Machine Learning 

Once the training and the testing data have been collected, they were preprocessed 

with two-Stage pre-processing (See sections 3.8.2 and 3.8.3) and feature scaling (See 

section 0) 

When building the initial pre-processing algorithm list, a number of a trial and error 

iterations were done to identify the suitable pre-processing algorithms. This was done 

based on error analysis. Using the training set and data from participant 1 as the 

development set, the errors identified by the ML algorithms were analyzed.  

Table 4-2 – CM - SVM classifier with the RBF kernel 

CM 
Actual 

0 1 2 3 4 5 6 7 8 9 10 11 

P
re

d
ic

ti
o
n

 

0 452 132 1 9 107 0 42 230 42 0 1 185 

1 71 655 4 6 4 0 245 1 0 141 0 9 

2 0 0 236 112 0 0 1 21 0 0 0 0 

3 0 0 152 246 0 0 0 0 0 0 0 0 

4 1 25 0 0 35 0 0 5 0 0 0 4 

5 190 58 0 0 85 942 54 63 0 0 86 0 

6 0 0 0 0 0 0 14 74 0 0 0 0 

7 0 0 0 0 0 0 0 362 0 0 0 0 

8 0 0 0 0 0 0 0 0 508 2 0 0 

9 0 0 0 0 0 0 0 0 0 586 0 0 

10 365 0 0 0 0 423 0 0 0 0 1 0 

11 0 0 0 0 0 88 0 211 0 53 0 304 
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 Error Analysis 

The confusion matrix (CM) for the SVM classifier with radial-basis function (RBF) 

kernel for a prior training model that reached 75% accuracy is shown in Table 4-2. 

The data labels from 0 to 11 are the same labels detailed in Table 1-1. 

It can be seen from the error analysis performed in Table 4-3, a large amount of errors 

may be resulting from the lack of a few algorithms that can be put in place for the pre-

processing. 

Table 4-3 – Initial Error analysis for CM for SVM classifier 

Actual Prediction Suggested solution 

Push Point 
Linear movement of the hand is not recorded 

in pre-processing. This was added with 

equation (31). 

Point Hold & walk 

Hold Hold & walk 

Wipe Point 
A slope changing rate must be introduced to 

identify rapid back and forth movements. This 

is seen in section 3.8.3. 

Walk Wipe 

Pull Wipe 

Push Turn 
Angular movement each sensor must be 

further deconstructed. This was done using a 

histogram of gradients in section 3.8.2 

Tighten Loosen 

Loosen Tighten 

Point Hold 

Finger bend values must be explicitly defined. 

This was done in section 3.8.2. 
Turn Point 

Pick Point 

The CM after adding the algorithms suggested in Table 4-3 can be seen in Table 4-4. 

The highlighted cells in Table 4-2 which signifies the highest misclassification 

numbers are the same in Table 4-4. The overall accuracy for the classifier with updated 

pre-processing is 88.0%, which is an improvement of 17.3%.  
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Table 4-4 – Updated CM - SVM classifier with the RBF kernel 

CM 
Actual 

0 1 2 3 4 5 6 7 8 9 10 11 
P

re
d

ic
ti

o
n

 

0 221 0 0 0 0 16 0 0 0 0 0 0 

1 0 255 0 0 0 0 0 0 0 0 0 0 

2 0 0 79 2 0 0 0 0 0 0 0 0 

3 0 0 157 87 0 0 0 0 0 0 0 0 

4 0 0 0 0 53 0 0 0 0 0 0 0 

5 0 0 0 0 0 216 0 0 0 0 0 0 

6 0 0 0 0 0 0 10 0 0 0 0 0 

7 0 0 0 0 0 0 0 52 0 0 0 0 

8 0 0 0 0 0 0 0 0 118 0 0 0 

9 0 0 0 0 0 0 0 0 0 388 0 0 

10 0 0 0 0 0 0 0 0 0 0 82 0 

11 0 0 0 0 0 1 0 0 0 26 0 0 

However, it can be seen that most activities continue to be misclassified, due to the 

actions in one activity being partly captured within the other activity. With analysis 

over many different iterations and test scenarios, activities that are persistent 

misclassifications were identified. 

 Tighten  – Commonly classified as loosen 

 Loosen  – Commonly classified as tighten 

 Walk   – Commonly classified as hold & walk 

 Hold & Walk – Commonly classified as walk or hold 

 Hold  – Commonly classified as point or hold & walk 

 Turn  – Commonly classified as walk 

By combining the common fields, where ‘A’ combines tighten and loosen and ‘B’ 

combines walk, hold and walk and turn, an accuracy of 99% is achieved (88% for 
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uncombined version). This was tested with the same classifier to obtain the CM in 

Table 4-5. It can be seen that the result obtained is as estimated. The final accuracy of 

this classifier is 98.8% with an F1 score of 98.9%. 

Table 4-5 – Combined CM - common categories combined 

CM 
Actual 

0 1 A 4 5 6 7 8 B 

P
re

d
ic

ti
o
n

 

0 221 0 0 0 16 0 0 0 0 

1 0 255 0 0 0 0 0 0 0 

A 0 0 325 0 0 0 0 0 0 

4 0 0 0 53 0 0 0 0 0 

5 0 0 0 0 216 0 0 0 0 

6 0 0 0 0 0 10 0 0 0 

7 0 0 0 0 0 0 52 0 0 

8 0 0 0 0 0 0 0 118 0 

B 0 0 0 0 4 0 0 0 493 

The improvement in accuracy for the changes done through error analysis can be seen 

in this section. Although ~99% accuracy was obtained through the combination of 

similar activities, this is not used for the analysis in the remainder of the thesis. The 

improvements to pre-processing will be used while discarding the combination of 

activities, in order to ensure the scope of the project is achieved. 

 Base Performance 

Initially, to identify a base performance, the accuracy of the each of the machine 

learning algorithms was tested with first testing set with the hypothesized values in 

section 1.2.3. This involves checking performance with a 30-sample window with all 

selected pre-processing algorithms. 
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Due to the accuracy-paradox [59] in comparing each of the machine learning 

algorithms, the recall and precision is used. The F1 score is used as a single measure 

the observe both recall and precision. 

F1 Score =
2

1
Recall⁄ + 1

Precision⁄
 

(37) 

Using the F1 score method, the base case scenario is plotted with its classical machine 

learning performance in SVM (with RBF kernel), SVM (with linear kernel), k-nearest 

neighbors (with 𝑘 = 5), random forest classifier (with 𝑛 = 20), linear discriminant 

analysis (with singular value decomposition (SVD)) and Decision tree. The chart is 

shown in Figure 4-1. 

 

Figure 4-1 - Classical ML F1 Score | (Base Case) 30 Window, Level 1 Pre-process 

It can be clearly seen that the performance of the LDA kernel with SVD solver has 

performed well with an average F1 score of 88.7% while SVM classifier with both 

RBF (average F1 score of 88.1%) and Linear kernel (average F1 score of 87.5%) have 

also performed well with the highest single accuracy of about 95% for Participant 9. 

k-NN classifiers have also performed moderately well with the highest F1 score 92.5% 

for Participant 8 while having an average F1 score of about 82.1%.  
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Figure 4-2 – k-Nearest Neighbor performance for k values 3,5,10 and 20 for all 

participants 

The column for the k-NN in the Figure 4-1 only shows 𝑘 = 5. This was chosen by 

experimenting a number of k values where 𝑘 = 5 was selected as the best overall F1 

score for all participants as seen in Figure 4-2. The same was done for random forest 

Classifier to obtain 𝑛 = 20. 

 Window Size 

The same data as the base case scenario can be plotted by adjusting the window length 

to 20 instead of 30 (see Figure 4-3). Very similar results can be seen compared to the 

base case where the LDA and SVM classifiers are outperforming the remaining 

classifiers.  

 

Figure 4-3 - Classical ML F1 Score | 20 Window, Level 1 Pre-process 

By comparing the average F1 scores of all 10 participants against each of the window 

lengths for the top 3 performing classifiers, namely SVM with RBF kernel, SVM with 
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linear kernel and LDA with SVD, a clear picture can be seen on the overall 

performance. This chart is shown in Figure 4-4. From this chart it can be seen that 

 There is a 0.42% and 1.45% increase in F1 score when using a 20-slide window 

for SVM with RBF kernel and k-nearest neighbors with 𝑘 = 5, while there is 

a 2.67% and 0.55% increase in F1 score when using a 30-slide window for 

SVM with linear kernel and LDA. 

 The LDA has the higher average F1 score overall in both window options. 

As the increase in F1 score of 0.42% and 1.45% for using a slide window of 20 over 

30, is far less than the improvement of 2.67% and 0.55% for using a slide window of 

30 over 20, it can be concluded that the performance of the glove for classical machine 

learning is best performed with a window length greater than 20 or equivalently 

0.5seconds. 

Both LDA and Linear SVM work on very similar algorithms where it draws a plane 

between the data points in order to maximize the separability. In my opinion these 

algorithms perform better than the other algorithms are because they create a linear 

boundary in each parameter. A linear boundary is better than other clustering 

algorithms as all activities has spatial and temporal parameters which contains values 

that can be split with a clear boundary. 

 

Figure 4-4 - Classical ML F1 Score Comparison for Window Lengths 

 Manual Dimensionality Reduction 

By observing the results of the error analysis and by trial and error, a manual 
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was done mainly to eliminate the processing time while maintaining the highest 

possible F1 score. 

Table 4-6 – Manual dimensionality reduction level comparison 

Level Selection Dimensions for 

30-window 

Dimensions for 

20-window 

1 All features are selected 2,151 1,636 

2 All features except raw values 755 705 

3 All statistical values and Fourier 

Descriptors only 

704 654 

4 Statistical values only 322 322 

It can be seen from the chart in Figure 4-5, each of the levels have varied 

improvements. These improvements compared to the base case is shown in Figure 4-6. 

From this figure it can be seen that the SVM with RBF kernel classify the data with an 

improvement of 2.5% when there are only statistical values, while the SVM with 

Linear kernel performs well with level 2, 3 and 4. The best improvement of 3.5% and 

1% for the SVM with linear kernel and the LDA respectively is seen with all calculated 

features excluding raw values. This is justified as the raw values are often noisy due 

to the nature of the sensors used. This does not allow the classifier to fit the training 

data well. 

 

Figure 4-5 – Manual dimensionality reduction level comparison 
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Figure 4-6 – Manual dimensionality reduction level to level improvement. 

Using the averaged performance of each of the filters shown in Figure 4-5, the 

conclusion that can be made is shown in Table 4-7. 

Table 4-7 – Classical Machine Learning performance comparison 

 Pre-processing 

Level 

F1 Score Computation 

SVM with linear kernel 2 90.44% High 

SVM with linear kernel 3 89.88% Medium 

SVM with linear kernel 4 89.65% Low 

SVM with RBF kernel 4 89.25% Low 

LDA with SVD 2 89.24% High 

SVM with RBF kernel 3 88.74% Medium 

LDA with SVD 1 88.68% High 

The performance of the SVM is also confirmed by the results from the paper by 

Chathuramali and Rodrigo [60], where the SVM showed a faster computational time 

compared to other classical machine learning implementations. 

 PCA Dimensionality Reduction 

Given the machine learning application needs to run in real-time or close to real-time, 

it is important to reduce the load on the classification algorithm. Principal component 

analysis (PCA) is an algorithm used reduce the feature space of the input array, while 
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retaining as much information as possible. This helps by improving the interpretability 

of the data and reducing the time taken to train and run the algorithm [61]. PCA was 

performed on the training dataset to attempt to reduce the number of dimensions that 

are used. 

 

Figure 4-7 – 10 Highest contributing dimensions with PCA 

Figure 4-7 shows the 10 highest contributing dimensions when PCA is applied to the 

training data. Out of the 2,152 dimensions initially identified, the top 6 dimensions can 

be used to achieve an explained variance ratio of 98.61%. Using the same dimensions 

for the final model running live on the RPi will have significantly better computation 

performance with a total dimensionality reduction of 99.72%. 

 Null Set Classification 

Null set classification is the initial stage of classification of the real data when the 

activity recognition glove is deployed to the industry. A null set is defined in this 

project as the set of activities not defined in the scope of the project. Hand activities 

such as waiting, crossing hands and relaxing. are considered as null sets. 

The data for null set identification is trained by clubbing all the training data collected 

for the project so far against a number of varied hand gestures that do not fall within 

the previously captured hand gestures. Data sets that are classified as null sets from 

this classifier are discarded and the remaining data is fed in to activity classification. 

Since the null set classification needs to be done fast, it will be done through classical 

machine learning using the same data needed for the next stage of classification. As it 
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was seen in section 4.2.3 that data window of 30 pre-processed in stage 2, 3 or 4 is 

suitable, these are tested for null set classification. The averaged performance for the 

null set classification for each of the pre-processing stages is shown in Figure 4-8. 

 

Figure 4-8 – Null set performance for each of the selected algorithms 

It should be specially noted that using SVM with linear kernel for the data set passed 

through level 4 pre-processing obtains an F1 Score 98.91%. This value will 

immediately improve to 100% by passing it through the Post-processing algorithm 

described in section 4.5. 

 Convolutional Neural Networks 

Convolutional neural network (CNN) is a type of deep neural network commonly 

associated with classifying images. The use of CNN is seen in some activity 

recognition algorithms where the activity values are Fourier transformed and arranged 

to form an activity image. A similar approach is used with the activities for this project 

through Stage 2 pre-processing in section 3.8.3. 

Similar to the approach taken with the classical machine learning classification, the 

classification with convolutional neural networks with the activity images shown in 

the Appendix 4, is broken down in this section. 

 Base Performance 

The base performance of the neural network is measured against the values in the 

hypothesis in Section 1.2.3 and the initial convolutional neural network with a number 

of trial and error attempts. This CNN has the structure in Figure 4-9. 
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Initial CNN structure: 

1. Convolution Layer   – 32 x 3x3 Kernel, ReLU Activation 

2. Pooling Layer   – 2x2 Kernel 

3. Convolution Layer   – 64 x 3x3 Kernel, ReLU Activation 

4. Pooling Layer   – 2x2 Kernel 

5. Fully Connected (FC)  – 128 Nodes, ReLU Activation 

6. Fully Connected (FC)  – 64 Nodes, ReLU Activation 

7. Fully Connected (FC)  – 32 Nodes, ReLU Activation 

8. Fully Connected (FC)  – 12 Nodes, Soft Max Activation 

where ReLu is rectified linear unit activation. 

CNN Parameters: 

 Input Image Size: 30 x 46 x 3 

Image height = 30 

Image width = 46 

Image channels = 3 

 Batch Size = 32 

 Optimizer: Adam 

o Learning rate: 0.001 

o 𝛽1 = 0.9, 

o 𝛽2 = 0.999 

o 𝜀 = 1 × 10−7 

 

 

Figure 4-9 – Base CNN structure 
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Figure 4-10 – Base CNN performance 

 

 

Figure 4-11 – Base CNN F1 scores 

It can be seen that the training accuracy quickly rises to 100% while the loss drops to 

very small values within the initial 3 epochs which means that the neural network is 

overfitting the data. The validation data which is the test data of participant 1 is 

saturating at about 85%, close to 18 epochs. However, the validation loss continuously 

increases indicating overfitting of the neural network. Although the neural network 

has high accuracy, the network is not sure of the classifications (low probabilities). 

The F1 scores of the test data from the trained network is shown in Figure 4-11. It can 

be seen that participant 8 has the highest F1 score of 93.9% which the entire test set 

has an average F1 score of 83.8%. 
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 Window Size 

The window size hypothesis was retested as in section 4.2.3. The same data was 

formatted with a window size of 20 and passed through a CNN of the same structure 

as the base case to obtain the results in Figure 4-12. 

  

Figure 4-12 – Base CNN performance 

It can be seen that the CNN performs poorly compared to the base case scenario. This 

can be also seen in the F1 score comparison in Figure 4-13. The highest F1 score is 

obtained at 90.7% for the same participant with an average F1 score dropping to 82.7% 

for the complete test set.  

For CNN’s the performance of a window size of 30 is better than the same with the 

window size of 20. As in classical machine learning, the remainder of the analysis will 

be continued with the images processed with a window size of 30. 

 

Figure 4-13 – Window 20 vs. 30 CNN F1 scores 
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 2 Channel Input Network 

As mentioned in Section 3.8.3, the 2nd and 3rd channel of the 3-channel activity image 

is the Fourier magnitude and the phase. As these two channels also provide rich 

information regarding the movement in each of the sensors, the CNN was retrained 

only using these channels of the image. The performance of this CNN is shown in 

Figure 4-14. The figure shows the CNN starts overfitting instantly and does not 

perform well. 

  

Figure 4-14 – 2 Channel input CNN performance 

Again, it can be seen that the base scenario performs better than the 2-channel input 

CNN. This signifies that the raw data added in channel 1 provides some crucial 

topographies to the image that help the image to be classified better. The F1 score 

average for this CNN was obtained at 78.3% for the complete test set. 

 

Figure 4-15 – 2-channel vs. 3-channel input F1 scores 
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 Error analysis 

In order to test the various effects of the hyper-parameters of the neural network on 

the performance, the network size was initially reduced to a 2 layer network (hereafter 

known as 1-CNN) comprising of 1 convolutional layer and 1 max pool payer  as shown 

in Figure 4-16. The performance of the 1-CNN against the base case scenario is shown 

in Figure 4-17. 

 

Figure 4-16 – 1-CNN structure 

 

Figure 4-17 – 1-CNN vs base case scenario F1 scores 

It can be seen that the 1-CNN performs better than the base case scenario with an 

average F1 score of 86.1% for the entire test set. It can be seen from the graphs in 
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can be seen that when the number of epochs is increased to 500 from Figure 4-19, the 

validation loss quickly explodes. 

As previously stated, it can be seen from graphs in Figure 4-18 and Figure 4-19, the 

training accuracy saturates at 100% early in the training while the validation accuracy 

remains close to 86%. Similarly, the training loss is continuously decreasing beyond 

4.94 × 10−12 within 25 epochs, while the validation loss explodes and reaches about 

5.72 before it saturates at this level at about 300 epochs. This is a clear indication of 

the network overfitting the training data. In order to address this issue, a number of 

regularization methods are used to balance the training and validation metrics. 

From the loss graph in Figure 4-19, it can be seen that the validation loss is moving 

back and forth a number of times. Although it is not visible in the training data, the 

raw values of the training data showed that the values are noisy. This has been 

identified as the learning rate being too high, preventing the model on optimizing to 

the global optima. This can be addressed by adjusting the learning rate of the model. 

Before making changes to the learning rate and regularization hyper-parameters, the 

model was also trained using a sigmoid activation function instead of the ReLU 

activation function to eliminate the possibility of the identified issues arising due to 

the activation function. This showed in Figure 4-20 that although the accuracy did not 

improve, the model is still overfitting and the graph is still noisy. 

In order to adjust the learning rate to ensure that the model is able to optimize to the 

global optima of the parameter space, the learning rate was reduced through trial and 

error. Figure 4-21 shows the performance of the same neural network as Figure 4-18 

with the learning rate reduced by a factor of 10. It can be clearly seen that the noise in 

the validation loss has significantly reduced, and the raw data of the training loss 

reflects the same. 

The classifier used in the network so far is the Adam optimizer (adaptive moment 

estimation) which is a Stochastic gradient decent algorithm that maintains a single 

learning rate throughout [62]. By using a modification of the Adam optimizer such as 

adaptive gradient algorithm (Adagrad) or adaptive delta algorithm (Adadelta) the 

training can be improved. These optimizers maintain a per-parameter learning rate. 
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The Adagrad optimizer manipulates the learning rate during training such that the 

learning rate drops faster for frequent parameters while the learning rate drops slower 

for less frequent parameters [63], [64]. 

  

Figure 4-18 – 1- CNN performance 

  

Figure 4-19 – 1-CNN performance over 500 epochs 

  

Figure 4-20 – 1-CNN performance with sigmoid activation 
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Figure 4-21 – 1-CNN performance with slower learning rate (0.0001) 

  

Figure 4-22 – 1-CNN performance with Adadelta optimizer 

  

Figure 4-23 – 1-CNN performance with Adagrad optimizer 

From the performance of the adaptive learning rate functions shown in Figure 4-22 

and Figure 4-23, it can be seen that the Adagrad algorithms performs the best. 

In order to address the overfitting of the training data, dropout regularization is 

introduced to the training model. Dropout regularization is the technique of randomly 

ignoring a number of units in a neural network in order to efficiently reduce over fitting 

by preventing complex co-adaptations on the training data [65]. Initially a dropout 

regularization ratio (DRR) of 0.2 was tested on the input layer and in the first hidden 
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layer. The performance of these can be seen in Figure 4-24 and Figure 4-25 

respectively. 

  

Figure 4-24 – 1-CNN performance with input layer dropout regularization 

  

Figure 4-25 – 1-CNN performance with hidden layer dropout regularization 

It can be seen that in both instances, the training data does not reach 100% accuracy 

and the training loss is moderately less for the input layer dropout regularization. The 

number was selected with trial and error as high dropout regularization ratios will 

significantly impact performance as seen in Figure 8-12. 

By combining these two hyper-parameter changes we can obtain a suitable 1-CNN. 

This network will consist of the Adagrad optimizer with input dropout regularization 

ratio of 0.01. As seen in Figure 4-27 the new network performs better than the base 

case network with an overall F1 score of 85.1% for the entire test sets. It can be seen 

that the network does not perform as well as the neural network with the Adam 

optimizer and no dropout regularization. However, from Figure 4-26, it can be seen 

that the loss of the new neural network is much lower than the previous case shown in 

Figure 4-19. This means that the neural network has fit the training data quite well and 

the classifications have a higher confidence. 
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Figure 4-26 – 1-CNN performance with optimizer tuning and DRR=0.01 

 

Figure 4-27 – 1-CNN comparison with Adagrad optimizer and DRR=0.01 

Looking at the CM for the neural network in Table 4-8, the errors can be analyzed. It 

can be clearly seen that the errors occurred by the neural network is mostly due to the 

fact that it is not capable of differentiating between the same activities identified with 

the exception for the activity for “hold & walk”. 

Compared to the classical machine learning algorithm, the neural network has been 

able to differentiate the activity hold & walk with its similar activities while failing to 

the differentiate the remaining activities also misclassified by the classical machine 

learning algorithm. By combining these activities, a better performance can be 

achieved by the same neural network. This is seen in Table 4-9 where ‘A’ is the 
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combination of “tightening” & “loosening” and ‘C’ is the combination of “walk” and 

“turn”. 

Table 4-8 – CM – 1-CNN with Adagrad optimizer & DRR=0.01 

CM 
Actual 

0 1 2 3 4 5 6 7 8 9 10 11 

P
re

d
ic

ti
o
n

 

0 208 0 1 0 0 25 0 0 0 0 3 0 

1 0 250 5 0 0 0 0 0 0 0 0 0 

2 0 0 80 1 0 0 0 0 0 0 0 0 

3 0 0 240 4 0 0 0 0 0 0 0 0 

4 0 0 0 0 3 0 0 0 0 0 0 0 

5 0 0 0 0 0 263 0 0 0 0 3 0 

6 0 0 0 0 0 0 10 0 0 0 0 0 

7 0 0 0 0 0 0 0 52 0 0 0 0 

8 0 2 2 0 0 0 0 0 114 0 0 0 

9 0 0 0 0 0 0 0 0 0 388 0 0 

10 0 0 0 0 0 0 0 0 0 0 82 0 

11 1 0 0 0 0 0 0 0 0 26 0 0 

This improves the accuracy from 85% for the classifier without activity combination 

to 97.67% for the classifier with activity combination. 

  

Figure 4-28 – Combined 1-CNN performance with optimizer tuning and DRR=0.01 
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Table 4-9 – Combined CM -  activities for 1-CNN with Adagrad optimizer & DRR=0.01 

CM 
Actual 

0 1 A 4 5 6 7 8 C 10 

P
re

d
ic

ti
o
n

 
0 208 0 1 0 25 0 0 0 0 3 

1 0 250 5 0 0 0 0 0 0 0 

A 0 0 325 0 0 0 0 0 0 0 

4 0 0 0 3 0 0 0 0 0 0 

5 0 0 0 0 263 0 0 0 0 3 

6 0 0 0 0 0 10 0 0 0 0 

7 0 0 0 0 0 0 52 0 0 0 

8 0 2 2 0 0 0 0 114 0 0 

C 0 0 0 0 0 0 0 0 414 0 

10 0 0 0 0 0 0 0 0 0 82 

The important checkpoints of each of the testing iterations done for identifying the 

best-case scenario can be found in the Appendix 5. 

 Post Classification Processing 

The post classification processing algorithm is a novel algorithm was written with the 

idea that classified activities within a short window cannot switch back and forth 

rapidly. In other terms, an activity recorded for 𝑡 =  1, 2, 3 cannot switch to another 

activity at 𝑡 =  4, 5 and revert back at 𝑡 =  6, 7 …. These changes are identified in 

the classification and adjusted by passing through a categorical low pass filter. This is 

implemented in Python code. 
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def postProcess (y, preWindowSize, postWindowSize, threshold): 

 

  for i in range (preWindowSize, (np.size(y)-postWindowSize)): 

    window = y[i-preWindowSize:i+postWindowSize+1] 

    pred = [0] * (np.amax(y)+1)  

 

    for j in range (0,len(window)): 

      val = int(window [j]) 

      pred[val] += 1 

     

    maxVal = np.amax(pred) 

    if maxVal >= threshold: 

      maxIndex = pred.index(max(pred)) 

      y [i] = maxIndex 

 

  return y 

Using the function, the window length (before & after the current value) for the filter 

as well as the threshold can be set manually. 

 

Figure 4-29 – Visual representation of Post Processing algorithm 

For this project, through a number of trial and error attempts it was identified that the 

post processing algorithms needs to be implemented twice with the different 

parameters 

 Pass 1 – pre-window = 1, post window = 1, threshold = 2 

 Pass 2 – pre-window = 30, post window = 10, threshold = 31 

Using these two passes in each of the classical machine learning algorithm output and 

convolutional neural network output, the chart in Figure 4-30 is seen. 

Input array 

Pre-Window Post Window 

Current Value 

Identify modal category if greater than threshold 

then update current value 
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Figure 4-30 – Post processing results from 15 tests done with classical ML and NN 

classifiers 

Table 4-10 – Example CM prior to passing through post processing algorithm 

CM 
Actual 

0 1 2 3 4 5 6 7 8 9 10 11 

P
re

d
ic

ti
o
n

 

0 125 0 0 0 0 0 0 0 0 0 0 0 

1 0 107 0 0 0 0 0 0 0 0 0 0 

2 0 0 71 34 0 0 0 0 0 0 0 0 

3 0 0 6 115 0 0 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 0 0 0 

5 0 0 0 0 0 71 0 0 0 0 0 0 

6 0 0 0 0 0 1 19 0 0 0 0 0 

7 0 0 0 0 0 0 0 10 0 0 0 0 

8 0 0 0 0 0 0 0 0 69 0 0 0 

9 0 0 0 0 0 0 0 0 0 233 0 0 

10 26 0 0 0 0 0 0 0 0 0 156 0 

11 0 0 0 0 0 0 0 0 0 0 0 137 
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It can be immediately seen that the post processing algorithm is capable of correcting 

misclassified data points to provide an F1 Score improvement varying from about 0% 

to 2.5%. There are also a few tests that have been negatively affected by this algorithm 

where correctly classified data are misclassified by this algorithm. 

The CM shown in Table 4-10, is shown prior to passing this data through the post 

processing algorithm. This CM has an F1 score of 94.2%. The CM in Table 4-11 is the 

same output once passed through post-processing algorithm. This has improved the 

overall F1 score to 94.6%, however it can be seen that some of the correctly classified 

data has also been misclassified. 

Table 4-11 – Example CM after to passing through Post processing algorithm 

CM 
Actual 

0 1 2 3 4 5 6 7 8 9 10 11 

P
re

d
ic

ti
o
n

 

0 125 0 0 0 0 0 0 0 0 0 0 0 

1 0 107 0 0 0 0 0 0 0 0 0 0 

2 0 0 69 36 0 0 0 0 0 0 0 0 

3 0 0 5 116 0 0 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 0 0 0 

5 0 0 0 0 0 71 0 0 0 0 0 0 

6 0 0 0 0 0 0 19 0 0 0 0 0 

7 0 0 0 0 0 0 0 10 0 0 0 0 

8 0 0 0 0 0 0 0 0 69 0 0 0 

9 0 0 0 0 0 0 0 0 0 233 0 0 

10 24 0 0 0 0 0 0 0 0 0 156 0 

11 0 0 0 0 0 0 0 0 0 0 0 137 

Through testing, it was found that this algorithm works best for accuracies over 90% 

where a large number of data points are not misclassified. This classifier works best 

when there are only a very few numbers of outliers/misclassifications in the output. 
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5. OVERALL PERFORMANCE RESULTS 

 Hardware Performance 

The design of the prototype 2 glove was done to an intermediate stage due to the 

limitations due to the CoViD-19 lockdown. The intermediate and final designs of this 

prototype consist of very similar design and can be summarized as in Table 5-1 

Table 5-1 - Design specification summary of the smart glove 

Design aspect Value 

Activities selected 12: All activities in Table 1-1 

Sensors selected MPU6050 for back hand and fingers 

Measurements Hand Movement – roll, pitch & differential yaw 

Finger bend, Finger abduction, Thumb rotation 

Glove Cotton dotted glove 

Glove processor WEMOS D1 Mini – ESP8266 

Classification processor Raspberry Pi 4 

IMU filtering Kalman filter on glove 

Pre-processing Statistical and Fourier 

Classification Machine learning, neural network 

Post processing Categorical low pass filter (see section 4.5) 

The design performance of the prototype will be measured in both functional design 

aspects and ergonomic design aspects. 

Overall, the functional design of the glove was very successful. The sensors and the 

transmission methods worked seamlessly with the selected processor to capture the 

required data and transmit as needed. 

The sensors selected for the glove were able to capture all the required motions of the 

fingers from their selected positions. There were a number of errors registered by the 

sensor when manually inspecting the data and this was found mainly to be due to the 
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gimbal lock on the IMU. The PLL axis of the IMU was set to the X-axis to ensure the 

sensor will be in gimbal lock when the hand is facing vertically upwards. This was 

determined to be acceptable as it is very rarely, the hand and fingers will be facing 

straight upwards or straight downwards in an industrial working environment. 

The processor was capable of consisting maintaining a cycle frequency close to 80Hz. 

And very rarely dipped below 60Hz. During these very rare occasions, a message will 

be displayed on the GUI (graphical user interface) to take action against this data. The 

filtered data values were consistently similar to the values obtained in section 3.6.2. 

The transmission network was capable of transmitting all the required data from the 

gloves to the central processor. The data collected in batches were delivered with 

negligible delay. However, a very small delay was seen in the transmission when data 

is collected for a large amount of time. This delay will be negligible for short data 

collection times within 30 minutes. 

With the support of this analysis, the functional requirement of the glove has been 

achieved for the scope of this project. Out of the two versions created, the intermediate 

glove design was created purely to achieve the functional requirement. As seen in 

Figure 3-5, the glove is not suitable for industrial use as it is bulky and contains a 

number of hanging wires that can come undone during normal use. 

 Power Performance 

Power management of the data collection glove is necessary for the selection of a 

suitable battery size that can be coupled with the glove to ensure minimum obstruction 

to the worker. 

The data collection glove uses a ESP8266 processor (see section 3.2.1) and four 

MPU6050 IMU devices (see section 3.1.1). During normal operation the glove is 

continuously collecting data from the sensors, running Kalman filter and publishing 

the data to the classification processor. Due to the use of Wi-Fi continuously the device 

is not able to be placed in any of its sleep modes [66]. 
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Figure 5-1 - Glove current consumption  

By measuring the current draw of the glove during its operation while plugged in to a 

5.02V source, the graph in Figure 5-1 can be observed for the first 120 seconds of 

operation. It can be seen that the device draws 0.12A at start-up and drops down to 

0.07A-0.08A while waiting. During this state, the MQTT protocol is still 

communicating to maintain connection and all sensors and Kalman filters are running 

to maintain accurate values. At 40 seconds, the classification processor has requested 

data and the glove is actively transmitting data. At this stage, 0.12A current is 

consumed at 5.02V. As the glove does not heat up during long periods of use this 

current draw can be assumed to be steady during the full operation of the device. 

Assuming the worst-case-scenario where a glove is to be used throughout the work-

day for six hours and charged at the end of the day with 25% of the battery capacity 

remaining, a 14.5Wh battery will be needed. This requirement can be provided using 

two AA sized Li-ion batteries where each can provide up to 3000mAh at 3.6V [67]. 

Using a battery of this size will enable to glove to be used without any tethers, while 

batteries are attached to the wrist. 

 Machine Learning Performance 

Compared to the findings in similar papers mentioned in section 2.2, the performance 

from both classical ML algorithms and convolutional neural networks have performed 

at par. The hypothesis for this thesis looked at 3 different aspects in section 1.2.3.  

The first hypothesis that for an activity that is assumed to last at least 0.75 seconds a 

moving window of 0.75 seconds was chosen. This was backed up by the results from 

sections 4.2.3 and 4.4.2.  
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The second hypothesis that using sensors from the dominant hand can determine daily 

activities of the wearer such as walking was not verified. The results showed that 

classical machine learning algorithms were not able to distinguish between these 

activities, while CNNs were able to distinguish the ‘holding & walking’ activity. 

Although this result was seen in sections 4.2.1 and 4.4.4, this could be mainly due to 

the lack of appropriate pre-processing algorithms to differentiate these activities. 

The final hypothesis that the skill level or the identity of the worker can be determined 

by the performance of the worker was not entirely verified. In the list of participants, 

participant 2, 3 and 9 were of relatively low skill, and this was seen in the classification 

of the machine learning algorithm. For example, the Figure 4-1 shows the machine 

learning algorithms have misclassified a larger number of data points for the same 

participants compared to the remaining participants. 

However, to approach this hypothesis, a large number of skilled and unskilled 

members will need taken to form a participant pool of about 10,000 participants of 

varying skill level. A multi-stage classification will be required to first classify the 

action of the participants followed by the skill level of the same participant for the 

classified action. As a result of this, the final hypothesis is not achievable. 

It can be seen that the performance of the CNN is lower than the performance most of 

the classical ML algorithms. The discrepancy is expected as all classical ML 

algorithms look at data as numerical values and fit them in to numerical classifications, 

whereas the CNN looks at the data points in terms of patterns and identifies groups of 

features instead of individual data. 

The overall performance for the machine learning algorithms achieved F1-scores 

between 80% to 90%. The Table 5-2 outline a summary of all the tested F1 scores for 

the tested machine learning algorithms. However, it was seen that the training set was 

very often over fit by the machine learning algorithm. To overcome this issue a more 

training data is needed from a large number of participants of varying skill, body 

structure and technique in order to generalize the algorithm performance. 
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The performance of the machine learning algorithms can be further improved by 

combining similar activities. This approach of combining activities was not seen in 

other literature and may be due to similar activities not been considered in their scope. 

- Combining “tightening” with “loosening” and “walking” with “turning” and 

“holding & walking” for classical ML an accuracy of 98.9% is obtained 

- Combining “tightening” with “loosening” and “walking” with “turning” for 

convolutional neural networks an accuracy of 97.7% is obtained 

Table 5-2 – Final Performance Values 

 Parameters F1 Score 
F1 Score 

(Post 

Processed) 

Null set 

Support vector machine 

(linear kernel) 
Level 4 (pre-processing) 98.9% 100% 

Classical Machine Learning 

Support vector machine 

(RBF kernel) 
Level 4 (pre-processing) 89.25% 89.72% 

Support vector machine 

(linear kernel) 
Level 2 (pre-processing) 90.44% 91.28% 

Linear discriminant 

analysis (SVD) 
Level 2 (pre-processing) 89.24% 89.41% 

Classical Machine Learning (Based on Computational Performance) 

Support vector machine 

(RBF kernel) 
Level 4 (pre-processing) 89.25% 89.72% 

Support vector machine 

(linear kernel) 
Level 3 (pre-processing) 89.88% 90.19% 

Linear discriminant 

analysis (SVD) 
Level 4 (pre-processing) 88.4% 89.03% 

Convolutional Neural Network 

1-CNN 3-D activity images 85.15% 86.2% 
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6. CONCLUSION 

This thesis presented the use of a smart glove to perform activity recognition in 

industrial environments. A number of hypothesis was evaluated through the 

experiments carried out. The most suitable activity window size was selected between 

0.5 – 0.75 seconds based on comparison data. The thesis also showed promise that 

measuring the hand movements, extrapolations can be made to certain full-body tasks. 

However, due to the lack of data, the possibility of determining the skill of the worker 

was not verified by this thesis. 

The thesis also introduced a novel approach to post processing classified data using a 

categorical low pass filter which showed improvements in the classification up to 

2.5%. The thesis also showed that classical machine learning algorithms that rely on 

linear discrimination of output performs better than clustering and other classical 

classifications. 

Through these, the activities for industry were classified with F1 score of 91.3% 

through Support vector machine classifier with linear kernel and 86.2% with a 2-layer 

convolutional neural network with pre-processed activity images. By combining 

together similar activities that persistently get misclassified, F1 score of 98.9% and 

97.7% was obtained for SVM and CNN respectively. This implies that the smart glove 

classification algorithm is suitable to be deployed for industrial hand activity 

recognition in both combined and uncombined states. 

As of this thesis the smart glove is limited by its design. As future improvements, the 

glove will be designed to industrial standards and tested on large datasets to be able to 

extract further information such as skill level and identity of the worker. 
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8. APPENDICES 

Appendix 1: Prototype 1 

This section summarizes the work done to design and build prototype 1. The section 

will mostly focus on the sections where this prototype is different from the prototype 

designed for this project, explained in this thesis. 

 

Figure 8-1 - Prototype 1 Holding Screwdriver [Original in color] 

Table 8-1 - Prototype 1 Design Specification Summary 

Design Aspect Value 

Activities Selected 4: Pointing, Wiping, Tightening, Picking 

Sensors Selected MPU6050 for back hand and flex sensors for fingers 

Measurements Hand Movement – Roll and Pitch 

Thumb Bend, Index Bend  

Thumb abduction relative to index finger 

Glove Cotton Dotted Glove 

Glove Processor Arduino Nano 

Classification Processor Raspberry Pi Model B Rev 3 

IMU Filtering Kalman Filter on glove 

Classification Classical Machine Learning, Neural Network 
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A video of the operation can be found here: https://youtu.be/fiLtNbVrMOI 

The model trained for Prototype 1 was entirely based on data that was not pre-

processed. Raw accelerometer data and filtered roll and pitch data was used. The 

model trained with the activities mentioned in 1.3 and satisfactory results were 

obtained where the device was able to classify the data approximately 90% of the time. 

 

Figure 8-2 - Testing Data Accuracy for SVM classification with RBF kernel 

When the RNN was tested the algorithm converged with accuracy of 97.4% and a loss 

of 16.18%. The same as the SVM was done with the Recurrent Neural Network that 

was trained and Figure 8-3 was observed. It can be seen that both the SVM and RNN 

performed very similar with the RNN performing slightly better than the SVM 

classifier. 

 

Figure 8-3 - Testing Data Accuracy for RNN classification 

Figure 8-4 to Figure 8-7show the performance of other classification algorithms that 

were also tested out using the same dataset. This will help point out any other 

classification algorithms that will provide much better results than the SVM or RNN 

classification algorithms. 
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Figure 8-4 - Testing Data Accuracy for 

K-Nearest Neighbor Classifier 

 

Figure 8-5 - Testing Data Accuracy for 

Random Forrest Classifier 

 

 

Figure 8-6 - Testing Data Accuracy for 

Decision Tree Classifier 

 

Figure 8-7 - Testing Data Accuracy for 

Gaussian Naïve Bayes Classifier 

It can be seen that from Figure 8-4 to Figure 8-7, the Random Forrest classifier has 

been the most successful in classifying the data successfully for the given data set. 

Although more data is required to prove that Random Forest Classifier can outperform 

both SVM and the Recurrent Neural Networks, it is the best choice for the current data. 

This finding is backed up by the paper [30] where is states that Random Forests 

provide better classification than SVM and other techniques for human activity 

recognition. If the Random Forrest classifier does perform better the activity 

recognition device can be made very affective as ML algorithms have a faster training 

and prediction time compared to RNN’s 

  

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative



 
91 

Appendix 2: Glove Schematic & PCB Design 

 Finger Board 

  

Back Hand Board 
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Appendix 3: Stage 2 Pre-processing features 

Feature list 

Table 8-2 – Selection of features for stage 2 pre-processing 

Ind. Field Size Level 

1 

Level 

2 

Level 

3 

Level 

4 

0 accX, accY, accZ 90 ✓    

90 roll1, pitch1, yaw1 90 ✓    

180 roll2, pitch2, yaw2 90 ✓    

270 roll3, pitch3, yaw3 90 ✓    

360 roll4, pitch4, yaw4 90 ✓    

450 MBend, IBend, TBend 90 ✓    

540 TRot 30 ✓    

570 MYaw, IYaw, TYaw 90 ✓    

660 Filtered accX, accY, accZ 90 ✓    

750 Magnitude of Acc 30 ✓    

780 Magnitude of Filtered Acc 30 ✓    

810 dRoll1, dPitch1, dYaw1 90 ✓    

900 dRoll2, dPitch2, dYaw2 90 ✓    

990 dRoll3, dPitch3, dYaw3 90 ✓    

1080 dRoll4, dPitch4, dYaw4 90 ✓    

1170 dMBend, dIBend, dTBend 90 ✓    

1260 dMYaw, dIYaw, dTYaw 90 ✓    

1350 dTRot 30 ✓    

1380 Histogram of accX, accY, accZ 9 ✓ ✓   
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1389 Histogram of Filtered accX, 

accY, accZ 

9 ✓ ✓ ✓  

1398 HOG of accX, accY, accZ 9 ✓ ✓ ✓  

1407 HOB of Roll1, Pitch1 24 ✓ ✓ ✓  

1431 HOB of Roll2, Pitch2 24 ✓ ✓ ✓  

1455 HOB of Roll3, Pitch3 24 ✓ ✓ ✓  

1479 HOB of Roll4, Pitch4 24 ✓ ✓ ✓  

1503 Histogram of dRoll1, dPitch1, 

dYaw1 

9 ✓ ✓ ✓  

1512 Histogram dRoll2, dPitch2, 

dYaw2 

9 ✓ ✓ ✓  

1521 Histogram dRoll3, dPitch3, 

dYaw3 

9 ✓ ✓ ✓  

1530 Histogram dRoll4, dPitch4, 

dYaw4 

9 ✓ ✓ ✓  

1539 Histogram magnitude of Acc 9 ✓ ✓ ✓  

1548 HOG of magnitude of Acc 3 ✓ ✓ ✓  

1551 Linear Speed of accX, accY, 

accZ 

3 ✓ ✓ ✓  

1554 Histogram of MBend, IBend, 

TBend 

36 ✓ ✓ ✓  

1590 Histogram of MYaw, IYaw, 

TYaw 

9 ✓ ✓ ✓  

1599 HOB of TRot 12 ✓ ✓ ✓  

1611 Histogram of dMBend, dIBend, 

dTBend 

9 ✓ ✓ ✓  

1620 Statistics of accX, accY, accZ 42 ✓ ✓   
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1662 Statistics of Filtered accX, accY, 

accZ 

42 ✓ ✓ ✓ ✓ 

1704 Statistics of Roll1, Pitch1, Yaw1 42 ✓ ✓ ✓ ✓ 

1746 Statistics of Roll2, Pitch2, Yaw2 42 ✓ ✓ ✓ ✓ 

1788 Statistics of Roll3, Pitch3, Yaw3 42 ✓ ✓ ✓ ✓ 

1830 Statistics of Roll4, Pitch4, Yaw4 42 ✓ ✓ ✓ ✓ 

1872 Statistics of magnitude of Acc 14 ✓ ✓ ✓ ✓ 

1886 Statistics of MBend, IBend, 

TBend 

42 ✓ ✓ ✓ ✓ 

1928 Statistics of MYaw, IYaw, TYaw 42 ✓ ✓ ✓ ✓ 

1970 Stats TRot 14 ✓ ✓ ✓ ✓ 

1984 FD RPY1, RPY2, RPY3, RPY4 60 ✓ ✓ ✓  

2044 FD dRPY1, dRPY2, dRPY3, 

dRPY4 

60 ✓ ✓ ✓  

2104 FD Bends 15 ✓ ✓ ✓  

2119 FD Filtered Acc 15 ✓ ✓ ✓  

2134 SMA Filtered acc 1 ✓ ✓ ✓  

2135 FD acc 15 ✓    

2150 SMA acc 1 ✓    

 

Statistical Elements 

 Median – Statistical median 

 Mean – Statistical mean 

 Variance – Statistical variance 

 Standard Deviation – Statistical standard deviation 

 Minimum & Maximum – Statistical minimum and maximum number 
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 RMS – Statistical Root mean square 

 Skew – Statistical data skew 

 Kurtosis – Statistical kurtosis 

 Median Absolute Deviation – Statistical median absolute deviation 

 Mean Absolute Deviation – Statistical Mean Absolute Deviation 

 Zero Crossing – Number of times the data in window cross zero point 

 Slope Gradient Changes – Number of times the data in window change sign 

 Waveform Length – Sum of all the difference in adjacent values in the window 

def fnc_stats (window): 

    val.append(np.median(window)) 

    mean = np.mean(window) 

    val.append(mean) 

    val.append(np.var(window)) 

    val.append(np.std(window)) 

    val.append(np.amin(window)) 

    val.append(np.amax(window)) 

    val.append(np.mean([v**2 for v in window]))    #RMS 

    val.append(stats.skew(window)) 

    val.append(stats.kurtosis(window)) 

    val.append(stats.median_absolute_deviation(window)) 

    for i in range(len(window)): 

        mad += round(np.absolute(window[i] - mean),2) 

    val.append(mad/len(window)) 

    for i in range(1, len(window)): 

        if (window[i] * window[i-1]) < 0: 

            zeroCrossing += 1 

        if ((window[i]-window[i-1])*(window[i-1]-window[i])) < 0: 

            slopeChanges += 1 

        waveLength = waveLength + window[i] - window[i-1] 

    val.append(zeroCrossing) 

    val.append(slopeChanges) 

    val.append(waveLength) 

    return val 
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Appendix 4: Stage 2 Pre-processing Images 

Table 8-3 - Examples of Convolutional Neural Net Images for each activity 
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Appendix 5: Add. CNN Performance Charts 

Sigmoid Activation 

  
Figure 8-8 – 1-CNN (Sigmoid activation on all layers) 

Early Stopping 

  
Figure 8-9 – 2-CNN (5 FC Layers – Early Stopping) 

Layer Manipulation 

  
Figure 8-10 – 2-CNN (5 FC Layers) 

  
Figure 8-11 – 4-CNN (no Max-pool layer) 
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Dropout Regularization 

 

  

Figure 8-12 – 1-CNN (DRR = 0.4) 

  

Figure 8-13 – 1-CNN (Input DRR = 0.2) 

  

Figure 8-14 – 2-CNN (Input & Hidden DRR = 0.05) 

  

Figure 8-15 – 2-CNN (Input DRR = 0.01) 
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Adagrad with Dropout Regularization 

  

Figure 8-16 – 1-CNN (Adagrad optimizer and DRR = 0.2) 

  

Figure 8-17 – 1-CNN performance (Adagrad optimizer & DRR = 0.1) 

  

Figure 8-18 – 1-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 
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Figure 8-19 – 2-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 

  

Figure 8-20 – 2-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 

  

Figure 8-21 – 3-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 

 

Kernel Manipulations 

  

Figure 8-22 – 1-CNN (5x5 kernel, Adagrad optimizer tuning & DRR = 0.05) 
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Figure 8-23 – 3-CNN (3x3 kernel, 1 Max pool layer & 2 FC CNN - Adagrad optimizer 

& DRR = 0.2) 

  

Figure 8-24 – 2-CNN (5x5 first layer kernel - Adagrad optimizer & DRR = 0.01) 

  

Figure 8-25 – 3-CNN (5x5 first layer kernel - Adagrad optimizer & DRR = 0.1)  
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Appendix 6: Project Cost 

As the total cost of the project is borne by the project owner, the project was designed 

for the lowest cost. In order to keep the costs low 

 Parts were sourced from Chinese online vendors through eBay and AliExpress 

 Personal components that were already available were used. 

 Manufacturing was done through local companies with low cost links in China. 

 Assembling was done personally with the help of family members. 

This resulted in the costs for each section of the project. 

Approximate cost of Prototype 1 LKR 27,000.00 

Approximate cost of Prototype 1 development LKR 35,000.00 

Approximate cost of Prototype 2: Glove only LKR 3,765.62 ++6 

Approximate cost of Prototype 2: Processing only LKR 13,314.25 

Approximate cost of Prototype 2: Average per user (5 users) LKR 6,408.47 ++ 

Approximate cost of Prototype 2: Total Cost (5 users) LKR 32,042.35 ++ 

Approximate cost of the complete project (to date) LKR 46,844.05 

The cost of a final prototype glove of LKR 7,500.00 (approximated adjustment cost 

added to LKR 6,408.47) is an ideal value for an industrial application. The justification 

for this is that in industry the measuring of time human movement is not a direct benefit 

to the bottom-line savings of the factory. Instead the device is used as an enabler to 

identify possible areas of improvement. 

                                                 

6 Due to the limitations in 2020, certain aspects of the project were not completed in full, and certain 

alternative approaches were taken. As a result, some of the costs are mentioned with a ‘++’ symbol to 

indicate the increase in value expected when the incomplete areas are completed in full. It should also 

be noted that tools used and man-day costs are not added to the complete project cost. 


