

HAND ACTIVITY RECOGNITION USING A

WEARABLE SMART GLOVE

John Neuman Gayan Samarasinghe

(188463H)

Degree of Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

December 2020

HAND ACTIVITY RECOGNITION USING A

WEARABLE SMART GLOVE

John Neuman Gayan Samarasinghe

(188463H)

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

December 2020

i

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: ______________________ Date: _______________

The above candidate has carried out research for the Master’s thesis under our

supervision.

Name of the supervisor: Dr. Chamira Edussooriya

Signature of Supervisor: _____________________ Date: _______________

Name of the supervisor: Dr. Ranga Rodrigo

Signature of Supervisor: _____________________ Date: _______________

ii

ABSTRACT

This project is aimed at designing, simulating and constructing a wearable device

capable of performing activity recognition to track and monitor activities specific to

the manufacturing industry.

This was done by designing data capturing glove to capture all necessary signals from

the human body and provide necessary filtering to obtain low noise data. This is then

passed through suitable pre-processing algorithms to create distinguishing features

between activities. The best suited classification and post-processing algorithms were

then designed and implemented to classify the captured data in to a specified set of

activities.

The device was designed with an ESP8266 and a Raspberry Pi coded in C++ and

Python respectively. Accelerometer & gyroscope sensors were used to collect data

from the human body while a number of classical machine learning algorithms and

convolutional neural networks were tested to classify the data.

For the activities pointing, wiping, tightening, loosening, picking, holding, pulling,

pushing, hammering, walking, holding and walking and turning, the system was

capable of classifying the test data with accuracies between 86% - 91%. The null set

was classified with an accuracy of 100% with support vector machines with a linear

kernel and the post processing algorithm. The same algorithm reached an accuracy of

91.3% for the activity classification while the support vector machine with RBF kernel

and post processing algorithm reached an accuracy of 89.7%. The convolutional neural

network trained on pre-processed 3D activity images and the post processing algorithm

reached an accuracy of 86.2%.

The successfully created device will be used to obtain necessary analysis in the

manufacturing space to optimize performance of the workers.

Key Words: Hand, Activity Recognition, Machine Learning, Convolutional Neural

Network, Kalman Filter, Manufacturing, Industry

iii

ACKNOWLEDGEMEMT

My master’s degree and research would not have been possible if it was not for the

following people. I would like to thank;

My supervisors, Dr. Chamira Edussooriya and Dr. Ranga Rodrigo for their constant

support, guidance and patience. Their constant back up and check and adjust in moving

forward with this research and thesis has helped me immensely.

The academic and administrative staff of the Department of Electronic and

Telecommunication Engineering, University of Moratuwa for their input throughout

this MSc Program.

My fellow students in the same MSc Program who have worked together with me to

get through many hurdles throughout the program

My wife, Gayathri Karunaratne, who has been a constant source of support &

encouragement during the challenges of work, student work and life. I am truly

thankful for having you in my life.

My parents, Dr. Merril and Dr. Jayanthi Samarasinghe, who have always loved me

unconditionally and whose good examples have taught me to work hard for the things

that I aspire to achieve.

My friends and family who have offered their help in the data collection process

iv

TABLE OF CONTENTS

Declaration of the candidate & Supervisor ________________________________ i

Abstract __ ii

Acknowledgememt __ iii

Table of Contents ___ iv

List of Figures __ vii

List of Tables __ x

List of Abbreviations ___ xi

List of Appendices ___ xii

1. Introduction __ 1

 Background Information ___ 1

 Project Description ___ 2

 Project Scope __ 2

 Initial Assumptions __ 3

 Hypothesis / Project Contribution __ 3

 Activity detection scope ___ 3

 Project Architecture ___ 5

2. Literature Review __ 6

 Types of Activity Recognition _______________________________________ 6

 Similar Research __ 8

3. Smart Glove Design ___ 12

 Sensors __ 12

 Sensor Selection ___ 12

 Sensor Placement ___ 14

 Inertial Measurement Unit (IMU) ___ 16

v

 Processors ___ 17

 Glove Processor ___ 18

 Classification processor ___ 18

 Glove ___ 19

 Circuit Design ___ 19

 Algorithm __ 21

 Glove Algorithm ___ 21

 Classification Processor Algorithm __ 22

 Data Filtering ___ 24

 Kalman Filter ___ 25

 Verification of angles ___ 28

 Wi-Fi Communication __ 31

 Data Pre-processing __ 32

 Data Preparation __ 32

 Pre-processing: Stage 1 ___ 35

 Pre-processing: Stage 2 ___ 38

 Feature Scaling __ 45

4. Learning Model Development and Results ___________________________ 46

 Data Collection __ 46

 Classical Machine Learning __ 47

 Error Analysis ___ 48

 Base Performance ___ 50

 Window Size __ 52

 Manual Dimensionality Reduction __ 53

 PCA Dimensionality Reduction ___ 55

 Null Set Classification___ 56

vi

 Convolutional Neural Networks ____________________________________ 57

 Base Performance ___ 57

 Window Size __ 60

 2 Channel Input Network __ 61

 Error analysis ___ 62

 Post Classification Processing ______________________________________ 69

5. Overall Performance Results ______________________________________ 73

 Hardware Performance ___ 73

 Power Performance __ 74

 Machine Learning Performance ____________________________________ 75

6. Conclusion ___ 78

7. References ___ 79

8. Appendices __ 88

vii

LIST OF FIGURES

Figure 1-1 - Project architecture ... 5

Figure 3-1 –Components of the smart glove design ... 12

Figure 3-2 – Illustration of finger joints .. 15

Figure 3-3 - GY521 board & custom-built breakout board size comparison [original in color] 17

Figure 3-4 – Prototype 1 design [original in color] ... 19

Figure 3-5 – Porotype 2 intermediate design [original in color] ... 19

Figure 3-6 – Glove circuit diagram ... 20

Figure 3-7 –Glove algorithm ... 21

Figure 3-8 –Processor state diagram ... 23

Figure 3-9 - Glove dashboard v2 [Original in color] .. 23

Figure 3-10 – Accelerometer & Gyroscope on a flat table (knock at t=0) .. 25

Figure 3-11 – Kalman filter performance ... 28

Figure 3-12 – Drift of signals while stationary on flat surface. Yaw axes drift with time. 28

Figure 3-13 - IMU testing setup [original in color] ... 29

Figure 3-14 – Verification of roll angles against fixed reference .. 29

Figure 3-15 – Verification of pitch angles against fixed reference ... 29

Figure 3-16 – Roll stability over a period of 25 seconds ... 30

Figure 3-17 – Verification of roll angle accuracy in rapid motion .. 30

Figure 3-18 – Stages of Data Pre-processing.. 34

Figure 3-19 – Finger angle determination .. 35

Figure 3-20 – Finger angle determination .. 37

Figure 4-1 - Classical ML F1 Score | (Base Case) 30 Window, Level 1 Pre-process 51

Figure 4-2 – k-Nearest Neighbor performance for k values 3,5,10 and 20 for all participants 52

Figure 4-3 - Classical ML F1 Score | 20 Window, Level 1 Pre-process .. 52

Figure 4-4 - Classical ML F1 Score Comparison for Window Lengths ... 53

Figure 4-5 – Manual dimensionality reduction level comparison .. 54

viii

Figure 4-6 – Manual dimensionality reduction level to level improvement. .. 55

Figure 4-7 – 10 Highest contributing dimensions with PCA ... 56

Figure 4-8 – Null set performance for each of the selected algorithms ... 57

Figure 4-9 – Base CNN structure .. 58

Figure 4-10 – Base CNN performance .. 59

Figure 4-11 – Base CNN F1 scores .. 59

Figure 4-12 – Base CNN performance .. 60

Figure 4-13 – Window 20 vs. 30 CNN F1 scores ... 60

Figure 4-14 – 2 Channel input CNN performance ... 61

Figure 4-15 – 2-channel vs. 3-channel input F1 scores ... 61

Figure 4-16 – 1-CNN structure .. 62

Figure 4-17 – 1-CNN vs base case scenario F1 scores .. 62

Figure 4-18 – 1- CNN performance ... 64

Figure 4-19 – 1-CNN performance over 500 epochs ... 64

Figure 4-20 – 1-CNN performance with sigmoid activation ... 64

Figure 4-21 – 1-CNN performance with slower learning rate (0.0001) .. 65

Figure 4-22 – 1-CNN performance with Adadelta optimizer .. 65

Figure 4-23 – 1-CNN performance with Adagrad optimizer ... 65

Figure 4-24 – 1-CNN performance with input layer dropout regularization .. 66

Figure 4-25 – 1-CNN performance with hidden layer dropout regularization 66

Figure 4-26 – 1-CNN performance with optimizer tuning and DRR=0.01 .. 67

Figure 4-27 – 1-CNN comparison with Adagrad optimizer and DRR=0.01 ... 67

Figure 4-28 – Combined 1-CNN performance with optimizer tuning and DRR=0.01 68

Figure 4-29 – Visual representation of Post Processing algorithm... 70

Figure 4-30 – Post processing results from 15 tests done with classical ML and NN classifiers........... 71

Figure 5-1 - Glove current consumption ... 75

Figure 8-1 - Prototype 1 Holding Screwdriver [Original in color].. 88

ix

Figure 8-2 - Testing Data Accuracy for SVM classification with RBF kernel ... 89

Figure 8-3 - Testing Data Accuracy for RNN classification ... 89

Figure 8-4 - Testing Data Accuracy for K-Nearest Neighbor Classifier ... 90

Figure 8-5 - Testing Data Accuracy for Random Forrest Classifier ... 90

Figure 8-6 - Testing Data Accuracy for Decision Tree Classifier ... 90

Figure 8-7 - Testing Data Accuracy for Gaussian Naïve Bayes Classifier .. 90

Figure 8-8 – 1-CNN (Sigmoid activation on all layers) .. 98

Figure 8-9 – 2-CNN (5 FC Layers – Early Stopping) ... 98

Figure 8-10 – 2-CNN (5 FC Layers) .. 98

Figure 8-11 – 4-CNN (no Max-pool layer) ... 98

Figure 8-12 – 1-CNN (DRR = 0.4) .. 99

Figure 8-13 – 1-CNN (Input DRR = 0.2) ... 99

Figure 8-14 – 2-CNN (Input & Hidden DRR = 0.05) ... 99

Figure 8-15 – 2-CNN (Input DRR = 0.01) ... 99

Figure 8-16 – 1-CNN (Adagrad optimizer and DRR = 0.2) .. 100

Figure 8-17 – 1-CNN performance (Adagrad optimizer & DRR = 0.1) .. 100

Figure 8-18 – 1-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 100

Figure 8-19 – 2-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 101

Figure 8-20 – 2-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 101

Figure 8-21 – 3-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers) 101

Figure 8-22 – 1-CNN (5x5 kernel, Adagrad optimizer tuning & DRR = 0.05) 101

Figure 8-23 – 3-CNN (3x3 kernel, 1 Max pool layer & 2 FC CNN - Adagrad optimizer & DRR = 0.2) .. 102

Figure 8-24 – 2-CNN (5x5 first layer kernel - Adagrad optimizer & DRR = 0.01) 102

Figure 8-25 – 3-CNN (5x5 first layer kernel - Adagrad optimizer & DRR = 0.1) 102

x

LIST OF TABLES

Table 1-1 – Selected hand gestures common to industry ... 4

Table 2-1 - Summary of further similar research .. 9

Table 3-1 - Summary of Sensor Types explored for HAR .. 14

Table 3-2 – Implementing filtering on glove processor/Classification processor 24

Table 3-3 - Raw glove signals selected for Pre-processing (dark shade) .. 33

Table 3-4 – Statistical formula for pre-processing ... 39

Table 3-5 – 3-channel activity images derived from raw data and FFT values of data 43

Table 4-1 – Test data points collected by participants ... 46

Table 4-2 – CM - SVM classifier with the RBF kernel .. 47

Table 4-3 – Initial Error analysis for CM for SVM classifier .. 48

Table 4-4 – Updated CM - SVM classifier with the RBF kernel ... 49

Table 4-5 – Combined CM - common categories combined ... 50

Table 4-6 – Manual dimensionality reduction level comparison .. 54

Table 4-7 – Classical Machine Learning performance comparison .. 55

Table 4-8 – CM – 1-CNN with Adagrad optimizer & DRR=0.01 .. 68

Table 4-9 – Combined CM - activities for 1-CNN with Adagrad optimizer & DRR=0.01 69

Table 4-10 – Example CM prior to passing through post processing algorithm................................... 71

Table 4-11 – Example CM after to passing through Post processing algorithm 72

Table 5-1 - Design specification summary of the smart glove.. 73

Table 5-2 – Final Performance Values .. 77

Table 8-1 - Prototype 1 Design Specification Summary.. 88

Table 8-2 – Selection of features for stage 2 pre-processing ... 92

Table 8-3 - Examples of Convolutional Neural Net Images for each activity.. 96

xi

LIST OF ABBREVIATIONS

 Definition

1-CNN Described in section 4.4.4

ANN Artificial neural network

AR Augmented reality

CM Confusion matrix

CNN Convolutional neural

network

dim Dimension

DoF Degree of freedom

DFT Discrete Fourier

transform

DRR Dropout regularization

ratio

DT Decision tree

EMG Electromyography

FC Fully connected

FFT Fast Fourier transform

GMM Gaussian mixture model

HAR Hand activity recognition

HOB Histogram of bends

HOG Histogram of gradients

IC Integrated circuit

IMU Inertial measurement unit

IoT Internet of things

k-NN K- nearest neighbors

LDA Linear discriminant

analysis

LSTM Long short-term memory

MCU Micro controller unit

MEMS Micro-electromechanical

system

ML Machine learning

MQTT Message query

x-NN x-nearest neighbors

sEMG Surface electro-

Myograph

RBF Radial-basis function

ReLU Rectified linear unit

RNN Recurrent neural network

RPi Raspberry Pi rev.3 model

B

SVD Singular value

decomposition

SVM Support vector machine

VR Virtual reality

WCS Worst case scenario

WFS Wearable flexible sensors

𝒂𝒄𝒄𝒙 Accelerometer X value

𝒂𝒄𝒄𝒚 Accelerometer Y value

𝒂𝒄𝒄𝒛 Accelerometer Z value

𝒈𝒚𝒓𝒐𝒙 Gyroscope around X-axis

𝒈𝒚𝒓𝒐𝒚 Gyroscope around Y-axis

𝒈𝒚𝒓𝒐𝒛 Gyroscope around Z-axis

𝜶 Roll value

𝜷 Pitch value

𝜸 Yaw value

xii

LIST OF APPENDICES

Appendix 1: Prototype 1 ... 88

Appendix 2: Glove Schematic & PCB Design ... 91

Appendix 3: Stage 2 Pre-processing features ... 92

Appendix 4: Stage 2 Pre-processing Images ... 96

Appendix 5: Add. CNN Performance Charts ... 98

Appendix 6: Project Cost... 103

1

1. INTRODUCTION

 Background Information

Activity recognition or gesture recognition is the of task extracting meaningful data

from series of biological body movements to analyze and identify tasks performed at

a given time. These movements or expressions can be done as a form of

communication [1], usage of tools, travel or general behavior that can be studied to

identify different attributes such as intention, efficiency, fatigue level, repetitiveness

and ergonomics. It is one of the most researched topics today in the field of health,

lean manufacturing, medicine and sociology. Using activity recognition by methods

of on-body sensors or visual inputs such as cameras and depth sensors, a number of

different aspects about the human body can be identified for varying purposes.

Being in a data-focused world, tracking gestures via information from activity

recognition is a very common trend in devices and services in the market today. One

of the most popular industries in this field is the health and fitness industry. With the

global wearable device revenue for 2018 at US$ 26.43 billion [2]; the number is only

predicted to increase in the future [3] by almost double in two years. A very similar

trend is seen in most other industries where activity tracking is used as a tool to identify

possible opportunities for improvement in human motion.

In the midst of the rapidly growing wearable technology market, the benefits of

wearable technology are not often reflected within the industrial environment. As

wearable technology is used to enhance the personal lives of the wearer, the same

paired with Lean manufacturing methodologies should be used to enhance the work

life of workers in industries. Lean manufacturing is used in many manufacturing plants

around the world that is focused on reducing waste through methods such as Toyota

Production System, production scheduling and Kanban [4]. This results in

improvements in speed of operation, hand motion, ergonomics, productivity and so

on. Manual tracking is currently used by the manufacturing industry for planning and

optimizing by consensually tracking the movements of a worker performing a set of

predefined tasks. A Lean manufacturing tool known as a standardized work

2

combination chart is used to measure the different time values in performing a series

of tasks [5]. This shows the wasted or non-productive movements that can be

optimized to make the observed process more efficient. The process of creating a work

combination chart is simple, focused, heavily time consuming and repetitive. As such

this process can be automated and will be the focus of this thesis.

 Project Description

This project is aimed at designing and building a wearable device to recognize

common activities performed by workers at industrial manufacturing lines using

machine learning (ML) such that these activities can be monitored, tracked and used

for planning and optimizing in the future.

This is approached by designing a wearable device with sensors that can be worn by,

factory production line workers, technicians or mechanics. The device will be capable

of capturing the data required and sending them to a central processing unit to be

classified in real-time or in batches. The data is then stored with appropriate time

stamps in order to be used for further analyzing and optimizing.

 Project Scope

Scope: To design a low-cost solution that is capable of monitoring the hand activities

made by a worker in an industrial manufacturing/assembling environment without

interfering with the motion of the worker.

Given the nature of consensual data collection, simultaneous usage was limited at five

gloves which allows recording from up to five points in the same assembly line.

Aim: To track and monitor the movements of the hand in order to estimate and record

the activity that is being done from a list of predefined activities common to the

manufacturing industry.

The project scope is achieved by a number of deliverables.

 Sensor selection – Select the most suitable sensors for the task.

 Data filtering – Collect and process data from sensors.

 Mechatronic design – Design wearable device optimized for worker.

 Data collection – Collect suitable data for training and testing.

3

 Modeling – Employ an ML algorithm for activity recognition.

 Testing – Test the glove with test data.

 Initial Assumptions

A number of assumptions were made based on simple practical experiments and prior

knowledge.

 Measuring the activity on the dominant hand for industrial activities can often

be sufficient compared to measuring throughout the body or from both hands.

 Most basic hand gestured are performed within a window of 0.75 seconds.

 Movement of fingers for industrial applications is such that the

metacarpophalangeal (MCP) joint provides the yaw movement of the finger

and the MCP, proximal interphalangeal (PIP) and distal interphalangeal (DIP)

joints act together to provide the roll movement (see section 3.1.2).

 Collecting data from the back of hand, thumb, index and middle fingers are

sufficient to recognize activities in the scope of this thesis (see section 1.3).

 Hypothesis / Project Contribution

1. All activities were monitored at an equal window of 0.75 seconds. To ensure

sufficient data is available within the window 30 samples were selected.

2. As per the paper by Huang et al. [6] in section 2.2, sensors on the dominant

hand of the wearer can be used to determine the activity up to 80% accuracy.

This is also backed up to a certain extent by the paper by Bruno et al. [7] where

Activities of daily life are monitored.

3. Determine the skill / identity of the worker based on performance

 Activity detection scope

As the project is aimed at identifying activities made by workers in an industrial

environment, a number of activities that will fall within this scope was identified.

These selected activities will be trained to the classification algorithm and only these

activities will be monitored by the device during operation.

A list of common activities that can be identified in industry are shown in Table 1-1.

These activities were then further ranked based on the complexity of the motion. Table

4

1-1 also provides a reference at the end of the row to a research paper that has used the

same activity.

1. Temporal data – Gestures have a range of movement through time.

2. Hand orientation – Gestures have a unique hand orientation.

3. Finger position – Gestures have a unique finger position/bend.

4. One-time movement – Gestures do not repeat itself over time.

Table 1-1 – Selected hand gestures common to industry

A
ct

iv
it

y

In
d

ex

Temporal

data

Hand

orientation

Finger

position

One-time

movement

0 Point ✗ ✗ ✓ ✗ [8]

1 Wipe ✓ ✗ ✓ ✗ [9]

2 Tighten ✓ ✓ ✓ ✗ [10]

3 Loosen ✓ ✓ ✓ ✗

4 Pick (tool) ✓ ✓ ✓ ✓

5 Hold (frame) ✗ ✗ ✓ ✗ [10]

6 Pull (drawer) ✓ ✓ ✓ ✗

7 Push (cart) ✓ ✓ ✓ ✗

8 Hammer ✓ ✓ ✓ ✓ [10], [9]

9 Walk ✓ ✗ ✗ ✗ [6], [8]

10 Hold & walk ✓ ✓ ✓ ✗ [11]

11 Turn ✓ ✗ ✗ ✓

By observing the movement of each section of the hand when performing activities in

Table 1-1, it can be observed that the movement of the ring and little fingers are the

same as the middle finger. This justifies the assumption made in section 1.2.2. The

5

measurement of thumb, index and middle fingers in reference the back of the hand

(see section 3.1.2) is sufficient to identify the activities in Table 1-1.

 Project Architecture

Using the basic structure for human activity recognition devices used by the paper by

Attal et al. [12] a similar data flow was designed for this project is shown in Figure

1-1. The figure shows the processes involved in both training the classification

algorithm and running the same.

 Blue – tasks that need to be conducted by the processor on the glove.

 Green – process for transmitting data between glove & classification processor.

 Red – processes for capturing data for training, training the model.

 Grey – processes for classification of data.

 Orange – processes to correct abnormalities and evaluate the performance.

Figure 1-1 - Project architecture

Data acquisition IMU devices

 Flex sensors

Data filtering

Transmission

Pre-processing

Pre-processing Data storing

Model learning Classification

Performance evaluation

 Kalman filter

 MQTT communication

 SVM

 RNN

 K-NN

 DT

 Mean

 Median

 Kurtosis

Post filtering

Pre-classification

Training Test/Run

6

2. LITERATURE REVIEW

This section briefly describes the current developments in human activity recognition

and the recent research contributions similar to that of this thesis.

 Types of Activity Recognition

The concept of Monitoring as a service (MaaS) is a service to keep track of activities

such as step count, calorie intake, sleeping patterns and travel. Monitoring as a service

uses GPS (global positioning system) and IMU (inertial measurement unit) sensors or

built-in devices in phones, tablets and smart watches to identify basic human motion

during day to day activities such as running or walking or repetitive workout patterns.

These tracking applications includes iOS health [13] and Google fit [14] and third

party such as ASICS Runkeeper [15].

Apart from the health-conscious general public, there is a special portion of the market

that require health and fitness monitoring as a part of tracking the progress of

rehabilitation [16]. In competitive sports such as swimming, underwater cameras such

as those from Qualisys AB and motion analysis software are used to track body

movements and optimize body movements for the most streamlined and faster strokes

[17]. Moov [18] is a smart wearable device that can be worn either on the wrist or the

ankles and provides the user with more general health and fitness data when

performing day-to-activities. Moov devices can track activities such as running,

cycling and gym workouts to provide detailed analysis on aspects such as cadence,

power output, impact to knees and workout defects. Similar to Moov, Nexus [19] and

Atlas [20] are gym specific wearable devices that keep track of the user’s activities,

power output and workout time. For professional athletes and rehabilitating athletes,

the product Athos [21] allows the wearer or coach to monitor the individual muscle

using electromyography (EMG) sensors.

Gest [22] is a wearable device on the hand, similar to the device in this project, with

the objective of replacing the keyboard. The users finger movements and monitored

as they type in air and the device estimates which key has been pressed by the user.

7

Many devices like anthropomorphic arms and services like 3-D CAD software are

constantly made intuitive with the integration of control of inputs using natural human

gestures. The uses span from mimicking robotic arms and systems, 3-D modeling and

viewing, gaming/ virtual reality (VR)/ augmented reality (AR) control, computer

mouse control and machinery control. Devices such as the Microsoft Kinect [23] have

the capability of studying the body motions and using certain key motions to trigger

specific control inputs. Gesture recognition is now used in the control of machinery,

computer simulations and robotics. A paper by Mi et al. [24] describes the use of

gesture recognition to tele-operate the motions of a robotic fish in water. The gestures

are programmed in to natural motions that can be picked up by a sensor to instruct the

robot to accelerate, decelerate, turn and stop1.

Sense Glove [25], Xsens [26] and Cyberglove [27] are wearable devices on the hand

which monitors the users hand movements in the domain of AR and VR. It provides

motion tracking, force feedback and tactile feedback when the user is interacting with

digital world. This glove is currently being used in preparation of animated movies

that require natural movement of hands. The Myo armband by Thalmic Labs is a

wearable gesture control arm band which spiked in popularity with researches and

developers due to its easy use and functionality. The device uses surface EMG (sEMG)

sensors to monitor the muscle movements from the forearm to control devices such as

computers and drones.

Everyday there are new developments in activity recognition. Although activity

recognition and health and fitness are becoming a saturated market, there are new

research being conducted in activity recognition to achieve other objectives such as

sign language detection [28], fall detection, health monitoring for medical analysis,

arthritis rehabilitation [29], robot control and computer mouse control.

1 More information on available devices: https://johnsamarasinghe.blogspot.com/2019/04/hand-

activity-recognition-literature.html

8

 Similar Research

The paper by Cornacchia et al. [30] provides a survey on activity recognition using

wearable sensors. Another paper by Attal et al. [12] also looks at the different

classification algorithms used in many researches to perform hand activity recognition

(HAR). The findings of these two papers were summarized.

Pre-processing Algorithms - mean, median, variance, standard deviation, skewness,

kurtosis, index of min/max, range, discrete Fourier transform (DFT), power spectral

density (PSD), DC component for frequency domain features.

Classification Algorithms - threshold based reasoning, fuzzy rules, adjustable fuzzy

clustering (AFC), K-nearest neighbor (k-NN), LogitBoost, support vector machine

(SVM), random forests (RF), neural networks (NN), multinomial logistic

discrimination (MLD), multilayer perceptron (MLP), Gaussian mixture models

(GMM).

There are very few practical implementations of human activity recognition on

industrial applications. One of the papers by Stiefmeler et al. [31] uses 27 sensors on

the human body which include 7 IMU’s, 8 Force Sensitive Resistors and 4 Ubisense

tags. The tools used by the workers are also equipped with RFID (radio-frequency

identification) tags and IMU’s to provide additional data when the tool is being used.

A new string matching-based segmentation and classification method was designed.

This method encodes the signal properties in characters to create a string which can be

compared against templates.

A dissertation by Hartmann [32] looks in a to an industrial scenario where a wrist

mounted IMU sensor is used along with a top mounted camera which observes the

movement of patterns on a block worn on the wrist. A similar research done by Tao et

al. [10] on worker activity recognition and a paper by Benalcàzar et al. [33] uses sEMG

sensors and the IMU sensors on the Myo armband. Tao uses this to form a stacked

signal image. The image is then fed in to a CNN for feature extraction. The data

classified using this method are simple operations such as hammering, tightening,

grabbing and resting. Benalcàzar instead uses the kNN classifier to detect the hand

activities; making a fist, wave in, wave out, open hand and pinching. The accuracy of

9

the data was found to be better than the Myo band proprietary algorithm showing the

impact of sEMG sensors for human activity recognition. Another similar paper by

Jiang et al. [34] uses both sEMG and IMU sensors are used to determine the hand

gestures. The okay sign, peace sign, hand loose, finger snap, thumbs up, thumbs down,

turn palm and walking fingers were air gesture activities recognized by this device.

The surface gestures included the force levels exerted by index finger, all 5 fingers and

the fist in different orientations.

The research by Koskimaki et al. [35] describes the use of a single wrist mount

accelerometer used in industrial applications to detect use of power drill, hammering,

screwing and spanner use with an accuracy of almost 90% in a 1.5 second window.

The standard statistical and frequency domain details were used as feature extraction

while k-NN was used as the classification algorithm

A conference paper by Luzhnica et al. [8] uses a custom-built glove similar to the

glove designed in this project to detect a number of everyday gestures. These include

number one, two, three, four, five, thumbs up, thumbs down, point to self, shoot,

scissor, cutthroat, continue, counting, knocking, waving, come here, go away, push

away, never mind, talking, calling, walking, shoulder pat, point, swipe left, swipe right,

swipe up, swipe down, turn, zoom and grasp. The paper uses linear discriminant

analysis and logistic regression to achieve an accuracy of 98.5%

The Table 2-1 provides a brief summary of other similar research that has been found

similar to the project in this thesis.

Table 2-1 - Summary of further similar research

Ref. Sensors Pre-processing Classifier Accuracy

[10]

Myo Armband

(IMU and

sEMG)

Discrete Fourier

transform
CNN

98% half-

half

[6]

Koala MEMS

based 9-axis

motion sensor

Mean, variance,

skewness, kurtosis

and root mean

square

RF, decision tree &

SVM

81% (DT),

73.2%

(SVM non-

dominant

hand)

10

Ref. Sensors Pre-processing Classifier Accuracy

[33]

Myo armband

(sEMG sensors

and IMU)

Low-pass 4th order

Butterworth filter w/

cut off at 5Hz.

K-NN with DTW

algorithm
89.5%

[9]

MS Kinect,

InvenSense

MPU9150

Moving average

window

Hidden Markov

model and DTW
93%

[34]

8 sEMG sensors

(Tringo wireless

EMG, Delsys)

Mean absolute value
Linear discriminant

analysis

92.6% air

& 88.8%

surface

[8]

7 Motion, 13

bending, 5

pressure &

magnetometer

Sliding window,

FFT, complementary

filter

Linear discriminant

analysis
98.5%

[36] Smart Watch Autocorrelation
CRF, FR, HMM,

SVM, DT
>90%

[37]
Beaglebone

Accelerometer

Mean, RMS,

standard deviation of

accelerometer

RF 90-94%

[24]
Leap Motion

Controller

Leap motion

program
Thresholding N/A

[38]

Accelerometer

(ADXL202) on

hip & wrist, GPS

Time domain:

variance, median,

skew, kurtosis, 25%

and 7% percentile

Frequency domain:

peak, power

Custom decision

tree, automatically

generated decision

tree, ANN, hybrid

model

89%

[39] Accelerometer

Mean, variance,

skewness, kurtosis,

RMS

RF, SVM, 3-NN
76.1% or

71.3%

A paper by Huang et al. [6] studies the impact of wearing a number of sensors, namely

on the right wrist, left wrist and waist for the accuracy of activity classification. The

study looks at machine learning (ML) algorithms in decision tree, random forest and

support vector machines. In this study the actions; standing, lying, walking, sitting and

dining are monitored. Although the study proves the general logic in stating that using

multiple sensors on multiple parts of the body for activity recognition improves the

accuracy compared to using only a sensor at one part of the body, a key takeaway is

11

also highlighted. It is shown that using the decision tree classifier only on the sensors

for the dominant hand is only sacrificing 1% accuracy compared to using the same ML

algorithm for all three locations of the human body.

Another interesting research by Maekawa et al. [40] looks at a different approach in

measuring the cycle time of a factory worker without analyzing the individual

activities. The procedure includes looking at the sequence of activities and identifying

repeating patterns. This has resulted in an accuracy of about 96.5%.

The paper by Jain and Kanhangad [41] describes how a smart phone can be used to

perform human activity recognition. The built-in sensors within the phone which

include the accelerometer and gyroscope are used with histogram of gradient and

centroid signature-based Fourier descriptor for pre-processing and multiclass SVM

and k-NN classifiers to obtain a 97% accuracy. Using this method, activities such as

walking, climbing stairs, sitting, standing and laying can be identified.

In conclusion, there are a large number of methods and algorithms used to identify

hand and full body activity recognition both in and out of industrial environments.

Table 2-1 shows the effectiveness of each of the algorithms used and provides a good

indicator for this project and the algorithms that can be effectively used. In addition, a

number of key learnings such as the ability to use the movement of the dominant hand

to derive the movement of the body has been used to structure this project.

12

3. SMART GLOVE DESIGN

The design of the glove comprised of bringing together a number of concepts and

components to ensure its function. This section describes each component shown in

Figure 3-1.

Figure 3-1 –Components of the smart glove design

The glove design is essentially two systems liked together via Wi-Fi communication

(see section 3.7). The first system comprises of the wearable glove which contains the

sensors (see section 3.1) and the processing unit (see section 3.2.1) running the

algorithm explained in section 3.5.1. The second system contains the classification

processor (see section 3.2.2) running the algorithm explained in section 3.5.2 which

allow it to perform the classification (see sections 3.8 and 4)

 Sensors

 Sensor Selection

In order to classify activities listed in Table 1-1, a specific set of motions and poses

from the hand must be obtained. These can be roughly separated to two criteria.

1. Static data

a. Pose of the hand in free space

b. Bending of each finger

Classification processor (3.2.2)

Processor algorithm (3.5.2)

Data processing (3.8 and 4)

Glove processor (3.2.1)

Processor algorithm (3.5.1)

Data filtering (3.6)

Sensors
Selection (3.1.1)

Placement (3.1.2)

IMU selection (3.1.3)

Wi-Fi

communication (3.7)

Glove design (3.3)

13

c. Adduction and abduction of each finger

d. Rotation of the thumb

2. Motion data

a. Linear motion of the hand in free space

b. Rotational motion of the hand in free space

Vision based sensing is the most popular choice for activity recognition based on the

number of research papers. However, there are some concerns using cameras for

activity recognition. As the application for the device in this thesis is mainly based on

activity recognition that is designed for industry, it is not ideal to use vision [6]. In

industrial environments, the worker is always moving from one area to another as per

their job requirement. As such, very good image processing is needed to isolate the

correct worker from the moving and mostly noisy background. The camera needs to

be positioned to obtain complete range of the worker in one frame and this may not be

possible when the hands of the worker are within machinery or in any way out of direct

line of sight of the camera.

Sensors placed on the body of the person being tracked is a suitable option given the

application of the device. The commonly explored sensors were electromyography

sensors, flex sensors and IMU sensors. Although other wearable flexible sensors could

have provided a similar result, these sensors were found to be most direct and non-

intrusive method of obtaining data without obstructing the movement of the worker or

introducing additional tasks to the workers’ job description.

Electromyography sensors are a very effective sensor that can be used to determine

the exact muscle activity of hands by placing sensors away from the hand itself so as

not to be intrusive to the wearer. This can be seen in the paper by Tao et al. [10] where

a Myo armband placed close to the elbow is used for this purpose. However, due to

the cost of these sensors, they had to be deprioritized.

Flex sensors are being used in many of the motion tracking gloves used in the market

(see section 2.1). As the flex of a flex sensor is given by the deformation of the material

which can be measured in terms of resistance, the response is close to the zeroth order

response system making the usage straightforward. Flex Sensors were used in the first

14

prototype of this project (See Appendix 1). However, as these flex sensors are costly

and are limited to 1 degree of freedom, a high cost is incurred when a flex sensor needs

to be added for each degree of freedom of the fingers. This also makes the glove

difficult to use. As such, these sensors were discontinued from this project.

IMU sensors are used for obtaining motion and orientation information. However,

these sensors which typically consists of an accelerometer and gyroscope tend to be

noisy and thus good filtration is needed to extract the actual signal (see section 3.6).

For this project, the IMU sensor was chosen to provide the orientation and movement

of the hand and also the orientation and movement of the fingers. This was due to the

relatively low cost of the IMU and the ability to obtain information on more than one

degree of freedom (DoF) of a finger from one sensor.

Table 3-1 - Summary of Sensor Types explored for HAR

Sensor type Robustness Cost Accuracy Selection

Vision Low High High No

EMG High High High No

Flex Mod-High High High No

IMU High Low Mod-High Yes

 Sensor Placement

In order to obtain the most relevant data to classify the actions in Table 1-1, the correct

sensors must be placed at the correct locations to extract the most relevant information

from the human body.

The orientation of the hand is important for activity recognition and can be measured

with a sensor placed at the back of the hand as it is the most static part of the hand.

The sensor placed here will be able to act as a base measurement in order to determine

the general motion through pose and also it will provide a reference position of the

hand to extrapolate the position of the fingers (see section 3.8.2).

15

Figure 3-2 – Illustration of finger joints

The main DoF of the fingers are

 1 DoF - Distal interphalangeal (DIP) joint of each filter (flexion/extension)

 1 DoF - Proximal interphalangeal (PIP) joint of each finger (flexion/extension)

 2 DoF - Metacarpophalangeal (MCP) joints (flexion/extension and

abduction/adduction)

 1 DoF - Trapeziometacarpal (TMCP) joint of the thumb to rotate [42]

For the application defined in this scope, two significant independently actuated joints

can be identified. These are the joint at the knuckle (MCP and TMCP Joint) and the

joint after the knuckle (PIP Joint). The DIP joint cannot be easily independently

actuated, the motion of this joint relies on the PIP joint in many scenarios.

For the project the IMU sensor was used at the backhand a single IMU sensor for each

finger was placed between the PIP and DIP joints. This can measure both the yaw of

the finger created by the MCP joint and the roll of the all joints in that finger with

reference to the IMU on the backhand. This can be seen in Figure 3-19 and Figure 3-20

The finger sensors were only measured with one sensor, although it is common to see

that sensors are placed on each joint in other HAR gloves to measure all DoF [42]. In

addition, the project only measures the thumb, index and middle fingers. This is

MCP

TMCP

PIP

DIP

16

because an assumption was made that for this application, selected activities do not

require the remaining two fingers to be actuated independently (see section 1.2.2).

 Inertial Measurement Unit (IMU)

In section 3.1.1 the IMU sensor was selected for this project. The IMU model selection

is important to ensure precise orientation and movement values are obtained for each

measurement. The requirements needed by the IMU device are

 Suitable accelerometer with full scale range no more than 2g

 Suitable gyroscope with full scale range more than ±500°/s

 Suitable magnetometer

 Precise data transfer more than 12 bits per reading.

Prioritizing the cost, the MPU6050 [43] was selected as the most suitable IMU device.

This was selected based on the specifications and the popularity of the sensor in the

electronics community. However, the MPU6050 does not have a built-in

magnetometer, resulting in the inability to obtain a fixed reference parallel to the earth.

This also results in the inability to calibrate the yaw of the device. Thus, there is a slow

drift in the yaw axis due to the influence of external noise, as seen in Figure 3-12.

The specifications of the MPU6050 device were programmed based on the trial and

error and limitations to human motion for the selected activities in Section 1.3 [43]

 Angular rate with full-scale range of ±500°/s

 Accelerometer with a full-scale range of ±2g

 Sampling frequency of 10 kHz

17

Figure 3-3 - GY521 board & custom-built breakout board size comparison [original in

color]

Due to the criteria to reduce the size of the glove to improve comfort and range of

motion, the GY521 board for the MPU6050 was redesigned to a smaller form factor

(see Appendix 2). The board was designed such that the dimensions of the board are

small enough to fit to the width at the mounting point of each finger and the mounting

points are placed such that the critical components of the device do not move as much

when the finger movements deflect the fabric of the glove. The backhand processor

board was also designed with the IMU device built in to save space (see Appendix 2).

Additional to designing the sensors, the sensors were to be wired with conductive yarn2

that is sewn in to the fabric of the glove in order improve the usability of the glove and

to act as an additional mounting point for the board.

 Processors

The selection of the processors are completely dependents on the type of tasks

required. Processor is selected to closely match the requirement while keeping the

costs and form factor as low as possible. For the project two processors are used with

2 different applications.

 Glove processor

 Training & classification processor

2 Conductive yarns were not added to the intermediate prototype.

10mm 20mm 30mm 0mm

20mm

0mm

40mm

10mm

18

 Glove Processor

The main application of the glove processor is to collect data from all sensors on the

glove, filter the data to obtain meaningful information and transmit the data to a

centralized processor for further data analysis. The processor requirements for the

glove processor are

 Required voltage for sensors: >3.3V

 Number of digital pins: 4

 I2C communication needed for IMU interfacing

 Wi-Fi communication needed for data transmission

 Small form factor

Based on these mandatory specifications, The WEMOS D1 Mini (ESP8266) was

selected. The WEMOS D1 Mini is a moderately cheap, low power microcontroller and

Wi-Fi board with 4MB flash based on ESP-8266EX [44]. The processor runs on

80MHz clock.

 Classification processor

The application of this processor is to manage all the gloves processors as a central

control platform, perform data collection and classification of the data collected.

Collection of data, training and classifying data with a machine learning algorithm is

a very computationally expensive task which require

 Ability to run Linux based operating system

 Ability to run Python-based applications

 Processor speed – More than 1GHz

 RAM – more than 512MB

 Wi-Fi enabled

In order to meet these requirements, the Raspberry Pi was selected for this application.

The Raspberry Pi 4 model B (referred to as RPi) is a small, affordable computer with

a much higher processing power than the glove processor.

19

 Glove

The selection and design of the glove is important in order for the user to work with

the device unhindered by it. The glove selected was a standard pair of cotton dotted

gloves that is used in many industries to protect the hand from cuts, blisters and dirt.

The glove is also stretchable and comes in a single size to fit all hands. This is

important to match with the devices requirement to be universal.

Certain tasks in industry require delicate handling of equipment or the feel of the item

in the operator’s fingertips. For example, picking up paper or fabric require the tactile

feedback to the user and delicate control to lift the item. In order to enable this, the

fingertips of the cotton dotted gloves were carefully cut. This also enables the glove to

be worn comfortably by any person despite the size of the hand or the length of the

fingers.

The glove in Figure 3-5 was designed as an intermediate glove to enable quick data

collection with existing components due to the delay in obtaining the final components

due to the CoViD-19 lockdown in 2020.

Figure 3-4 – Prototype 1 design

[original in color]

Figure 3-5 – Porotype 2 intermediate design

[original in color]

 Circuit Design

The main components of the glove are connected together as per the diagram in Figure

3-6. Each of the IMU devices for the fingers are placed on their own PCB’s and

20

attached to the finger. The IMU for the backhand and the glove processor is attached

to a single PCB for easy connectivity and attached to the back hand of the glove.

Figure 3-6 – Glove circuit diagram

Back-hand IMU

Finger 1 IMU

Finger 2 IMU

Finger 3 IMU

21

 Algorithm

 Glove Algorithm

The software running on the processor on

the glove is dedicated to do a number of

specific tasks.

 Maintain connection to all 4 IMU

devices

 Collect data from the IMU devices

 Perform data filtering

 Maintain MQTT (See section 3.7)

connection through Wi-Fi to the

MQTT server

 Send and receive status messages

to and from the MQTT server.

 Send filtered data to the MQTT

server when requested.

The basic process flow diagram to achieve

these tasks can be seen in Figure 3-7.

When the device is powered on, the IMU

devices are initiated and connived to the

predefined MQTT server through the

selected Wi-Fi network. The glove

processor will then enter a continuous

loop which

1. Refreshes the MQTT connection

2. Acquires raw IMU data

3. Processes roll, pitch and yaw

4. Passes data through data filtering

5. Publishes data to MQTT server

Figure 3-7 –Glove algorithm

Power on

Initiate IMU Devices

Connect Wi-Fi

 Connected to

MQTT?

No

Initialize Filters

Refresh Connection

Read MQTT

Acquire IMU Data

Yes

Run Filter

Publish Data

Sample time

passed?

No

Yes

22

 Classification Processor Algorithm

The software for the algorithm run on the Raspberry Pi is dedicated to execute

 Connect to Wi-Fi and run Mosquitto as the MQTT server

 Manage connection to all gloves attached to the central processor

 Manage status messages to and from the gloves

 Request, collect and store training data from each glove

 Request, collect and classify live data from all gloves.

In order to achieve these tasks, an algorithm was developed as seen in Figure 3-8 where

“<glove>/data”, “<glove>/status” and “<glove>/command” are MQTT topics which

are used to broadcast different data types. The states 0 to 4 maintained for each glove

and are

Status 0: Glove is offline – Glove has not published that the glove is online.

Status 1: Glove is online (listening) – Glove has signaled online status.

Status 2: Receiving data – Data is being received from the glove. The data is saved in

a log file or classified depending on training data or data classification is requested.

Status 3: Data time-out – Data is not being sent to glove at required time.

Status 4: Refresh connection – Intermediate state informing the user if an interruption

had taken place in the operation.

The algorithm in Figure 3-8 was then implemented in Python with the use of the Kivy

library to display a user-friendly graphical user interface. This is a dashboard that can

be used to view the status of all connected gloves at once and control each of the gloves

that are connected. Currently the dashboard can connect up to 5 gloves (see Figure

3-9).

23

Figure 3-8 –Processor state diagram

Figure 3-9 - Glove dashboard v2 [Original in color]

24

 Data Filtering

The program for the processing unit on the glove is responsible for recording, filtering

and transmitting data from the sensors on the glove. The captured data is filtered to

eliminate the noise to receive a smooth signal. It should also be noted that the filtering

was done on the glove processor rather than the central processor due a number of

reasons summarized in Table 3-2.

Table 3-2 – Implementing filtering on glove processor/Classification processor

 Filtering on Glove Filtering on Classification

Processor

Impact to software High Low

Chance of errors Low High

Access to raw data Fast Slow

Dependencies None Stable MQTT Connection

The sensors were initialized at the specifications detailed in section 3.1.3. The data

capturing on all sensors is done at its maximum speed although the data is not

transmitted at the same rate. This is done primarily to ensure the filtering algorithms

described in section 3.6 can continue to run and maintain better prediction when data

is needed.

The raw data obtained from the IMU is shown in Figure 3-10. Digital filtering will be

required to remove noises embedded in the signal and obtain reliable values.

Accelerometers are very high sensitivity devices due to their structure. It produces a

lot of noise in the very short-term results. However, the noise can be assumed to be

random and Gaussian distributed. This means that an accurate value of the

accelerometer can be obtained by using a low pass filter. As gyroscopes are reliable in

the short-term and accelerometers are reliable in the long-term, it is needed to combine

both accelerometer and gyroscope to obtain the ground truth of the orientation of the

sensor.

25

Figure 3-10 – Accelerometer & Gyroscope on a flat table (knock at t=0)

 Kalman Filter

The Kalman filter is a method of linear quadratic estimation which observe a series of

measurements that are engulfed in statistical noise and other inaccuracies over a period

to provide an estimate of the underlying unknown variable. Kalman filters are capable

of combining the readings from the accelerometer and gyroscope from their

probabilities and obtaining a more accurate reading. Compared to digital low/high pass

filtering, Kalman filters do not have time delay in providing the measurement as the

filter will always predict future values based on the past.

The MPU6050 IMU device, with the accelerometer and the gyroscope provide 6

independent data values (excluding temperature) to measure the pose of the unit. These

can be considered as our inputs, 𝑥 and measurement, 𝑦.

Inputs Measurements

𝑎𝑐𝑐𝑥: Acceleration in the x-axis 𝑔𝑦𝑟𝑜𝑥: Angular velocity about the x-axis

𝑎𝑐𝑐𝑦: Acceleration in the y-axis 𝑔𝑦𝑟𝑜𝑦: Angular velocity about the y-axis

𝑎𝑐𝑐𝑧: Acceleration in the z-axis 𝑔𝑦𝑟𝑜𝑧: Angular velocity about the z-axis

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

-15000

-14000

-13000

-12000

-11000

-10000

-9000

-8000

0 20 40 60 80 100 120 140 160

G
y
ro

sc
o

p
e

V
al

u
e

A
cc

el
er

o
m

et
er

 V
al

u
e

Time

AccY AccZ GyroX GyroY GyroZ

26

To derive the mathematical model for the yaw, pitch and roll of the IMU device,

equation (1) and (2) [45] were used. The roll and pitch of the that is obtained from the

mathematical equation are predicted state estimates, �̂�𝑡−1 (Priori estimates).

α̂t−1 = tan−1 [
accy

accz
] (1)

β̂t−1 = tan−1

[

−accx

√accy
2 + accz

2

]

 (2)

The accelerometer only has one signal to determine the orientation, which is gravity.

Hence it is not straightforward to determine the yaw of the device as yaw will be the

rotation about the axis of gravity and reading on the accelerometer for this axis will

not change for this motion.

The measurement of the system is also used to derive the measured output of the

system. Equation (3) and (4) result in roll and pitch are the measurement from the

system.

αt = αt−1 + (gyrox × ∆time) (3)

βt = βt−1 + (gyroy × ∆time) (4)

γt = γt−1 + (gyroz × ∆time) (5)

The yaw can be approximated with only the gyroscope reading along with roll and

pitch. This reading is prone to drift over time due to the nature of the gyroscope and

the accumulation of errors as correcting this reading with the accelerometer is not

possible. This can be seen clearly in Figure 3-11 and Figure 3-12.

A Kalman filter is designed with equations (6) to (10) with initial estimates x̂t−1/t &

Pt−1/t.

Stage 1.1: Predict: Projecting the state ahead

x̂t/t−1 = Ax̂t−1/t+1 + But (6)

27

Stage 1.2: Predict: Projecting the error covariance ahead

Pt/t−1 = APt−1/tA
T + Q (7)

Stage 2.1: Correction: Computing the Kalman gain

Kt = Pt/t−1H
T(HPt/t−1H

T + R)
−1

 (8)

Stage 2.2: Correction: Updating the estimate with the measurement

x̂t/t = x̂t/t−1 + Kt(zt − Hx̂t/t−1) (9)

Stage 2.3: Correction: Updating the error covariance

Pt/t = (1 − KtH)Pt/t−1 (10)

The code in software was written with the help of code by Kristian Lauszus [46], [47].

 x̂t−1 – Priori Estimate (Angle) is taken from the Accelerometer reading

 xt – Measurement (Angular Velocity) is taken from the Gyroscope reading

 A – State transition model = [
1 −∆t
0 1

]

 B – Control-input model = [
∆t
0

]

 H – Observation model = [1 0]

 P – Initial error Covariance = [
0 0
0 0

]

 Q – Process noise variance - accelerometer & gyroscope = [
0.001 0

0 0.003
] 3

 R – Measurement noise variance = [
0.03 0
0 0

] 4

Using the Kalman filter, the noise values in the roll and pitch calculation can be greatly

filtered and a real time, accurate signal can be obtain as shown in Figure 3-115. A

further calibration routine was programmed to initialize the values of the IMU at zeros

at the start in order to remove any static bias in the device [48].

3 Tested through trial and error and supported with work by Lauszus [51]

4 Tested through trial and error and supported with work by Lauszus [51]

5 Video demonstrating the performance of the Kalman filter: https://youtu.be/idYYBqs3buA.

28

Figure 3-11 – Kalman filter performance

Figure 3-12 – Drift of signals while stationary on flat surface. Yaw axes drift with time.

The cycle time with 4 IMU sensors running real-time Kalman filter was found to be

12.5ms (80Hz). However, the sampling time was set to 25ms (40Hz) while eight

Kalman filters were operating at max capacity in the background

 Verification of angles

A simple test rig was made to verify the angles output by the Kalman filter designed.

The roll and pitch figures of all 4 Kalman filters was measured at the same time by

fixing it on to the same breadboard as shown.

-80

-60

-40

-20

0

20

40

0 100 200 300 400 500 600 700 800
A

n
gl

e
(d

eg
re

es
)

Roll Pitch Kalman Roll Kalman Pitch

-10

-5

0

5

10

15

0 100 200 300 400 500 600 700 800A
n

gl
e

(d
eg

re
es

)

Roll1 Pitch1 Yaw1 Roll2 Pitch2 Yaw2

Roll3 Pitch3 Yaw3 Roll4 Pitch4 Yaw4

29

Figure 3-13 - IMU testing setup [original in color]

The test rig was fixed at different angles and the readings on the Kalman filter was

recorded. Figure 3-14 and Figure 3-15 show the readings with their reference signals.

It can be seen that all 4 IMU devices provide an accurate reading with relatively low

error.

Figure 3-14 – Verification of roll angles

against fixed reference

Figure 3-15 – Verification of pitch

angles against fixed reference

Although over a short period of time the angles appear to be accurate, the drift of each

sensor while maintaining the same angle must be closely measured. This can be seen

in Figure 3-16 over a period of 25 seconds. It can be seen that the drift is very small

and can be considered negligible. The range between the minimum and maximum

values recorded were 0.25, 0.2, 0.14 0.14 degrees respectively for each of the sensors.

-20

0

20

40

60

80

100

A
n

gl
e

(d
eg

re
es

)

Actual IMU 1 IMU 2

IMU 3 IMU 4

Actual IMU 1 IMU 2

IMU 3 IMU 4

30

Figure 3-16 – Roll stability over a period of 25 seconds

The accuracy of the sensors should be measured while they are in motion. It can be

seen from Figure 3-17 that the sensors closely match to the value of each other. The

reference in this graph is estimated by manual observation through a slow-motion

video. All the IMU values are very close to the reference value and there seems to be

a second order response from each device. There is also a very important phenomenon

that is seen by the graph in Figure 3-17. There is a phase delay between the each IMU

where IMU 1 has the largest phase delay and IMU 4 has almost no delay. This occurs

due the execution of the Kalman filter. As the program is written sequentially, IMU1

is calculated before IMU2 readings are monitored and so on. As a result, when the

IMU data is requested, IMU 1 will have a reading that is in the past compared to the

reading in IMU 2 and so on. However, for this test, the readings are within tolerance.

Figure 3-17 – Verification of roll angle accuracy in rapid motion

43.5

44

44.5

45

45.5

46

46.5

47

A
n

gl
e

(d
eg

re
es

)

time

Actual

IMU 1

IMU 2

IMU 3

IMU 4

-10

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
n

gl
e

(d
eg

re
es

)

Time (seconds)

Reference

IMU 1

IMU 2

IMU 3

IMU 4

31

 Wi-Fi Communication

Wireless communication is important in this project in order to enable the connectivity

between the glove and the processing unit driving the classification algorithm. The

glove comprises of its own processor which conducts the filtering of the data in real-

time. The data is then transferred in packets to the RPi.

For this project multiple gloves require connectivity to a single centralized processor.

This is enabled by transmitting data over Wi-Fi. To achieve the same connectivity, the

paper by Mukhopadhyay et al. [49] summarizes 3 other networks which include

ZigBee, Bluetooth and WiMAX. With reference to this list it can be decided that given

the application, data rate and the general availability of the technology, Wi-Fi is the

best suited technology to be used. Out of the protocols used to communicate over Wi-

Fi, the MQTT (Message queuing telemetry transport) communication protocol is one

of the most used methods which is also majorly used in the field of IoT devices. MQTT

is an extremely light weight machine to machine connectivity protocol which works

on the principle of publishing and subscribing to messages [50].

In order to prevent the complete bandwidth of the communication protocol getting

used up during transmission, burst communication and continuous communication

was used based on bandwidth usage. The transmission method is completely

controlled by the user or the RPi that is receiving the data.

 Burst mode (20 - 30 Samples sent at 40Hz) - Used when multiple gloves are

used at once or collecting specific data samples.

 Continuous mode (Continuous at 40Hz) - Used for continuous classification

when only one gloves is operational.

The worst case scenario (WCS) for one transmitting device over MQTT is calculated.

Number of bits in a single reading = (7 × 8) = 56 bits

Number of bits in a single sample WCS = (56 × 16) + (8 × 15) = 1,016 bits

Number of bits in a sample with header = 1016 + (25 × 8) = 1,216 bits

Number of samples per second at 40Hz = (1216 × 40) = 48,640 bits/sec

32

The access point hardware used to enable the communication has a transfer speed up

to 1,200,000 bits/second. As a result, 48,640 bits/second published by 1 glove over

MQTT or 243,200 bits/second published by all 5 gloves over MQTT is not a strain to

the Wi-Fi network (Header size estimated to be 25 bytes for this example [51]).

However, the limitation lies within the speed of the RPi and the data transferring

efficiency of the MQTT protocol itself. As per the experiments carried out by the team

Flespi platform [52] it can be seen that the RPi with MQTT over Wi-Fi with SSL has

a data transfer speed of approximately 48,003 bits/s. This means that only one glove

can be used in its full capacity at time without saturating the network. The control over

which glove can transmit at a time will be given to the RPi to ensure collision

avoidance.

The glove will continuously publish the status messages over different topics of the

MQTT network in order to provide necessary information. These signals include

 “GLOVE STARTED” to indicate the glove in online. It is also be used to

determine if the glove processor has forcibly undergone an automatic reboot to

an error in the program or hardware.

 “MQTT RECOVERED” to indicate when the glove connects to the MQTT

server. This also signify if and when the signal dropped during transmission.

 “INTERRUPT CRASH” to indicate the Kalman filters on the glove has not

have sufficient time to execute which results in duplication of previous values.

 Data Pre-processing

Data pre-processing is the step of formatting and adjusting the data such that it is

understandable to the learning algorithm and that differentiable features are

highlighted. The raw data that is filtered can be passed through a number of different

algorithms in order to obtain values that are able to give a better overview of the data.

 Data Preparation

The data sent from the glove for pre-processing are the raw data and filtered data (see

section 3.6) from the IMU devices on the gloves. The four IMU devices output 36 raw

signals monitored on the glove and are listed in Table 3-3. Out of the 36 data monitored

on the glove, there are 15 values that are sent from the glove. The data prefixed include

33

the value of the data collection iteration and the serial number of the person collecting

the data. The data suffixed includes the type of activity being collected.

Table 3-3 - Raw glove signals selected for Pre-processing (dark shade)

Middle finger

(IMU1)

Index finger

(IMU2)

Thumb

(IMU3)

Backhand

(IMU4)

𝒂𝒄𝒄𝒙 ✗ 𝑎𝑐𝑐𝑥 ✗ 𝑎𝑐𝑐𝑥 ✗ 𝑎𝑐𝑐𝑥 ✓

𝒂𝒄𝒄𝒚 ✗ 𝑎𝑐𝑐𝑦 ✗ 𝑎𝑐𝑐𝑦 ✗ 𝑎𝑐𝑐𝑦 ✓

𝒂𝒄𝒄𝒛 ✗ 𝑎𝑐𝑐𝑧 ✗ 𝑎𝑐𝑐𝑧 ✗ 𝑎𝑐𝑐𝑧 ✓

𝒈𝒚𝒓𝒐𝒙 ✗ 𝑔𝑦𝑟𝑜𝑥 ✗ 𝑔𝑦𝑟𝑜𝑥 ✗ 𝑔𝑦𝑟𝑜𝑥 ✗

𝒈𝒚𝒓𝒐𝒚 ✗ 𝑔𝑦𝑟𝑜𝑦 ✗ 𝑔𝑦𝑟𝑜𝑦 ✗ 𝑔𝑦𝑟𝑜𝑦 ✗

𝒈𝒚𝒓𝒐𝒛 ✗ 𝑔𝑦𝑟𝑜𝑧 ✗ 𝑔𝑦𝑟𝑜𝑧 ✗ 𝑔𝑦𝑟𝑜𝑧 ✗

𝜶 ✓ 𝛼 ✓ 𝛼 ✓ 𝛼 ✓

𝜷 ✓ 𝛽 ✓ 𝛽 ✓ 𝛽 ✓

𝜸 ✓ 𝛾 ✓ 𝛾 ✓ 𝛾 ✓

The data collected will have a dimension of (μ, 18) (15 signals + 1 user data + 1

activity), where μ is the number of data points. This dataset is then fed in to the training

algorithm where it is split to 2 segments, Input data denoted by Xraw and output data

denoted by yraw. yraw contains the output or the reference number of the activity.

dim (Xraw) = (μ, 17)

dim (yraw) = (μ, 1)

As the data collected for this project are from a practical scenario using physical

sensors, there are instances where the sensors, hardware, network connectivity or

software have failed and there are missing data in the observations. The SciKit-learn

library set providers an imputer class which provides 4 simple methods to handle

missing data [53]. These include replacing the missing data with the mean, median,

modal value or a constant value. For the designed glove, when there is an error in the

sensors, hardware or the network connection, there is a time-out triggered by the

central processor as seen in section 3.5.2. As a result of this, any missing data in the

observations will be from the last section of collected data. Therefore, it was decided

to ignore the final row of the observation if it contains any missing values. Missing

data can also be identified in the form of lack of data points. There is an activity time

34

window defined for detecting a gesture in section 1.2.2. If the collected data in an

iteration has less data points than the required data points in the window of

observation, the entire iteration will be ignored.

Categorical data such as the type of activity in output cannot be computed by machines

unless they are converted to numerical values. The output here is given as one of the

selected gestures in Table 1-1. These values were transformed to numerical values by

the data collection process by encoding each value in this category to the number seen

in the first column in Table 1-1.

dim (𝑦𝑀𝐿) = (𝜇, 1)

This method is suitable for most classical machine learning algorithms. However,

assigning a column for each output category is beneficial for neural networks as each

output category can be assigned to an individual output node on the neural network.

This converts the output array of dimension (μ, 1) to an output array of (μ, 12), where

x is the number of data points.

dim (yNN) = (μ, 12)

Once the data is prepared, the input data, X is preprocessed to obtain meaningful

information from the data. The feature extraction/pre-processing is done in two stages

in order to make maximum use of the processing capabilities and processing time.

Figure 3-18 – Stages of Data Pre-processing

Dataset, 𝑋𝑟𝑎𝑤

(𝜇, 17)

Stage

1

Stage

2

Expand with finger bend, 𝑋𝐸𝑓

Expand with gradients, 𝑋𝐸𝑑

Separate data to windows

Expand with stats & FFT,

𝑋𝐸𝑠, 𝑋𝐹𝑖

35

 Stage 1: Includes functions that transform the entire array of data without any

regard for the output value or collection iteration of the data.

 Stage 2: Includes functions that dissect the data in to individual iterations and

further dissect the data to windows to ensure that window contains exactly the

number predefined data points needed.

 Pre-processing: Stage 1

This stage of pre-processing includes functions that apply to the entire dataset

irrespective of the output value of the iteration number. For example: The raw, pitch

and yaw data received from the IMU processed to determine finger pose.

Finger bend

The placement of the sensors for the glove described in section 3.1.2 was such that the

bend of the thumb, index and middle fingers can be determined by equation (11),

where α is roll.

finger_bend𝑡 = backhand αt − finger αt (11)

Figure 3-19 – Finger angle determination

Finger Rotation

The thumb has 3 DOF (see section 3.1.2) which allows the thumb to move around to

the front of the hand. This motion is measured similar to equation (11) where β is pitch.

Backhand

IMU

Finger

IMU β1
β2

β3

Knuckle

MCP joint

PIP joint

DIP joint

36

thumb_rotationt = backhand βt − thumb βt (12)

The 3 finger bend and 1 thumb rotation calculation output values are added to the input

array, 𝑋𝑟𝑎𝑤, which expands this array by 4 columns.

dim (XEf) = (μ, 21)

Gradients of raw values, accelerometer magnitude and averaging

The gradient or the differential of values is an important to calculate for certain data

columns. As seen in section 3.6, the yaw axis of the IMU does not provide a steady

signal respect to a fixed reference. The signal is arbitrary and is prone to drift over

time. Therefore, equation (13) was used to obtain the change in yaw between two data

points than the yaw provided by the glove, where γ is yaw.

∆γt = γt − γt−1 (13)

Calculating the same for all roll and pitch angles shows the amount of absolute

movement in a unit measured time. This is also done for each of the finger bends and

the thumb rotation

∆finger_bendt = finger_bendt − finger_bendt−1 (14)

∆thumb_rotationt = thumb_rotationt − thumb_rotationt−1 (15)

3-point averaging

The accelerometer data obtained from the glove is unfiltered data. In order to remove

certain amount of noise from the accelerometer data the averaging method was found

to be reasonably effective. The accelerometer data is sent through a 3-point window

average to obtain the filtered accelerometer data.

acct =
acct−1 + acct + acct+1

3
 (16)

The accelerometer raw data and filtered data are both used to calculate the magnitude

of the accelerometer readings [36] in each data point.

37

|acct| = √accx
2 + accy

2 + accz
2 (17)

In order to execute the gradients and averaging functions a number of past data and

future data is required. As a result, the algorithm cannot be run throughout the entire

dataset as the data is not a continuous collection of data. As a result, the data is

temporarily split to individual iterations as each iteration consists of 1 attempt to

capture data. The data in each iteration is then sent through the algorithms. This results

in the loss of 1 data point each from the beginning of each iteration and end of each

iteration, resulting in the rows in the dimension of array, 𝑋𝐸𝑓 being reduced to μ − 2i,

where 𝑖 is the number of iterations of data collection

Finger Abduction and Adduction

The movement of the fingers closer and further apart can be measured as the motion

in yaw axis. As the motion in the yaw axis, as described earlier is arbitrary in relative

position, the difference in motion in yaw axis is used for this.

finger_abduction = backhand ∆γt − finger ∆γt (18)

Figure 3-20 – Finger angle determination

Backhand

IMU

Finger

IMU

𝛾𝑚𝑖𝑑𝑑𝑙𝑒

𝜃2

𝛾𝑖𝑛𝑑𝑒𝑥

Knuckle

MCP joint

PIP joint

DIP joint

𝛾𝑡ℎ𝑢𝑚𝑏

38

With the addition of all the data calculated from equations (11) to (18), a total of 27

new data columns are added to the input array, 𝑋𝐸𝑓.

dim (XEd) = (μ − 2i, 48)

 Pre-processing: Stage 2

In this stage important information or features are extracted from the sensor data by

passing it through a number of algorithms. As most of the algorithms in this stage are

designed to evaluate the data point, the input dataset, 𝑋𝐸𝑑 is first split to individual

iterations and then again split to individual windows of data.

As this is the final step in pre-processing, the initial columns of the input data which

provides the serial number of the user and the iteration number are separated.

dim (XEdw) = (μ − 2i, 46)

Pre-processing for Machine Learning

Some of the feature extraction methods used commonly in activity recognition are

shown in section 2.2. These feature extraction methods along with some customized

algorithms for feature extraction from the designed glove is mentioned in this section.

The algorithms in this section were implemented in Python using pre-defined libraries

in order to ensure the calculation of the features were efficient. These pre-defined

libraries were used from the built in libraries NumPy [54] and SciPy [55]. For

algorithms that do not have pre-defined functions, a function was written.

Raw Values

One of the values that are used for the input dataset are the actual raw values obtained

from the glove and stage 1 pre-processing. The list of values in the window are

flattened to a 1-dimensional array of data.

Histograms

Histogram method, specifically histogram of gradient is generally an algorithm used

in human detection in images and it has been used in a paper by Jain et al. [41]. In this

algorithm, the data of each 1-dimentional array are binned to non-overlapping bins,

39

where 𝜌 is the threshold. Use of histograms allows the ML algorithm to prioritize

certain range of values over others.

High negative: xt − xt−1 < −ρ

static motion:−ρ ≥ xt − xt−1 ≥ ρ

High positive: xt − xt−1 > ρ

(19)

 3-bin Histogram of data – Histogram of data split to 3 bins with varying 𝜌

o Accelerometer data (bin threshold at ±1000)

o Differential roll and pitch values (bin threshold at ±5)

o Differential yaw values (bin threshold at ±10)

 3-bin Histogram of gradients (HOG) - Histogram of gradient data split to 3 bins

 12-bin Histogram of absolute bends (HOB) - Histogram of bends calculated

for angles from 0° – 180° at bin sizes of 15°.

Statistical Values

Calculating various statistical values within the window of data is important to obtain

different information about the datasets that will allow each output to be distinguished

from each other. A number of algorithms were used as seen in Table 3-4, along with a

number of algorithms unique to this project.

Table 3-4 – Statistical formula for pre-processing

 Equation Ref

Median: of each column denotes

midpoint of its frequency distribution.

med (x) [36]

Mean: The mean provides the average

value of each column in the dataset

Equation 20

x̅ =
∑ xi

N
i=1

N

[6],

[39],

[56]

40

Variance: The power of the given

column of values with its mean

removed

Equation 21

Varx =
∑ (xi − x̅)2N

i=1

N

[6],

[36],

[56]

Standard Deviation: The deviation of

the values from the mean value in a

window.

Equation 22

SDx = √
∑ |xi − x̅|2N

i=1

N

[37],

[8],

[56]

Minimum/Maximum: Provides the

min and max values in a given window

min (x)

max (x)

[8],

[35]

RMS: Square root of the average power

of a dimension.

Equation 23

RMSx = √
1

N
∑ (xi)2

N

i=1

[6] ,

[36],

[39]

Skewness: Indicates the lack of

symmetry in a dimension

Equation 24

Skewx =

1
N

∑ (xi − x̅)3N
i=1

(
1
N

∑ (xi − x̅)2N
i=1)

3

[6],

[39]

Kurtosis: indicates the shape of

distribution of the data in a given

dimension

Equation 25

Kurtx =

1
N

∑ (xi − x̅)4N
i=1

(
1
N

∑ (xi − x̅)2N
i=1)

2

[6],

[36],

[39]

Median Absolute Deviation: This

provides the absolute deviation of the

data from the central value.

Equation 26

MedADx

= √
∑ |xi − med(x)|2N

i=1

N − 1

Mean Absolute Deviation: This

provides the absolute deviation of the

data from the average value.

Equation 27

MADx = √
∑ |xi − x̅|2N

i=1

N − 1

[36],

[57],

[56]

41

*custom algorithm

Zero Crossing rate: This is a count of

times the data changes its’ sign in a

given window

*custom algorithm

Equation 28

count if xtxt−1 < 0

[56],

[34]

Slope sign change: This is a count of

times the gradient of the data changes

its sign in a given window

*custom algorithm

Equation 29

count if (xt − xt−1)(xt−1 − xt)

< 0

[34]

Waveform Length: This calculates the

area under the curve of the differential

value graph.

*custom algorithm

Equation 30

l = ∑ |xk − xk−1|
L

k=2

[34]

The statistical calculations are performed on each of the raw values and the finger bend

values.

Linear Velocity

A number of activities such as “push” and “pull” have very similar hand spatial

orientations and equal but opposite temporal movements. There are not many

significant features that are identified to distinguish between similar activities of this

nature. As such linear velocity algorithm was introduced which calculated the area

under the curve for each of the accelerometer descriptors in order to obtain the velocity

in a given window.

ẋ = ∑ xt

N

t=0
 (31)

Fourier Descriptors

Fourier descriptors have also been referenced in [41], [10] and [8]. Using the variables

in the frequency domain adds many advantages to the classification algorithm. As the

42

data collected here are invariant to translation, rotation and scaling in the time axis

[41], the data collected in any orientation and hand size can be captured. To achieve

the suitable FD’s for this project;

1. The mean of the selected data window is obtained

2. The centroid distance is found using equation (32).

d(t) = √(∆αt − ∆α̅̅̅̅)2 + (∆βt − ∆β̅̅̅̅)
2
+ (∆γt − ∆γ̅̅̅̅)2 (32)

3. The Fourier coefficients are then calculated using the fast Fourier transform

(FFT) which is a computationally equivalent to discrete frequency

transformation equation in (33).

DFTN =
1

N
∑ d(t)e

−j2πnt
N

N

t=1
 (33)

Pre-processing for Convolutional Neural Network

The data for a convolutional neural network is prepared in images to match the

standard convolution neural network frameworks. A 3-channel image is prepared for

each data point.

 Channel 1: Raw values obtained from stage 1 pre-processing

 Channel 2: Magnitude of FFT values from values from stage 1 pre-processing

 Channel 3: Phase of FFT values from values from stage 1 pre-processing

The data pre-processed for machine learning at stage 2 cannot be used as the values

obtained from this are up to 12-point values and cannot be used to fill an entire column

on an image with meaningful patterns.

Standard applications for CNN use 2-dimensional FFT to pre-process data. However,

as individual columns contain no related information to each other, any meaningful

data may be lost if FFT is applied across the columns. Therefore, 1-dimensional FFT

is applied across individual rows where rows denote the temporal space.

FFT = {
n = 2r if even
n = 2r + 1 if odd

 (34)

43

Where 𝑟 = 1,2,⋯
𝑁

2
− 1

This results in a 4-dimensional array, 𝑋𝐹𝑖;

 First Dimension: Data points

 Second Dimension: Window size (height of image) (20 or 30)

 Third Dimension: Width of pre-processed dataset (width of image)

 Fourth Dimension: Channel

dim (XFi) = (μ − 2i , window , 46 ,3)

Table 3-5 – 3-channel activity images derived from raw data and FFT values of data

00

06

01

07

02

08

44

03

09

04

10

05

11

Examples of the 30 window activity images identified by these projected to the RGB

color space is shown in Table 3-5 (also see Appendix 4). It can be seen that, although

all the RGB images look in differentiable, the patterns on the each of the images shown

in Appendix 4 have distinctly identifiable structures that have formed for each activity.

At the end of pre-processing the data is ready to be passed to the ML algorithms. The

dimensions of the final data depend on the number of data points collected per

iteration. A data point is considered as a row of input information containing the

dimension (1, 17). Considering 35 data points in 1 iteration. There will be 33 data

points once the pre-processing is complete. If the classification window size is 30, this

results in 4 data windows for classification. This segmentation is done

programmatically by looping through the data.

45

 Feature Scaling

Feature scaling is a critical step in both machine learning and neural network

algorithms. This involves scaling all the data in the input dataset to the same range of

data in order for the learning algorithm to not have any bias.

Standard Scaler

The standard scaler algorithm is a built-in Gaussian scaling algorithm in the SciKit-

learn preprocessing class which standardizes the features by removing the mean and

scaling the values to unit variance [58].

x̂ =
x − x̅

std(x)
 (35)

Majority of the values are varying close to the center of the range and the extremities

are used very rarely. This resembles a standard Gaussian distribution (normal

distribution). Passing these values through a Gaussian scaler which will apply a larger

scale factor to the center of the distribution and a smaller scale factor to the extremities

will result in in a linear series of sensor data for easy classification.

Maximum Absolute Scaler

This scaler was designed for the pre-processing of activity images. This method scales

the entire dataset from +1 to -1 in order to ensure that the images formed have the same

maximum and minimum values.

x̂̂ =
x̂

max(|x̂|)
 (36)

Using the data preprocessing explained in the section, the raw data from the sensors

were cleaned to remove missing data and they were processed in to more meaningful

data that can be used to discriminate activities from each other. New algorithms were

introduced in order to reinforce the discrimination of data value between activities.

Further all data fields were scaled between the fixed values in order to remove any

bias in the classification process.

46

4. LEARNING MODEL DEVELOPMENT AND RESULTS

This section of the thesis is mainly a discussion of the results from the performance of

machine learning algorithm for the Prototype 2 glove designed for this project.

 Data Collection

The testing data was collected on a simulated industrial environment. The overall data

collection summary can be seen in Table 4-1.

Table 4-1 – Test data points collected by participants

Participant 1 2,637 Participant 5 2,829 Participant 8 2,396

Participant 2 1,955 Participant 6 2,038 Participant 9 2,038

Participant 3 2,123 Participant 7 2,246 Participant 10 2,098

Participant 4 2,322

A total of 54,303 training data points were collected from my hand in all orientations

of each activity to ensure the machine learning algorithm can be properly trained. Each

test participant has up-to two random and different orientations for each activity. As

the training data is only collected from only one participant, there is a general bias in

the data and may not be able to accurately capture the differences from one participant

to another in a wider participant scope.

Based on prior research detailed in section 2.2, a number of machine learning

algorithms have been selected to classify the preprocessed data

Classical machine learning

 Support vector machine (SVM)

 K-nearest neighbors (k-NN)

 Random forest (RF)

 Decision tree (DT)

 Linear discriminant analysis (LDA)

Deep learning

 Convolutional neural

network (CNN)

47

The machine learning algorithms were implemented in Python with the help of SciKit

libraries while the deep learning/neural network algorithms were implemented in

Python with the help of SciKit, Tensor Flow and Keras libraries.

 Classical Machine Learning

Once the training and the testing data have been collected, they were preprocessed

with two-Stage pre-processing (See sections 3.8.2 and 3.8.3) and feature scaling (See

section 0)

When building the initial pre-processing algorithm list, a number of a trial and error

iterations were done to identify the suitable pre-processing algorithms. This was done

based on error analysis. Using the training set and data from participant 1 as the

development set, the errors identified by the ML algorithms were analyzed.

Table 4-2 – CM - SVM classifier with the RBF kernel

CM
Actual

0 1 2 3 4 5 6 7 8 9 10 11

P
re

d
ic

ti
o
n

0 452 132 1 9 107 0 42 230 42 0 1 185

1 71 655 4 6 4 0 245 1 0 141 0 9

2 0 0 236 112 0 0 1 21 0 0 0 0

3 0 0 152 246 0 0 0 0 0 0 0 0

4 1 25 0 0 35 0 0 5 0 0 0 4

5 190 58 0 0 85 942 54 63 0 0 86 0

6 0 0 0 0 0 0 14 74 0 0 0 0

7 0 0 0 0 0 0 0 362 0 0 0 0

8 0 0 0 0 0 0 0 0 508 2 0 0

9 0 0 0 0 0 0 0 0 0 586 0 0

10 365 0 0 0 0 423 0 0 0 0 1 0

11 0 0 0 0 0 88 0 211 0 53 0 304

48

 Error Analysis

The confusion matrix (CM) for the SVM classifier with radial-basis function (RBF)

kernel for a prior training model that reached 75% accuracy is shown in Table 4-2.

The data labels from 0 to 11 are the same labels detailed in Table 1-1.

It can be seen from the error analysis performed in Table 4-3, a large amount of errors

may be resulting from the lack of a few algorithms that can be put in place for the pre-

processing.

Table 4-3 – Initial Error analysis for CM for SVM classifier

Actual Prediction Suggested solution

Push Point
Linear movement of the hand is not recorded

in pre-processing. This was added with

equation (31).

Point Hold & walk

Hold Hold & walk

Wipe Point
A slope changing rate must be introduced to

identify rapid back and forth movements. This

is seen in section 3.8.3.

Walk Wipe

Pull Wipe

Push Turn
Angular movement each sensor must be

further deconstructed. This was done using a

histogram of gradients in section 3.8.2

Tighten Loosen

Loosen Tighten

Point Hold

Finger bend values must be explicitly defined.

This was done in section 3.8.2.
Turn Point

Pick Point

The CM after adding the algorithms suggested in Table 4-3 can be seen in Table 4-4.

The highlighted cells in Table 4-2 which signifies the highest misclassification

numbers are the same in Table 4-4. The overall accuracy for the classifier with updated

pre-processing is 88.0%, which is an improvement of 17.3%.

49

Table 4-4 – Updated CM - SVM classifier with the RBF kernel

CM
Actual

0 1 2 3 4 5 6 7 8 9 10 11
P

re
d

ic
ti

o
n

0 221 0 0 0 0 16 0 0 0 0 0 0

1 0 255 0 0 0 0 0 0 0 0 0 0

2 0 0 79 2 0 0 0 0 0 0 0 0

3 0 0 157 87 0 0 0 0 0 0 0 0

4 0 0 0 0 53 0 0 0 0 0 0 0

5 0 0 0 0 0 216 0 0 0 0 0 0

6 0 0 0 0 0 0 10 0 0 0 0 0

7 0 0 0 0 0 0 0 52 0 0 0 0

8 0 0 0 0 0 0 0 0 118 0 0 0

9 0 0 0 0 0 0 0 0 0 388 0 0

10 0 0 0 0 0 0 0 0 0 0 82 0

11 0 0 0 0 0 1 0 0 0 26 0 0

However, it can be seen that most activities continue to be misclassified, due to the

actions in one activity being partly captured within the other activity. With analysis

over many different iterations and test scenarios, activities that are persistent

misclassifications were identified.

 Tighten – Commonly classified as loosen

 Loosen – Commonly classified as tighten

 Walk – Commonly classified as hold & walk

 Hold & Walk – Commonly classified as walk or hold

 Hold – Commonly classified as point or hold & walk

 Turn – Commonly classified as walk

By combining the common fields, where ‘A’ combines tighten and loosen and ‘B’

combines walk, hold and walk and turn, an accuracy of 99% is achieved (88% for

50

uncombined version). This was tested with the same classifier to obtain the CM in

Table 4-5. It can be seen that the result obtained is as estimated. The final accuracy of

this classifier is 98.8% with an F1 score of 98.9%.

Table 4-5 – Combined CM - common categories combined

CM
Actual

0 1 A 4 5 6 7 8 B

P
re

d
ic

ti
o
n

0 221 0 0 0 16 0 0 0 0

1 0 255 0 0 0 0 0 0 0

A 0 0 325 0 0 0 0 0 0

4 0 0 0 53 0 0 0 0 0

5 0 0 0 0 216 0 0 0 0

6 0 0 0 0 0 10 0 0 0

7 0 0 0 0 0 0 52 0 0

8 0 0 0 0 0 0 0 118 0

B 0 0 0 0 4 0 0 0 493

The improvement in accuracy for the changes done through error analysis can be seen

in this section. Although ~99% accuracy was obtained through the combination of

similar activities, this is not used for the analysis in the remainder of the thesis. The

improvements to pre-processing will be used while discarding the combination of

activities, in order to ensure the scope of the project is achieved.

 Base Performance

Initially, to identify a base performance, the accuracy of the each of the machine

learning algorithms was tested with first testing set with the hypothesized values in

section 1.2.3. This involves checking performance with a 30-sample window with all

selected pre-processing algorithms.

51

Due to the accuracy-paradox [59] in comparing each of the machine learning

algorithms, the recall and precision is used. The F1 score is used as a single measure

the observe both recall and precision.

F1 Score =
2

1
Recall⁄ + 1

Precision⁄

(37)

Using the F1 score method, the base case scenario is plotted with its classical machine

learning performance in SVM (with RBF kernel), SVM (with linear kernel), k-nearest

neighbors (with 𝑘 = 5), random forest classifier (with 𝑛 = 20), linear discriminant

analysis (with singular value decomposition (SVD)) and Decision tree. The chart is

shown in Figure 4-1.

Figure 4-1 - Classical ML F1 Score | (Base Case) 30 Window, Level 1 Pre-process

It can be clearly seen that the performance of the LDA kernel with SVD solver has

performed well with an average F1 score of 88.7% while SVM classifier with both

RBF (average F1 score of 88.1%) and Linear kernel (average F1 score of 87.5%) have

also performed well with the highest single accuracy of about 95% for Participant 9.

k-NN classifiers have also performed moderately well with the highest F1 score 92.5%

for Participant 8 while having an average F1 score of about 82.1%.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

SVM (RBF) SVM (Linear) kNN (k=5) RFC (n=20) DT (Gini) LDA

F1
 S

co
re

52

Figure 4-2 – k-Nearest Neighbor performance for k values 3,5,10 and 20 for all

participants

The column for the k-NN in the Figure 4-1 only shows 𝑘 = 5. This was chosen by

experimenting a number of k values where 𝑘 = 5 was selected as the best overall F1

score for all participants as seen in Figure 4-2. The same was done for random forest

Classifier to obtain 𝑛 = 20.

 Window Size

The same data as the base case scenario can be plotted by adjusting the window length

to 20 instead of 30 (see Figure 4-3). Very similar results can be seen compared to the

base case where the LDA and SVM classifiers are outperforming the remaining

classifiers.

Figure 4-3 - Classical ML F1 Score | 20 Window, Level 1 Pre-process

By comparing the average F1 scores of all 10 participants against each of the window

lengths for the top 3 performing classifiers, namely SVM with RBF kernel, SVM with

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

0 5 10 15 20 25

F1
 S

co
re

k

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

SVM (RBF) SVM (Linear) kNN (k=5) LDA

F1
 S

co
re

53

linear kernel and LDA with SVD, a clear picture can be seen on the overall

performance. This chart is shown in Figure 4-4. From this chart it can be seen that

 There is a 0.42% and 1.45% increase in F1 score when using a 20-slide window

for SVM with RBF kernel and k-nearest neighbors with 𝑘 = 5, while there is

a 2.67% and 0.55% increase in F1 score when using a 30-slide window for

SVM with linear kernel and LDA.

 The LDA has the higher average F1 score overall in both window options.

As the increase in F1 score of 0.42% and 1.45% for using a slide window of 20 over

30, is far less than the improvement of 2.67% and 0.55% for using a slide window of

30 over 20, it can be concluded that the performance of the glove for classical machine

learning is best performed with a window length greater than 20 or equivalently

0.5seconds.

Both LDA and Linear SVM work on very similar algorithms where it draws a plane

between the data points in order to maximize the separability. In my opinion these

algorithms perform better than the other algorithms are because they create a linear

boundary in each parameter. A linear boundary is better than other clustering

algorithms as all activities has spatial and temporal parameters which contains values

that can be split with a clear boundary.

Figure 4-4 - Classical ML F1 Score Comparison for Window Lengths

 Manual Dimensionality Reduction

By observing the results of the error analysis and by trial and error, a manual

dimensionality reduction was done in 4 levels (see Table 4-6 and Appendix 3). This

8
4

.6
9

%

8
5

.9
5

% 8
8

.2
0

%

8
4

.3
4

%

8
8

.2
5

%

8
8

.6
8

%

S V M (R B F) S V M (L I N E A R) L D A (S V D)

F1
 S

co
re

Window 20 Window 30

54

was done mainly to eliminate the processing time while maintaining the highest

possible F1 score.

Table 4-6 – Manual dimensionality reduction level comparison

Level Selection Dimensions for

30-window

Dimensions for

20-window

1 All features are selected 2,151 1,636

2 All features except raw values 755 705

3 All statistical values and Fourier

Descriptors only

704 654

4 Statistical values only 322 322

It can be seen from the chart in Figure 4-5, each of the levels have varied

improvements. These improvements compared to the base case is shown in Figure 4-6.

From this figure it can be seen that the SVM with RBF kernel classify the data with an

improvement of 2.5% when there are only statistical values, while the SVM with

Linear kernel performs well with level 2, 3 and 4. The best improvement of 3.5% and

1% for the SVM with linear kernel and the LDA respectively is seen with all calculated

features excluding raw values. This is justified as the raw values are often noisy due

to the nature of the sensors used. This does not allow the classifier to fit the training

data well.

Figure 4-5 – Manual dimensionality reduction level comparison

8
7

.1
1

%

8
7

.4
6

%

8
8

.6
8

%

8
5

.5
5

%

9
0

.4
4

%

8
9

.2
4

%

8
8

.7
4

%

8
9

.8
8

%

8
7

.3
8

%8
9

.2
5

%

8
9

.6
5

%

8
8

.4
1

%

S V M (R B F) S V M (L I N E A R) L D A (S V D)

F1
 S

C
O

R
E

Stage 1 Stage 2 Stage 3 Stage 4

55

Figure 4-6 – Manual dimensionality reduction level to level improvement.

Using the averaged performance of each of the filters shown in Figure 4-5, the

conclusion that can be made is shown in Table 4-7.

Table 4-7 – Classical Machine Learning performance comparison

 Pre-processing

Level

F1 Score Computation

SVM with linear kernel 2 90.44% High

SVM with linear kernel 3 89.88% Medium

SVM with linear kernel 4 89.65% Low

SVM with RBF kernel 4 89.25% Low

LDA with SVD 2 89.24% High

SVM with RBF kernel 3 88.74% Medium

LDA with SVD 1 88.68% High

The performance of the SVM is also confirmed by the results from the paper by

Chathuramali and Rodrigo [60], where the SVM showed a faster computational time

compared to other classical machine learning implementations.

 PCA Dimensionality Reduction

Given the machine learning application needs to run in real-time or close to real-time,

it is important to reduce the load on the classification algorithm. Principal component

analysis (PCA) is an algorithm used reduce the feature space of the input array, while

-1
.7

9
%

3
.4

1
%

0
.6

3
%

1
.8

7
% 2

.7
7

%

-1
.4

7
%

2
.4

5
%

2
.5

0
%

-0
.3

0
%S V M (R B F) S V M (L I N E A R) L D A (S V D)

F1
 S

C
O

R
E

IM
P

R
O

V
EM

EN
T

%

Stage 1 - Stage 2 Stage 1 - Stage 3 Stage 1 - Stage 4

56

retaining as much information as possible. This helps by improving the interpretability

of the data and reducing the time taken to train and run the algorithm [61]. PCA was

performed on the training dataset to attempt to reduce the number of dimensions that

are used.

Figure 4-7 – 10 Highest contributing dimensions with PCA

Figure 4-7 shows the 10 highest contributing dimensions when PCA is applied to the

training data. Out of the 2,152 dimensions initially identified, the top 6 dimensions can

be used to achieve an explained variance ratio of 98.61%. Using the same dimensions

for the final model running live on the RPi will have significantly better computation

performance with a total dimensionality reduction of 99.72%.

 Null Set Classification

Null set classification is the initial stage of classification of the real data when the

activity recognition glove is deployed to the industry. A null set is defined in this

project as the set of activities not defined in the scope of the project. Hand activities

such as waiting, crossing hands and relaxing. are considered as null sets.

The data for null set identification is trained by clubbing all the training data collected

for the project so far against a number of varied hand gestures that do not fall within

the previously captured hand gestures. Data sets that are classified as null sets from

this classifier are discarded and the remaining data is fed in to activity classification.

Since the null set classification needs to be done fast, it will be done through classical

machine learning using the same data needed for the next stage of classification. As it

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Ex
p

la
in

ed
 V

ar
ia

n
ce

 R
at

io

Dimensions

Explained Variance Cumulative Explained Variance

57

was seen in section 4.2.3 that data window of 30 pre-processed in stage 2, 3 or 4 is

suitable, these are tested for null set classification. The averaged performance for the

null set classification for each of the pre-processing stages is shown in Figure 4-8.

Figure 4-8 – Null set performance for each of the selected algorithms

It should be specially noted that using SVM with linear kernel for the data set passed

through level 4 pre-processing obtains an F1 Score 98.91%. This value will

immediately improve to 100% by passing it through the Post-processing algorithm

described in section 4.5.

 Convolutional Neural Networks

Convolutional neural network (CNN) is a type of deep neural network commonly

associated with classifying images. The use of CNN is seen in some activity

recognition algorithms where the activity values are Fourier transformed and arranged

to form an activity image. A similar approach is used with the activities for this project

through Stage 2 pre-processing in section 3.8.3.

Similar to the approach taken with the classical machine learning classification, the

classification with convolutional neural networks with the activity images shown in

the Appendix 4, is broken down in this section.

 Base Performance

The base performance of the neural network is measured against the values in the

hypothesis in Section 1.2.3 and the initial convolutional neural network with a number

of trial and error attempts. This CNN has the structure in Figure 4-9.

9
3

.3
2

%

8
9

.9
6

% 9
3

.0
0

%

9
6

.4
8

%

9
7

.7
3

%

9
3

.7
2

%

9
3

.1
9

% 9
5

.8
5

%

9
1

.6
9

%

9
4

.9
9

%

9
8

.9
1

%

9
2

.1
9

%

S V M (R B F) S V M (L I N E A R) L D A (S V D)

F1
 S

C
O

R
E

Stage 1 Stage 2 Stage 3 Stage 4

58

Initial CNN structure:

1. Convolution Layer – 32 x 3x3 Kernel, ReLU Activation

2. Pooling Layer – 2x2 Kernel

3. Convolution Layer – 64 x 3x3 Kernel, ReLU Activation

4. Pooling Layer – 2x2 Kernel

5. Fully Connected (FC) – 128 Nodes, ReLU Activation

6. Fully Connected (FC) – 64 Nodes, ReLU Activation

7. Fully Connected (FC) – 32 Nodes, ReLU Activation

8. Fully Connected (FC) – 12 Nodes, Soft Max Activation

where ReLu is rectified linear unit activation.

CNN Parameters:

 Input Image Size: 30 x 46 x 3

Image height = 30

Image width = 46

Image channels = 3

 Batch Size = 32

 Optimizer: Adam

o Learning rate: 0.001

o 𝛽1 = 0.9,

o 𝛽2 = 0.999

o 𝜀 = 1 × 10−7

Figure 4-9 – Base CNN structure

59

Figure 4-10 – Base CNN performance

Figure 4-11 – Base CNN F1 scores

It can be seen that the training accuracy quickly rises to 100% while the loss drops to

very small values within the initial 3 epochs which means that the neural network is

overfitting the data. The validation data which is the test data of participant 1 is

saturating at about 85%, close to 18 epochs. However, the validation loss continuously

increases indicating overfitting of the neural network. Although the neural network

has high accuracy, the network is not sure of the classifications (low probabilities).

The F1 scores of the test data from the trained network is shown in Figure 4-11. It can

be seen that participant 8 has the highest F1 score of 93.9% which the entire test set

has an average F1 score of 83.8%.

83.7%

59.0%

85.8%

89.9% 88.9%
85.4%

92.0%
93.9%

84.1%

75.2%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

F1
 S

co
re

60

 Window Size

The window size hypothesis was retested as in section 4.2.3. The same data was

formatted with a window size of 20 and passed through a CNN of the same structure

as the base case to obtain the results in Figure 4-12.

Figure 4-12 – Base CNN performance

It can be seen that the CNN performs poorly compared to the base case scenario. This

can be also seen in the F1 score comparison in Figure 4-13. The highest F1 score is

obtained at 90.7% for the same participant with an average F1 score dropping to 82.7%

for the complete test set.

For CNN’s the performance of a window size of 30 is better than the same with the

window size of 20. As in classical machine learning, the remainder of the analysis will

be continued with the images processed with a window size of 30.

Figure 4-13 – Window 20 vs. 30 CNN F1 scores

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

F1
 S

co
re

Window 30 Window 20

61

 2 Channel Input Network

As mentioned in Section 3.8.3, the 2nd and 3rd channel of the 3-channel activity image

is the Fourier magnitude and the phase. As these two channels also provide rich

information regarding the movement in each of the sensors, the CNN was retrained

only using these channels of the image. The performance of this CNN is shown in

Figure 4-14. The figure shows the CNN starts overfitting instantly and does not

perform well.

Figure 4-14 – 2 Channel input CNN performance

Again, it can be seen that the base scenario performs better than the 2-channel input

CNN. This signifies that the raw data added in channel 1 provides some crucial

topographies to the image that help the image to be classified better. The F1 score

average for this CNN was obtained at 78.3% for the complete test set.

Figure 4-15 – 2-channel vs. 3-channel input F1 scores

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

F1
 S

co
re

Full 2 - Channel

62

 Error analysis

In order to test the various effects of the hyper-parameters of the neural network on

the performance, the network size was initially reduced to a 2 layer network (hereafter

known as 1-CNN) comprising of 1 convolutional layer and 1 max pool payer as shown

in Figure 4-16. The performance of the 1-CNN against the base case scenario is shown

in Figure 4-17.

Figure 4-16 – 1-CNN structure

Figure 4-17 – 1-CNN vs base case scenario F1 scores

It can be seen that the 1-CNN performs better than the base case scenario with an

average F1 score of 86.1% for the entire test set. It can be seen from the graphs in

Figure 4-18, the validation loss over 25 epochs remains reasonably stable, however it

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

F1
 S

co
re

s

Base CNN New CNN

63

can be seen that when the number of epochs is increased to 500 from Figure 4-19, the

validation loss quickly explodes.

As previously stated, it can be seen from graphs in Figure 4-18 and Figure 4-19, the

training accuracy saturates at 100% early in the training while the validation accuracy

remains close to 86%. Similarly, the training loss is continuously decreasing beyond

4.94 × 10−12 within 25 epochs, while the validation loss explodes and reaches about

5.72 before it saturates at this level at about 300 epochs. This is a clear indication of

the network overfitting the training data. In order to address this issue, a number of

regularization methods are used to balance the training and validation metrics.

From the loss graph in Figure 4-19, it can be seen that the validation loss is moving

back and forth a number of times. Although it is not visible in the training data, the

raw values of the training data showed that the values are noisy. This has been

identified as the learning rate being too high, preventing the model on optimizing to

the global optima. This can be addressed by adjusting the learning rate of the model.

Before making changes to the learning rate and regularization hyper-parameters, the

model was also trained using a sigmoid activation function instead of the ReLU

activation function to eliminate the possibility of the identified issues arising due to

the activation function. This showed in Figure 4-20 that although the accuracy did not

improve, the model is still overfitting and the graph is still noisy.

In order to adjust the learning rate to ensure that the model is able to optimize to the

global optima of the parameter space, the learning rate was reduced through trial and

error. Figure 4-21 shows the performance of the same neural network as Figure 4-18

with the learning rate reduced by a factor of 10. It can be clearly seen that the noise in

the validation loss has significantly reduced, and the raw data of the training loss

reflects the same.

The classifier used in the network so far is the Adam optimizer (adaptive moment

estimation) which is a Stochastic gradient decent algorithm that maintains a single

learning rate throughout [62]. By using a modification of the Adam optimizer such as

adaptive gradient algorithm (Adagrad) or adaptive delta algorithm (Adadelta) the

training can be improved. These optimizers maintain a per-parameter learning rate.

64

The Adagrad optimizer manipulates the learning rate during training such that the

learning rate drops faster for frequent parameters while the learning rate drops slower

for less frequent parameters [63], [64].

Figure 4-18 – 1- CNN performance

Figure 4-19 – 1-CNN performance over 500 epochs

Figure 4-20 – 1-CNN performance with sigmoid activation

65

Figure 4-21 – 1-CNN performance with slower learning rate (0.0001)

Figure 4-22 – 1-CNN performance with Adadelta optimizer

Figure 4-23 – 1-CNN performance with Adagrad optimizer

From the performance of the adaptive learning rate functions shown in Figure 4-22

and Figure 4-23, it can be seen that the Adagrad algorithms performs the best.

In order to address the overfitting of the training data, dropout regularization is

introduced to the training model. Dropout regularization is the technique of randomly

ignoring a number of units in a neural network in order to efficiently reduce over fitting

by preventing complex co-adaptations on the training data [65]. Initially a dropout

regularization ratio (DRR) of 0.2 was tested on the input layer and in the first hidden

66

layer. The performance of these can be seen in Figure 4-24 and Figure 4-25

respectively.

Figure 4-24 – 1-CNN performance with input layer dropout regularization

Figure 4-25 – 1-CNN performance with hidden layer dropout regularization

It can be seen that in both instances, the training data does not reach 100% accuracy

and the training loss is moderately less for the input layer dropout regularization. The

number was selected with trial and error as high dropout regularization ratios will

significantly impact performance as seen in Figure 8-12.

By combining these two hyper-parameter changes we can obtain a suitable 1-CNN.

This network will consist of the Adagrad optimizer with input dropout regularization

ratio of 0.01. As seen in Figure 4-27 the new network performs better than the base

case network with an overall F1 score of 85.1% for the entire test sets. It can be seen

that the network does not perform as well as the neural network with the Adam

optimizer and no dropout regularization. However, from Figure 4-26, it can be seen

that the loss of the new neural network is much lower than the previous case shown in

Figure 4-19. This means that the neural network has fit the training data quite well and

the classifications have a higher confidence.

67

Figure 4-26 – 1-CNN performance with optimizer tuning and DRR=0.01

Figure 4-27 – 1-CNN comparison with Adagrad optimizer and DRR=0.01

Looking at the CM for the neural network in Table 4-8, the errors can be analyzed. It

can be clearly seen that the errors occurred by the neural network is mostly due to the

fact that it is not capable of differentiating between the same activities identified with

the exception for the activity for “hold & walk”.

Compared to the classical machine learning algorithm, the neural network has been

able to differentiate the activity hold & walk with its similar activities while failing to

the differentiate the remaining activities also misclassified by the classical machine

learning algorithm. By combining these activities, a better performance can be

achieved by the same neural network. This is seen in Table 4-9 where ‘A’ is the

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

F1
 S

co
re

s

Base CNN Single Conv. Layer with no tuining Single Conv. Layer with tuning

68

combination of “tightening” & “loosening” and ‘C’ is the combination of “walk” and

“turn”.

Table 4-8 – CM – 1-CNN with Adagrad optimizer & DRR=0.01

CM
Actual

0 1 2 3 4 5 6 7 8 9 10 11

P
re

d
ic

ti
o
n

0 208 0 1 0 0 25 0 0 0 0 3 0

1 0 250 5 0 0 0 0 0 0 0 0 0

2 0 0 80 1 0 0 0 0 0 0 0 0

3 0 0 240 4 0 0 0 0 0 0 0 0

4 0 0 0 0 3 0 0 0 0 0 0 0

5 0 0 0 0 0 263 0 0 0 0 3 0

6 0 0 0 0 0 0 10 0 0 0 0 0

7 0 0 0 0 0 0 0 52 0 0 0 0

8 0 2 2 0 0 0 0 0 114 0 0 0

9 0 0 0 0 0 0 0 0 0 388 0 0

10 0 0 0 0 0 0 0 0 0 0 82 0

11 1 0 0 0 0 0 0 0 0 26 0 0

This improves the accuracy from 85% for the classifier without activity combination

to 97.67% for the classifier with activity combination.

Figure 4-28 – Combined 1-CNN performance with optimizer tuning and DRR=0.01

69

Table 4-9 – Combined CM - activities for 1-CNN with Adagrad optimizer & DRR=0.01

CM
Actual

0 1 A 4 5 6 7 8 C 10

P
re

d
ic

ti
o
n

0 208 0 1 0 25 0 0 0 0 3

1 0 250 5 0 0 0 0 0 0 0

A 0 0 325 0 0 0 0 0 0 0

4 0 0 0 3 0 0 0 0 0 0

5 0 0 0 0 263 0 0 0 0 3

6 0 0 0 0 0 10 0 0 0 0

7 0 0 0 0 0 0 52 0 0 0

8 0 2 2 0 0 0 0 114 0 0

C 0 0 0 0 0 0 0 0 414 0

10 0 0 0 0 0 0 0 0 0 82

The important checkpoints of each of the testing iterations done for identifying the

best-case scenario can be found in the Appendix 5.

 Post Classification Processing

The post classification processing algorithm is a novel algorithm was written with the

idea that classified activities within a short window cannot switch back and forth

rapidly. In other terms, an activity recorded for 𝑡 = 1, 2, 3 cannot switch to another

activity at 𝑡 = 4, 5 and revert back at 𝑡 = 6, 7 …. These changes are identified in

the classification and adjusted by passing through a categorical low pass filter. This is

implemented in Python code.

70

def postProcess (y, preWindowSize, postWindowSize, threshold):

 for i in range (preWindowSize, (np.size(y)-postWindowSize)):

 window = y[i-preWindowSize:i+postWindowSize+1]

 pred = [0] * (np.amax(y)+1)

 for j in range (0,len(window)):

 val = int(window [j])

 pred[val] += 1

 maxVal = np.amax(pred)

 if maxVal >= threshold:

 maxIndex = pred.index(max(pred))

 y [i] = maxIndex

 return y

Using the function, the window length (before & after the current value) for the filter

as well as the threshold can be set manually.

Figure 4-29 – Visual representation of Post Processing algorithm

For this project, through a number of trial and error attempts it was identified that the

post processing algorithms needs to be implemented twice with the different

parameters

 Pass 1 – pre-window = 1, post window = 1, threshold = 2

 Pass 2 – pre-window = 30, post window = 10, threshold = 31

Using these two passes in each of the classical machine learning algorithm output and

convolutional neural network output, the chart in Figure 4-30 is seen.

Input array

Pre-Window Post Window

Current Value

Identify modal category if greater than threshold

then update current value

71

Figure 4-30 – Post processing results from 15 tests done with classical ML and NN

classifiers

Table 4-10 – Example CM prior to passing through post processing algorithm

CM
Actual

0 1 2 3 4 5 6 7 8 9 10 11

P
re

d
ic

ti
o
n

0 125 0 0 0 0 0 0 0 0 0 0 0

1 0 107 0 0 0 0 0 0 0 0 0 0

2 0 0 71 34 0 0 0 0 0 0 0 0

3 0 0 6 115 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0 0 0

5 0 0 0 0 0 71 0 0 0 0 0 0

6 0 0 0 0 0 1 19 0 0 0 0 0

7 0 0 0 0 0 0 0 10 0 0 0 0

8 0 0 0 0 0 0 0 0 69 0 0 0

9 0 0 0 0 0 0 0 0 0 233 0 0

10 26 0 0 0 0 0 0 0 0 0 156 0

11 0 0 0 0 0 0 0 0 0 0 0 137

-0
.0

0
9

%

0
.0

0
0

%

0
.3

3
6

%

0
.1

5
4

%

0
.2

9
2

%

0
.5

0
8

%

0
.0

3
8

%

0
.1

4
4

%

0
.2

4
7

%

0
.1

5
9

%

0
.3

1
0

%

0
.0

5
5

%

-0
.2

2
4

%

0
.3

3
0

%

0
.5

1
7

%

2
.3

8
4

%

-0
.6

7
8

%

1
.9

0
1

%

1
.5

5
9

% 2
.0

4
3

% 2
.4

6
0

%

1
.5

3
1

%

0
.8

0
2

%

0
.5

3
3

%

2
.3

7
2

%

1
.3

4
1

%

2
.1

0
2

%

0
.5

0
9

%

2
.7

1
4

%

0
.7

9
9

%

T E S T
1

T E S T
2

T E S T
3

T E S T
4

T E S T
5

T E S T
6

T E S T
7

T E S T
8

T E S T
9

T E S T
1 0

T E S T
1 1

T E S T
1 2

T E S T
1 3

T E S T
1 4

T E S T
1 5

Pass 1 Improvement Pass 2 Improvement

72

It can be immediately seen that the post processing algorithm is capable of correcting

misclassified data points to provide an F1 Score improvement varying from about 0%

to 2.5%. There are also a few tests that have been negatively affected by this algorithm

where correctly classified data are misclassified by this algorithm.

The CM shown in Table 4-10, is shown prior to passing this data through the post

processing algorithm. This CM has an F1 score of 94.2%. The CM in Table 4-11 is the

same output once passed through post-processing algorithm. This has improved the

overall F1 score to 94.6%, however it can be seen that some of the correctly classified

data has also been misclassified.

Table 4-11 – Example CM after to passing through Post processing algorithm

CM
Actual

0 1 2 3 4 5 6 7 8 9 10 11

P
re

d
ic

ti
o
n

0 125 0 0 0 0 0 0 0 0 0 0 0

1 0 107 0 0 0 0 0 0 0 0 0 0

2 0 0 69 36 0 0 0 0 0 0 0 0

3 0 0 5 116 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0 0 0

5 0 0 0 0 0 71 0 0 0 0 0 0

6 0 0 0 0 0 0 19 0 0 0 0 0

7 0 0 0 0 0 0 0 10 0 0 0 0

8 0 0 0 0 0 0 0 0 69 0 0 0

9 0 0 0 0 0 0 0 0 0 233 0 0

10 24 0 0 0 0 0 0 0 0 0 156 0

11 0 0 0 0 0 0 0 0 0 0 0 137

Through testing, it was found that this algorithm works best for accuracies over 90%

where a large number of data points are not misclassified. This classifier works best

when there are only a very few numbers of outliers/misclassifications in the output.

73

5. OVERALL PERFORMANCE RESULTS

 Hardware Performance

The design of the prototype 2 glove was done to an intermediate stage due to the

limitations due to the CoViD-19 lockdown. The intermediate and final designs of this

prototype consist of very similar design and can be summarized as in Table 5-1

Table 5-1 - Design specification summary of the smart glove

Design aspect Value

Activities selected 12: All activities in Table 1-1

Sensors selected MPU6050 for back hand and fingers

Measurements Hand Movement – roll, pitch & differential yaw

Finger bend, Finger abduction, Thumb rotation

Glove Cotton dotted glove

Glove processor WEMOS D1 Mini – ESP8266

Classification processor Raspberry Pi 4

IMU filtering Kalman filter on glove

Pre-processing Statistical and Fourier

Classification Machine learning, neural network

Post processing Categorical low pass filter (see section 4.5)

The design performance of the prototype will be measured in both functional design

aspects and ergonomic design aspects.

Overall, the functional design of the glove was very successful. The sensors and the

transmission methods worked seamlessly with the selected processor to capture the

required data and transmit as needed.

The sensors selected for the glove were able to capture all the required motions of the

fingers from their selected positions. There were a number of errors registered by the

sensor when manually inspecting the data and this was found mainly to be due to the

74

gimbal lock on the IMU. The PLL axis of the IMU was set to the X-axis to ensure the

sensor will be in gimbal lock when the hand is facing vertically upwards. This was

determined to be acceptable as it is very rarely, the hand and fingers will be facing

straight upwards or straight downwards in an industrial working environment.

The processor was capable of consisting maintaining a cycle frequency close to 80Hz.

And very rarely dipped below 60Hz. During these very rare occasions, a message will

be displayed on the GUI (graphical user interface) to take action against this data. The

filtered data values were consistently similar to the values obtained in section 3.6.2.

The transmission network was capable of transmitting all the required data from the

gloves to the central processor. The data collected in batches were delivered with

negligible delay. However, a very small delay was seen in the transmission when data

is collected for a large amount of time. This delay will be negligible for short data

collection times within 30 minutes.

With the support of this analysis, the functional requirement of the glove has been

achieved for the scope of this project. Out of the two versions created, the intermediate

glove design was created purely to achieve the functional requirement. As seen in

Figure 3-5, the glove is not suitable for industrial use as it is bulky and contains a

number of hanging wires that can come undone during normal use.

 Power Performance

Power management of the data collection glove is necessary for the selection of a

suitable battery size that can be coupled with the glove to ensure minimum obstruction

to the worker.

The data collection glove uses a ESP8266 processor (see section 3.2.1) and four

MPU6050 IMU devices (see section 3.1.1). During normal operation the glove is

continuously collecting data from the sensors, running Kalman filter and publishing

the data to the classification processor. Due to the use of Wi-Fi continuously the device

is not able to be placed in any of its sleep modes [66].

75

Figure 5-1 - Glove current consumption

By measuring the current draw of the glove during its operation while plugged in to a

5.02V source, the graph in Figure 5-1 can be observed for the first 120 seconds of

operation. It can be seen that the device draws 0.12A at start-up and drops down to

0.07A-0.08A while waiting. During this state, the MQTT protocol is still

communicating to maintain connection and all sensors and Kalman filters are running

to maintain accurate values. At 40 seconds, the classification processor has requested

data and the glove is actively transmitting data. At this stage, 0.12A current is

consumed at 5.02V. As the glove does not heat up during long periods of use this

current draw can be assumed to be steady during the full operation of the device.

Assuming the worst-case-scenario where a glove is to be used throughout the work-

day for six hours and charged at the end of the day with 25% of the battery capacity

remaining, a 14.5Wh battery will be needed. This requirement can be provided using

two AA sized Li-ion batteries where each can provide up to 3000mAh at 3.6V [67].

Using a battery of this size will enable to glove to be used without any tethers, while

batteries are attached to the wrist.

 Machine Learning Performance

Compared to the findings in similar papers mentioned in section 2.2, the performance

from both classical ML algorithms and convolutional neural networks have performed

at par. The hypothesis for this thesis looked at 3 different aspects in section 1.2.3.

The first hypothesis that for an activity that is assumed to last at least 0.75 seconds a

moving window of 0.75 seconds was chosen. This was backed up by the results from

sections 4.2.3 and 4.4.2.

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120

C
u

rr
en

t
(A

)

Time (s)

76

The second hypothesis that using sensors from the dominant hand can determine daily

activities of the wearer such as walking was not verified. The results showed that

classical machine learning algorithms were not able to distinguish between these

activities, while CNNs were able to distinguish the ‘holding & walking’ activity.

Although this result was seen in sections 4.2.1 and 4.4.4, this could be mainly due to

the lack of appropriate pre-processing algorithms to differentiate these activities.

The final hypothesis that the skill level or the identity of the worker can be determined

by the performance of the worker was not entirely verified. In the list of participants,

participant 2, 3 and 9 were of relatively low skill, and this was seen in the classification

of the machine learning algorithm. For example, the Figure 4-1 shows the machine

learning algorithms have misclassified a larger number of data points for the same

participants compared to the remaining participants.

However, to approach this hypothesis, a large number of skilled and unskilled

members will need taken to form a participant pool of about 10,000 participants of

varying skill level. A multi-stage classification will be required to first classify the

action of the participants followed by the skill level of the same participant for the

classified action. As a result of this, the final hypothesis is not achievable.

It can be seen that the performance of the CNN is lower than the performance most of

the classical ML algorithms. The discrepancy is expected as all classical ML

algorithms look at data as numerical values and fit them in to numerical classifications,

whereas the CNN looks at the data points in terms of patterns and identifies groups of

features instead of individual data.

The overall performance for the machine learning algorithms achieved F1-scores

between 80% to 90%. The Table 5-2 outline a summary of all the tested F1 scores for

the tested machine learning algorithms. However, it was seen that the training set was

very often over fit by the machine learning algorithm. To overcome this issue a more

training data is needed from a large number of participants of varying skill, body

structure and technique in order to generalize the algorithm performance.

77

The performance of the machine learning algorithms can be further improved by

combining similar activities. This approach of combining activities was not seen in

other literature and may be due to similar activities not been considered in their scope.

- Combining “tightening” with “loosening” and “walking” with “turning” and

“holding & walking” for classical ML an accuracy of 98.9% is obtained

- Combining “tightening” with “loosening” and “walking” with “turning” for

convolutional neural networks an accuracy of 97.7% is obtained

Table 5-2 – Final Performance Values

 Parameters F1 Score
F1 Score

(Post

Processed)

Null set

Support vector machine

(linear kernel)
Level 4 (pre-processing) 98.9% 100%

Classical Machine Learning

Support vector machine

(RBF kernel)
Level 4 (pre-processing) 89.25% 89.72%

Support vector machine

(linear kernel)
Level 2 (pre-processing) 90.44% 91.28%

Linear discriminant

analysis (SVD)
Level 2 (pre-processing) 89.24% 89.41%

Classical Machine Learning (Based on Computational Performance)

Support vector machine

(RBF kernel)
Level 4 (pre-processing) 89.25% 89.72%

Support vector machine

(linear kernel)
Level 3 (pre-processing) 89.88% 90.19%

Linear discriminant

analysis (SVD)
Level 4 (pre-processing) 88.4% 89.03%

Convolutional Neural Network

1-CNN 3-D activity images 85.15% 86.2%

78

6. CONCLUSION

This thesis presented the use of a smart glove to perform activity recognition in

industrial environments. A number of hypothesis was evaluated through the

experiments carried out. The most suitable activity window size was selected between

0.5 – 0.75 seconds based on comparison data. The thesis also showed promise that

measuring the hand movements, extrapolations can be made to certain full-body tasks.

However, due to the lack of data, the possibility of determining the skill of the worker

was not verified by this thesis.

The thesis also introduced a novel approach to post processing classified data using a

categorical low pass filter which showed improvements in the classification up to

2.5%. The thesis also showed that classical machine learning algorithms that rely on

linear discrimination of output performs better than clustering and other classical

classifications.

Through these, the activities for industry were classified with F1 score of 91.3%

through Support vector machine classifier with linear kernel and 86.2% with a 2-layer

convolutional neural network with pre-processed activity images. By combining

together similar activities that persistently get misclassified, F1 score of 98.9% and

97.7% was obtained for SVM and CNN respectively. This implies that the smart glove

classification algorithm is suitable to be deployed for industrial hand activity

recognition in both combined and uncombined states.

As of this thesis the smart glove is limited by its design. As future improvements, the

glove will be designed to industrial standards and tested on large datasets to be able to

extract further information such as skill level and identity of the worker.

79

7. REFERENCES

[1] A. R. Sarkar, G. Sanyal and S. Majumder, "Hand Gesture Recognition: A

Survey," International Journal of Computer Applications, vol. 71, no. 15, pp.

26-37, 2013.

[2] Statista Research Department, "Fitness & activity tracker - Statistics & Facts,"

22 05 2019. [Online]. Available: https://www.statista.com/topics/4393/fitness-

and-activity-tracker/. [Accessed 18 06 2019].

[3] Statista Research Department, "Wearable device sales revenue worldwide from

2016 to 2022 (in billion U.S. dollars)," 13 02 2019. [Online]. Available:

https://www.statista.com/statistics/610447/wearable-device-revenue-

worldwide/. [Accessed 18 06 2019].

[4] Lean Manufacturing Japan, "Lean Manufacturing," [Online]. Available:

http://www.lean-manufacturing-japan.com/. [Accessed 19 06 2019].

[5] Shmula, "What Is A Standardized Work Combination Sheet?," 17 07 2017.

[Online]. Available: https://www.shmula.com/standardized-work-

combination-sheet/23675/. [Accessed 19 06 2019].

[6] Y.-C. Huang, C.-W. Yi, W.-C. Ping, H.-C. Lin and C.-Y. Huang, "A study on

multiple wearable sensors for activity recognition," IEEE Conference on

Dependable and Secure Computing, pp. 449-452, 2017.

[7] B. Bruno, F. Mastrogiovanni and A. Sgorbissa, "A Public Domain Dataset for

ADL Recognition Using Wrist-placed Accelerometers," IEEE International

Symposium on Robot and Human Interactive Communication, vol. 23, pp. 738-

743, 2014.

80

[8] G. Luzhnica, J. Simon, E. Lex and V. Pammer, "A Sliding Window Approach

to Natural Hand Gesture Recognition using a Custom Data Glove," IEEE

Symposium on 3D User Interfaces (3DUI), 2016.

[9] K. Liu, C. Chen, R. Jafari and N. Kehtarnavaz, "Fusion of Inertial and Depth

Sensor Data for Robust Hand Gesture Recognition," IEEE Sensors Journal, vol.

14, no. 6, pp. 1898-1903, 2014.

[10] W. Tao, Z.-H. Lai, M. C. Leu and Z. Yin, "Worker Activity Recognition in

Smart Manufacturing Using IMU and sEMG Signals with Convolutional

Neural Networks," Procedia Manufacturing, vol. 26, p. 1159–1166, 2018.

[11] A. Malaise, P. Maurice, F. Colas, F. Charpillet and S. Ivaldi, "Activity

Recognition With Multiple Wearable Sensors for Industrial Applications".

[12] F. Attal, S. Mohammed, M. Dedabrishvili , F. Chamroukhi , L. Oukhellou and

Y. Amirat, "Physical Human Activity Recognition Using Wearable Sensors,"

MDPI Sensors, vol. 15, no. 12, pp. 31314-31338, 2015.

[13] Apple Inc, "iOS - Health," Apple Inc, [Online]. Available:

https://www.apple.com/lae/ios/health/. [Accessed 18 06 2019].

[14] Google, "Google Fit," Alphabet, [Online]. Available:

https://www.google.com/fit/. [Accessed 18 06 2019].

[15] Runkeeper, "Runkeeper," ASICS, [Online]. Available: https://runkeeper.com/.

[Accessed 18 06 2019].

[16] H. Zhou and H. Hu, "Human motion tracking for rehabilitation—A survey,"

Biomedical Signal Processing and Control , vol. 3, no. 1, pp. 1-18, 2008.

81

[17] Qualisys, "Underwater Human Motion," [Online]. Available:

https://www.qualisys.com/applications/human-biomechanics/underwater-

human-motion/. [Accessed 18 06 2019].

[18] Moov, "Moov," [Online]. Available: https://welcome.moov.cc/. [Accessed 19

06 2019].

[19] Nexus, "Train with Nexus," [Online]. Available:

https://www.trainwithnexus.com/. [Accessed 19 06 2019].

[20] Atlas, "Atlas Wearable," [Online]. Available: https://atlaswearables.com/.

[Accessed 19 06 2019].

[21] Athos, "Live Athos," [Online]. Available: https://www.liveathos.com/.

[Accessed 19 06 2019].

[22] Gest, "Gest," [Online]. Available: https://gest.co/. [Accessed 20 06 2019].

[23] Microsoft, "Kinect for Windows," Microsoft, [Online]. Available:

https://developer.microsoft.com/en-us/windows/kinect. [Accessed 25 06 2019].

[24] J. Mi, Y. Sun, Y. Wang, Z. Deng, L. Li, J. Zang and G. Xie, "Gesture

Recognition based Teleoperation Framework of Robotic Fish," IEEE

International Conference on Robotics and Biomimetics (ROBIO), pp. 137-142,

2016.

[25] SenseGlove B.V., "Sense Glove," [Online]. Available:

https://www.senseglove.com/. [Accessed 20 06 2019].

[26] Xsens, "Xsens," Xsens, [Online]. Available: https://www.xsens.com/.

[Accessed 30 03 2020].

82

[27] CyberGlove Systems Inc., "CyberGlove," [Online]. Available:

http://www.cyberglovesystems.com/. [Accessed 20 06 2019].

[28] L. Labios, "Low-Cost Smart Glove Translates American Sign Language

Alphabet and Controls Virtual Objects," UC San Diego, 12 July 2017. [Online].

Available:

https://ucsdnews.ucsd.edu/pressrelease/low_cost_smart_glove_translates_ame

rican_sign_language_alphabet_and_control. [Accessed 10 July 2019].

[29] A. M. Mohd Ali, M. Y. Ismail and A. A. Abdul Jamil, "Development of

Artificial Hand Gripper for Rehabilitation Process," 2011.

[30] M. Cornacchia, K. Ozcan, Y. Zheng and S. Velipasalar, "A Survey on Activity

Detection and Classification Using Wearable Sensors," IEEE Sensors Jounal,

vol. 17, no. 2, pp. 386-403, 2017.

[31] T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz and G. Tröster, "Wearable

Activity Tracking in Car Manufacturing," Activity Based Computing, pp. 42-

50, 2008.

[32] B. Hartmann, "Human Worker Activity Recognition in Industrial

Environments," Scientific Publishing, Germany, 2011.

[33] M. E. Benalcàzar, J. A. Zea, C. Motoche, A. G. Jaramillo, C. E. Anchundia, P.

Zambrano, M. Segura, F. B. Palacios and M. Perez, "Real-Time Hand Gesture

Recognition Using the Myo Armband and Muscle Activity Detection," IEEE

Second Ecuador Technical Chapters Meeting (ETCM), 2017.

[34] S. Jiang, B. Lv, W. Guo, C. Zhang, H. Wang, X. Sheng and P. B. Shull,

"Feasibility of Wrist-Worn, Real-Time Hand, and Surface Gesture Recognition

via sEMG and IMU Sensing," IEEE Transactions on Industrial Informatics,

vol. 14, no. 8, pp. 3376-3385, 2018.

83

[35] H. Koskimaki, V. Huikari, P. Siirtola, P. Laurinen and J. Roning, "Activity

recognition using a wrist-worn inertial measurement unit: A case study for

industrial assembly lines," 2009 17th Mediterranean Conference on Control

and Automation, 2009.

[36] C. Shen, B.-J. Ho and M. Srivastava, "MiLift: Efficient Smartwatch-Based

Workout Tracking Using Automatic Segmentation," IEEE Transactions on

Mobile Computing, vol. 17, no. 7, pp. 1609 - 1622, 2018.

[37] P. Casale, O. Pujol and P. Radeva, "Human Activity Recognition from

Accelerometer Data using a Wearable Device," Springer, Barcelona, 2011.

[38] M. Ermed, J. Parkka, J. Mantyjarvi and I. Kohonen, "Detection of Daily

Activities and Sports With Wearable Sensors in Controlled and Uncontrolled

Conditions," IEEE Transactions on Information Technology in Biomedicine,

vol. 12, no. 1, pp. 20-26, 2008.

[39] E. Thomaz, I. Essa and G. D. Abowd, "A Practical Approach for Recognizing

Eating Moments with Wrist-Mounted Inertial Sensing," UNICOMP, 2015.

[40] T. Maekawa, D. Nakai, K. Ohara and Y. Namioka, "Toward Practical Factory

Activity Recognition: Unsupervised Understanding of Repetitive Assembly

Work in a Factory," UBICOMP, 2016.

[41] A. Jain and V. Kanhangad, "Human Activity Classification in Smartphones

Using Accelerometer and Gyroscope Sensors," IEEE Sensors Journal, vol. 18,

no. 3, pp. 1169-1177, 2018.

[42] L. Dipietro, A. M. Sabatini and P. Dari, "A Survey of Glove-Based Systems and

Their Applications," IEEE Transactions on Systems Man and Cybernetics Part

C (Applications and Reviews), vol. 38, no. 4, pp. 461 - 482, 2008.

84

[43] InvenSense Inc, "MPU-6000 and MPU-6050 Product Specification Revision

3.4," 19 08 2013. [Online]. Available:

https://store.invensense.com/datasheets/invensense/MPU-

6050_DataSheet_V3%204.pdf. [Accessed 12 May 2019].

[44] WEMOS, "LOLIN D1 mini," WEMOS, 2019. [Online]. Available:

https://docs.wemos.cc/en/latest/d1/d1_mini.html. [Accessed 15 03 2020].

[45] NXP, "Tilt Sensing Using a Three-Axis Accelerometer," Freescale

Semiconductor, Application Note, vol. AN3461, no. 6, 2013.

[46] K. S. Lauszus, "Example-Sketch-for-IMU-including-Kalman-filter," 2012.

[Online]. Available: https://github.com/TKJElectronics/Example-Sketch-for-

IMU-including-Kalman-filter. [Accessed 15 03 2020].

[47] Lauszus, "A practical approach to Kalman filter and how to implement it," 10

September 2012. [Online]. Available: http://blog.tkjelectronics.dk/2012/09/a-

practical-approach-to-kalman-filter-and-how-to-implement-it/. [Accessed 17

May 2019].

[48] Dejan, "Arduino and MPU6050 Accelerometer and Gyroscope Tutorial," How

to Mechatronics, [Online]. Available:

https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-

accelerometer-and-gyroscope-tutorial/. [Accessed 17 03 2020].

[49] S. C. Mukhopadhyay, "Wearable Sensor for Human Activity Monitoring: A

Review," IEEE Sensors Journal, vol. 15, no. 3, pp. 1321 - 1330, 2015.

[50] MQTT.org, "MQTT," [Online]. Available: https://mqtt.org/. [Accessed 16 03

2020].

85

[51] S. Cope, "Understanding the MQTT Protocol Packet Structure," 11 1 2020.

[Online]. Available: http://www.steves-internet-guide.com/mqtt-protocol-

messages-overview/. [Accessed 22 3 2020].

[52] Flespi Platform, "HTTP vs MQTT performance tests," Medium.com, 23 1 2018.

[Online]. Available: https://medium.com/@flespi/http-vs-mqtt-performance-

tests-f9adde693b5f. [Accessed 22 3 2020].

[53] scikit learn, "sklearn.impute.SimpleImputer," [Online]. Available:

https://scikit-

learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklear

n.impute.SimpleImputer. [Accessed 16 04 2020].

[54] NumPy.org, "NumPy," [Online]. Available: https://numpy.org/. [Accessed 22

04 2020].

[55] SciPy.org, "SciPy.org," [Online]. Available: https://www.scipy.org/. [Accessed

22 04 2020].

[56] U. Maurer, A. Smailgic, D. P. Siewiorek and M. Deisher, "Activity recognition

and monitoring using multiple sensors on different body positions,"

International Workshop on Wearable and Implantable Body Sensor Networks

(BSN'06), pp. 4-16, 2006.

[57] O. D. Lara and M. A. Labrador, "A Survey on Human Activity Recognition

using Wearable Sensors," IEEE COMMUNICATIONS SURVEYS &

TUTORIALS, vol. 15, no. 3, pp. 1192-1208, 2013.

[58] scikit learn, "sklearn.preprocessing.StandardScaler¶," [Online]. Available:

https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

. [Accessed 10 05 2020].

86

[59] T. Afonja, "Accuracy Paradox," Medium, 8 December 2017. [Online].

Available: https://towardsdatascience.com/accuracy-paradox-897a69e2dd9b.

[Accessed 27 June 2020].

[60] K. M. Chathuramali and R. Rodrigo, "Faster Human Activity Recognition with

SVM," The International Conference on Advances in ICT for Emerging

Regions, pp. 197-203, 2012.

[61] I. T. Ian T. Jolliffe and J. Cadima, "Principal component analysis: a review and

recent developments," The Royal Society, 13 April 2016. [Online]. Available:

https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202. [Accessed 10

05 2020].

[62] J. Brownlee, "Gentle Introduction to the Adam Optimization Algorithm for

Deep Learning," 03 07 2017. [Online]. Available:

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-

learning/. [Accessed 12 07 2020].

[63] R. Gylberth, "An Introduction to AdaGrad," Medium, 03 05 2018. [Online].

Available: https://medium.com/konvergen/an-introduction-to-adagrad-

f130ae871827. [Accessed 12 07 2020].

[64] S. Ruder, "An overview of gradient descent optimization algorithms," 19 Jan

2016. [Online]. Available: https://ruder.io/optimizing-gradient-

descent/index.html#adagrad. [Accessed 08 Jul 2020].

[65] Kaggle, "Dropout Regularization in Deep Learning Models With Keras,"

Kaggle, 21 July 2019. [Online]. Available:

https://www.kaggle.com/pavansanagapati/what-is-dropout-regularization-find-

out. [Accessed 12 07 2020].

87

[66] Espressif IOT Team, "ESP8266 Low Power Solutions," 4 2016. [Online].

Available: https://www.espressif.com/sites/default/files/9b-esp8266-

low_power_solutions_en_0.pdf. [Accessed 10 12 2020].

[67] NKON, "Sony / Murata US18650VTC6 3000mAh - 30A," [Online]. Available:

https://eu.nkon.nl/sony-us18650-vtc6.html. [Accessed 10 12 2020].

88

8. APPENDICES

Appendix 1: Prototype 1

This section summarizes the work done to design and build prototype 1. The section

will mostly focus on the sections where this prototype is different from the prototype

designed for this project, explained in this thesis.

Figure 8-1 - Prototype 1 Holding Screwdriver [Original in color]

Table 8-1 - Prototype 1 Design Specification Summary

Design Aspect Value

Activities Selected 4: Pointing, Wiping, Tightening, Picking

Sensors Selected MPU6050 for back hand and flex sensors for fingers

Measurements Hand Movement – Roll and Pitch

Thumb Bend, Index Bend

Thumb abduction relative to index finger

Glove Cotton Dotted Glove

Glove Processor Arduino Nano

Classification Processor Raspberry Pi Model B Rev 3

IMU Filtering Kalman Filter on glove

Classification Classical Machine Learning, Neural Network

89

A video of the operation can be found here: https://youtu.be/fiLtNbVrMOI

The model trained for Prototype 1 was entirely based on data that was not pre-

processed. Raw accelerometer data and filtered roll and pitch data was used. The

model trained with the activities mentioned in 1.3 and satisfactory results were

obtained where the device was able to classify the data approximately 90% of the time.

Figure 8-2 - Testing Data Accuracy for SVM classification with RBF kernel

When the RNN was tested the algorithm converged with accuracy of 97.4% and a loss

of 16.18%. The same as the SVM was done with the Recurrent Neural Network that

was trained and Figure 8-3 was observed. It can be seen that both the SVM and RNN

performed very similar with the RNN performing slightly better than the SVM

classifier.

Figure 8-3 - Testing Data Accuracy for RNN classification

Figure 8-4 to Figure 8-7show the performance of other classification algorithms that

were also tested out using the same dataset. This will help point out any other

classification algorithms that will provide much better results than the SVM or RNN

classification algorithms.

0%

20%

40%

60%

80%

100%

Pointing Wiping Tightening Picking

Accurate False Positive False Negative

0%

20%

40%

60%

80%

100%

Pointing Wiping Tightening Picking

Accurate False Positive False Negative

https://youtu.be/fiLtNbVrMOI

90

Figure 8-4 - Testing Data Accuracy for

K-Nearest Neighbor Classifier

Figure 8-5 - Testing Data Accuracy for

Random Forrest Classifier

Figure 8-6 - Testing Data Accuracy for

Decision Tree Classifier

Figure 8-7 - Testing Data Accuracy for

Gaussian Naïve Bayes Classifier

It can be seen that from Figure 8-4 to Figure 8-7, the Random Forrest classifier has

been the most successful in classifying the data successfully for the given data set.

Although more data is required to prove that Random Forest Classifier can outperform

both SVM and the Recurrent Neural Networks, it is the best choice for the current data.

This finding is backed up by the paper [30] where is states that Random Forests

provide better classification than SVM and other techniques for human activity

recognition. If the Random Forrest classifier does perform better the activity

recognition device can be made very affective as ML algorithms have a faster training

and prediction time compared to RNN’s

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative

0%

20%

40%

60%

80%

100%

Accurate False Positive False Negative

91

Appendix 2: Glove Schematic & PCB Design

 Finger Board

Back Hand Board

92

Appendix 3: Stage 2 Pre-processing features

Feature list

Table 8-2 – Selection of features for stage 2 pre-processing

Ind. Field Size Level

1

Level

2

Level

3

Level

4

0 accX, accY, accZ 90 ✓

90 roll1, pitch1, yaw1 90 ✓

180 roll2, pitch2, yaw2 90 ✓

270 roll3, pitch3, yaw3 90 ✓

360 roll4, pitch4, yaw4 90 ✓

450 MBend, IBend, TBend 90 ✓

540 TRot 30 ✓

570 MYaw, IYaw, TYaw 90 ✓

660 Filtered accX, accY, accZ 90 ✓

750 Magnitude of Acc 30 ✓

780 Magnitude of Filtered Acc 30 ✓

810 dRoll1, dPitch1, dYaw1 90 ✓

900 dRoll2, dPitch2, dYaw2 90 ✓

990 dRoll3, dPitch3, dYaw3 90 ✓

1080 dRoll4, dPitch4, dYaw4 90 ✓

1170 dMBend, dIBend, dTBend 90 ✓

1260 dMYaw, dIYaw, dTYaw 90 ✓

1350 dTRot 30 ✓

1380 Histogram of accX, accY, accZ 9 ✓ ✓

93

1389 Histogram of Filtered accX,

accY, accZ

9 ✓ ✓ ✓

1398 HOG of accX, accY, accZ 9 ✓ ✓ ✓

1407 HOB of Roll1, Pitch1 24 ✓ ✓ ✓

1431 HOB of Roll2, Pitch2 24 ✓ ✓ ✓

1455 HOB of Roll3, Pitch3 24 ✓ ✓ ✓

1479 HOB of Roll4, Pitch4 24 ✓ ✓ ✓

1503 Histogram of dRoll1, dPitch1,

dYaw1

9 ✓ ✓ ✓

1512 Histogram dRoll2, dPitch2,

dYaw2

9 ✓ ✓ ✓

1521 Histogram dRoll3, dPitch3,

dYaw3

9 ✓ ✓ ✓

1530 Histogram dRoll4, dPitch4,

dYaw4

9 ✓ ✓ ✓

1539 Histogram magnitude of Acc 9 ✓ ✓ ✓

1548 HOG of magnitude of Acc 3 ✓ ✓ ✓

1551 Linear Speed of accX, accY,

accZ

3 ✓ ✓ ✓

1554 Histogram of MBend, IBend,

TBend

36 ✓ ✓ ✓

1590 Histogram of MYaw, IYaw,

TYaw

9 ✓ ✓ ✓

1599 HOB of TRot 12 ✓ ✓ ✓

1611 Histogram of dMBend, dIBend,

dTBend

9 ✓ ✓ ✓

1620 Statistics of accX, accY, accZ 42 ✓ ✓

94

1662 Statistics of Filtered accX, accY,

accZ

42 ✓ ✓ ✓ ✓

1704 Statistics of Roll1, Pitch1, Yaw1 42 ✓ ✓ ✓ ✓

1746 Statistics of Roll2, Pitch2, Yaw2 42 ✓ ✓ ✓ ✓

1788 Statistics of Roll3, Pitch3, Yaw3 42 ✓ ✓ ✓ ✓

1830 Statistics of Roll4, Pitch4, Yaw4 42 ✓ ✓ ✓ ✓

1872 Statistics of magnitude of Acc 14 ✓ ✓ ✓ ✓

1886 Statistics of MBend, IBend,

TBend

42 ✓ ✓ ✓ ✓

1928 Statistics of MYaw, IYaw, TYaw 42 ✓ ✓ ✓ ✓

1970 Stats TRot 14 ✓ ✓ ✓ ✓

1984 FD RPY1, RPY2, RPY3, RPY4 60 ✓ ✓ ✓

2044 FD dRPY1, dRPY2, dRPY3,

dRPY4

60 ✓ ✓ ✓

2104 FD Bends 15 ✓ ✓ ✓

2119 FD Filtered Acc 15 ✓ ✓ ✓

2134 SMA Filtered acc 1 ✓ ✓ ✓

2135 FD acc 15 ✓

2150 SMA acc 1 ✓

Statistical Elements

 Median – Statistical median

 Mean – Statistical mean

 Variance – Statistical variance

 Standard Deviation – Statistical standard deviation

 Minimum & Maximum – Statistical minimum and maximum number

95

 RMS – Statistical Root mean square

 Skew – Statistical data skew

 Kurtosis – Statistical kurtosis

 Median Absolute Deviation – Statistical median absolute deviation

 Mean Absolute Deviation – Statistical Mean Absolute Deviation

 Zero Crossing – Number of times the data in window cross zero point

 Slope Gradient Changes – Number of times the data in window change sign

 Waveform Length – Sum of all the difference in adjacent values in the window

def fnc_stats (window):

 val.append(np.median(window))

 mean = np.mean(window)

 val.append(mean)

 val.append(np.var(window))

 val.append(np.std(window))

 val.append(np.amin(window))

 val.append(np.amax(window))

 val.append(np.mean([v**2 for v in window])) #RMS

 val.append(stats.skew(window))

 val.append(stats.kurtosis(window))

 val.append(stats.median_absolute_deviation(window))

 for i in range(len(window)):

 mad += round(np.absolute(window[i] - mean),2)

 val.append(mad/len(window))

 for i in range(1, len(window)):

 if (window[i] * window[i-1]) < 0:

 zeroCrossing += 1

 if ((window[i]-window[i-1])*(window[i-1]-window[i])) < 0:

 slopeChanges += 1

 waveLength = waveLength + window[i] - window[i-1]

 val.append(zeroCrossing)

 val.append(slopeChanges)

 val.append(waveLength)

 return val

96

Appendix 4: Stage 2 Pre-processing Images

Table 8-3 - Examples of Convolutional Neural Net Images for each activity

 Raw FFT Magnitude FFT Phase
P

o
in

ti
n
g

W
ip

in
g

T
ig

h
te

n
in

g

L
o
o
se

n
in

g

P
ic

k

H
o
ld

97

P
u
ll

P
u
sh

H
am

m
er

W
al

k

H
o
ld

 &
 W

al
k

T
u
rn

98

Appendix 5: Add. CNN Performance Charts

Sigmoid Activation

Figure 8-8 – 1-CNN (Sigmoid activation on all layers)

Early Stopping

Figure 8-9 – 2-CNN (5 FC Layers – Early Stopping)

Layer Manipulation

Figure 8-10 – 2-CNN (5 FC Layers)

Figure 8-11 – 4-CNN (no Max-pool layer)

99

Dropout Regularization

Figure 8-12 – 1-CNN (DRR = 0.4)

Figure 8-13 – 1-CNN (Input DRR = 0.2)

Figure 8-14 – 2-CNN (Input & Hidden DRR = 0.05)

Figure 8-15 – 2-CNN (Input DRR = 0.01)

R
ed

u
ci

n
g
 D

ro
p
o
u
t

R
eg

u
la

ri
za

ti
o
n

100

Adagrad with Dropout Regularization

Figure 8-16 – 1-CNN (Adagrad optimizer and DRR = 0.2)

Figure 8-17 – 1-CNN performance (Adagrad optimizer & DRR = 0.1)

Figure 8-18 – 1-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers)

101

Figure 8-19 – 2-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers)

Figure 8-20 – 2-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers)

Figure 8-21 – 3-CNN (Adagrad optimizer tuning, DRR = 0.05 & 6 FC Layers)

Kernel Manipulations

Figure 8-22 – 1-CNN (5x5 kernel, Adagrad optimizer tuning & DRR = 0.05)

102

Figure 8-23 – 3-CNN (3x3 kernel, 1 Max pool layer & 2 FC CNN - Adagrad optimizer

& DRR = 0.2)

Figure 8-24 – 2-CNN (5x5 first layer kernel - Adagrad optimizer & DRR = 0.01)

Figure 8-25 – 3-CNN (5x5 first layer kernel - Adagrad optimizer & DRR = 0.1)

103

Appendix 6: Project Cost

As the total cost of the project is borne by the project owner, the project was designed

for the lowest cost. In order to keep the costs low

 Parts were sourced from Chinese online vendors through eBay and AliExpress

 Personal components that were already available were used.

 Manufacturing was done through local companies with low cost links in China.

 Assembling was done personally with the help of family members.

This resulted in the costs for each section of the project.

Approximate cost of Prototype 1 LKR 27,000.00

Approximate cost of Prototype 1 development LKR 35,000.00

Approximate cost of Prototype 2: Glove only LKR 3,765.62 ++6

Approximate cost of Prototype 2: Processing only LKR 13,314.25

Approximate cost of Prototype 2: Average per user (5 users) LKR 6,408.47 ++

Approximate cost of Prototype 2: Total Cost (5 users) LKR 32,042.35 ++

Approximate cost of the complete project (to date) LKR 46,844.05

The cost of a final prototype glove of LKR 7,500.00 (approximated adjustment cost

added to LKR 6,408.47) is an ideal value for an industrial application. The justification

for this is that in industry the measuring of time human movement is not a direct benefit

to the bottom-line savings of the factory. Instead the device is used as an enabler to

identify possible areas of improvement.

6 Due to the limitations in 2020, certain aspects of the project were not completed in full, and certain

alternative approaches were taken. As a result, some of the costs are mentioned with a ‘++’ symbol to

indicate the increase in value expected when the incomplete areas are completed in full. It should also

be noted that tools used and man-day costs are not added to the complete project cost.

