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Abstract

This thesis describes a novel system architecture and implementation of a wire-
less visual sensor node. The proposed design of the node can be used to extract
traffic information based on the visual description of road. In this research, the
real-time performances and the capability to perform at low power consumption
meanwhile obtaining accurate results were considered as the essential factors since
a large amount of data need to be processed in an embedded level vision system.

At first, a suitable vision algorithm is proposed to harvest the traffic condition
on road. The functionality for each section of the algorithm has been performed
by using carefully selected available vision techniques and image processing algo-
rithms. The vehicle extraction from the current frame of view and the tracking
process of the vehicle are identified as the most important functions in the al-
gorithm. The vehicle extraction from the current frame is carried out by the
ViBe algorithm with some modifications in order to acquire promising real time
performances and the tracking process is carried out by a light weight but an
accurate enough particle filtering technique.

Moreover, the complete system is implemented in the FPSoC hardware sys-
tem as a hardware and software co-design by considering advantages that can
be obtained from different aspects. The performances of the system have been
evaluated from many aspects for different standard data available from other re-
search works. The conclusions and suggestions for further development have been
presented at the end of this thesis.

Index terms— FPSoC, HW/SW Co-Design, ITS, ViBe, FPGA, WSN, VSN
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Chapter 1

INTRODUCTION

The increase of traffic jam is a burning issue in the modern urban areas and day
by day, the problem keeps increasing. This is a demanding problem in terms of
health, productivity and pollution for both human society and the environment.
This can be manipulated using the concepts in intelligent transportation systems.
In order to apply those concepts and implement practical solutions, a measure-
ment method of real time traffic condition on road is highly important. There
are many traffic conditions measuring methods, but visual data-based traffic in-
formation has higher demand than any other sensing method [2]. Therefore, this
thesis proposes an algorithm and hardware implementation for a visual sensor
node which can be used in a wireless sensor network implemented in urban areas
for real time traffic condition harvesting.

1.1 Background to the Research Topic

Wireless sensor nodes (WSN) act as a layer on the physical world to gather
important information. The most popular physical information are usually the
scalar parameters such as temperature, pressure, energy consumption in facto-
ries/houses and meter readings. Due to the vast range of improvements in embed-
ded level processors, operating systems, communication and cheap visual sensors
in previous decades, the feasibility of gathering and integrating visual features
to the wireless sensor node which is more information rich, sensible and per-
spective than other forms of scalar information has been rapidly increased. This
also leads to the increase of intelligence of sensor nodes because of the capa-
bilities of detecting the events at a certain level which are created by objects
within the region of interest (RoI) of them. Nowadays, most of the researchers
all over the world are in search of applicability of wireless visual sensor networks
(WVSNs) for various applications which can improve the living standards of the
society. The main interested areas are, public, private and commercial security
purposes, surveillance systems in military applications, environment monitoring
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and incident identifications, quality and automation purposes of manufacturing
companies and intelligent transportation systems [2].

Among those application of WVSNs, the intelligent transportation system
(ITS) has the potential of making a huge impact on the society and environ-
ment in numerous ways. The increase of population in cities, metropolitan areas
and requirement for smart cities increase the demand for ITS based solutions.
ITS can help for the economy of a country by manipulating the vehicle flow
breakdown and the amount of fuel that is burnt out by the automobiles. Besides
that, it is also helpful for the reduction of drivers’ stress level and the emission
of greenhouse gases which can reduce the global warming in return and the re-
duction of carbon footprint made by humans. The WVSN can be designed to
provide reliable and real-time spatio-temporal information about the mobility in
densely populated areas as illustrated in Figure 1.1. This knowledge can be used
in ITS applications by providing useful information such as traffic information,
monitoring of the drivers’ misbehavior regarding traffic laws, incident detection,
traffic pattern identification in RoI and effective use of space, energy and mobility
in urban environment. This description of urban mobility provided by WVSN
and strategies and planning techniques in ITS altogether can be used towards the
concept of smart cities where adaptive and innovative traffic manipulating mech-
anisms exist. All of this information can be utilized for traffic light controlling,
smart route suggestions for the drivers and pedestrians, effective utilization of all
the resources available for better controlling of vehicles in urban area and driving
the society towards the concept “smart cities” [2] [3]

Figure 1.1: The concept of using WVSN in ITS applications.

However, the integration of a sensor node which is having a visual analyzing
capability is not an easy task due to many reasons. Transmitting a complete
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frame from a sensor node to the central server through wireless communication
is an extremely power consuming and cause the loss of data. Besides that, the
delay of the transmission and security risk of this kind of approach can lead to
the reduction of usefulness of visual sensor node (VSN) in WVSN [2].

On the other hand, implementing the image processing and machine vision
model in a sensor node and performing in real time is a challenging task due
to the limited resources in VSNs. However, recent improvements in embedded
processors, middleware systems and low-cost developments in hardware such as
memory chips and CMOS visual sensors motivate the researches to investigate the
feasibility of this kind of approach where implementing machine vision algorithm
in local sensor nodes and transmitting only the extracted useful top-level infor-
mation [4]. There are many advantages in implementing the image processing
and machine vision algorithms in sensor nodes and transmitting only the useful
information [4].

• Usually sensor nodes are having limited power and resources and they are
connected via lossy channels. It has turned out that the power consumption
for transmitting a single meaningful bit requires more than two thousand
times the power consumption for the execution of a single instruction [5].
Therefore, this concept can preserve the power utilization in these devices
in a huge fraction.

• The extraction of useful real time information from the local sensor node is
more accurate and reliable than collecting all the video frames from many
sensor nodes and processing those image frames at a central hub of the
network [6].

• It is also beneficial for integrating a VSN with any other heterogeneous net-
work architecture where different sensing and communication capabilities/
protocols exist [2].

• This approach influences the intelligence level of the sensor node because the
sensor node can be designed so that only the events at a certain threshold
need to be informed to the relevant authorities without human intervention.
Otherwise, we would have to employ humans for the supervision throughout
the day which causes the wastage of money as well as human resources [4].

• Even though, some of the object recognition and event identification can be
done accurately by humans than currently available image processing and
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computer vision algorithms, some of the calculations can be done accurately
and quickly in computer systems. For example, measuring the velocity of
an object, calculating the number of objects and identifying their precise
locations meanwhile performing the same operation 24/7.

• We cannot expect that the urban areas are having fixed structures in terms
of roads, transportation, infrastructure and building facilities. Therefore,
sustainable flexibilities such as modification of location can be obtained
from the WVSN with respect to the other sensor nodes such as inductive
loops [7].

• The WVSN is aware about the location of the occurrence of any event.
This is the key point in fog computing with respect to the other cloud-
based approaches. This is very useful for quick decision making with the
help of efficient collection of data and low latency in data processing [7].

Basically, VSNs consist of three basic components as shown in Figure.1.2.
There will be a camera sensor, an embedded level processing system where the
image processing and machine vision algorithms are performed and a wireless
transceiver for the communication between other nodes and the main gateway.
However, due to the vast range of low cost and low power developments in Silicon
and CMOS sensors and communication technologies, there are variety of options
that are available in selecting a camera sensor and a radio module for communi-
cation purposes. The most prominent component in a VSN is the unit where the
image processing and machine vision algorithms take place. Most of the times,
this multimedia processing unit will be the most power consuming and the costly
component existing in the sensor node. It is important to select the most suitable
platform for this processing unit in order to perform the required vision algorithm
at a required power budget while maintaining the expected performance. How-
ever, the performance of a vision algorithm in a hardware platform is not only
depending on its clock frequency, the number of cores it contains, the memory
speed, the features like direct memory access or parallel processing capability
and multiple processing unit availability such as floating point unit (FPU) but
also it is important to pay attention to the way the algorithm performs and the
selection of most appropriate algorithm to be implemented. The modifications
can be done in order to reach the best level of performance and investigation of
the limitations can be done with the help of existing technologies.
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Figure 1.2: The basic hardware architecture of a VSN in ITS application.

Naturally, most of the image processing tasks require higher memory and
processing requirements than the scalar signal processing tasks which are typ-
ically used in any wireless sensor network. Besides that, most of the operations
performed on the images can be categorized as single instruction multiple data
(SIMD) type operations. In other words, same instruction needs to be performed
to a large amount of data. This means, there is an opportunity to grab the
advantages in parallel computing capabilities in order to achieve the expecting
performance from a VSN. Therefore, when it comes to hardware design stage
of the VSN, it is equally important to consider the effective power conservation
capability of the device as well as the parallel performances of them.
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1.2 Aim, Objectives and Scope of the Thesis

The aim of the thesis is to design a VSN node to measure real-time but reliable
traffic parameters which can describe the traffic condition on road. In order to
achieve this aim, following objectives have been set up.

• Development of an appropriate image processing algorithm for resource con-
strained hardware specially focusing on road traffic estimations.

• Development of vision-enabled, resource-constrained WSN node.

• Optimize the algorithm and hardware in terms of cost, resources, power
consumption and functional reliability mainly for the traffic analysis.

These objectives have to be analysed in the current state-of-the-art embedded
level image processing, computer vision algorithm and hardware platform where
power consumption has been optimized for this kind of machine vision application.
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1.3 Structure of the Thesis

The organization of the thesis is described as follows.

• Chapter 1: Introduction
This chapter describes the background of this work and explains what en-
courage us to carry out this work. The concept of visual sensor node has
been presented in this section and narrowed it down to the challenges exist
in the research area.

• Chapter 2: Literature Review
A broad literature survey has been carried out about the available visual
sensor nodes that have been implemented to measure the traffic conditions
on road and the mobility of the urban areas. An informative attention
has been paid for the algorithms, the vision techniques and novel available
hardware technologies that have been used.

• Chapter 3: Vision Algorithm for Traffic Estimation
A vision model has been proposed and the implemented image processing
algorithm has been discussed in this section. The selection of the image
processing algorithm has been done with a comparison and modifications
that have been made to the existing algorithm and explanations for such
modifications have been discussed extensively.

• Chapter 4: Hardware Implementation
This section first describes the selection of field programmable system on
chip (FPSoC) by reasoning for implementation of the proposed vision al-
gorithm in the hardware system. Then, based on the time consumption
profile, the implementation and optimization of the algorithm has been
discussed.

• Chapter 5: Results and Discussion
This section discusses about the performance of the implemented hardware
system for the VSN and the accuracy of traffic measurements that can be
taken out from the system for several standard data available from other
traffic analysis systems that have been used to evaluate the complete system.

• Chapter 6: Conclusion and Future Work
Conclusion of the research work has been discussed and based on the results
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obtained from the previous section, few directions for the future improve-
ments have been discussed.
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Chapter 2

LITERATURE REVIEW

In recent years, many designs in terms of hardware architectures and image
processing algorithms have been proposed to harvest information about the mo-
bility on road using embedded level vision systems. Among those approaches
of hardware architectures and computer vision algorithms, only the implementa-
tions that can be powered by battery, less costly and can be implemented with
less hardware resources utilization are considered.

In the context of embedded level vision systems to extract traffic parameters
using image processing and computer vision techniques, there are many consider-
ations that are needed to be taken into account. Since this is an outdoor applica-
tion of image processing, the effect of weather conditions, static objects such as
trees and stalls exist in the field of view (FoV) and the shadows created by those
static objects as well as moving objects such as pedestrians and vehicles can be a
tremendous challenge. Even in a better weather condition, it cannot be expected
to have a constant illumination throughout the day. Apart from that, practical
problems like camera jitter has to be taken into account. Besides the algorithm-
wise challenges, there are many obstacles that have to be considered when those
image processing algorithms are going to be performed in hardware platforms
where very limited resources as well as tight power budgets exist. Usually, im-
age processing algorithms deal with large amounts of data and it is required to
process these data at a higher speed in a way that, there is no any delay be-
tween the result of the system and the real world scenario. The requirement of
image data capturing, storing and processing can be a dramatic challenge to the
processing units which are running at low frequencies as well as small capacity
and low performance of off-chip memory. Yet, this can be somewhat manipulated
by using a video stream with a low resolution. However, the frame size of the
video stream should be large enough to perform an image processing algorithm
to extract useful information about the mobility of vehicles [8].
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A broad literature review has been carried out thoroughly in order to identify
further challenges in the designing of this sort of an embedded level vision system
and how those challenges have been addressed with the help of currently available
improved hardware platforms and innovative solutions that have been presented
in the computer vision and image processing field while addressing the issues
mentioned in above paragraph.

Considering the drawbacks such as inflexibility in installation and less informa-
tiveness of the typical moving vehicle detection methods such as passive infrared
sensors, magnetometer and microphones, authors in [1] have proposed an em-
bedded level velocity estimation method using image processing techniques. It
has been declared that,the use of high-resolution cameras to inspect large area
and transmit all the frames to the monitoring center using high bandwidth cable,
fiber optics and human resources based all day supervision is very expensive. Be-
sides that, due to the interactive parallel behavior in vision algorithms which can
be effectively executed in reconfigurable hardware systems, a low power consum-
ing and cost-effective solution for the small-scale production requirement, field
programmable gate array (FPGA) based pure hardware implementation of VSN
for traffic surveillance has been proposed. Basically, it examines about the pres-
ence and segmentation of vehicles and the spot speed of them. The basic block
diagram of the vehicle segmentation algorithm has been illustrated in Figure.2.1.

The vehicle segmentation has been done by using sigma-delta method with
some modifications to the algorithm. It has been shown that, having two separate
sigma-delta background subtractions can be used to overcome the ghost effect.
The main difference between the two background subtraction algorithms is that,
the background model of the RoI will be updated based on the selective method
where three conditions have been used to classify the pixels that can be used
for updating the model and the other one will accept all the incoming pixels to
the algorithm as in (2.1). These three conditions in selective method have been
defined in the expansion of the mV TS,t(x, y). Since the estimation of spot velocity
of the vehicles has been done by performing the geometric transformation on the
extracted blobs of the vehicles, this strategy is implemented to extract the blobs
of vehicles with low velocity. Besides that, they also have included two other
functions to manipulate the highlighted pixels and shadow detection, in order to
overcome the issues in sigma-delta method for outdoor applications [9].
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Figure 2.1: The hardware architecture of VSN in [1]

µN,t(x, y) =


µN,t−1(x, y) + δNI , if It(x, y) > µN,t−1(x, y)

µN,t−1(x, y)− δNI , if It(x, y) < µN,t−1(x, y)

µN,t−1(x, y), otherwise

(2.1)

µS,t(x, y) =


µS,t−1(x, y) + δSI , if It−1(x, y) > µS,t−1(x, y) and mV TS,t−1(x, y) = 0

µS,t−1(x, y)− δSI , if It−1(x, y) < µS,t−1(x, y) and mV TS,t−1(x, y) = 0

µS,t−1(x, y), otherwise
(2.2)

mV TS,t(x, y) can be defined as,
mV TS,t(x, y) = mV,t(x, y) ∨mET,t(x, y) ∨mES,t(x, y)

where, It(x, y) is the brightness of a pixel at coordinates (x, y) of the input im-
age at time t, µN,t(x, y) is the brightness of a pixel at coordinates (x, y) of the
background image which is updated for every pixel at time t, µS,t(x, y) is the
brightness of a pixel at coordinates (x, y) of the background image which is up-
dated for each selective pixel at time t, mV,t(x, y) is the pixel values belonging to a
detected vehicle by non-selective model, mET,t(x, y) is the pixel values belonging

11



LITERATURE REVIEW

to the temporal edge and mES,t(x, y) is the pixel values belonging to the spatial
edge.

If a pixel is found to be a background pixel or it is a spatial or a temporal
edge pixel, then that pixel will not be used to update the background model.
Since stationary objects are also present in the view of the scene, it is possible
to categorize the pixels that are belonging to other stationary objects. The spot
velocity of the vehicle is calculated using the geographic transformation between
3-D world and 2-D pixel image. Therefore, when the VSN is installed at a certain
place, it is necessary to calibrate the VSN according to the focal length of the
camera sensor, the height of the camera that is being installed and the camera
angle to the road as described in (2.3),(2.4), where, φ is the angle to the road, f
is the focal leangth, (X, Y ) is the coordinate on the road and h is the height to
the camera from road level, (xCAM ,yCAM) is the pixel coordinate of the vehicle
in the image which is taken by camera.

xCAM = f
X

Y cos(φ) + h/sin(φ)
(2.3)

yCAM = f
Y sin(φ)

Y cos(φ) + h/sin(φ)
(2.4)

The complete algorithm is realized in a FPGA by considering the pipeline
implementation. However, state machines have also been implemented in order to
perform sequential operations such as image acquisition and control of the overall
system. They have been able to achieve a higher frame rate which is necessary
for the targeted traffic parameter, spot velocity, but a lower resolution frame
size which is bounded to a small FoV. Apart from the FPGA implementation, an
application specific integrated circuit (ASIC) based implementation has also been
investigated in order to reduce the power consumption any further [10]. All of
these implementations can handle images with a maximum resolution of 128x128
and a frame rate of 150 fps.

The proposed algorithm in [11] has been implemented in a modern system
on chip (SoC), where both hardware and software functions could be effectively
performed in a separate section of the same chip. Authors have stated that, due
to the random memory access requirement and less parallel behavior in some of
the functions in any image processing and vision algorithm such as the region
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growing segmentation which is also known as the connected component analysis,
it has a less capability for the quick execution of such functions in hardware
platforms like FPGA which has a highly parallel behavior. Their basic intention
has only been on the detection and counting of the number of vehicles that
pass through a specific location. Vehicle detection is basically carried out with
time-spatial images (TSI), which are generated using the virtual detection line
(VDL) despite there are other methods such as background subtraction methods.
The authors have mentioned that the background modeling-based background
subtraction methods which can be performed at real time in embedded systems
have low adaptability to practical issues such as camera jitter, initializing and
reinitializing of the model, sudden illumination changes and shadows. The basic
idea of VDL and TSI are illustrated in left side and the right side respectively
in the Figure 2.2. The presence of a vehicle is detected in binary format by
analyzing the present and previous VDLs. The first step of analyzing is the
feature extraction. A CENSUS operation is performed which is also known as the
linear binary pattern (LBP) to extract the texture features and SOBEL operator
is performed to extract the edge features. Then, the pixel-wise and feature-wise
difference in present and previous VDLs is calculated. The final signal is filtered
out and the practically generated threshold value has been applied in order to
obtain a binary value (TRUE or FALSE) for the presence of a vehicle.

Figure 2.2: Example TSI image in left side and block diagram of the algorithm in right side.

Useful traffic related information using multiple VDLs such as vehicle speed,
vehicle type classification according to size and color has been discussed in [12]
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by the same authors as an extended research work.

However, it is also noted that the accurate results for these parameters could
be obtained when there is a smooth mobility of the vehicle on the road. It is also
worth to mention that, this method only utilizes a few number of pixels that are
used to generate the TSI, which means, many information that is being sensed
from the camera is discarded. This causes the less usefulness in integration of
visual sensor node in WSN.

The complete algorithm has been implemented in Zynq all programmable sys-
tem on chip (APSoC) from Xilinx which has a heterogeneous SoC architecture.
This SoC consists of a Dual core A9 ARM processor and FPGA. The reconfig-
urable section has been utilized for the color conversion and vehicle detection
sections of the main algorithm where, SOBEL edge detection, filtering and LBP
transform functions exist. Since these functions are performed in nested loops,
it has been useful to implement them in the hardware section. Apart from the
vehicle detection and image processing functions, the image acquisition part is
also performed by the FPGA section even though the processing system (PS)
side is running on embedded Linux operating system. This means, the complete
design has utilized some additional hardware resources in terms of both reconfig-
urable resources as well as additional converters and modules such as FMC/DVI
as illustrated in Figure.2.3. Instead of adopting this method, a much simpler
interface such as USB which is very compatible with Linux could have been used.

Figure 2.3: Hardware architecture for proposed vision algorithm in [11]

As authors have described, the processing section of the chip performs the
day-time, night-time conditions and patch extraction algorithms. The patch ex-
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traction algorithm, which segments some data from the main DDR memory, can
be effectively performed by the processing system. This can be noticed as a very
appropriate separation between hardware (HW) and software (SW) sections on
the chip. However, the functions in day-time and night-time condition checking
algorithm such as filtering functions, histogram stretching and calculation of SO-
BEL gradient can be identified as highly parallel algorithm since they are based
on nested loops and some mathematical operations. Therefore, that type of algo-
rithms can be implemented in pipelined hardware architecture which can reduce
both power consumption and execution time of these functions.

When it comes to processing system (CPUs) based developments to measure
the traffic conditions, Raspberry Pi based embedded vision systems have become
a trend in the past decade due to several advantages that can be acquired from
this series of platforms [14]. The development process of these single board com-
puters (SBCs) is completely based on Linux OS environment. This has led many
designs to be based on third party libraries such as OpenCV. Apart from software
level advantages, there is a dedicated interface for the CMOS camera integration
which can transfer the frame from the sensor to main memory at a higher data
transfer rate [13]. The authors in [14] have used this platform to implement the
algorithm. As described in Figure 2.2, in the algorithm flow chart, vehicle detec-
tion, tracking and speed calculation of the vehicle have been the primary targets
of their algorithm.

Figure 2.4: The Proposed algorithm to measure traffic condition.

The authors have employed the mixture of Gaussian (MoG) and Kalman filter
to detect and track the vehicles. The sparse random projection (SRP) has been
utilized to improve the performance in vehicle speed calculation since it can reduce
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the amount of data needed to be processed. In general, the SRP is used as a
dimensionality reduction method. However, in this case, it has been used as an
image compression technique so that the amount of data or in other words, the
pixels that are needed to process is much lower than the original raw data. The
sparse random matrix has been chosen in a way that, the amount of zero elements
are greater than the others. This causes the reduction of the amount of memory
requirement to save the sparse random matrix in the main memory. However, the
delay caused by the compression of the image using this SRP is not investigated.
The morphological algorithm has been applied to the final result of the vehicle
detection in order to eliminate the false negative (FN) and false positive (FP)
pixels. The complete algorithm has been performed on the video stream with
480x360 resolution. It has shown that, the algorithm can perform with SRP at
7.08 fps and without SRP at 3.29 fps. The use of SRP has caused to speed up
the algorithm more than twice than the algorithm without SRP.

A real time and low-cost embedded vehicle counting and classification system
has been proposed in [14] so that it can be used to measure the vehicular density
of metropolitan areas in order to have proper mobility in those areas. The overall
algorithm can be explained as in Figure.2.5.

Figure 2.5: The steps of the vehicle classification.

The Gaussian filter which has a 5x5 kernel is used to remove noise in the
image. The vehicle detection is carried out using the MoG method since it is
widely considered as a better algorithm for background modeling and foreground
extraction [15]. The cascade classifier has been employed to classify the vehicles.
The window size of the classifier can be changed according to the position of the
camera that has been installed in RoI because the size and the angle of the vehicle
changes with the camera position. The classifier has been trained with images
which have different scales of vehicles as well as different types of vehicles. The
algorithm has an accuracy of 97% in average. Although, it is noticed that when
two vehicles move close to each other or when they have similar color features,
the accuracy of the algorithm decreases. Besides that, better outcomes can be
expected from the algorithm only when there are vehicles that can be found
within the RoI which are similar to the vehicles that have been used to train the
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classifier. A more accurate algorithm comes up with higher computational cost
and lack of real-time performance. Even though this algorithm has been targeted
to gather traffic information, no functionalities have been integrated to get an
idea about the speed of the vehicles.

ODROID-XU4 SBC has been used for the execution of the algorithm because
of the convenience of the implementation. This development board is based on
Exynos5422 CortexTM-A15 2GHz and CortexTM-A7 Octa core CPUs, Mali-T628
MP6 and 2Gbyte LPDDR3 based memory chip [16]. A proper investigation of
functions which have parallel behavior cannot be seen in this kind of a completely
CPUs based implementation and since the commonly used vision libraries are
implemented considering the use of multi-thread strategy, which is the only option
available to improve the performance of the algorithm.

The authours in [17] have used the same development platform to implement
the algorithm which can be used to gather traffic information at night time con-
sidering the head lights of vehicles. The simple background subtraction method
has been avoided since it can malfunction in case of complete or partial unavail-
ability of light. The basic architecture of the algorithm can be illustrated as in
Figure.2.6.

Figure 2.6: Block diagram of the night vision algorithm.

As the first step, the frames acquired from the video input are converted into
gray scale images and then, Gaussian blur has been applied to overcome the noise
components in the current frame. The headlamps of the vehicles are detected as
blobs by applying a threshold value. This threshold value is a predefined value
and is not adaptable to the current illumination and environmental conditions.
Since, most of the vehicles which causes the traffic such as cars, buses, lorries
and trucks are having a pair of headlamps in a symmetric structure, this pair of
headlamps classification has been done by using the normalized cross correlation
(NCC). This can also be described as NCC template matching for headlamp pair
identification.
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Figure 2.7: Comparison of performance of the night vision algorithm for different SBCs.

NCC =
1

n

∑
x,y

1

σfσt
f(x, y)t(x, y) (2.5)

This is the basic methodology that has been followed to identify the number of
vehicles at night time. Here, function f(x, y) represents the pixels of the target
and function t(x, y) represents the pixels in current template. This night vision
algorithm has been implemented in several SBCs and the performance has been
investigated.

Table 2.1: Specifications of the SBCs that have been used to compare the performance of the algorithm.

Main
component Raspberry pi B+ Beagle board

Xm Raspberry Pi 2 Odroid XU4

Processor
700MHz ARM11
ARM1176JZF-S

core

1GHz ARM
Cortex-A8

900MHz
quad-core
ARMv7

Cortex-A7

2.0 GHz
64-bit

quad-core
ARM

Cortex-A53

Memory 512 MB (DDR1) 512 MB
(SD LPDDR) 1 GB(DDR 2) 2 GB

(DDR 3)

GPU
Broadcom
VideoCore

IV, 250 MHz
TMS320C64x+

Broadcom
VideoCore
IV, 40 MHz

Mali-450
MP3

Both of the implementations discussed above can be used for daytime and
nighttime to measure the number of vehicles present on the streets. However,
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these kinds of battery powered embedded vision systems are used in urban areas
to measure the traffic conditions where streets are lighted using the street lamps.

According to Table 2.1, it can be seen that the performance of the algorithm
has been increased with the availability of high-performance hardware resources
in the selected CPU based development platforms. The performances of these
selected hardware platforms change in terms of operating frequency, number of
cores available in CPUs and GPUs, the data transferring speed as well as the
capacity of the memory. The main advantage of this kind of only CPUs based
hardware platform is the flexibility in implementation. It is mainly because of
the availability of vision libraries such as OpenCV which have been designed by
considering the multi-threading feature that can be utilized from the multi-core
CPUs. It can be noticed that the improvements of the CPU platform-based
vision algorithms have strongly depended only on the improvements that can
be obtained in the ASIC level. This also causes the designers to stick with the
available functionalities in selected hardware and it is not customizable to improve
the performance, power as well as the resources utilization in hardware level.
Besides that, higher frequency means the higher the power consumption [18],
which is a limiting factor for the usability of this sort of hardware platforms in
power limited applications such as WSN.

A hardware and software co-design based embedded system for object detec-
tion and tracking has been described in [19]. The authors have used an example
video stream which contains of vehicles. Besides that, this sort of a tracking algo-
rithm can be effectively used to gather useful information about traffic conditions
on road such as average velocity, waiting time and vehicle density in RoI [20].
They have inclined to the heterogeneous hardware platform due to parallel be-
havior in the detection function which they have used in the algorithm and to
obtain the advantages such as branch prediction capabilities in CPUs. They have
considered that GPUs obviously are not an option due to their higher power con-
sumption requirement. The object extraction algorithm from the current frame
is based on MoG method which is a well-known background modeling method
used specifically for outdoor computer vision systems [15]. However, since the
original concept of MoG is not so parallel in nature because of the conditional
checking of Gaussian parameters for each pixel, the authors in [21] have proposed
several methods to perform all the arithmetic operations in a more parallel fash-
ion. These modifications have been done to implement MoG in FPGA section in
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pipelined architecture so that it can be performed in real time also by considering
the available resources in hardware. Apart from the background modeling, noise
filtering and morphological operation, video overlay which adds the color and
boundary represented by a rectangle is implemented in hardware section due to
the parallel behavior of these functions.

Figure 2.8: Implementation of the parallel functions presented in [19].

They have utilized the external DDR memory to store all the Gaussian parame-
ters namely mean, weight and standard deviation which describe the background
image of the video stream. Due to the random memory access requirement, they
have used kernel memory map registers to maintain the interface between FPGA
and main memory and to obtain high speed frame transaction between CPU and
FPGA, the AXI4_Stream interface available in the hardware platform have been
utilized. This can be identified as a very effective interface handling since for a
custom-made vision algorithm, it is important to choose a proper data transaction
and time synchronization between HW and SW sections [22].

After the construction of binary image of the foreground, this image is trans-
ferred to the processing system section in order to perform the object labeling,
object tracking and trajectory estimation. Since the processing system consists
of a dual core processor, the algorithm performed in SW has been partitioned
between the two cores so that the maximum throughput that comes from the
HW section can be handled in a manner that, any delay between consecutive
frames cannot be noticed. The blob labeling has been carried out as a connected
component analysis. However, according to the authors in [23], this is also a
highly parallel algorithm, but maybe due to the lack of resources in HW section
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after the implementation of background modeling algorithm, this function has
been performed using available cores in the processing system.

The detected objects are tracked between consecutive frames by considering
the histogram similarities. The properties of the tracking objects such as width,
height and position have been taken in to account. The Kalman filtering technique
has been adopted in order to fine-tune and predict the properties of the objects.

As described in Figure.2.9, the synchronization of the data flow, the direct
memory access between HW and SW sections and cache memory handling have
been controlled using the interrupts and the share dynamic memory. The in-
terrupts are handled by the global interrupt controller (GIC) and the shared
dynamic memory has also been utilized as the buffer between HW section and
SW section since the high throughput coming from the hardware section is not
bearable to the processing system (PS) section.

Figure 2.9: HW/SW data flow and interrupt route.

Even though, the FPGA section has been utilized for the MoG based object
detection which consists of intensive arithmetic operations, the programmable
logic (PL) section has utilized only 16.49% of a power fraction from the total
power consumption. When it comes to the hardware utilization in FPGA section,
the MoG algorithm has utilized 54% of the hardware resources out of the total
hardware resources available in their chosen development platform. In the design,
they have effectively used the block memory available in the FPGA section as
a local memory storage in order to reduce the frequent dynamic memory access
requirement.
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2.1 Summary

The achievements, disadvantages and the gaps still exist in the current de-
signs of vision-enabled sensor node fashioned embedded systems that have been
implemented by the researches so far are summarized as follow.

• Most of the real time and low power implementations have used reconfig-
urable devices like FPGA, in order to execute customized image processing
functions in pipelined structure.

• The CPU based systems have always stick with available hardware process-
ing units which cannot be adapted to other functionalities as programmable
logic designs do.

• Hardware and Software Co-Design based developments have better ap-
proaches to execute both sequential and parallel functionalities of the vision
algorithm meanwhile taking advantage of using the embedded OS for basic
hardware interfaces and software library integration. The partitioning of
the algorithm between hardware and software sections is very important to
consider.

• Most of the researchers have struggled a lot to separate vehicles from RoI
in order to get the number of vehicles exist on the road and to initiate the
tracking of the vehicle to get the speed of the vehicle or using the geometrical
image transformation.

• As in [19], possibility of modifications that can be done to the existing highly
accurate computer vision and image processing algorithm is an important
area to investigate in order to execute them in a more parallel behavior
so that the real time performance can be expected when the algorithm is
performed in hardware.

• The performance and the hardware resources utilization of the system for
different frame sizes is not investigated in most of the designs.
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Chapter 3

SYSTEM ARCHITECTURE

The traffic estimation or in other words, the information about the mobility
condition on road which is based on a video stream of FoV comes up as a result
of a computer vision or an image processing algorithm that has been applied on
those frames. Therefore, in any vision-based traffic analysis system, the accuracy,
performance, or in other words, “how well the traffic condition can be described”
depends on the vision algorithm that has been used. Therefore, important traffic
parameters which can be implemented in hardware system are investigated in the
first place and then, the vision algorithm is implemented so that, the targeted
traffic information can be extracted. The feasibility in the expandability of the
vision algorithm with available resources in the hardware platform also needs
to be considered in a way that, better spatio-temporal description of the traffic
condition can be harvested with the higher availability of resources and power
budget.

3.1 Selection of Traffic Parameters

The traffic parameters which can be measured using the computer vision tech-
niques have to be considered in the first place. The following traffic parameters
have been considered since most of them are more frequently used in existing
traffic measurement systems and used in traffic engineering, in order to describe
the traffic condition on road.

• Traffic Density
The traffic density is one of the most commonly used parameters. It is
defined as a fraction between number of vehicles exist on road with respect
to the length of the lane or unit distance. This describes the concentration
of the road with respect to a special variation.

Traffic Density =
Number of vehicles on the road
Length of the considered lane

(3.1)
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In order to measure this parameter using computer vision algorithm, the
algorithm should be capable of extracting the number of vehicles exist in
current image of the video stream. Besides, it should be capable of elimi-
nating the unnecessary objects exist on the road. In addition to that, the
length of the RoI is also essential. This can be manually measured since it
is required to be measured only once.

• Average Speed
The average speed is referred to as the speed of a vehicle that has been
obtained during a unit time of the journey. This can provide how safe the
road is as well as the flexibility of mobility on the road. This is measured
according to (3.2).

Average Speed =
The distance of the journey
Time to complete the journey

(3.2)

In a computer vision algorithm using this sort of a traffic parameter, it is
essential to track the vehicle between consecutive frames, in order to know
the time that has been consumed by the vehicle.

• Spot Speed
This is known as the speed of a vehicle (vi) at a specific point on the
road. Usually, this parameter is presented as the time mean spot speed or
the instantaneous speed as illustrated in (3.3), where, N is the number of
vehicles.

Ut =
1

N

N∑
1

vi (3.3)

To measure this parameter using vision techniques, it is essential to perform
the algorithm at a higher frame speed because otherwise, the algorithm
may miss the vehicle or sometimes it may mix up with another vehicle in
the RoI. This can be measured using the geometric transformation or an
instantaneous pixel analysis technique such as VDL. In the implementations
of [10] and [12], this parameter has been taken as an output parameter.

• Waiting Time
The waiting time is an important traffic parameter in case of effective traf-
fic light controlling and lane prioritization. This can measure how long a
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vehicle has been waiting in a vehicle queue at a traffic light or in a dead
lock situation [24]. This is measured as the time duration of which a vehi-
cle has been stopped at a single point or travelling at a very small velocity
during the specified length of journey. At the end of the journey, this can
be represented as the summation of the total time the vehicle has been
stopped as in (3.4). A vision algorithm with tracking capability is essential
in measuring this parameter.

Waiting Time =
∑(

Time duration of the vehicle that has

been stopped at point ’i’.
) (3.4)

• Lane Occupancy
The lane occupancy which is also referred to as the temporal concentra-
tion is another method to measure the concentration on roads. Instead of
obtaining the exact number of vehicles exit in the RoI, this is based on
how much of area of the road has been utilized by the vehicle in the con-
sidered RoI. This parameter has been commonly used in induction loop
sensor-based traffic analysis techniques [25] [26], but this can also be used
in vision-based systems. The area occupancy is given in (3.5).

Area of the Lane Occupancy =

∑
Bi

A
(3.5)

where, B is the area covered by vehicle and A is the total area of the road.
If we can find the area that has been utilized by the vehicle within the RoI,
this parameter can be easily found out. The area can be measured using
a proper foreground extraction vision algorithm. In addition to that, the
interested area of the FoV of VSN can be simply calculated by multiplying
the width and the length of the road.

After the consideration of image processing and computer vision requirements
which are needed to be performed in order to calculate the above discussed main
traffic parameters, average velocity, waiting time and the lane area occupancy
are selected as the main expecting outputs from the VSN. Usually, the embedded
level object extraction methods are depending on the conventional algorithms
such as background subtraction. This kind of traditional algorithms are more
often suffered with the occlusion situations when the number of objects is going
to be calculated. However, there are many approaches such as optical flow [27]
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to eliminate this sort of obstacles to a certain degree but, with higher traffic
cognition situations with similar color vehicles, this problem can be increased.
On the other hand, the limited hardware resources and power budget may limit
the system to perform additional vision algorithms and expect results in real
time.

There are rapid improvements based on convolutional neural networks (CNN)
and many other neural network architectures in computer vision algorithms in
object recognition and classification. Implementation of those algorithms in hard-
ware platforms also has been discussed in [28] [29]. Even though, the accuracy of
this kind of CNN based algorithms is higher than the existing conventional algo-
rithms in many aspects, the frame rates of those algorithms cannot be satisfied
even in the high-performance platforms. Besides that, the cost and the power
requirement of those high-performance hardware platforms can adversely affect
the applicability of them in real world application scenarios.

The spot speed of the vehicle is not considered as an output of our VSN since it
only describes about the vehicle speed at one specific location in the RoI. When
this is compared with the average speed, it is much less descriptive about the
traffic condition [30].

3.2 Proposed Vision Model for Traffic Estimation

Considering the selected traffic parameters discussed in the above paragraph, a
suitable vision model can be considered so that, it can calculate necessary traffic
information required as well as the findings from the literature review. The
Figure 3.1 illustrates the overall view of the vision model that has been proposed
to implement in VSN hardware platform.

As the first step, since most of the camera output video files are based on RGB
color format, the video frame that is being streamed into the system is required
to be converted from RGB to gray scale. If we keep using the RGB color frame
for the rest of the algorithm, it may cause three times higher memory utilization
with respect to the monochrome frame and may consume higher processing power.
Then, there should be a method to separate the vehicles in foreground from the
background image. This is not only useful for calculating the lane occupancy
(LO) but also for the average velocity estimation.
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Figure 3.1: Flow Diagram of the Vision Algorithm.

There should also be a method to eliminate the unnecessary detections created
by the surrounding objects such as pedestrians and moving trees. Besides, it is
also important to filter out the unwanted area on the road and focus on the most
important section of road to measure the traffic condition. This may avoid the
unnecessary complexity of the algorithm. This can easily be done by using an
image of the FoV and manually marking the RoI. Then there will be an image
somewhat similar as shown in the Figure 3.1. The area that has been occupied
by the vehicle can be calculated using the connected component analysis [23] and
considering the road area in RoI.

According to the descriptions of average velocity and the waiting time of a
journey in the previous section, there should be two specific locations to calculate
these two parameters and it is required to track the vehicles in between the two
selected points. Therefore, these two start and end points of the journey are
considered as the tracking initializing point and terminating point. These points
can be configured in the algorithm just as the RoI was configured.

As can be seen in the vision architecture, the extraction process of the vehicles
appearing in the scene and their tracking process are the trickiest functions in
the algorithm. Therefore, in detail description of these two functions has been
carried out in the following sections.
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3.3 Vehicle Extraction

Expected outcome from the functionality of the foreground extraction algo-
rithm is illustrated in Figure3.2. There are many computer vision and image
processing algorithm-based foreground extractions can be found in the literature.
Due to the challenges and the requirements in those algorithms to be performed
in embedded systems, several foreground-background separation algorithms are
considered.

Figure 3.2: Illustration of the foreground extraction process.

Most of the embedded level system based object detection algorithms are based
on the background subtraction method. In this method, it is required to have
the background image in order to extract the foreground objects in the frame.
The basic concept of the background subtraction is based on the inequality as
described in (3.6) and (3.7), where, N is the number of consecutive frames which
have been considered, It is the intensity values of the image at time "t" and Ib
is the intensity values of the background image. The threshold value, k, is the
parameter which is used to determine the foreground and the background. The
final result would be an image which has marked the foreground object area of
the frame in white color. The original frame would have to overlay on the final
frame of the background image in order to isolate foreground objects from the
current frame.

If |It − Ib| > k, foreground (3.6a)

If |It − Ib| < k, background (3.6b)

where,

Ib =
1

N

N∑
t=1

It(x, y) (3.7)

Even though, some of the designs such as [1] [10] have used static backgrounds,
it is certainly not a good approach for an outdoor vision application since its
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background may vary due to multiple reasons which in turn will lead to false
detection. Therefore, there are many methods to generate dynamic background
image through the background modeling technique instead of a static background
image. There are some approaches where the background image is updated using
the mean filter for each frame incoming to the algorithm. But, the drawback
of this kind of an algorithm is that, any sudden change of illumination and the
presence of noisy pixel components can largely affect the foreground image.

The running Gaussian model can be identified as a somewhat improved method
rather than the simple background subtraction. This method maintains a Gaus-
sian model of the background image and (3.8) and (3.9) describe the parameters of
that Gaussian model. Instead of having a constant threshold value, k, as in (3.6),
this method calculates the threshold value for each frame at time, t, according
to (3.9), where, α is the learning rate. This approach can be seen in many VSN
designs which have been developed for different applications due to its simplicity
as well as less computational cost. This algorithm has been improved in [1] as
described in chapter 2 which has been used to acknowledge the presence of vehi-
cles and to calculate the spot speed of a vehicle using geometric transformation.
Even though this algorithm may perform for the indoor vision applications very
well, for the outdoor applications, the resultant foreground image may have been
largely affected by the false negative (FN) and the false positive (FP) pixels [31].

Ib(t)(x, y) = α.It−1(x, y) + (1− α).Ib(t−1)(x, y) (3.8)

k2t (x, y) = α[It−1(x, y)− Ib(t−1)(x, y)]2 + (1− α).k2t−1(x, y) (3.9)

The foreground extraction using Gaussian distribution based background image
is another popular method for most of the object detection requirements in vision
algorithms. In this method, the pixel intensity is described by the Gaussian model
as described in (3.10). This equation represents how to model a single pixel
with multiple Gaussian distributions where, σ is deviation of the pixel value, µ
is the mean value of the pixel values, x is the value of the pixels. Figure 3.3
represents the Gaussian distribution of the intensity value, x, of a pixel. Instead
of updating the model for each pixel value coming from the camera sensor as in
running Gaussian method, this method follows up the fitting method to generate
the most suitable Gaussian curve for the past pixel values that have been received.
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η(x;µ, σ) =
1√
2πσ

exp
(
−
(x− µ

σ

)2)
(3.10)

Figure 3.3: Gaussian distribution.

The MoG model can be considered as the extended version of the single Gaus-
sian model which describes the pixel intensity using multiple Gaussian models
instead of a single one. This makes the model more robust for many challenging
situations such as sudden change of illumination and small vibrations of the cam-
era. The model of the mixture of Gaussian can be described as in (3.11), where,
w is the weight factor of each Gaussian distribution. However, the drawback of
this method is that the robustness comes up with large number of parameters
since all the pixel values are considered to be mutually independent. This leads
to a huge memory requirement and a higher complexity in modeling and updat-
ing which is based on higher number of iterative methods in the expectation and
maximization algorithm.

Pr(x) =
k∑
k=1

wkxη(x;µk, σk) (3.11)

Figure 3.4: Distribution of Mixture of Gaussian.
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In [19], some modifications have been done to the MoG in order to perform
the algorithm in hardware and software co-design platform with more parallel
fashion since the original algorithm is more sequential. Even though, the algo-
rithm performs at 60 fps, the properties of the algorithm such as the number
of Gaussian models that have been used and the other valuable parameters and
model updating methods which strongly describe the accuracy of the algorithm
have not been discussed.

3.4 The ViBe Algorithm

The universal visual background extractor (ViBe) algorithm for foreground sep-
aration has been proposed in [32]. This model has a completely different approach
with respect to the other background subtraction and Gaussian modeling-based
algorithms [33]. This algorithm has shown highly accurate performances towards
many practical problems such as camera jitter over other approaches for the fore-
ground extraction. Apart from that, this consists of the quick but accurate model
initializing method and time independent model updating solution which is not
available in any other background modeling technique [27]. The vision model of
this algorithm can be described in three categories of how the model works and
describes the background of the scene, how the background model is initiated and
how it is adaptable to the upcoming pixels.

3.4.1 Description of the Model and Pixel Classification Method

Instead of a single valued pixel intensity of the background image, the ViBe
algorithm describes a pixel intensity at Euclidean location, x, using an array
of pixel values as shown in (3.12). Here, N is the maximum number of pixels
contains in the array. The term vi denotes background pixel value which is placed
on the ith location by model initializing function or model updating function.

M(x) = {v1, v2, ..., vN} (3.12)

In order to classify the pixel value at location, “x”, of the current frame, a
volume of the model which is similar to a sphere of radius, “R” and centered at
location, x, is considered. If there are j number of pixels that could be found
within this sphere, then this pixel at location, x, of the current frame is considered
as a background pixel. Otherwise, this location will be considered as a foreground
pixel. This sphere is represented in Figure 3.5.
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Figure 3.5: Representation of the sphere.

The minimum value for j can be defined by (3.11). The SR represents the
sphere with radius, “R”.

j{SR(v(x)) ∩ {v1, v2, ..., vN}} (3.13)

The accuracy of the model depends on the length of the radius of the sphere
and the minimum value of j which is considered to classify the background pixel
location from the foreground pixel of the current frame. The sensitivity of the
model or in other words, the efficiency of the algorithm to adapt for the variation
of the background model may increase with the number of background pixels
represented by the model and the number of pixels that are similar to the current
pixel value that is required to classify the pixels in current frame as background
pixels.

3.4.2 Initialization of the ViBe Model

The model that describes the background in ViBe algorithm is initiated by
using the first frame which comes into the algorithm. Since the first fame is
not aware of the temporal variation of the background, it is assumed that the
neighborhood pixels in the first frame contain similar features of the temporal
pixels at the same location. Hence, the initialized model from the first frame can
be expressed as in (3.14), where, NG is the set of neighborhood pixels around
pixel, x.

M0(x) = {v0(y|y ∈ NG(x))} (3.14)
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Here, M0 denotes the initiated model from the first frame. Since the location,
x, of the model is described by an array with N number of pixel samples, the
array will be filled with the neighboring pixels that exist around the location, x,
in the first frame. It is possible to have repeated pixels in the array if the value
of N is greater than 8.

Figure 3.6: The neighborhood pixels at location, “x”.

Figure 3.6 illustrates the neighboring pixels that are being used to fill the
initialized model of the ViBe. The main advantage of this kind of a method
for initialization is the quick adaptability of the algorithm to the environment.
When we use this kind of an approach in embedded systems with respect to other
algorithms such as running Gaussian, MoG where many frames are required to
initialize the detection algorithm, we have the flexibility to keep the system at
sleep mode when there is no requirement for processing, which leads to the power
saving of the system.

3.4.3 The Updating Process of the Background Model

The updating process of the ViBe model is based on the conservative method
which means only the pixels that are classified as background pixels are used to
update the background model. Once the algorithm has classified a pixel location
in the current frame as a background pixel, this pixel value is used to update
the model. Since, the conservative method is followed, the pixel array where the
background pixel is found in the current frame will be updated. The position of
the array will be picked up by a random decision and then, the pixel value existing
in that particular location will be replaced by the pixel value in the current frame.

Since, the conservative method is followed, this algorithm will not update any
of the pixels in the array which exists in a similar position where the foreground
pixels exist in the current frame. Therefore, it is essential to keep those pixel
arrays of model updated, for the change of illumination and the objects which
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are introduced to the scene long time ago. This is done by following the same
assumption that the neighboring pixels share the similar temporal feature. This
means that, if a particular array of the model is going to be updated because
of the similar position of pixel value in the current frame is categorized as a
background pixel, then, one of the neighboring pixel arrays out of eight will also
be updated using the same pixel value in the current frame as shown in Figure
3.7.

Figure 3.7: The updating location of the model.

The key feature of the updating mechanism of ViBe which differentiates with
the other background updating methods is the fact that pixels in the model will
not be replaced with other upcoming pixels just because of the time duration
a pixel has spent in the model. This makes ViBe a robust descriptor for the
background of the scene.

3.4.4 Identified Drawbacks in the ViBe Algorithm and Modification
Proposed to the Original

The pseudocode of the ViBe algorithm is given by the authors in [32]. A part
of the code has been shown which is important to describe the modification that
has been done to the original ViBe algorithm.

In this pseudocode, “samples" variable represents the model of the ViBe which
is described in the previous sections. Basically, three main drawbacks in the ViBe
algorithm is identified.

1. Since, the algorithm considers a sphere with radius R, the volume or in
other words, a higher number of pixels need to be compared. Besides that,
the distance also needs to be calculated in order to check whether it is
within the sphere.
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Algorithm 1: orginal ViBe
int N // No. of samples per pixel
int R // Radius of sphere
int # min // No. of close samples for being part of the background
int ψ // Amount of random sub-sampling
int width, height // image size
byte image[width][height] //current image
byte samples[width][height][N] // background model
for x<width do

for y<height do
int count = 0,int index = 0,int dist =0;
while (count < #min)&&(index < N) do

dist=EuclidDist(image[x][y], samples[x][y][index]);
if dist < R then

count++;
index++;
Continued....

2. After the classification process of the algorithm, two other memory accesses
need to be done in order to update the relevant array which has the sim-
ilar position to the background pixels and one of the randomly selected
neighborhood arrays.

3. Since, this model is placed in the off-chip memory, the power and the time
consumption for the random access to this variable can be a bottleneck
to the performance of the algorithm in a less resource available hardware
platform.

In order to overcome the issues described above, a different model for pixel
classification is considered. Instead of a sphere with radius “R”, a cuboid which
has a length ‘N’ and a width and a height of 3 is considered. As shown in Figure
3.8, this cuboid is considered to classify the pixels in current frame.

{B3x3xNv(x)} ∩ {v1, v2, ..., vn} (3.15)

Then, the volume which is represented in the model by the cuboid can be
expressed as in (3.15). Since, the searching volume which is tackled by the cuboid
is much lower than the sphere, instead of searching for the exactly similar pixel
value within the cuboid, the modification was done to the algorithm so that, it
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Figure 3.8: The cuboid concept.

Table 3.1: PCC and tolerance values

D value PCC

1 0.6052
3 0.9671
5 0.9882
7 0.9920
10 0.9931
13 0.9929
16 0.9923
20 0.9903
23 0.9889
26 0.9885
29 0.9879

would consider a pixel located at x in the current frame as a background pixel, if
two pixels can be found within the cuboid which are having an absolute difference
between current pixel and the pixels in the model which is less than a tolerance
value.

A suitable value for the tolerance is obtained by performing this modified al-
gorithm on the dataset which has been used to obtain other constant values of
the ViBe algorithm. The modified ViBe algorithm is executed with different tol-
erance values. Then the percentage of correct classification (PCC) is calculated
according to (3.16), where, TP, TN, FP, FN are respectively, true positive, true
negative, false positive and false negative pixels. The Figure 3.9 represents the
PCC against different tolerance values.

PCC =
TP + TN

TP + TN + FP + FN
(3.16)
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Figure 3.9: PCC values for different tolerance values.

Figure 3.10: Resultant frame for each tolerance value.

The PCC value is taken as an average value for more than 1500 frames. The
Figure 3.10 represents the appearance for one frame in the data set. According
to the Figure 3.9 and the table, it can be seen that, initially, the accuracy of the
algorithm increases when the tolerance value is increasing, but after the tolerance
reaches value 10, the accuracy decreases. This is because the space for a pixel to
be classified as a background pixel increases with a higher tolerance value.

The pseudocode of the modified ViBe algorithm can be re-written as algorithm
2. The important advantage of this modification is not only the amount of data
need to be searched by the pixel classification process is less than the original but
also due to the sequential memory access, the random memory access requirement
of the algorithm which leads to slow down the performance is avoided. According
to pseudocode, this also enables us to place a small fraction of the sample variable,
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temp_sample, close to the operating processing units. Another advantage is that,
we can update both the neighborhood array as well as the array which has the
similar location to the current frame using this fractional variable of the original
sample variable. This has been demonstrated in Figure 3.11 and in algorithm 2.

Algorithm 2: Modified ViBe
uint8_t temp_sample[N ][3][WIDTH]; //temp variable memory
for i<HEIGHT do

for j<WIDTH do
for n<N do

temp_sample [n][2][j]= temp_sample [n][1][j];
temp_sample [n][1][j]= temp_sample [n][0][j];
temp_sample;
[n][0][j]=samples[(n*WIDTH*HEIGHT)+((i)*WIDTH)+j];
// load array back to DDR
samples[(n*WIDTH*HEIGHT)+((i-2)*WIDTH)+j]=
temp_sample [n][2][j];
int count = 0;int index=0;
while (count < min)&&(index < N) do
pixel_value=new_frame[WIDTH*i+j];
Continued....

Figure 3.11: The cuboid in actual model and the update process.

The performance of this modified ViBe algorithm is compared with MoG
method and the original ViBe using the dataset available in [34] [35]. According
to the results, this modification has a lower accuracy in terms of PCC with re-
spect to the original ViBe algorithm yet demonstrates better accuracy than the
popular MoG method. This has been illustrated in Figure 3.12. Although, the
modification has decreased the accuracy of the original ViBe, the flexibility to
improve the efficiency is increased meanwhile holding a greater accuracy than the
MoG.
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Figure 3.12: Comparison of modified ViBe with MoG and original ViBe.

Figure 3.13: Accuracy of the MoG, Modified ViBe and the original ViBe in term of PCC.

3.5 Vehicle Tracking

As explained in the previous sections, the waiting time and the average veloc-
ity of the vehicle have been considered to complete the specified journey. The
tracking of vehicle to inspect the mobility can be tricky due to the numerous
challenges that can be occurred. The sudden change of illumination due to the
clouds, the shadows created by the tolls and buildings, same color vehicles and
the stationary objects such as trees exist in the RoI are some of the challenges
created by outside parties to the tracking algorithm. Besides, appearance changes
due to scale variation or rotation of the tracking object and occlusion between
tracking object in the scene can be identified as the accuracy and performance
related problems.

The basic methodology of the features based automated object tracking algo-
rithms is illustrated in Figure 3.14. As can be seen, the feature extraction and the
tracking process of the objects between consecutive frames are the key function-
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alities of a tracking algorithm. Therefore, various tracking algorithms are there
with different approaches for feature extraction and tracking of the extracted
features to overcome the issues mentioned in the previous paragraph.

Figure 3.14: Basic steps in a tracking algorithm.

The mean shift algorithm is one of the tracking algorithms which has been
implemented in many embedded level vision systems [36]. The tracking function
of the algorithm tries to find the new densest location in the current image based
on the histogram density function which describes the tracking object. Then, the
mean shift vector of the object is calculated as illustrated in Figure 3.15.

Figure 3.15: Meanshift vector

This mean shift vector can be calculated as in (3.18). The function, “k” is
the first derivative of the kernel profile since a non-parametric density function
is considered as the gradient. The following weight calculating function has been
derived from the Bhattacharya coefficient function.
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wi(y0) =
m∑
u=1

δ [S(xi)− u]

√
qu

p̂u(y0)
, where 0 ≤ wi ≤ 1 (3.17)

Mh(y0) =

∑n
i=1wik(|x−xi

h
|2)xi∑n

i=1wik(|x−xi
h
|2)

(3.18)

In this weight equation, p represents the histogram vector of the candidate
for new position of the tracking object and q represents the histogram vector
of the template. This summation is calculated from 1 to 255 if the gray scale
image is considered and S(xi) represents the pixel value at xi location. The
authors in [37] have proposed continuously adaptive mean shift (CAMSHIFT),
in order to overcome the scale variation problem considering the momentum of
the tracking template.

This process is iterated until the value of mean shift vector becomes zero or
very close to zero based on (3.18). Even though, the concept of tracking using
mean shift is quite simple, it is often reported that the mean shift is not capable
to continue the tracking process if the objects are facing an occlusion situation
[38] [39]. Besides, it will need more computational power to escape from the
saddle place on the distribution curve [40]. Since the iteration process is based
on a specific kernel size, k, there is always a maximum object size that can be
used in the algorithm. Therefore, the parameters of the algorithm will have to
be updated continuously when the position and the angle of the camera changes
as well as the size of the frame changes when the range of RoI changes.

The Lucas and Kanade approximation based target tracking using optical flow
is another diversely used algorithm. Even though, it is a more computationally
complex algorithm, some of the real time implementations in hardware can be
found. Optical flow tracking is based on the displacement vectors that can define
the translation of each pixel in a region. The fundamental assumption of the
optical flow is intensity constancy of tracking object in between two consecutive
frames and neighborhood pixels. This can be expressed as in (3.19), where, dt is
the time gap between two frames.

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (3.19)
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The displacement of the interesting point is denoted as u, v. Hence, the new
location of the point will be u + x, v + y. The above mentions are only valid if
the displacement is considerably small. The u, v can be calculated with the help
of (3.19).

Figure 3.16: Illustration of the displacement.

In the KLT method, it is assumed that the interesting pixel and the eight pixels
around it are having the similar intensity between consecutive frames. Using this
assumption and the approximation in Taylor series, u, v can be solved as follows.[

u

v

]
=

[ ∑
i f

2
xi

∑
i fxifyi∑

i fxifyi
∑

i f
2
yi

]−1 [
−
∑

i fxifti
−
∑

i fyifti

]
(3.20)

where, fx, fy and ft are ∂f
∂x
, ∂f
∂y

and ∂f
∂t

respectively. The left matrix in the right
side of the equation is similar to the Harris Corner feature, and according to the
concept in [41], the scale variation of the object can be observed by calculating
and comparing the distances between the corners. However, since the assumption
that the displacement of the feature points is very small, it is essential to make
downscaled images from the original image. This calculation of feature point and
pyramid of the downscaled images needs to be done for each frame that come into
the algorithm which causes to the dramatic complexity in mathematical calcula-
tions. In order to perform these complex mathematical operations in embedded
system, they have to be performed in higher frequencies which lead to higher
power consumption. Another drawback in optical flow is if the illumination of
the RoI is suddenly changed and the frame rate of the processing is not enough
to bear that illumination change gradually, then the tracking process can miss
the tracking object.

Same sort of problems can be seen in the feature-based tracking algorithms. In
the hardware implementations of those tracking algorithms, descriptors like SIFT,
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ORB, BRIEF and SURF are employed to describe the feature points in tracking
object and candidate patch [42] [43]. Besides, most of the times, the feature
matching process is carried out by algorithms like brute force. Even though, this
kind of feature based tracking algorithms always perform well in case of partially
occlusion scale variation, rotational invariant and greatly adaptable for changing
of illumination changes. Some of the hardware implementation of this kind of
feature based algorithm can be found in [44] [45], but the performances are not
in real time. The authors in [46], have proposed vehicle tracking algorithm using
LBP. The problem in this sort of fast features is they are not adaptable for scale
and rotational variation of the tracking objects. The Figure 3.17 illustrates the
process of LBP feature describes.

Figure 3.17: The process of LBP

Template matching is a classical method in visual tracking. The main idea
is to first detect the object as a template and then, try to find the most similar
region to this template in the next frames which would be considered the updated
object locations. Several similarity measures have been used like sum of absolute
difference (SAD) and NCC [36]. In the (3.5) and (3.5), ′l′ and ′T ′ represent the
patch and the tracking template of the object.

SAD(m,n) =
∑
x,y∈T

|l(n+ x,m+ y)− T (x, y)| (3.21)

NCC(m,n) =

∑
x,y∈T [l(n+ x,m+ y)− µl] [T (x, y)− µT ]√∑
x,y∈T [l(n+ x,m+ y)− µl]2

√
[T (x, y)− µT ]2

(3.22)

But, this algorithm does not take the dynamic behaviour of the object, scale
variation and rotation invariance into account. SAD has less complexity, but

43



Vehicle Tracking SYSTEM ARCHITECTURE

it may be unsuccessful if there are multiple objects with same color [47] [48].
Therefore, dynamic behavior of the tracking also has to be taken into account [47].

The filtering techniques-based object tracking are widely used in may hardware
implementations of the visual object tracking systems and in most cases, real
time performances have been obtained. The Kalman filtering and the particle
filtering are the most commonly used for localization of the object. However,
the particle filtering method is more robust over Kalman filtering because it does
not depend on a specific model to describe the behavior of the targeting object.
Hence, the particle filtering method performs better in case of partial occlusion
situations [49]. In most of the real time implementations, the color property of
the object has been considered and therefore, scale and rotational variation of
the tracking object, in our case, the vehicle tracking can be tolerated by the
algorithm.

In this method, the properties of the object such as position, velocity, accel-
eration and the size modeled statistically throughout the tracking process and
in between the consecutive frames [50] [51]. The state of the object, x, and
the observation model, y, of the state variable at time, k are expressed as in
(3.23),(3.24), where, wk and vk are the noise components in the state variable
and the observation respectively. Here, it is assumed that the state model of the
object follows the Markov property which claims that, the current state of the
model only depends on the previous state of the object. Hence, the state of the
object at time, k only depends on the state at time, k − 1.

xk = fk(xk−1, wk) (3.23)

yk = hk(xk, vk) (3.24)

According to the view point in probability, this state variable and the observa-
tion can be expressed as p(xk|xk−1) and p(yk|xk). Then, the tracking algorithm is
narrowed down to the estimation of the p(xk|xk−1). This is done by the following
two steps known as prediction and update step. Based on the total probability
and the Markov assumption, the prediction step can be expressed as in (3.25) and
then, as soon as the measurement is done, the update equation can be expressed
as in (3.26) using the Bayes rule.
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p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.25)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.26)

where,

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk (3.27)

The particle filtering is a technique that is used to solve this integration problem
using discrete summation of the weighted samples. The state of the object is
defined by N number of samples in the state space. One state sample can be
denoted as xik, where, i vary from 1 to N .

p(xk|yk) =
1

N

N∑
i=1

wikδ(xk − xik) (3.28)

Based on the importance sampling, it can be shown that, this type of estimation
can be done if the particle xik (or in other words, the sample) is selected according
to the proposal distribution and weight according to (3.29).

wk−1
p(yk|xk)p(xk|xk−1)
q(xk|x1:k−1, Dk)

(3.29)

In most tracking cases, this proposal distribution is taken as the distribution
in prediction p(xk|xik−1) [52] [53]. Therefore, (3.30) can be rewritten as,

wik ∝ wik−1p(yk|xik) (3.30)

The pseudo code of the overall particle filtering algorithm is illustrated below.
Based on the weight distribution of the particles for current state of the object,
the properties of the object for the current frame can be obtained.

The weight of the particle is calculated by considering the histogram similarity
between the tracking object and the particle. Many histogram similarity calculat-
ing methods can be found in [54]. In [51], the accuracy of correlation, intersection
chi-square and Bhattacharyya has been evaluated. Even though, the chi-square
method outperforms the Bhattacharyya method, the Bhattacharyya method has
been followed due to the less mathematical complexity and is the second best
with respect to the chi-square method.
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Algorithm 3: Pseudocode of Particle Filtering
1. St = 0, η = 0//initialsetandnumberofparticle
for n do

2. Sample index j(i) from wt−1 distribution // based on the previous
calculate the new location of the object

3. Sample xit from p(xt|xt−1, vt) using and xj(i)t−1 and vt action //
calculate the location using ut and previous position and applying a
Gaussian noise

4.wit = p(yt|xit) compute importance weight(reweight) // calculate the
weight of the new particle

5. η = η + wij // get the sum of the all weights to normalised the all
weights

6. St = St U < xjt , w
j
t > // add each particle in to the particle set

for n do
wjt =w

j
t /η //normalising the weight

q = {qu}u=1:m (3.31)

p = {pu}u=1:m (3.32)

In a way that,
∑m

u=1 qu = 1 and
∑m

u=1 pu = 1.

w(n) = 1− cos (φ) = 1− p′T q′

|p′||q′|
(3.33)

q′ = (
√
q1,
√
q2, ....,

√
qm) (3.34)

p′ = (
√
p1,
√
p2, ....,

√
pm) (3.35)

where, q is the histogram vector of the template and p is the histogram vector
of the particle patch. The scale adaptability of the vision algorithm is important
for a long-range tracking process and in the presence of variety of camera angles.
Besides, the tracking process should be adaptable to the dynamic variations of
the vehicle movements. This is important since the sudden change of velocity and
the acceleration can occur more often unlike the other types of object tracking
processes like in humans. These challenges can be achieved in the particle filtering
algorithm by defining the state of the object as a vector of static and dynamic
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properties of the object [51]. This is illustrated in (3.36) .

X =
[
x y w ρ ẋ ẏ ẇ ρ̇

]
(3.36)

where, x, y represent the location of the object while w and p are the weight and
the aspect ratio of the object patch. The rest of the parameters are the dynamic
components of the static parts of the object state as described. The aspect ratio
of the patch is considered in order to keep the variation between height and the
width of the patch in a correlated manner. The state of the object can be defined
as follows,

Xk = AXk−1 + Vk−1 (3.37)

A =

[
I4 I4∆t

I4 0

]
where, v is the noise component in the state variable, I4 is an identity matrix
with four components and ∆t is the time gap between two frames. The noise
components of each state variable can be denoted as follows.

V = (σx, σy, σw, σρ, σẋ, σẏ, σẇ, σρ̇)

The expansion of (3.37) is illustrated as follows.

Dynamic Part



ẋk = σ̇x + ẋk−1

ẏk = σ̇y + ẏk−1

ẇk = σ̇w + ẇk−1

ρ̇k = σ̇ρ + ρ̇k−1

Static Part



xk = xk−1 + σx + ẋk−1(∆t)

yk = yk−1 + σy + ẏk−1(∆t)

wk = wk−1 + σw + ẇk−1(∆t)

ρk = ρk−1 + σρ + ρ̇k−1(∆t)

As can be seen in above expansion of static and dynamic part of the state
variables, the noise components in the dynamic part can influence the variation
of the static part. The problem exist with this method is, if the noise component
in both dynamic and the static parts is increased, then the range of the algorithm
to search the properties of the object per current frame is increased. This causes
to mislead and distract the current tracking object from other similar objects in
the RoI. Therefore, it is important to assign this random variable to the state
of the object in a way that the static components will not be dominated. This
can be done using the Gaussian error function as in [51]. This function is always
useful in case of multiple variable integration to a function which needs to behave
according to a proper Gaussian distribution [55]. The Gaussian error function
is defined as in (3.38). The α and β values need to be found for the optimum
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results to be obtained from the algorithm. The value, ψ, represents the histogram
similarity of the tracking object. Since, we are using the Bhattacharyya coefficient
to weigh the particle, it can also be used for the Gaussian error function.

ζ(ψk) =
erf(α(1− ψk)− β) + 1

2
(3.38)

σks = ζ(ψk).σs σkd = (1− ζ(ψk)).σd (3.39)

The noise component of static and the dynamic variable can be written as in
(3.39) in a way that, the noise component in the dynamic part will not propagate
to the static part.
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Chapter 4

IMPLEMENTATION

Figure 4.1 illustrates the overall outcome of our expectation from the imple-
mentation of vision algorithm in hardware platform. The output of the hardware
system must be the high-level information which we decided to take out from and
this data should be able to transmit through the communication chip. The input
to the system will be raw frames from a video resource.

Figure 4.1: Overview of a vision system

There are many different hardware development platforms that have been used
to implement the traffic analysis of the vision algorithm. Due to the large amount
of data flow which needs to be processed in real-time, the requirement for high
dense memory, processing capability and complex interface handling leads to
choose high-end IoT edge devices for the implementation of a customized and an
application-oriented vision algorithm [56]. Usually, most of the high-end IoT de-
vices have the SBC fashion. Table 4.1 compares the four major types of hardware
platforms with examples for each category [57].

There can be many innovative and customized functions in a vision algorithm
to solve the real-world scenarios. When it is required to execute these customized
functions in a hardware platform, the flexibility to utilize the available hardware
resources to synthesize a dedicated hardware device can be beneficial in terms
of power, performance and the cost for the hardware resources. Fixed hardware
architectures like CPU and GPU do not support the customizability for the given
custom functions. However, the flexibility of the already implemented hardware
functionality is almost impossible with ASIC but possible in FPGA based designs.
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Table 4.1: Comparison of hardware platforms

Microprocessor FPGA ASIC GPU

Example ARM
Cortex-A9

Virtex
Ultrascale

440

Bitfury
16nm

Nvidia
Titan X

Flexibility
during

development
Medium High Very High Low

Flexibility
after

development1
High High Low High

Parallelism Low High High Medium
Performance2 Low Medium High Medium

Power
consumption High Medium Low High

Development
cost Low Medium High Low

Production
setup cost3 None None High None

Unit cost4 Medium High Low High
Time-to-market Low Medium High Medium

1E.g. to fix bugs, add new functionality when already in production
2For a sufficiently parallel application

3Cost of producing the first chip

The parallel behavior of the hardware platform is very important for the exe-
cution of vision algorithm. In most of the vision algorithms, many parallelizable
functions can be identified. These parallel functions are poorly performed in
CPUs where operations are executed in sequential manner. This situation can be
somewhat tolerated by using the multiple cores available in the processing sys-
tem. But, there is a certain performance level which can be reached and causes
to increase the power consumption. The GPUs have many more cores than the
CPUs but power requirement also increases rapidly with the number of cores
and the operating frequency [58]. According to [7], the FPGAs and ASICs are
the best solution for the execution of parallelable functions in customized vision
algorithms with low frequency.

When it comes to the development time and cost using each category of the
hardware platforms, the CPUs based design always takes less time to develop
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with respect to other hardware platforms since there are many more high level
programming languages based basic image processing algorithms that have al-
ready been implemented and the embedded Linux based operating systems to
handle high bandwidth interfaces such as USB, ethernet and display ports. The
ASIC based developments take the highest time since there are many verification
steps that are involved with the design process. The FPGAs based designs also
consume some time to develop because most of the FPGA designs are carried out
with hardware description languages such as Verilog and VHDL and therefore, it
takes some more time for the development and debugging of the system than the
developments done using high level languages.

It is also important that the vision algorithms are not totally built up with
completely paralleled functions. There are many algorithms with many function-
alities which behave sequentially also can be found such as frame overlay [12].
Even though, the FPGAs are very suitable for the implementation of vision algo-
rithms in number of ways in terms of flexibility in development, adaptability to
post modifications, and less power consumption as described above, they are not
well suited to perform sequential operations. Usually, the sequential operations
are executed in FPGAs using state machines. Since the FPGAs operate at low
frequencies (around 100MHz to 200MHz) with respect to CPUs which operate
at around couple of Gigahertz, FPGAs cannot perform sequential operations in
state machines as high speed microprocessors do. Besides, the implementation
of high bandwidth interfaces such as USB, HDMI and display port is a complex
process and the use of available reconfigurable resources for a fixed functionality
is a waste of hardware resources.

The FPSoC which is having a heterogeneous architecture can be identified as a
solution for most of the challenges emerged in totally hardware or totally software-
based developments. Basically, FPSoC consists of a reconfigurable section and a
processing unit. Figure 4.2 illustrates the architecture of a modern FPSoC [59].

The HPS section of Figure 4.2 refers to as the hard processing system section
which is also referred as PS in short. There are many processing units that can be
found within this section. There can be many advantages and applicabilities in
using FPSoC in numerous ways for IoT related developments where high complex
vision algorithms are needed to be performed.
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Figure 4.2: The architecture of a modern FPSoC.

• FPSoCs allow the designers to balance the processing load between avail-
able processing units and reconfigurable logic elements as a hardware and
software co-design.

• The PS section consist of the commonly used hardware interfaces such as
UART, I2C, Ethernet etc. This is helpful to preserve the available hardware
resources in the PL side and capability interfaces outside hardware such as
wireless communication modules and sensors much more easily. Meanwhile,
programmable logic can be used for customized protocol implementation.

• There are some hardware implementations using multiple chips which are
developed to perform complex algorithms for IoT applications. However,
the communication between the chips can be challenging. The FPSoCs have
taken this situation into account and a high throughput bridge between the
PS side and PL side have been used to establish fast data transferring.
Therefore, it is very important to select the appropriate kernel memory
mapped data transferring mechanism between PS and PL sides.

• The designer can start the implementation of the algorithm in processing
section by making use of the advantages such as embedded Linux based op-
erating system and software libraries where ever necessary. Then, they can
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identify the bottleneck functions in the algorithm due to the complex math-
ematical operations and the large time consumption to process many data
using the same instruction. After that, the optimization of the algorithm
can be done using available FPGA.

• The parallelable section of the main algorithm can be effectively imple-
mented in the FPGA section in a pipeline structure meanwhile sequential
section of the algorithm can be effectively implemented in the processing
section. Most of the novel processing system sections in FPSoCs are con-
sisting of multiple cores as well as many types of processing systems such
FPU, GPU and real time processing unit. On the other hand, the FPGA
section consists of improved DSP modules, high dense block memory such
as ultra-memory block and the logic elements and flip flops which operate
at higher frequency. These resources can be used for complex applications
according to the availability of power and cost [60].

• As discussed above, the time-to-market is much less in CPUs based devel-
opments due to the flexibility to use high level languages in the algorithm
implementation phase. However, when it comes to the FPGA design pro-
cess, it gets little complex than the CPUs and in addition to that, it is
required to have hardware design experiences for couple of years to develop
a well optimized hardware design in FPGA fabric. The capability to synthe-
size a customized hardware IP using high level language breakthrough this
challenge of difficulties in hardware design implementation. This advantage
can be used in almost all the FPSoCs available in the market which enables
to implement any type of innovative algorithm in FPGA fabric within a less
time period and also with less experience in hardware designs. However, the
functionality of hardware IPs which are generated using high level synthesis
are usually not as optimized as the HDL based hardware functions. But,
good performances can be achieved with better understanding of the func-
tionality in optimization required algorithms and the parallelizable behavior
of them.

Considering the factors related to the FPSoCs and their suitability for high end
IoT platforms, Ultra 96 development board (v1.0) was selected to implement the
computer vision algorithm which is a FPSoC based on Xilinx ZYNQ ultrascale
MPSoC (Xilinx Zynq UltraScale+ MPSoC ZU3EG SBVA484). The processing
unit of this board is based on ARM A53 quadcore processor which operates
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at 1.5Ghz. On the other hand, the FPGA consists of 360 DSP modules, 154k
combinational logic blocks (CLB), 141k flipflops and can operate at a maximum
of 800MHz. The basic hardware architecture and the available resources in Ultra
96 development board is shown in Figure 4.3.

Figure 4.3: Ultra 96 Development board

This development board consists of a display port which is an important feature
specially for vision related developments. It also consists of USB3.0 ports which
can be used to integrate camera. The UART interfaces can be used to interface
with other communication modules which are based on WSN protocols such as
802.15.4.

Figure 4.4: Resources of the Ultra 96 board

4.1 Hardware-Software Partitioning and Optimization of
the Algorithm

The complete algorithm is implemented in PS section at first. The petalinux
has been selected as the operating system over other options such as RTOS and
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BareMetal, in order to take advantage of easy configuration of hardware and
software components. Xilinx petalinux tools can be used to develop a customized
and a suitable petalinux operating system for the given hardware platform. The
required library configurations for the Mali GPU such as Gstreamer, FFmpeg,
Libav, X11 servers (if a display port is not available), video codec at the kernel
configuration stage and the root file system can be configured to include the
OpenCV library.

The algorithm is implemented in PS section in a way that it will be performed
using only a single thread. The real time performance could not be achieved as
expected. The maximum frame rate was 11 fps which means, it takes around 91
milliseconds to completely process one frame.

The modified ViBe algorithm-based foreground extraction, the Bhattacharyya
coefficient based weight calculation of the particle, RGB to gray color conversion,
file read function to extract the new frame from the video stored in the SD
card and connected component analysis with morphological analysis are the main
functions in vision algorithm. Therefore, time consumption profiles of them have
been considered in order to investigate the bottleneck of the system.

Figure 4.5: Time consumption profile for the execution of one frame.

The Figure 4.5 illustrates the time consumption for each function in the algo-
rithm as a fraction of the total time consumption if we perform this algorithm
in single CPU core. The main cause for the higher time consumption for the
Bhattachrya coefficient section is, we have used only a single core to evaluate this
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200 patches using Bhattachrya coefficient. Based on these results, decision was
made to optimize the foreground extraction function and Bhattachrya coefficient
calculation for the particle filtering functions using FPGA available in the Ultra
96 board. The custom IPs for the Bhattacharya coefficient calculating functions
and the modified ViBe algorithm are generated using Xilinx High Level Synthesis
tool associated with the Xilinx Vivado software.

As mentioned in [59], the functions which show more parallelizable behavior
perform better in the FPGA hardware. Besides, the data transferring between
the PL side and the PS side is the other most prominent aspect for a better
performance. The data transferring between PL and PS side is basically based
on AXI4 industrial grade bus. Basically, there are three types of AXI interfaces
known as AXI-Stream, AXI full memory mapped and AXI-lite as shown in the
following Figure 4.6.

Figure 4.6: Types of AXI4 interfaces.

The AXI memory mapped interfaces are capable of burst transaction between
PL and PS sides up to 256 data transferring cycles using one address phase.
The AXI-lite is also a memory mapped interface but only single data transaction
interface is available per address phase. This is mainly used for controlling the
registers and IPs. The AXI Stream does not have an address phase. Hence,
the data transaction can be done at a higher speed and in a sequential manner
than any other method. If a memory mapped technique has been used, the
block memory will be used to create an interface with AXI and the PL side.
On the other hand, if the AXI-Stream is used, FIFO will be used to create an
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interface [22]. The AXI memory mapped interfaces are frequently used in case of
random memory access requirement.

Even though, the AXI-stream provides a high-speed data transmission between
PL and PS sides, there are not many functions or algorithms which process
address-less incoming byte stream or in other words, sequential access to the
data in main memory. However, the modification which was done to the ViBe
algorithm enables us to use the AXI-Stream interface. As discussed in section 2,
we can store the main model of the background in DDR memory and a fraction of
that model can be saved in the block memory which is being used to classify the
pixels in current frame and update the model as required. This means, we can just
stream the pixel values in the model, pre-generated random numbers and current
frame as inputs to the system meanwhile we can get the pixel values of updated
model and image which has marked the foreground areas of the current frame.
The Bhattacharya coefficient can also be calculated and AXI-Stream interface
can be used in the same fashion but it does not require any modifications.

Figure 4.7: Block diagram of ViBe.

Figure 4.8: Block diagram of the weight calculation using Bhattacharya coefficient .
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Figure 4.9 illustrates the general view of integration of the custom hardware
IP through AXI-Stream interface and DMA with the processor available in Zynq
platform. These IPs are generated with Vivado HLS.

Figure 4.9: Integration custom IP with Zynq .

Then, the final block diagram of the algorithm can be represented as in Figure
4.10 with the balanced processing load between PL and PS side. The hardware
functions have been optimized using the “pragma” optimization techniques avail-
able in HLS design procedure. Different optimization techniques available in
Vivado HLS have been used step-wise as described in Xilinx HLS documenta-
tion [61]. The hardware resource utilization and achieved average frame rate for
each technique has been used in the design procedure which is tabulated in table
4.2. The performance and the utilization of the hardware has been investigated
for different frame sizes and is expressed in Table 4.3. This was evaluated for
maximum optimized hardware which has been obtained using pragma techniques
as discussed above. This performances and the functionality of the object de-
tection and tracking algorithm is compared in Table 4.4 with currently existing
FPSoC hardware implementation.

According to the modified ViBe algorithm, we can implement relevant sam-
ple section (temp_sample variable in the modified ViBe algorithm) of the ViBe
model where multiple access is required to compare the current pixels and update
the model. This section can be implemented in the block memory section of the
FPGA. Since this block memory is faster than DDR memory, we could achieve
higher frame rates as we can see in the Table 4.2. The other most prominent
advantage of using FPGA and HPS hybrid approach for this kind of an algo-
rithm is, we can stream the data between main DDR memory and FPGA FIFO
without considering the address. This is the major importance of this modified
ViBe algorithm when we have pipelined the rest of the algorithm in FPGA.
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Figure 4.10: Complete flow chart of the algorithm with balanced processing load between PL and PS side.
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Table 4.2: Specifications of the SBCs that have been used to compare the performance of the algorithm.

Stage Avg. Frame Rate Hardware Utilization
LUT BRAM FF DSP

Completely on
PS side

11 0 0 0 0

Bhattacharya
coefficient in PL
side

18 10010 5 13744 12

Implementing
temp_sample
area in PL

24 34166 64 41387 12

Flatten the in-
ner most loops of
ViBe

28 43421 96 52479 12

Single stage
Pipeline
(II = 1)

33 51764 124 67548 12

Unroll the main
loops

40 60455 172 83744 16

Table 4.3: Performances and resource utilization for different frame sizes

Frame Size Avg. Frame Rate Resource Utilization
LUT BRAM FF DSP

299x168 66 58748 94 67486 16
598x336 48 60132 148 78856 16
854x480 40 60455 172 83744 16
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Table 4.4: Comparison with other implementation

Ref.
no.

Object
Detection

Tracking
Method

Scale
Adaptability Resolution Fps Resources

[62]

Single
image

generated
using

thousands
of images

Kalman
filtering - 1920x1080 60

Dual core
ARM

processor
with

1GHz+Neon
FPU

[63]

Running
Gaussian
method

Kalman
filtering - 720x480

768
msec
per

frame

Dual core
ARM

processor
with

1GHz+Neon
FPU

[19] MoG in
PL side
with

modification
to the
MoG

Kalman
filtering - 1080x768 60

Dual core
ARM

processor
with

1GHz+Neon
FPU

[64]

Improved
ViBe - - 700x450 4.6

Dual core
ARM
Cortex
A9 and
Cyclone
V FPGA

[65]

Modified
ViBe
for

hardware

Particle
filtering

First
order

dynamic
model

854x480 40
ARM

processor
and FPGA
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RESULTS AND DISCUSSION

In this section, the accuracy of the implemented vision algorithm to extract
traffic parameters and the performances in the hardware have been evaluated. In
order to evaluate the accuracy of this vision model, a dataset which commonly
used to evaluate traffic analysis and widely available has been used.

5.1 Accuracy of the Vision Algorithm

Accuracy of the traffic parameters estimated by the vision algorithm has been
evaluated by performing the algorithm for the data available in [35], [66] and [67].
As discussed in the Section 2, the waiting time, average speed and the lane
occupancy are the mainly expected traffic parameters from the VSN.

• Average Speed

The average speed of the vehicle has been calculated as the definition explained
in (3.2) in the previous section for ten vehicles in total, from different video clips
available in [35]. The error of the average speed of the vehicle has been tabulated
in table 5.1. As can be seen, there is an average of 4.17% of error that can be seen
in every average velocity calculated by the algorithm. There can be two reasons
to have an error in the average speed parameter. The first problem exists with
the initialization of the tracking process. As explained in section 2, we define
the initialization and termination area within the RoI. The algorithm detects the
presence of a vehicle based on the number of pixels that have been marked as
foreground pixels by the ViBe algorithm. The tracking process starts as soon as
there is an area which is bigger than the predefined threshold. This threshold
value should be large enough to extract the color feature of the object which is
used to track the objects between consecutive frames and distinguishable with
other objects existing in the scene.
The second problem can be the background pixels in the tracking template of
the vehicle color. As shown in the Figure 5.2, the algorithm makes a boundary
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Table 5.1: Accuracy of the average velocity.

Vehicle number
Avg. velocity

calculated by the
algorithm (km/h)

Avg. velocity
calculated

manually (km/h)

Error in terms
of speed in km/h

1 76.05 78.21 2.76
2 60.15 63.82 5.75
3 57.45 55.14 4.19
4 55.28 60.24 8.23
5 62.01 62.58 0.91
6 69.23 73.65 6.00
7 53.47 54.22 1.38
8 58.07 61.93 6.23
9 62.79 61.88 1.47
10 65.01 68.24 4.73

(a) (b)

Figure 5.1: (a) Early tracking initialization (b) Correct tracking initialization.

around the interesting pixels based on the results of the ViBe algorithm. There
will be pixels which are related not only to the vehicle but also belonging to the
background around the vehicle and the corner of the tracking template since a
box shaped template is considered.

Figure 5.2: Background noise of the patch

This can cause to deviate the tracking process from the actual location of the
vehicle since the location of the vehicle is considered to be the middle point of
the tracking box as shown in Figure 5.3. Because of this imprecise localization of
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(a) Correct location of the tracking box
should exist

(b) The location predicted by the
algorithm

Figure 5.3: Location deviation due to background pixels in the tracking template.

the tracking box, it is possible to terminate the tracking process early or later if
middle point of the vehicle crosses the termination line.

• Waiting Time

The waiting time is calculated based on the number of frames which the track-
ing box has not shifted its middle point with respect to the previous location
than a threshold value. The waiting time can be calculated by multiplying the
number of frames and the time gap between two frames. The waiting time of
three vehicles exist in the data set available in [67] has been calculated.

Table 5.2: The accuracy of the waiting time.

Vehicle number
Waiting time

calculated by the
algorithm (s)

Waiting time
calculated

manually (s)

Error of the
waiting time (%)

1 35.11 32.57 7.79
2 31.56 33.65 6.21
3 30.25 31.48 3.91

There is an average error of 6.91% in every waiting time which is calculated by
the algorithm. This can be mainly caused by the dynamic behavior of the particle
filtering algorithm and the lack of particles for a proper estimation of parameters
of the object. In the particle filtering algorithm, the noise component, v, will
change the existing dimensions and position of the current particles and try to
find the best suitable patch and properties of the object in the newest frame.
Therefore, due to the noises in object detection as described above and having
not enough particles to tackle the properties of the object in current frame can
cause change of the position and the size of the tracking box even though, the
vehicle is stopped at a certain place such as a traffic light. This is demonstrated
in Figure 5.4.
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Figure 5.4: Deviation of the tracking box even though the vehicle is stopped.

However, it is also important to mention that the particle filtering algorithm could
keep the tracking even though, the vehicle was partially occluded. An example
is illustrated in Figure 5.5

Figure 5.5: Partially occluded situation.

• Lane Occupancy

The lane occupancy is calculated as the fraction of the area that vehicles have
been occupied from the road. This can be calculated by considering the number of
pixels belonging to the vehicles, the area of the RoI and the gradient of the pixels
representing the area. This parameter is also calculated for the data available
in [35].
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Table 5.3: Accuracy of the LO

Data set
number Frame LO calculated

by algorithm (%)
LO calculated
manually(%) Error(%)

1 33.14 36.47 9.13

2 52.35 61.22 14.49

3 21.73 24.36 10.79

4 43.86 48.71 9.96

The pixels that belong to the foreground, in our case, the vehicles are separated
by the modified ViBe algorithm. As described in previous sections, although
ViBe algorithm performed better than the traditional MoG method, it is possible
to have FN and FP in the foreground image which is given by the ViBe as shown
in Figure 5.6. This can be somewhat tolerated by the morphological operations
but not completely. Therefore, this is the main cause of the 11.09% average error
in the lane occupancy reading of the algorithm.

(a) Original frame (b) Foreground marked by the ViBe

Figure 5.6: Power consumption of the hardware platform.

• Traffic Density

The traffic density is determined as the fraction of number of vehicles present
on the road with respect to the area of the lane considered. First, we need to get
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the number of vehicles present in the vicinity. This can be achieved by applying
connected component analysis to the blobs in the image which come as a result
of ViBe algorithm and morphological operations.

Table 5.4: Accuracy of Traffic Density

Name of the
data set Frame

Traffic Density
calculated

by algorithm
(No. of

vehicles/20m)
(%)

Traffic Density
calculated
manually
(No. of

vehicles/20m)
(%)

Error(%)

stmarc 11.11 5.56 5.56

rouen 8.32 8.32 0

sherbrooke 1.06 2.13 1.06

The accuracy of the traffic density strongly depends on the capability of the ViBe
algorithm to detect the vehicles individually. If vehicles are too close to each other
or partially occluded, the results can be different from the actual scenario in a
great fraction. This has been illustrated in Figure 5.7. However, these problems
can somewhat be manipulated by changing the camera angle so that we can get
the top view of the road as in stmarc and Rouen datasets.

(a) Original frame (b) Merged blobs

Figure 5.7: The effect of merged blobs.
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According to the modified ViBe algorithm, we can implement the relevant sam-
ple section (temp_sample variable in the modified ViBe algorithm) of the ViBe
model where, multiple access is required to compare the current pixels and up-
date the model. This section can be implemented in the block memory section
of the FPGA. Since, this block memory is faster than DDR memory, we could
achieve higher frame rates as can be seen in Table 4.2. The other most prominent
advantage of using FPGA and HPS hybrid approach for this kind of algorithm
is, we can stream the data between main DDR memory and FPGA FIFO with-
out considering the address. This is the major importance of this modified ViBe
algorithm when we have pipelined the rest of the algorithm in FPGA.

5.2 Power Consumption of the Hardware Platform

The hardware implementation of the algorithm is carried out on the Ultra
96 development board which is considered to be as a high-end IoT device. As
described in the hardware implementation section, we could achieve a maximum
average frame rate of 40 fps for a data set with 854x480 frame size. The Figure 5.8
shows the static power consumption of the PL and PS sides and Figure 5.9 shows
the dynamic power consumption of the PL and PS sides which are estimated by
the Vivado software. The estimated total power consumption of the system is
3.435 W.

Figure 5.8: Static power consumption.
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Figure 5.9: Dynamic power consumption.
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Chapter 6

CONCLUSION AND FUTURE WORK

This chapter discusses about the major contribution to the research area of
VSN based road traffic parameter estimation, key results and suggestions for
the future work. The promising results could be obtained for the feasibility of
implementing visual information based sensor node to harvest traffic parameters
using stationary camera in the FoV.

6.1 Major Contributions

In this thesis, a computer vision algorithm based hardware implementation
which can be used in a WSN to estimate traffic parameters has been discussed.
As the first step, machine vision model has been proposed to extract the traffic
parameters that can be harvested from the FoV. The FPSoC based hardware and
software co-design approach has been taken to implement and optimize the vision
model in hardware platform. The following contributions have been done based
on the identified challenges in the implementation of vision model and challenges
still existing in the current state of the art.

1. A less computationally complex modification to the ViBe algorithm is in-
troduced and performance is verified with the original ViBe and the famous
MoG background estimation technique.

2. The modified ViBe algorithm is implemented in FPSoC based high-end IoT
hardware platform and the capability of using the modified ViBe algorithm
in IoT grade devices for object detection is identified.

3. Existing scale adaptable particle filtering algorithm is implemented in the
FPSoC and performance and accuracy of the algorithm evaluated.
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6.2 Future Works

There are some areas to be improved in the vision algorithm as well as the
hardware implementation. Some of the ideas are discussed in the following sec-
tions.

6.2.1 Increase the Frame Rate of the System

As discussed in the hardware implementation of the algorithm in Section 4,
only the model updating, pixel classification and the weight calculation of the
particle filtering algorithm have been implemented in the programmable logic
side because of their higher time consumption to perform in the PS side as well
as the parallel behavior in the act. Even though, we could achieve a frame
rate of 40 fps by transferring these functions to the programmable logic side,
it is possible to improve the overall performance little further by implementing
some other highly parallel functions such as connected component analysis with
morphological analysis and RGB to Gray color conversion functions. This will
not only cause the improvement of the functionality of the system, but also reduce
the power consumption.

The algorithm is implemented in the hardware using the high level synthesis
technique given by the vendor of the chosen hardware platform. However, this
method is not the most optimized method to implement hardware functions in
the FPGA fabric in terms of hardware utilization as well as the performance.
It is often reported that pure HDLs such as Verilog or VHDL based develop-
ments outperform the HLS based developments [68]. Therefore, if the algorithm
is generalized for a largescale implementation, it is better to implement the com-
plete algorithm in HDLs in order to obtain maximum performance meanwhile
preserving the hardware resources.

6.2.2 Improve the accuracy of Vehicle Tracking

As described in Section 3, the vehicle coming into the tracking initialization
region is considered to be a square shaped patch. Therefore, it is possible to
have pixels which are related to background to be in the extracted patch from
the original frame. Therefore, it is possible for the tracking algorithm to be
deceived from the actual vehicle which is being tracked by the algorithm. This
can somewhat be improved by integrating more features such as edge, texture
and corners to the particle algorithm so that there is better description about
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the tracking vehicle. In [69], this concept has been proposed and better results
have been obtained with respect to algorithms which are based only on the color
features.

Besides, the shadows of the stationary objects as well as the shadows created by
the vehicles itself existing in the RoI can be a prominent challenge to distinguish
the actual description of the color feature of the detected vehicles. The color
conversion from RGB to LAB is often used to eliminate this problem [70].

6.2.3 Improve the Accuracy of Detecting the Stopped Vehicles in the
Scene

It can be seen that, the vehicles which have come into the scene a long time
ago, can disappear from the foreground because the background model keeps
updating overtime regardless of the importance of keeping the detected vehicles
in the foreground image. This effect can commonly be seen in many conventional
background model based foreground-background separation techniques. However,
updating the model in the presence of vehicles can be eliminated by considering
the motion of the detected vehicle. If a vehicle does not make a move, we can
stop updating that region of the model so that the model will not be updated
using the pixels in foreground which belongs to the vehicle.

6.2.4 Enhance the Capability to Count the Number of Vehicles in the
Scene

The proposed vision model in this thesis strongly depends on the camera angle
when it calculates the number of vehicles in the scenary. This is mainly because
of the inaccuracy in the background model based object detection method in
case of occlusion and false detection created by other moving objects such hu-
mans and animals. The convolutional neural network based object detection and
classification has shown way better results than the conventional object detection
methods. But, the real time performance of this sort of a neural network based
algorithm requires high performance hardware due to the large number of floating
point operations that are needed to be done. However, recently, a binary number
with XOR operation based neural network architecture has been proposed and
implemented in FPGA devices and it has been able to reach the similar results
by using large number of nodes with respect to the floating point based neural
network [71]. This neural network can be performed in the same FPSoC hardware
which was selected for this research work and a demonstration can also be found
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in [72]. Therefore, BNN network based object detection has a great potential to
be implemented in IoT applications.

6.2.5 Evaluate the Usability of this VSN in the Real world

The evaluation of the implemented algorithm in VSN is carried out using the
available data sets which are widely used in other traffic analysing vision algo-
rithms. This data set has been taken under constant light condition and using
standard cameras which can provide higher quality images. Besides that, traffic
condition in this data set is always under a certain level which cannot be true
for real situations. Therefore, further developments can be done to the existing
system as we can find the limitations when we use it in heavy traffic conditions
in the real world.
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Appendix A

The ViBe Algorithm

A.0.1 The Update and Classification of Modified ViBe

void ViBE_update_class i f i cat ion (
uint8_t foreground_image [WIDTH∗HEIGHT] ,
uint8_t new_frame [WIDTH∗HEIGHT] ,
uint8_t sample_array [N∗WIDTH∗HEIGHT] ,
int rd_8 [ rndS ize ] , int rd_phi [ rndS ize ] , int rd_N [ rndSize ] )
{
uint8_t rde ;
stat ic int r_8 [ 2 5 6 ] ;
stat ic int r_phi [ 2 5 6 ] ;
stat ic int r_N [ 2 5 6 ] ;

for ( int i =0; i <256; i++){
r_8 [ i ]=rd_8 [ i ] ;
r_N[ i ]=rd_N[ i ] ;
r_phi [ i ]=rd_phi [ i ] ;

}
uint8_t temp_sample [N ] [ 3 ] [WIDTH] ;
int back_fore_di f f ;
for ( int i =0; i<HEIGHT ; i++)
{
for ( int j =0; j<WIDTH ; j++)
{

for ( int n=0;n<N; n++){
temp_sample [ n ] [ 2 ] [ j ]=temp_sample [ n ] [ 1 ] [ j ] ;
temp_sample [ n ] [ 1 ] [ j ]=temp_sample [ n ] [ 0 ] [ j ] ;
temp_sample [ n ] [ 0 ] [ j ]=
sample_array [ ( n∗WIDTH∗HEIGHT)+( i ∗WIDTH+j ) ] ;
i f ( i >2){
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sample_array [ ( n∗WIDTH∗HEIGHT)+(( i −2)∗WIDTH)+ j ]=
temp_sample [ n ] [ 2 ] [ j ] ;

}
}
int count =0, index=0;
while ( ( count<noMin ) && ( index<N) )
{
uint8_t pixe l_value=new_frame [WIDTH∗ i+j ] ;

for ( int bi =0; bi <3; b i++){
for ( int bj=0;bj <3; bj++){

i f ( ( b i )>(HEIGHT)){
bi−−;
}
i f ( ( bj )>(WIDTH)){
bj−−;
}

back_fore_di f f=
temp_sample [ index ] [ b i ] [ j+bj−1]−pixe l_value ;
i f ( abs ( back_fore_di f f )<R){
break ;
}
}
i f ( abs ( back_fore_di f f )<R){

break ;
}
}
i f ( back_fore_dif f<=R && back_fore_dif f>=−R)
{
count++;
}

index++;
}
i f ( count>=noMin)
{

foreground_image [WIDTH∗ i+j ]=0;
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int rand= r_phi [ rde ] ;
rde=rde+1;
i f ( rand==0)
{
rand= r_N[ rde ] ;
rde=rde+1;
temp_sample [ rand ] [ 1 ] [ j ]=
new_frame [WIDTH∗ i+j ] ;
}
rand= r_phi [ rde ] ;
rde=rde+1;
int nx_off_three=1;
i f ( rand==0)
{
int n_y=j ;
int ca s e s= r_8 [ rde ] ;
rde=rde+1;
switch ( ca s e s )

{
case 0 :

nx_off_three=2;
n_y−−;
break ;

case 1 :
nx_off_three=2;
n_y ;
break ;

case 2 :
nx_off_three=2;
n_y++;
break ;

case 3 :
nx_off_three=0;
break ;

case 4 :
nx_off_three=0;
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n_y ;
break ;

case 5 :
nx_off_three=0;
n_y++;
break ;

case 6 :
n_y−−;
break ;

case 7 :
n_y++;
break ;

}
rand= r_N[ rde ] ;
rde=rde+1;
temp_sample [ rand ] [ nx_off_three ] [ n_y]=
new_frame [WIDTH∗ i+j ] ;

}
} else
{

foreground_image [WIDTH∗ i+j ]=255;
}

}
}

}
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