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Abstract

Ground vibration and air-blast over pressure are two significant undesirables,
among many environmental risks, in open-pit mining. Gaining control over the
ground vibrations generated by rock blasts had been difficult mainly due to the
complexities involved with local geology and properties of the blast. Accordingly,
existing empirical equations are only capable of making vague approximations on
the vibration frequencies based on site-specific parameters and attenuation factor.
Therefore, the available models cannot be generalized to different geo-mining
environments to obtain sufficiently reliable forecasts for ground vibration and air-
blast overpressure. Hence, this study attempts to employ an Artificial Neural
Network (ANN) based feed-forward back-propagation algorithm to train a model,
using a supervised learning technique to forecast possible ground vibration
frequencies. The main input parameters included in the model are noise level,
number of boreholes per single blast, depth and diameter of a borehole, charge per
hole, number of delays of the Electric Detonators (ED) in a single blast, burden and
spacing. Air blast overpressure and the ground vibration levels will be the output
by ANN model. The model was validated using 50 datasets, which were obtained
from a quarry site. After adequate training, the model can determine Peak Particle
Velocity (PPV) and frequency of Ground Vibrations (GV) for new input parameters
with a statistically significant confidence level.
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1. Introduction the initially developed cracks and span
Blasting operations in opencast mining the damage thereby increasing the
have been preferred as an yield of the aggregates. Increasing
economically feasible mining method. demand for aggregates outweighs the
These operations are carried out either environmental concerns, such as the
as controlled blasting or as production ground vibrations, noise and air
blasting.  Controlled blasts are pollution, that emerge from these
primarily employed to generate cracks blasting operations. However, due to
for the blast propagation or at the the property damages and safety
latter stages to trim off the benches. reasons, -the effects of ground
Production blasts are used to expand vibrations on the surrounding
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environment have been closely
monitored by relevant authorities.

The ground vibration (GV) can be
measured in terms of the peak particle
velocity (PPV), which is considered as
a vibration index that defines the
structural damage [1]. Available
empirical relationships suggest that
the maximum charge used per delay
and the distance from the free face
mainly govern the PPV [2]. Other
parameters such as blast geometry,
rock strength, and discontinuity
conditions are not included in these
empirical equations; however, PPV
value seems to be affected by the
variability of these parameters. On the
other hand, four important sources can
cause air pressure waves in blasting
operations: the air pressure pulse,
which results from displacement of the
rock at the bench face as the blast
progresses; the rock pressure pulse,
which is induced by ground vibration;
the gas release pulse, which results
from the escape of gases through rock
fractures; and the stemming release
pulse, which results from the escape of
gases from the blast hole when the
stemming is ejected [3]. These air
pressure waves are generally defined
as air blast overpressure (ABOP),
which is quantified in terms of sound
and measured in decibels (dB) or
Pascals (Pa). Blast geometry, explosive
charge weight per delay, the distance

between the free face and the
monitoring point, geological
discontinuities, blasting  direction,

surface topography, and vegetation
predominantly govern the magnitude
of ABOP [4].

In the recent years, there has been a
growing interest in the mining
industry to employ robust
computational models to redefine the
classical empirical relationships such

as the ones used to predict PPV and
ABOP. In this regard, artificial neural
network (ANN) techniques show more
compliance. In mining and
geotechnical industry, ANN has been
used for optimizing the tunnel design
[5], predicting anisotropic properties
of rock [6], and evaluating the strength
characteristics of rocks [7]. ANN has
also been applied to predict PPV
[8,9,10] and ABOP [11]; however, the
optimum network architecture that
maximizes the accuracy level has not
been fully understood. This paper
attempts to develop different ANN
based forecasting models for GV and
ABOP employing blast-design
parameters, and the distance of the
monitoring locations from the blast as
input parameters. The prediction
accuracy of each model is compared to
identify the best practice.

2. Methodology

2.1 Data collection

The data was acquired for the study
from an operational quarry site
approximately located 1.5 km away
from Padukka town in the Western
Province, Sri Lanka. Dominant rock
type of the quarry is identified as
Chanokitic ~ Gneisses  comprising
Garnet and Quartz. The data had been
acquired for two months of operation
time from January to February 2018.
The mine site has two locations to
record the vibration data. The distance
from the blast hole to the observation
point (L m), number of delays of the
electric detonator in a single blast
(EDn), Water Gel (w), ANFO weight
(wa), charge per hole (c) were
recorded as the input data. Maximum
depth of the borehole, the hole
diameter, average spacing, and the
average burden were observed to be
constant values of 3 m; 38 mm, 1.30 m
and 1.10 m respectively. ABOP and
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GV

were recorded using a
computerized seismic and sound
recording  instrument  (Blastmate

digital seismograph, made in Canada).
The mean (p) and the standard
deviation (o) 500 records are given in
Table 1.

Table 1 - The input parameters
obtained from the quarry site

Input parameter B O
EDn 13R12:9
Water Gel (kg) 2 o 2:()
ANFO (kg) 1758553
L (m) 300 30.8
D (m) 5280’3
Charge per Blast Hole (kg) 1 0.2
GV (mm/s) ISeil= ()
ABOP (dB) 100 8.9

2.2 ANN approach

Artificial Neural Networks comprise a
collection of code blocks that contain
instructions mimicking the
mathematical functionality of a
biological neuron. A single code block
often referred to as a neuron, can only
perform a single defined mathematical
operation on given input variables to
yield a single or multiple output
variables. The neurons can statistically
optimize the weights that quantify the
influence of each input on calculating
the given output variables (eq. 1) by
minimizing the standard error.
X=Yxw —0 Eq.(1)
where n is the number of inputs, and x;
and w; denote the values of the ith
input and weight, respectively. 6
represents the allowable
(quantified as the standard error) in
the model.

The input parameters and the output
parameters ~ were selected  as
represented in Figure 1. The collected

biases-

data were normalized (X,.orm) to obtain
a positive distribution in the range of 0
to 1 to increase the converging
accuracy, and hence the learning
speed of the ANN model (Eq. 2). In
Eq.(2), Xmin and Xy are the minimum
and maximum values of the input data
respectively. 70% of the data samples
(350 nos.) were used to train the ANN
model while 15% was used to validate
the model. Separated 15% of the total
data were used as random test inputs
after the model calibration to ensure
that the neural network would predict
the outputs at the optimum accuracy.
Six neurons were used in the input
layer; each input was connected to a
neuron. The network architecture is
given in Figure 1.

Xi—Xmin

Xnorm = hs ik Eq(2)
The components of a neural network
fall into three main categories: the
activation function, the network
architecture, and the learning law [7].
The activation function and the
learning law govern the mathematical
optimization of a given neuron.
Typical activation functions include a
linear function, sigmoid, or hyperbolic
tangent. Employing an appropriate
activation function can significantly
improve the quality of the ANN
model in information processing
operation. The learning law is defined
to minimize the standard error of the
model [12].

The network architecture defines the
accuracy of an ANN in identifying the
complex correlations between the
input and output variables. The ANN
network has three categories of neuron
layers: input, output and hidden
layers. The activation function projects
the data from the input layer to the
hidden layer (or layers), while the final
hidden layer projects the information
to the output neurons.
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Figure 1 - A conceptual ANN

architecture with the layers and
activation functions

The predictive capability of an ANN
model (learning) comes from the
training method that is used to
statistically match the relationship
between the given outputs and the
input variables. The training method
in which both the input data and
output data are fed to the model is
called the supervised training. Among
many  distinct algorithms, feed
forward backpropagation (BP) stands
out as the most efficient, general, and
simple algorithm used for supervised
training of multilayered ANNSs (e.g.,[5,
6]).

This study employed the BP training
method available in MATLAB neural
network toolbox. The normalized
input data were fed to the input layer.
Each of the six neurons determined its
net weighted input (eq. 1). Weighted
inputs were then presented to the
hidden layer to compute the actual
outputs, its weights, and the optimum
value of the mathematical function.
The difference between the predicted
values and the actual data value was
quantified using the mean squared
error (MSE). ANN would minimize
this error using the learning algorithm

[12] by feeding the adjusted weights
backward, and then forward, for 1000
epochs until the optimum model value
was achieved.

3. Results

In this study, four combinations of
sigmoid  and  hyperbolic-tangent
learning algorithms were used in the
hidden layer and the output layer to
evaluate the optimum combination.
These algorithm combinations would
adjust the weights of the hidden layer
and the output layer to account for the
minimum error.

Classical regression analysis methods
performed on the collected data
yielded significant root mean squared
errors. From the four regression types,
linear  regression  showed  the
minimum error (Table 2); however,
this method excluded the variables
with minimum correlation. When the
least correlated variables are excluded
from the analysis, two truncated
empirical relationships (Eq. 3 and 4)
between two input variables (Y1: PPV,
Y2: ABOP) could be established.

Table 2 - The accuracy comparison of

the three different regression
analyses

Regression type  RMSE (Y1) RMSE (Y2)
Linear 0.84 8.94
Quadratic 1.56 10.51
Cubic 11.77 70.65

ABOP(dB)=0.044xDB+0.284xED+82.007 Eq.(3)

PPV = -0.015xDB Eq.(4)
Figure 2 shows theconvergence of the
MSE to the minimum value for
training, validation and test data used
in this study. The validated ANN
model predicts the output at a nominal
MSE value of <6%. The predicted
output values and the input values
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follow a linear regression (Figure 3)
with 93% of the input data governing
the standard deviation of the
normalized output (i.e., R2=0.93). The
strength of the correlation identified
by the ANN exceeds the empirical
linear regression relationship.
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Figure 2 - A performance graph of an
ANN model containing sigmoid
learning algorithm in both hidden

and output layers
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Figure 3 - The correlation of the input
and output parameters predicted by
the optimum ANN model

The success of an ANN can be defined
as the percentage of statistically
significant predictions generated by
the model. Four different learning
algorithm combinations investigated

in the analysis yielded different
success values (Figure 4). When the
output layer was assigned with a
sigmoid  learning  function, a
comparatively better accuracy could
be  obtained. = Hyperbolic-tangent
functions seem to predict the outputs
with lesser accuracy.

[ Test samples ,D Training samples

72)

Output layer

B
=
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S: Sigmoid H-T: Hyperbolic tangent

Figure 4 - The success percentage in
predicting a random pool of test data
and validation data (“S” denotes
sigmoid function and “H-T” denotes
Hyperbolic-tangent function)

4. Discussion

The scope of this study was to develop
an insight into the applicability of
ANN techniques on forecasting the
PPV and ABOP. This was
accomplished with a comparison of
the prediction accuracy of commonly
used learning algorithms. When a
sigmoid function is employed in the
output layer, a higher number of
predictions lie near the observed
values. None of the typically used
statistical techniques could yield
empirical  equations  that show
statistically significant accuracy. The
ANN techniques can wupdate the
weights, and hence update predictions
dynamically. The accuracy of the ANN
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models incorporated in this study
could be further investigated using a
larger pool of data.

The underlying geology between the
two  monitoring  locations  was
assumed to be identical to minimize
the variability of the model. However,
this assumption could influence the
model accuracy since the strength of
the rock can significantly alter the PPV
as well as the ABOP. This limitation
could be addressed including the
strength data such as RQD of the
surrounding rock and also employing
the geological map of the quarry area.

At the initial stage, linear regression
analyses were performed on the input
and output parameters to identify an
empirical relationship; however, the
results showed a weaker correlation
between the input and output
variables. This ill-correlation shown by
the regression analysis additionally
supported employing ANN
techniques in this study. Hence, the
ANN models were trained to identify
the relationship between the input and
output variables.

5. Conclusions

e The study reveals applicability of
ANN  learning algorithms in
predicting the PPV and ABOP for
the selected quarry site, which
produce metal aggregates, while
presenting a comparison between
four combinations of hidden layer-
output layer function
arrangements.

e The dynamic capability warranted
by ANNSs further endorses their
applicability in mining-related
activities, which suffer from high
variability in the underlying
geology. Hence, the robust
computational power facilitated

by the ANN techniques can be
successfully integrated to
accurately predict the nuisance
aftermaths of rock blasting (PPV
and ABOP) while continuously
updating the prediction model
with new observations.

e [t is recommended to conduct
further research on developing a
rigorous ANN architecture that
comprises custom-designed
learning algorithms to optimize
the blasting applications. A
modified ANN application as such
would shed light on improving
the socio-environmental impact of
opencast mining while giving new

directions to the production
design.
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