EFFICIENCY ANALYSIS OF OPTIMIZED HEV AGAINST CONVENTIONAL VEHICLES, IN A SRI LANKAN DRIVE CYCLE

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfillment of the requirements for the Degree of Master of Science

www.lib.mrByc.lk

I. W. D. R. S. KARUNARATNE

UNIVERSITY OF MAT 1 70 YA, SHI LANKA MORATHWA

Supervised by Dr. Lanka Udawatta University of Moratuwa

92964

621 3 "09 621.3(0,

Department of Electrical Engineering

University of Moratuwa

TH

January 2009

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

I. W. D. R. S. Karunaratheiversity of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

Date: 30/01/2009 www.lib.mrt.ac.lk

We/I endorse the declaration by the candidate.

UOM Verified Signature

Dr.Lanka Udawatta

CONTENTS

Declaration	i .	
Abstract		
Dedication Acknowledgement		
List of Tables	viii	
1. Introduction		
1.1 Hybrid Electric Vehicles	1	
1.1.1 Fuel Consumption	3	
1.1.2 Noise	3	
1.1.3 Pollution	4	
1.2 Literature Reviewersity of Moratuwa, Sri Lanka.	5	
1.3 Objective Electronic Theses & Dissertations www.lib.mrt.ac.lk	6	
2 HEV Classification	7	
2.1 Parellel HEVs	7	
2.2 Series HEVs	9	
2.3 Parallel- Series (Duel)HEVs	9	
3 Drive Cycles		
3.1 Drive cycle classification	10	
3.2 Standard drive cycles	11	
3.3 Colombo Drive Cycle(CDC)	14	
3.4 Development methodology	15	
3.4.1 Route	15	
3.4.2 Data Collection	17	

	3.4.3 GPS Performances	18
	3.4.4 Data Collection Protocol	19
	3.5 Vehicle Parameters	21.
	3.6 Developed CDC	23
4	HEV Simulation	33
	4.1 Factors of modeling tools	33
	4.2 Tools for vehicle modeling	34
	4.3 Modeling Types	35
	4.4 Models used in the Study	35
	4.5 ADVISOR simulation	39
	4.5.1 Parallel HEV	40
	4.5.2 TOYOTA Prius	41
	4.5.3 Conventional vehicle	42
	4.6 Vehicle specifications sity of Moratuwa, Sri Lar	43
_	www.lib.mrt.ac.lk	
5	HEV performances in CDC	1.0
	5.1 Results and analysis	46
	5.2 Results in detail	49
	A DAVICOD D IV	
6	ADVISOR Results	50
	6.1 ADVISOR results analysis	59
	6.2 Results in parallel HEV	61
	6.3 Results in TOYOTA Prius	68
	6.4 Results in conventional vehicle	72 - 2
	6.5 Conclusion	79
	ferences	80
	pendix A: Published paper	
Δn	nendix B · Colombo drive cycle data	

ABSTRACT

Due to the constant increase of fuel prices and environmental concerns, researchers were pushed to thinking more about fuel-efficiency and reduction of emission on vehicles. As a result there was great enthusiasm for researchers to look into and introduce hybrid technology to the field of automobiles. For example in hybrid electric power trains, an internal combustion engine (ICE) together with an electric motor (EM) is used as two energy sources. The use of an electrical motor in place of the internal combustion engine during different stages of driving resulted in a definite saving in fuel consumption.

In this study, a conventional vehicle and a HEV with varying traffic conditions & flow were compared in relation to fuel economy.

The main aspect was to compare & evaluate HEV and conventional vehicles in the Sri Lankan environment. With that in mind, developing a drive cycle in the Sri Lankan environment was essential. The Colombo drive cycle (CDC) was developed to fulfill that aspect using GPS protocol.

The HEV and conventional vehicles were simulated in following models using Colombo drive cycle.

- Parallel HEV
- Series HEV
- Conventional vehicle with CVT
- TOYOTA Prius

Simulation Models developed in MATLAB was used and to verify that QSS TB simulation model and ADVISOR simulation software was adapted.

Results showed that, with Colombo drive cycle, the two extremes come with maximum efficiency model and conventional vehicle. It proves that the optimized Parallel HEV with future data gives far better fuel economy in a real world drive cycle like CDC. Optimized HEV with prediction is so efficient in drive cycles which has so many sudden changes in acceleration, decelerating, cruse control and idle during the drive. Results were proven by comparison with simulating of above models and other available standard drive cycles. The optimized TOYOTA Prius performed far superior in the current HEV market. It's performance was excellent especially in vulnerable drive conditions.

DEDICATION

I dedicate this dissertation to my loving parents.

ACKNOWLEDGEMENT

Firstly, I wish to thank Dr. Lanka Udawatta for guiding me in this research and helping me to complete it within the given time frame. As the Research Supervisor, he directed me in finding all the necessary literature and to research the work to a high standard.

Secondly, a very big thank you to both Prof. Saman Halgamuge and Mr.Sunil Adikari, School of Engineering, University of Melbourne, Australia for providing the necessary research materials and information of HEVs required for this study.

Thirdly, I thank all the lectures of Electrical and Mechanical Engineering Departments of University of Moratuwa, who participated in the progress review presentation. Due to their invaluable comments which helped me to achieve the goal of completing this research study.

University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

I would be failing in my duty if I do not convey my sincere thanks to my two colleagues Mr. Sudath Wimalendra and Mr. Chaminda Edirisinghe. These two batch mates encouraged me from the very beginning to successfully complete the work to the very end.

My heartfelt thanks go to my Parents, Brother and Sister and my wife for their love, understanding and encouragement throughout this study.

Last but not least, I wish to thank all those numerous persons who are too many to mention and in their small way gave me great support to complete this thesis.

LIST OF FIGURES

Figure	Description	Page
Figure 1.1	Hybrid car sales	02
Figure 2.1:	Block diagram of Pre- transmission parallel HEV	07
Figure 2. 2:	Block diagram of Post- transmission parallel HEV	08
Figure 2. 3:	Block diagram of all wheel drive parallel HEV	08
Figure 2.4:	Block diagram of Series HEV	09
Figure 3. 1:	Standard Model drive cycles	11
Figure 3.2:	Standard Transient drive cycles	13
Figure 3.3:	CDC Route 2	16
Figure 3.4:	CDC Route 1	17
Figure 3.5:	GPS Receiver used	18
Figure 3.6:	Vehicle used for data collection	21
Figure 3.7:	Route 1 Up drive Speed profile oratuwa, Sri Lanka.	23
Figure 3.8:	Route 1 Up drive Acceleration profile Dissertations	24
Figure 3.9:	Route 1 Up drive in ADVISOR	24
Figure 3.10:	Route 1 Down drive Speed profile	25
Figure 3.11:	Route 1 Down drive Acceleration profile	26
Figure 3.12:	Route 1 Down drive in ADVISOR	26
Figure 3.13:	Route 2 Up drive Speed profile	27
Figure 3.14:	Route 2 Up drive Acceleration profile	28
Figure 3.15:	Route 2 Up drive in ADVISOR	28
Figure 3.16:	Route 2 Down drive Speed profile	29
Figure 3.17:	Route 2 Down drive Acceleration profile	30
Figure 3.18:	Route 2 Down in ADVISOR	30
Figure 3.19:	Route 1 Up drive Distance	31
Figure 3.20:	Route 1 Down drive Distance	31
Figure 3.21:	Route 1 Up drive Distance	32
Figure 3.22:	Route 1 Down drive Distance	32
Figure 4. 1:	QSS TB Block diagram for Series HEV	37

Figure 4. 2:	QSS_TB Block diagram for Conventional vehicle	38
Figure 4.3:	Block diagram for parallel HEV in ADVISOR	40
Figure 4.4:	Parameter setting for parallel HEV in ADVISOR	40
Figure 4.5:	Block diagram for Toyota Prius in ADVISOR	41
Figure 4.6:	Parameter setting for Toyota Prius in ADVISOR	41
Figure 4.7:	Block diagram for conventional vehicle in ADVISOR	42
Figure 4.8:	Block diagram for conventional vehicle in ADVISOR	42
Figure 4.9:	Fuel consumption map of the ICE	44
Figure 4.10:	Engine fuel efficiency contour	45
Figure 5.1:	Analysis of QSS_TB Model results	48
Figure 5.2:	Results of Series HEV in CDC 1U	49
Figure 5.3:	Results of Series HEV in CDC 1D	50
Figure 5.4:	Results of Series HEV in CDC 2U	51
Figure 5.5:	Results of Series HEV in CDC 2D	52
Figure 5.6:	Results of Series HEV in NEDC	53
Figure 5.7:	Results of Series HEV in FTP Highway	54
Figure 5.8:	Results of Series HEV in Japan 10-15	55
Figure 5.9:	Results of Conventional vehicle in CDC 1U crtations	56
Figure 5.10:	Results of Conventional vehicle in CDC ID	56
Figure 5.11:	Results of Conventional vehicle in CDC 2U	56
Figure 5.12:	Results of Conventional vehicle in CDC 2D	57
Figure 5.13:	Results of Conventional vehicle in NEDC	57
Figure 5.14:	Results of Conventional vehicle in FTP Highway	57
Figure 5.15:	Results of Conventional vehicle in Japan 10-15	58
Figure 6.1:	Graph for fuel economy comparison	60
Figure 6.2:	Results of parallel HEV in CDC 1U	61
Figure 6.3:	Motor efficiency of parallel HEV in CDC 1U	61
Figure 6.4:	Results of parallel HEV in CDC 1D	62
Figure 6.5:	Motor efficiency of parallel HEV in CDC 1D	62
Figure 6.6:	Results of parallel HEV in CDC 2U	63
Figure 6.7:	Motor efficiency of parallel HEV in CDC 2U	63
Figure 6.8:	Results of parallel HEV in CDC 2D	64
Figure 6.9:	Motor efficiency of parallel HEV in CDC 2D	64
Figure 6.10:	Results of parallel HEV in NEDC	65

Figure 6.11:	Motor efficiency of parallel HEV in NEDC	65
Figure 6.12:	Results of parallel HEV in Japan 10-15	66
Figure 6.13:	Motor efficiency of parallel HEV in Japan 10-15	66
Figure 6.14:	Results of parallel HEV in US 06	67
Figure 6.15:	Motor efficiency of parallel HEV in US 06	67
Figure 6.16:	Results of Toyota Prius in CDC 1U	68
Figure 6.17:	Results of Toyota Prius in CDC 1D	68
Figure 6.18:	Results of Toyota Prius in CDC 2U	69
Figure 6.19:	Results of Toyota Prius in CDC 2D	69
Figure 6.20:	Results of Toyota Prius in NEDC	70
Figure 6.21:	Results of Toyota Prius in Japan 10-15	70
Figure 6.22:	Results of Toyota Prius in US 06	71
Figure 6.23:	Results of Conventional vehicle in CDC 1U	72
Figure 6.24:	Motor efficiency of Conventional vehicle in CDC 1U	72
Figure 6.25:	Results of Conventional vehicle in CDC 1D	73
Figure 6.26:	Motor efficiency of Conventional vehicle in CDC 1D	73
Figure 6.27:	Results of Conventional vehicle in CDC 2U	74
Figure 6.28:	Motor efficiency of Conventional vehicle in CDC 2U	74
Figure 6.29:	Results of Conventional vehicle in CDC 2D	75
Figure 6.30:	Motor efficiency of Conventional vehicle in CDC 2D	75
Figure 6.31:	Results of Conventional vehicle in NEDC	76
Figure 6.32:	Motor efficiency of Conventional vehicle in NEDC	76
Figure 6.33:	Results of Conventional vehicle in Japan 10-15	77
Figure 6.34:	Motor efficiency of Conventional vehicle in Japan 10-15	77
Figure 6.35:	Results of Conventional vehicle in US 06	78
Figure 6.36:	Motor efficiency of Conventional vehicle in US 06	78

LIST OF TABLES

Table	Description	Page
Table 3.1:	Colombo drive cycle details	14
Table 3.2:	Vehicle model specifications	19
Table 4.1:	Available modeling tools	32
Table 4.2:	Vehicle model specification	41
Table 5.1:	QSS_TB Results	44
Table 5.2:	Economy Analysis	45
Table 5.3:	Analysis of CDC	46
Table 6.1:2	ADVISOR Results	57

