ANALYSIS AND SIMULATION OF A POLY BAG MANUFACTURING SYSTEM

A dissertation submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfilment of the requirements for the Degree of Master of Engineering in Manufacturing Systems Engineering

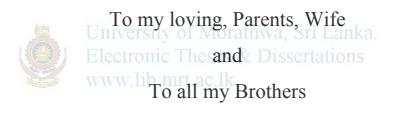
R. A. R. C. Gopura

Supervised by

Dr. T. S. S. Jayawardene

Department of Mechanical Engineering
University of Moratuwa
Sri Lanka

December 2008


DECLARATION

This Dissertation paper contains no material which has been accepted for the award of any other degree or diploma in any University or equivalent institution in Sri Lanka or abroad, and that to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference is made in the text of this Dissertation.

I carried out the work described in this Dissertation under the supervision of Dr. T. S. S. Jayawardene

Signature :	Date :	
Name of Student:	University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk	
Registration No :		
Signature :	Date :	
Name of Supervisor:		

DEDICATION

ABSTRACT

The film blowing plays a major role in manufacturing poly bag products that are indispensable in day-to-day life. Film blowing is largely deployed to manufacture poly bags in a continuous flow. As material prices skyrocket to new heights and forecasters see no end to this trend, any positive contribution in the poly bag manufacturing value chain has a great impact on reducing the manufacturing costs.

High density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and polypropylene (PP) are basically used as raw materials for the poly bag manufacturing and subsequently undergo some other processes such as cutting, sealing, printing, quality checking, and packing. Due to the variations of parameters in poly bag manufacturing process with different products, a considerable setting time as conceded and substantial amount of raw material is wasted. Material wastage is high as 10% to 12% in figures. Rather high lead-time, improper line balancing, and improper inventory control mimic serious bottlenecks in the system from performance point of view.

With the purpose of identifying the productivity and the efficiency problems of the poly bag manufacturing system, as a preliminary study to simulation, risk analysis, bottle neck analysis, and SWOT analysis were carried out in poly bag manufacturing system. Then the possible risk of the selected system was prioritized. In addition, a computer based simulation has been carried out to simulate the system and thereby find the draw backs. The poly bag manufacturing system has been modelled to obtain the optimum production times and throughput time of a given type of bag. Production schedule has been developed for maximum productivity by using the simulated production and throughput times, and customer orders. The effect of changing the parameters of the control process was investigated through simulation trials. A Graphical User Interface (GUI) was developed to present the result of simulation easily and user friendly.

ACKNOWLEDGEMENTS

First and foremost, this work will never have gone this far if it has not been for the insightful guidance, valuable suggestions, timely encouragement, and friendship, from supervisor of the research, Dr. Sanath Jayawardene, a Senior Lecturer in the Department of Textile and Clothing Technology. The author expresses his heartfelt gratitude to him.

Thanks are due to the course coordinators, Dr. U. P. Kahangamage and Dr. G. K. Watugala for their guidance and flexible arrangement of course schedule.

The author extends his sincere gratitude to his teachers of MEng/PG Diploma in Manufacturing Systems Engineering degree course for fostering the necessary theoretical background, encouragement, guidance and cooperation received.

The author would like to extend his sincere gratitude to President (Technical) Bam Holdings (Pvt) Ltd., Mr. Hemantha Munasinghe for his valuable support on the research project. Also very special thanks are to Mr. Dharma Bandula, Engineer, Thermo Plastic (Pvt) Ltd.

The author conveys his special thanks to Mr. Asiri Amarasene for the helping to collect necessary data from Thermo Plastics (Pvt) Ltd.

The author's heartiest thanks are also extended to head of the Department of Textile and Clothing Technology, Dr. Sandun Fernando for his support by giving permission to use department facilities for the research project when the author was working as Temporary Lecturer in the Department of Textile and Clothing Technology.

Special thanks are to Awantha, Buddhika, Achala, Chanika and Srimala for their friendship and encouragements. They are with the author from starting near the beginning

for any help.

Very special thanks are to Nuwan De Alwis for his encouragements and friendly

company.

Last but not least the author also extend his cheerful gratitude to his colleagues followed

the MEng/PG Diploma in Manufacturing Systems Engineering for their great company

and memorable assistance received.

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Ruwan Gopura gopura@ieee.org December 2008

vi

CONTENTS

Pre-chapters Pre-chapters	
Title	i
Declaration	ii
Dedication	iii
Abstract	iv
Acknowledgement	V
Contents	vii
List of Tables	xi
List of Figures	xii
University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	
1 Introduction	1
1.1 Introduction to the Research Project	1
1.2 Introduction to the Factory	2
1.2.1 Mission	3
1.2.2 Vision and Objectives of Industrial Partner	3
1.3 Production Capacity	3
1.3.1 Types of Products	4
1.4 Divisions of the Poly Bag Manufacturing System	5
1.4.1 Film Blowing Division	6
1.4.2 Printing Division	6
1.4.3 Bag Making Division	7
1.4.4 Quality Checking Division	7
1.5 Factory Layout	8

Chapter 02		
2	Literature Review	9
C	Chapter 03	
3	Motivation	14
	3.1 Solution Strategy	14
C	Chapter 04	
4	Film Blowing	16
	4.1 Film Blowing Process	16
	4.2 Film Properties Iniversity of Moratuwa, Sri Lanka.	18
	4.3 Tools of Poly Bag Making Theses & Dissertations	19
	4.3.1 Extruders www.lib.mrt.ac.lk	20
	4.3.2 Dies	20
	4.3.4 Air Ring	21
	4.3.5 Bubble Cage	21
C	Chapter 05	
5	Preliminary Analysis	23
	5.1 Method of Analysis	23
	5.1.1 Risk Prioritization	24

25

5.2 Results of Analysis

Chapter 06

6 Modeling of Production Process	29
6.1 System Characteristics for Modeling	29
6.1.1 Simulation Objectives	29
6.1.2 Inputs	30
6.1.3 Outputs	30
6.2 Development of Mathematical Model	30
6.2.1 Identification of a Poly Bag Producing Time	31
6.3 Network Model	34
6.4 Minimum Manufacturing Time	
6.5 Simulation Model to Calculate Production Time	36
6.6 Model Assumptions	38
6.7 Production Schedule for Maximum Productivity	38
6.7.1 Approaches to Generate Production Schedule	39
6.7.2 Mathematical Model for an Optimum Production Schedule	40
Electronic Theses & Dissertations	
www.lib.mrt.ac.lk	
Chapter 07	
7 Simulation and Results	42
7.1 Inputs and Outputs of Simulation	43
7.2 Simulation Results	46
7.3 Snapshots of GUIs of Simulation Tool	48
Chapter 08	
8 Conclusion	54

References	57
Appendices	60
Appendix - A Process Flow Chart	60
Appendix - B Blown Film Extruder Unit	64
Appendix - C Simulation	66
Appendix - D MATLAB Commands of Main Window	70

LIST OF TABLES

	1	Page
Table 1.1	Poly bag film sizes	4
Table 1.2	Printing lengths	4
Table 5.1	Average quantitative valves for each criterion	26
Table 5.2	Prioritized risks according to weights	26
Table 6.1	Delay time before printing	37
Table 6.2	Delay time before bag making	37
Table 6.3	Delay time before quality checking	37
Table 7.1	Types of input variables for simulation	44
Table 7.2	Nomenclature of simulation variables	45
Table 7.3	Product specifications of Moratuwa, Sri Lanka.	46
Table 7.4	Customer order details heses & Dissertations	46
Table 7.5	Simulated processing times and minimum production time	47
Table 7.6	Monte Carlo simulation outputs of WIP storage and throughput time	47
Table 7.7	Production schedule	48

LIST OF FIGURES

		Page
Figure 1.1	Simplified film blowing process	5
Figure 1.2	Simplified production process flow diagram	5
Figure 1.3	Film blowing division	6
Figure 1.4	Printing division	6
Figure 1.5	Bag making division	7
Figure 1.6	Quality control division	7
Figure 1.7	System layout	8
Figure 4.1	Extrusion machine unit	19
Figure 4.2	An extruder	20
Figure 4.3	Air ring	21
Figure 4.4	Bubble cage	22
	University of Moratuwa, Sri Lanka.	
Figure 5.1	Five-point Likert scale heses & Dissertations	25
Figure 5.2	Risk bar chart lib. mrt. ac.lk	27
Figure 5.3	SWOT chart	28
Figure 6.1	Network model of production system	35
Figure 7.1	Simulation block diagram	43
Figure 7.2	Menu hierarchy	48
Figure 7.3	Snapshot of starting window	49
Figure 7.4	Snapshot of About PolySim window	50
Figure 7.5	Snapshot of Load Parameter window	51
Figure 7.6	Snapshot of Customer Orders window	51
Figure 7.7	Snapshot of Monte Carlo simulation results	52
Figure 7.8	Snapshot of results of Monte Carlo & system simulation	53
Figure C.1	Inverse transformation	68