

11

 Chapter 3

Technology review

3.1. Introduction

Previous chapter covers detail description about problem domain. In this

chapter I will discuss the technologies currently available to solve a problem

in this nature. My effort is to bring all the available technologies and there

potentials in solving a problem in this nature.

3.2. Software process models

There are many ways of developing software. According to the requirement,

nature, time, and so many other factors it can be vary from one software to

another. There are three main software process models we can distinguish by

their unique process models.

3.2.1. The waterfall model

As per the below figure 3.1 the main activities in software

development are placed as steps of a waterfall. Similar to the pattern of

water streaming down from one step to another step in waterfall the

software development process is also proceeded.

According to the Sommerville the principal stages of the model map

onto fundamental development activities. [9] Based on that we can say

by this model software development life cycle has been broken into

different faces. It can be recon as the widely used software process

model. This could be useful in large system designs when the

requirements are not change during the process.

12

Figure 3.1 Waterfall model

3.2.2. Evolutionary development

This is methodology is also called as prototype methodology. There a

prototype of the software is developed initially with the initial

requirements given by customer. Then with the feedback of the

customer the complete requirement can be done.

By following this approach the key steps in waterfall method can be

performed simultaneously. Therefore we can identify 3 main process

steps that cover the full cycle in waterfall method. Figure 3.2 depicts

key steps.

Requirement
Defiiniton

System and
Software design

Implementation
and unit testing

Integration and
System testing

Operation and
maintenance

13

Figure 3.2 Evolutionary development model

There are two types of evolutionary development methods,

1. Exploratory development

Design a part of the requirement first, that is more

understandable and easy. Then with the input of customer the

full requirements are addressed by adding parts to that.

2. Throwaway prototyping

In this methodology a prototype is design with the poorly

understood requirements. And the customer’s feedback on that

will be helped to created full customer requirements.

Evolutionary approach seems more appropriate and effective compare

to waterfall approach since customer involves in the design stage. As

users are more aware about the software and the developers can also

more through about the requirements of the customers/users during the

Outline
description

Specification Intermediate
version

Intermediate
version Developement

Final version

Validation &
Testing

Concurrent activities

14

development stage. The software requirement specification is design in

incrementally.

This kind of approach is suitable when the requirements are not clear

and there is no time to follow an extensive analysis design phase. Even

after a proper analysis for components like user interface design this

approach is very effective.

3.2.3. Component-base software engineering.

This methodology is fairly new to software industry. When there are

similar requirements catered previously, developers tent to get those

components and reuse with some adjustments to the new system. This

behavior is expanded now up to the reusable components that can be

taken off the shelf.

When there is a large collection of reusable components this approach

can be exercise. With the reusable components and interfaces that con

linked each component this approach is fairly easy and fast. Due to the

reusable components new steps call ‘Component analysis’ is adding to

the development life cycle. Refer the figure 3.3.

Figure 3.3 Component base development methodology

This methodology cut down the development cost drastically. And it

reduces the risk as well. Since the most of the off the shelf product

components are thoroughly tested and may have proven its capabilities

Requirement
specificaton

Components
analysis

Requirement
modificaton

System
design with

reuse

Development
&

integration
System

validation

15

in previous projects. The problem here is weather these components

can cater the requirements of the customers or users. Most of the time

requirement may have to be change or adjust according to the available

features of the components that are available. When there is systems

upgrade due to change in the requirement the whole system can be

obsolete due to the components inability of supporting new features.[9]

3.3. Design and development approaches

There are number of software design methodologies practicing in the software

development process. Depending on the environment and the requirement the

suitable methodology is selected. Below are the available development

methodologies.

3.3.1. Object oriented analysis and design (OOAD)

Compared with the counter part of OOAD, which is SSAD, OOAD is

fairly a new technology. With the growing size and complexity of the

software projects OOAD has proved its capabilities to handle such

situations.

Always classes represent real world entities. In addition to that there

are some other classes for problem solving purposes. Object oriented

design all ways make sure to maintain close link between these classes.

UML is using to design the software architecture. By following the

proper methodology class diagrams can be designed via UML.

The key feature of the OOAD is, it ensures the security of data that is

associate with its functions. Object is defined by a class where it has

some functions and local data definitions. In the initialization, the data

will be passing into the object and only the methods in the same object

can be access those data. This is the main feature of OOAD.

Additionally when there is a change required in one functionally in a

16

class it can be easily done without worrying about the other classes or

methods in the same class.

Since classes can use to depict a complex problem in very simple form

OOAD is very popular among large and complex software solutions.

Reusability is another important feature of classes. Classes created to

one project can be easily used in other projects as well. By doing that

the cost and time can be reduce. And this feature tents to have lot of

pre designed classes available. Because of that the development using

OOAD becomes more easy and popular. [9]

3.3.2. Structured System Analysis and design (SSAD)

Classical software design methodology is called as SSAD. Before the

OOAD is invented this methodology dominated the software industry.

Procedural approach is used in the development of software. Therefore

procedural languages used in design process.

There are 3 major tools using in SSAD application design.

1) Logical Data Modeling: This is the process of identifying,

modeling and documenting the data requirements of the

proposed software application.

2) Data Flow Modeling: This is the process of identifying,

modeling and documenting what and how the data is flowed in

the proposed software application

3) Entity Event Modeling: This is the process of identifying,

modeling and documenting interconnection between the

business events and entities. The sequence of interaction also

taken to consideration.

This model is not using in modern large scale software application

developments because it’s difficult in design and maintain such a

system designed by this model. Due to the procedural approach the

17

data is prone to any subroutine. If there is an error in sub routine the

data is directly get affected. No encapsulation of data. No mechanism

to simulate the real world entities in the program. This is vital

requirement when designing a large scale system. [3], [4],[5]

3.3.3. Agile software development methodology

This development methodology is immerging as popular development

methodology nowadays. It promoted the team work, self-organization

and accountability for the assignment.

Iterated software process model is using in most cases in agile software

development methodology. This methodology can be applied in rather

small scale developments. For a large scale project this can be applied

successfully if the project requirements can be broken into collection

of separate developments.

In agile development the development team comprise with 5~10

people from all disciplines like architectures, developers, testers, etc.

And this is performed with minimum planning and development time

bounded 2 to 4 weeks. Full software development life cycle is

performed with in that period with the involvement of the whole team

allocated to that development. At the end it will be released to

customer and based on the customer feedback further enhancements

are performed following the same methodology explains above. In the

process the discussion within the team is try to keep minimum as

possible.

By following this kind of methodology can minimize the risk factor.

The full release of the agile development is happen after the customer

satisfied with it. That could be reached after a several cycles of testing.

Since there is not full software system life cycle is performed there is a

possibility of not getting proper project documentation.[6]

18

3.4. Unified modeling language (UML)

This is graphical development methodology for designing, visualizing and

construction of software application. It provides the most necessary artifacts

needed in software requirement specifications.

In object oriented analysis and design process UML caters up to the class and

database diagrams level. Most of the object oriented concepts are

incorporated with in UML.

UML comprise with 3 types of diagrams.

1. Structure diagrams

Diagrams contain features to be required in software

application. Eg: class diagrams, component diagrams,

deployment diagrams, object diagrams, etc

2. Behavior diagrams

Diagrams explain the behavior of the software to be developed.

Eg: activity diagrams, use case diagrams, state chart diagrams

3. Interaction diagrams

Diagrams explain the process/data flow of the software to be

developed. Eg: sequence diagrams, communication diagrams,

interaction overview diagrams etc.

 [7]

Rational Unified Process (RUP) is software development process enables

transforming user requirements into software programs. RUP is a generic

framework that is independent of the software which is going to developed.

It’s agile and component base process that has easy adaptation and

interconnection with components. RUP uses UML in its software development

process

19

3.5. Summary

This chapter discusses the candidate technologies/approaches for this

development. This provides an overview of the technologies, not a full detail

description. Then the next chapter is about my approach. It will covers the

technologies and methodologies I’m going to solve the problem.

