Implementing Production Confirmation System for Apparel Manufacturing Plant.

Faculty of Information Technology University of Moratuwa September 2008

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc in Information Technology.

September 2008

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

T.K.K.K.Gajaba Name of Student

Signature of Student Date

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervised by Dr. Gamini Wijayarathna Name of Supervisor(s)

Signature of Supervisor(s) Date

Dedication

I would like to dedicate this dissertation to my loving daughter Sinadi Seyara.....

Acknowledgements

I would like to acknowledge all who encouraged & helped me to produce this dissertation and make it a success.

I especially like to thank my esteemed supervisor Dr. Gamini Wijayarathna for his extremely perceptive, helpful and invaluable guidance. Additionally without Dr. Gamini's encouragement and dedication towards us this work may not be a reality. I would also like to thank Prof. Asoka Karunananda for the expert guidance given to us.

I am especially grateful to the lecturers & staff of the Faculty of Information Technology, University of Moratuwa, who lectured and assisted me in various ways during my course of studies and especially during the preparation of this dissertation and project developments.versity of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

Colleagues of my batch supported me in various ways during the preparation of this document and in the application development stage. I would like to give my heart full gratitude to them.

I would like to thank my family & friends for their support and encouragement given to me throughout the entire period of this M.Sc.

Last but not least big thanks go to management and employees of my company MAS Active Pvt Ltd and my focal plant Contourline for giving me the opportunity to do this project successfully. Mr Senaka Harischandra Director IT for MAS Active Pvt Ltd and my dear colleagues in SAP development team & SAP functional team are given me tremendous support to succeed this effort. I would like to give my sincere gratitude to them.

Abstract

Discussing the analysis, designed and implementation of Production Confirmation System for Apparel Manufacturing Plant in SAP R/3 is the main objectivity of this dissertation. This application is designed to suite and caters the requirement of Contoureline-Pallekelle,

Contoureline belongs to MAS Active Pvt Ltd and it's fully dedicated to NIKE brand apparel manufacturing. The ERP solution runs in MAS Active Pvt Ltd is SAP R/3 (AFS). Therefore the Contourline is also using it in daily production confirmation process.

After Lean Manufacturing concepts implemented in Contourline the existing production confirmation system doesn't cater the requirements and got obsolete. With the lean implementation most of complex operations are broken into simple process and that paved the way to monitor the single peace flow in the production process.

University of Moratuwa, Sri Lanka.

Additionally there is number of requirements come up due to the Lean implementation and we have to taken care of them as well in this project. At the same time we are force to keep the cost of implementation and operational minimum. And this should not add non value addition inventory to the operation.

Therefore this project will print one bundle sticker for line in confirmations and at the line end it use NIKE UPC sticker to confirm the line out. Lineout operation is done via IP scanners. By doing that we are able to save one PC and waved off non value addition activity of operating a pc per each module.

All the end line output data is recorded in local server and batch wise they are updated to SAP. In the Line In operation sewing RM's are automatically issued and in the Line Out operation packing RM's are automatically issued via SAP. Line In/Out quantities are displayed in the respective display boards for every module.

UPC stickers recording in Line Out, Schedule wise Line Out update are handled by local server. Additionally it will responsible for manage the display boards as well. Since the Line Out is recorded to a local server during SAP down time or network problem with the main SAP server Contourline operation will not get hampered.

Table of Contents

			Page
1	Intro	oduction	1
	1.1	Preamble	1
	1.2	Aim & objectives	2
	1.3	Solution	2
	1.4	Structure of the dissertation	3
2	Cont	ourline production confirmation system	5
	2.1	Introduction	5
	2.2	Contourline	5
	2.3	Production confirmation process	6
	2.4	Issues with current system	9
	2.5	Survey of Alternate solutions	10
	2.6	Summary	10
3	Tech 3.1	University of Moratuwa, Sri Lanka. nology review ronic Theses & Dissertations Introduction lib.mrt.ac.lk	11 11
	3.2	Software process models	11
	012	3.2.1 The waterfall model	11
		3.2.2 Evolutionary development	12
		3.2.3 Component-base software engineering	14
	3.3	Design and development approaches	15
		3.3.1 Object oriented analysis and design (OOAD)	15
		3.3.2 Structured System Analysis and design (SSAD)	16
		3.3.3 Agile software development methodology	17
	3.4	Unified modeling language (UML)	18
	3.5	Summary	19
4	Mv a	approach	20
T	4.1	Introduction	20 20
	4.2	Design decisions	20 20
	- T + 44	4.2.1 Architecture	20 20
			20

	4.2.2	Development methodology	21
	4.2.3	UML	21
4.3	Techr	nologies used in	22
	4.3.1	SAP	22
	4.3.2	Database management system	23
		4.3.2.1 SQL Server 2005	23
		4.3.2.2 Microsoft Access	23
		4.3.2.3 My SQL	23
	4.3.3	Development environment	24
		4.3.3.1 Java	24
		4.3.3.2 C#	25
4.4	Meth	odologies used in	25
	4.4.1	IP scanners	26
	4.4.2	UPC stickers	26
	4.4.3	Barcode stickers	27
4.5	Scope	e of the project	27
4.6	Proje	ct Limitations Cheses & Dissertations	28
4.7	Sumn		28
Anal	ysis and	l design	29
5.1	Intro	duction	29
5.2.	Curre	ent system analysis	29
	5.2.1	Functional and non functional requirements	29
		of current system	
	5.2.2	Check list of the current system analysis	30
	5.2.3	Use case diagram for the current system	30
	5.2.4	Activity diagram for the current system	31
5.3	Propo	osed system design	32
	5.3.1	Functional and non functional requirement	32
		of proposed system	
	5.3.2	New system architecture	33
	5.3.3	Proposed system overview	34
	5.3.4	Check list of the proposed system design	35
	5.3.5	Use case diagram for the proposed system	35

5

		5.3.6 Activity diagram for the proposed system	36
		5.3.7 Grammatical analysis	37
		5.3.8 Sequence diagrams for the proposed system	38
		5.3.9 Class diagrams	39
		5.3.10 Database design	40
		5.3.11 GUI Design	42
	5.4	Design decisions	43
	5.5	Summary	44
6	Implementation		
	6.1	Introduction	45
	6.2	SAP Java connection	45
		6.2.1 JCo implementation	45
		6.2.2 JCo connection	46
	6.3	IP scanner connection	48
	6.4	SQL Table updates	49
	6.5	Passing messages to display boards	49
	6.6	Get the time stamp to track table updates	51
	6.7	Summary	51
7	Evaluation		52
	7.1	Introduction	52
	7.2	Verification and validation	52
	7.3	Software inspection or peer review	53
	7.4	Software testing	53
	7.5	My testing approach	54
		7.5.1 Integration testing	54
		7.5.2 Release testing/Black-box testing	55
		7.5.3 Performance testing	55
	7.6	Test cases	56
	7.7	Summary	57

8	Conclusion and Future work	58
	8.1 Conclusion	58
	8.2 Further enhancement	58
9	References	60
10	Appendix A: Feasibility study	61
11	Appendix B: Existing system use cases and descriptors	63
12	Appendix C: Proposed system use cases and descriptor	rs 69
13	Appendix D: Proposed system activity diagrams	74
14	Appendix E: Test cases	79
15	Appendix F: Data Dictionary	82
16	Appendix G: MOS/TPS concepts overview	83
17	Appendix H: User manuals	86

List of Figures

	Pag	ge
1.	Figure 2.1 MAS Active Pvt Ltd Organization Structure.	5
2.	Figure 2.2 Cut panel dispatch and production process in MAS Active	7
3.	Figure 2.3 Order conversion process	8
4.	Figure 2.4 Classical production confirmation process	9
5.	Figure 3.1 Waterfall model	12
6.	Figure 3.2 Evolutionary development model	13
7.	Figure 3.3 Component base development methodology	14
8.	Figure 4.1 Proposed production confirmation system	25
9.	Figure 4.2 Proposed layout for scanners setup	26
10.	Figure 4.3 Line In barcode format	27
11.	Figure 5.1 Use Case design for the current system	31
12.	Figure 5.2 Activity diagram for current process	32
13.	Figure 5.3 Requirement Partitioning design entations	34
14.	Figure 5.4 System architecture	34
15.	Figure 5.5 Top level Use case of the proposed system	36
16.	Figure 5.6 Activity diagram for the proposed system	37
17.	Figure 5.7 Sequence diagram for the Line In operations	38
18.	Figure 5.8 Sequence diagram for the Line Out process.	39
19.	Figure 5.9 Class diagrams for the proposed system	40
20.	Figure 5.10 ER diagram for the proposed system.	41
21.	Figure 5.11 Database design for the proposed system	42
22.	Figure 5.12 PF – Status Standard bar	43
23.	Figure 5.13 PF – Status Application toolbar	43
24.	Figure 5.14 PF-Status Function keys	43
25.	Figure 7.1 Black-box testing	55

List of Tables

Page

1.	Table 2.1 Comparison of alternate processes	10
2.	Table 5.1 Check list of the current system	30
3.	Table 5.2 Checklist for the proposed system design documents	35
4.	Table 5.3 Grammatical analysis	37
5.	Table 7.1 Test case for bundle guide creation	56

