
48

Chapter 6
Implementation
6.1 Introduction

Last chapter discussed with Analysis and Design Stage includes database design and User

Interface Design. This chapter implements the source code of the system, which last

chapter designed. Only their important points are highlighted here.

6.2 Show Alarms

Show Alarms is the most important and attracting implementation with colorful data grid

interface. There are five main functions running with this data grid once it opened.

1. Hide Not-Commissioned Sites

2. Maintain colour information according with Alarm Code.

3. Insert colour information with alarm duration

4. Insert Tool tip text with alarm history records

5. when site failure with power alarm insert failure reason with “suspect power

failure and battery drain”

6.2.1 Hide Not-Commissioned Sites

 This is a Do loop which runs with increasing row number, end condition is
Loop Until GridView.Item(Colnum,Rownum).RowIndex > GridView.RowCount- 2
Following code shows how to implement this feature on the .Grid view
Do

 SiteHistory = GridView.Item(Colnum, Rownum).Value
 HistoryNotCommissioned(SiteHistory)
 If ComStatus = True Then
 GridView.Rows(Rownum).Visible = False
 End If
 ComStatus = False
 Rownum = Rownum + 1
Loop Until GridView.Item(Colnum,Rownum).RowIndex > GridView.RowCount- 2

6.2.2 Maintain colour information according with Alarm Code

This code extracts colour information for its Alarm Code from class “AlarmCodeColour”

, and mixed RGB colour values using “FromArgb” method and show on the Grid cell.

Following code shows how system receives background and font colours.
GridView.Item(Colnum + 3, Rownum).Style.BackColor = Color.FromArgb(Rclr,
Gclr, Bclr)
 GridView.Item(Colnum + 3, Rownum).Style.ForeColor =
Color.FromArgb(Rclrfont, Gclrfont, Bclrfont)

49

6.2.3 Insert colour information with alarm duration
Dtime = GridView.Item(Coldte, Rownum).Value
Durtime = Now - Dtime
Durday = Durtime.TotalDays
Durhour = Durtime.TotalHours
Above code shows how system calculates colour duration from current and alarm time
difference. If difference <1h = green colour
 Difference <2h = orange colour

Difference <3h = red colour
Else Difference >3days = no colour is the accepted colour format.

6.2.4 Insert Tool tip text with alarm history records
Here tool tip text adding and modification happen in three times each time the usable
code is,
GridView.Item(Colnum + 3, Rownum).ToolTipText = AlmNme & " - " & ClrPrty
First: every record has Tool tip text with priority level.
Second: if site failure (AlarmCode=8196) Tool tip text replace as
= "B.Bank Duration -" & BBankDrn & "hours, Failure case:" & AlmHstry

Third: when site failure (8196) with power alarm (3862) for same Site Name, Tool tip
text of alarm 3862 modify as,
= "B.Bank Duration -" & BBankDrn & "hours, Failure case:suspect Power
Failure and battery drain"

6.3 Maintain Alarm Codes
6.3.1 Using Stored procedures
This module functionality is alarm code maintenance with 3 main functions. [6]

1. Add

2. Modify

3. Delete

With implementation it is very important in design how to add colours to the databases.

Finally it end at wonderful design with more flexible interface, I used horizontal Scroll

bars and its “value change” event initiates each colour value to “Display” label and

generate label colour. Each 3 Horizontal bar values stored into database as RGB colour

values with integer data type. If ColourID already exists in database, the system accepts

“Alarm” table and “Priority” table only. The stored procedure for this case is as follows,

Figure 6.1 – Stored procedure for insert only AlarmCode not Colour details

50

 If none of tables exist this new adding record in all 3 database tables.

Add 1. Colour table

 2. Priority table

And finally Alarm table accepts the new record. The stored procedure for this case is as

follows,

Figure 6.2 – Stored procedure for insert both AlarmCode and Colour details.

6.3.2 Integer validation
Alarm Code only accepts numeric values. Then it is important to define proper rules and

messages to implement this area. Following code shows how to implement numeric check

in Alarm monitoring system at deletion.
If IsNumeric(AlarmCode.Text) Then
Dim response As MsgBoxResult
response = MsgBox("Are you Sure, You want to Delete", MsgBoxStyle.YesNo, "Alarm Delete")

If response = MsgBoxResult.Yes Then
Succesful = CdColr.DeleteAlarmRecord(AlarmCode.Text)
CdColr.CloseConnection()

If Succesful = True Then
LabelMsg.Text = "Alarm Code '" & AlarmCode.Text & "' deleted

successfully"
Else

LabelMsg.Text = "'" & AlarmCode.Text & "' not existing, Alarm Code
deletion failed"
End If
Cleartxt()

Else
LabelMsg.Text = "Alarm Code deletion aborted"

End If
Else

LabelMsg.Text = "Please Enter numeric value for the Alarm Code"
End If

6.3.3 Priority Level
The priority level select with combo box and priority already added to the drop down list

of the combo. They are,

Minor, Critical and Major

51

Following code shows how to implement priority in VB.net .Priority ID (P_ID) data type

is integer, values are 1, 2 and 3 only.

 If Prty = "Minor" Then

 objCommand.Parameters.Add("@P_ID", SqlDbType.Int, 20).Value = 1
 ElseIf Prty = "Critical" Then
 objCommand.Parameters.Add("@P_ID", SqlDbType.Int, 20).Value = 2
 Else
 objCommand.Parameters.Add("@P_ID", SqlDbType.Int, 20).Value = 3
 End If

6.3.4 Insert Record

Following code shows how to use above stored procedures in practical programming

1. Given method search whether “ColourID” exists in “Colour” table first,
 objDataReader1 = selectColourID(objCommand, "ColourRecordIDQuery", ClrID)
 If objDataReader1.HasRows Then
 CloseConnection()

2. If exists then search whether “AlarmCode” exists in “Alarm” table,
 OpenConnection()
 objDataReader1 = selectCode(objCommand, "ColourRecordQuery", AlmCde)
 If objDataReader1.HasRows Then
 MsgBox("Alarm Already exists")
 CloseConnection()
 Return False

3. If exists then give message box ("Alarm Already exists") and exit.
 Else
 CloseConnection()

4. Else insert “AlarmCode” to “Alarm” table with existing “ColourID”.
 OpenConnection()
 objCommand = New SqlCommand("AlarmColour_InsertOnlyCode", objConnection)
 objCommand.CommandType = Data.CommandType.StoredProcedure

 intRowsAffected = objCommand.ExecuteNonQuery()
 Return True
 End If
 Else
 CloseConnection()

5. If “ColourID” not exists then search whether “AlarmCode” exists in “Alarm” table,
 OpenConnection()
 objDataReader1 = selectCode(objCommand, "ColourRecordQuery", AlmCde)
 If objDataReader1.HasRows Then
 MsgBox("Alarm Already exists")
 CloseConnection()
 Return False

6. If exists then insert Colour records to “Colour” table, and modify “Alarm” table row
with new “ColourID”
 Else
 CloseConnection()

 OpenConnection()
 objCommand = New SqlCommand("AlarmColour_Insert", objConnection)
 objCommand.CommandType = Data.CommandType.StoredProcedure

7. If Both “ColourID” and “AlarmCode” not exists then, insert both records.
 intRowsAffected = objCommand.ExecuteNonQuery()
 Return True
 End If
 End If

52

6.4 Maintain Commissioned Site’s Alarm History and Not-Commissioned Sites

6.4.1 Maintain two GUIs with same Table and column Status

Commissioned Site’s Alarm History and Not-Commissioned Site both records are added

to the same table with status different. Table 6.1 shows the priority level of both.

GUI form Status
Commissioned Site’s Alarm History 0
Not-Commissioned Site 1

Table 6.1 – Priority level bit

Data type of the Status is “bit” values 1 or 0.

When inserting or updating the database this value is given as “True” or “False”

Following code shows how to implement above function.

If txtSiteName.Text <> "" Then
 Succesful = dbMgr.AddCommissionedRecord(txtSiteName.Text, Double.Parse(0), " ", "True")
 dbMgr.CloseConnection()
 If Succesful = True Then
 LabelMsg.Text = "Site Name added successfully"
 Else
 LabelMsg.Text = "Site Name addition Failed"
 End If
 Cleartxt()
Else
 LabelMsg.Text = "Sorry! Required fields cannot be empty"
End If

Above implementation is for Not-Commissioned Site.

When it received to “ClassDBManager” class it stores above record to the database by

using following code,
 objCommand.Parameters.Add("@Status", SqlDbType.Bit, 5).Value = CType(Sts, Boolean)

6.4.2 Add existing Site Name

System can identify how given Site name status and what are the messages should be

given, as example if given “Site Name” status is “Not-Commissioned” or

“Commissioned” and give error message according to the status. Following code shows

how to implement such situation.
OpenConnection()

 objDataReader1 = selectSiteName(objCommand, "AlarmDetail_SelectAllforAdd",
SiteName)
 If objDataReader1.HasRows Then
 objDataReader1.Read()
 ComStatus = objDataReader1.Item("Status")
 If ComStatus = "True" Then
 MsgBox("Site already exists in Not-Commissioned Table")
 Else
 MsgBox("Site already exists in Commissioned Table")
 End If
 CloseConnection()
 Return False
 Els

53

Figure 6.3 – Error message

Figure 6.3 shows how error message given when Not-Commissioned site exists.

Additionally Commissioned and Not-Commissioned GUI come with extra button which

use to change the status of Site from Commissioned to Notcommissioned or

Notcommissioned to Commissioned.

6.4.3 Delete not existing Site Name

When you are in Commissioned form delete button do not support on deletion of Not-

Commissioned Site Details. Following code shows how to implement this feature.
 OpenConnection()

 objDataReader1 = selectSiteName(objCommand, "AlarmDetail_SelectAllforAdd",
SiteName)
 If objDataReader1.HasRows Then
 objDataReader1.Read()
 ComSts = objDataReader1.Item("Status")
 CloseConnection()
 If ComSts = Sts Then
 OpenConnection()
 objCommand = New SqlCommand("AlarmDetail_Delete", objConnection)

 Else
 Return False
 End If
 Else
 Return False

 End If

6.5 Search Alarms

Search option of the input box support for both Text and integer values, when text input

system count as Search Site name.

It input value is integer system search “Alarm Code” on same input box (Figure 6.4)

Figure 6.4 – Search

Following code shows how to implement this feature,
If openConnection() Then
 If IsNumeric(Name) Then
 objCommand.CommandText = "AlarmRecord_AlarmCodeQuery"
 objCommand.CommandType = CommandType.StoredProcedure
 objCommand.Connection = objConnection
 objCommand.Parameters.Add("@AlarmCode",
SqlDbType.VarChar, 20).Value = Name
 Else
 objCommand.CommandText = "AlarmRecord_SiteNameQuery"
 objCommand.CommandType = CommandType.StoredProcedure
 objCommand.Connection = objConnection

54

 objCommand.Parameters.Add("@SiteName",
SqlDbType.VarChar, 20).Value = Name
 End If

Alarms

Current Alarms History Alarms

Alarm Gui
Show Alarms

Maintain Not-
Commissioned Sites

Search Alarms
by site Name/by

Alarm code

Add Standard Colours

Alarm Maintenance

Maintain
Commissioned Site’s

Alarm History

Figure 6.5 – Coding maintenance guide

6.6 Coding maintenance guide

Sub system of architectural design Class
Show Alarms CodeColourTooltipDurationC

olour()
Alarm Maintenance - search SearchAlarmRecord()
Alarm Maintenance - Add InputAlarmCodeandColour()
Alarm Maintenance – Modify ModifyAlarmCodeandColour()
Alarm Maintenance – Delete DeleteAlarmCodeandColour()
Standard Colours ModifyAlarmCodeandColour()
Search Alarms by Site name/ by Alarm Code PopulateList()
Commissioned site’s Alarm History Maintenance- search SearchRecord()
Commissioned site’s Alarm History Maintenance- Add InputSiteNameandDetails()
Commissioned site’s Alarm History Maintenance– Modify ModifySiteNameandDetails()
Commissioned site’s Alarm History Maintenance– Delete DeleteSiteNameandDetails()
Commissioned site’s Alarm History Maintenance– Ntcom. SetNotCommissioned()
Not- Commissioned Sites Maintenance- search SearchRecord()
Not- Commissioned Sites Maintenance- Add InputSiteName()
Not- Commissioned Sites Maintenance– Modify ModifySiteName()
Not- Commissioned Sites Maintenance– Delete DeleteSiteName()
Not- Commissioned Sites Maintenance– Commissioned SetCommissioned()

Table 6.2 – Coding maintenance guide

6.7 Summary

This chapter discussed with implementation in each module with their important

code snippets. Next chapter is for Evaluation & Testing all the codes using black box test.

This test based on Activity diagram input and output interfaces. Test cases and test results

are bundled to tables, gives clear picture on implementation chapter.

