Alarm Monitoring System for Hutchison Telecom HAM

V. G. Nuwan Udayanga 06/1004

Faculty of Information Technology
University of Moratuwa
September 2008

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

Nuwan Udayanga
Name of Student

Lanka

Electronic Theses & Signature of Student

Date:

Supervised by:

Dr. Gamini Wijayarathna Name of Supervisor

Signature of Supervisor Date:

Acknowledgement

As the author of this documentation I am glad to publish the work I have done in order to achieve a good software system which satisfies my client requirements. I have worked with a great number of people whose contributions were in numerous ways helpful to this project and making of this thesis a meaningful & practical. It is a pleasure to convey my gratitude to all of them at least in this instance.

In the first place I would like to extend my sincere gratitude to Dr. Gamini Wijayarathna for his supervision, advice throughout the project for giving necessary advice on how to achieve my goals.

It's my privilege to be associated with Hutch and thanks all my colleagues for moral and other support from them. I thank my friends Anuradha, Herath, Inoka, Dammi and Disna who always questioned me and encouraged me on different problems with design methodologies specially activity diagrams, sequence diagrams and classes. It is because of their help this project concluded successfully.

I would like to thank The Hutchison Telecom IT department and Rasika from WiFi Sri Lanka providing internet facility throughout the whole development life cycle providing me with vital information. lectronic Theses & Dissertations

WWW.IIO.III t.av.ix

Last but not least many thanks to the academic & non academic staff members of the University of Moratuwa for their support in various aspects. Also, all the people who contributed in numerous ways in order to successful completion of this project.

Abstract

Hutchison Telecom has more then 600 BTSs (Base Transceiver Station) Sites island wide. Each site sends its failure details to its server as Alarm records. Alarms are generated in all BTSs and Alarm records are collected at Servers (BSS Servers) for daily maintenance works. Alarms are displayed on client machines locate in OMC (Operation and Maintenance Center). However there are 5 client machines for Alarm monitoring. These machines are used for dynamic monitoring, software upgrading, site creation and "Daily maintenance Report" generation other than the Alarm monitoring. Also Alarm monitoring is not an easy job, because officers have to move to each client machines and first search site location and then open site Alarm window and search current Alarms. Hutchison does not have a perfect alarm monitoring system. Sometimes the alarm indication message displayed is incorrect.

Proper Alarm monitoring system is the solution for the above issue. The main intention of this project is a Real time Alarm monitoring system for GSM sites located all over the island.

To understand the proposed system functionality, Use Case diagrams, Activity Diagrams and Use Case Descriptions were designed. Based on these diagrams Sequence Diagrams were designed and then Class Diagram was decided. For Database design ER diagram created and hence relational tables and Normalized to Third Normal Form. Finally Implementation and Testing carried out for this good software system as a better Alarm Monitoring System for Hutchison Telecom. This system is the best solution for the staff of Hutchison Telecommunication (Pvt.) Ltd. The system is helped to realize most important events relate to operation and maintenance. This system successfully answered the main problems identified in the previous Alarm monitoring system which was not real-time and wrong alarms create.

Table of contents

	Page			
Chapter 1 – Introduction	1			
1.1 Background and Motivation	1			
1.2 Aim and Objectives				
1.3 Solution				
1.3.1 System Requirements	2 3 3 3			
1.3.2 Reliability Requirement	3			
1.3.3 User Friendliness	3			
1.3.4 Meaningful system messages	3			
1.4 Structure of the dissertation	4			
Chapter 2 – Problem domain	5			
2.1 Introduction	5			
2.2 Current System	5			
2.2.1 Current issues in Alarm Monitoring	5			
2.2.2 Alarms	5			
2.2.3 System Architecture	6			
2.2.4 Problems and Weaknesses of the Existing System	7			
2.3 Alarm macro	8			
2.4 Comparison of Different approaches at uwa, Sri Lanka.	10			
2.5 Summary Electronic Theses & Dissertations	10			
Chapter 3 – Technology adapted	11			
3.1 Introduction	11			
3.2 Software process models	11			
3.2.1 Advantages and disadvantages of Software Development				
Methodologies	12			
3.3 Analysis and Design methodologies	12			
3.3.1 OOA	13			
3.3.2 OOD	13			
3.4 Software Modeling using Unified Modeling Language	14			
3.4.1 Use-Case Diagram	15			
3.4.2 Activity Diagram	16			
3.4.3 Sequence Diagram	16			
3.4.4 Class Diagram	17			
3.5 Database System Architecture	17			
3.5.1 ER Diagrams and Relational Tables	17			
3.6 Summary	17			
Chapter 4 – HAM System for Alarm monitoring	18			
4.1 Introduction	18			
4.2 Selected Approach	18			
4.2.1 Microsoft Windows XP	18			

4.2.2 Microsoft VB.Net 2005	18
4.2.3 Microsoft SQL Server 2005	18
4.2.4 Adobe Photoshop Version 8.0	19
4.2.5 Microsoft Word, Excel and Visio (Ms Office 2003)	19
4.3 Scope of the project	19
4.4 OOA & OOD	19
4.5 Summary	20
Chapter 5 – Analysis and design	21
5.1 Introduction	21
5.2 Analysis Stage	21
5.2.1 Software Requirements for Existing System	21
5.3 Check list for existing system	21
5.3.1 Use-case Diagram for existing System	22
5.3.2 Use-case description for Use Cases	22
5.3.3 Activity Diagrams – Show Alarms	24
5.4 Design Stage	25
5.4.1 Software Requirements	25
5.4.1.1 Functional and Necessary Requirements	25
5.4.1.2 Functional and Desirable Requirements	25
5.4.1.3 Non-Functional Requirements	26
5.5 System Architectural Design	26
5.6 Proposed System Overview of Moratuwa, Sri Lanka.	27
5.7 Check list for proposed system See & Dissertations	28
5.7.1 Use-case Diagram for proposed System	28
5.7.2 Use-case description for the Use Cases	30
5.7.3 Activity Diagrams for the Proposed HAM System	33
5.7.4 Grammatical Analysis	34
5.7.5 Sequence Diagrams for the Proposed HAM System	35
5.7.6 Class Diagram	37
5.8 Database design	38
5.8.1 ER Diagram	38
5.8.2 Relational Tables	39
5.8.3 ColourID decide	40
5.8.4 Design Decisions	40
5.8.5 Stored Procedures	41
5.8.6 Database Script	41
5.9 User interface Design	42
5.9.1 Overview of user interface design	42
5.9.2 User interface descriptions	42
5.9.3 List of graphical user interfaces	42
5.9.4 Sample user interfaces	43
5.9.5 Colour selection and fonts	45
5.9.6 Message Boxes	45
5.9.7 Not-Commissioned Site Maintenance – GUI	46
5.10 Summary	47

Chapter 6 – Implementation	48				
6.1 Introduction	48				
6.2 Show Alarms	48				
6.2.1 Hide Not-Commissioned Sites	48				
6.2.2 Maintain colour information according with Alarm Code	48				
6.2.3 Insert colour information with alarm duration					
6.2.4 Insert Tool tip text with alarm history records	49				
6.3 Maintain Alarm Codes	49				
6.3.1 Using Stored procedures	49				
6.3.2 Integer validation	50				
6.3.3 Priority Level	50				
6.3.4 Insert Record	51				
6.4 Maintain Commissioned Site's Alarm History -					
and Not-Commissioned Sites	52				
6.4.1 Maintain two GUIs with same Table and column Status	52				
6.4.2 Add existing Site Name	52				
6.4.3 Delete not existing Site Name	53				
6.5 Search Alarms	53				
6.6 Coding maintenance guide	54				
6.7 Summary	54				
Chapter 7 – Evaluation and Testing	55				
7.1. Introduction University of Moratuwa, Sri Lanka.	55				
7.2 Evaluation Electronic Theses & Dissertations	55				
7.2.1 Project assessment	55				
7.2.2 Achievements	56				
7.3 Testing	57				
7.3.1 Testing approach	57				
7.3.2 List of test cases	58				
7.3.3 Testing and Results	58				
7.4 Summary	59				
Chanton 9 Conclusion 9 funth on words	60				
Chapter 8 – Conclusion & further work	60				
8.1 Conclusion	60				
8.2 Limitations of the project goals	60				
8.3 Suggestions to overcome problems	60				
8.4 Further work to be carried out	60				
Deferences	<i>c</i> 1				
References	61				
Appendix A: Feasibility Study	62 65				
Appendix B: Activity Diagram for the existing system					
Appendix C: Activity Diagram for proposed HAM system	68				
Appendix D: Sequence Diagram for the proposed HAM system	71 80				
Appendix E: Database Design					
Appendix F: Interface Design					
Appendix G: Test Cases					
Appendix H: User's Manual					

List of Figures/Tables

Figures				
Figure 1.1 - Process Activity Diagram	1			
Figure 1.2 – Proposed model	3			
Figure 2.1 – System Architecture				
Figure 3.1 – The waterfall model	11			
Figure 3.2 – Evolutionary development	12			
Figure 3.3-Use-Case Diagram	16			
Figure 3.4- Activity Diagram	16			
Figure 3.5- Sequence Diagram	16			
Figure 3.6- Class Diagram	16			
Figure 3.7- ER Diagrams	17			
Figure 3.8- Relational Tables	17			
Figure 5.1 – Use-Case diagram existing	22			
Figure 5.2 – Show Alarms	24			
Figure 5.3 – System Architectural Design	26			
Figure 5.4 – Proposed System Overview	27			
Figure 5.5 – Proposed Use-Case Diagram				
Figure 5.6 – "Show Alarms" Activity Diagram	33			
Figure 5.7 – "Show Alarms" Sequence diagram				
Figure 5.8 – Corrected Sequence diagram				
Figure 5.9 – Corrected Activity diagram	36			
Figure 5.10 – Proposed system Class Diagram				
Figure 5.11 - Ex Diagram Colonic Theses of Dissertations	38			
Figure 5.12 - Relational tables with 3 rd Normal form	39			
Figure 5.13 - View_ColourRecordQuery	40			
Figure 5.14 - Stored Procedure (AlarmColour_Insert)	41			
Figure 5.15 - Sample-Database script	41			
Figure 5.16 - Splash Screen	43			
Figure 5.17 - About Box	44			
Figure 5.18 – Colour wheel	45			
Figure 5.19 – Message box	45			
Figure 5.20 – Not-Commissioned Site Maintenance	46			
Figure 6.1 – Stored procedure for insert only AlarmCode not Colour details	47			
Figure 6.2 – Stored procedure for insert both AlarmCode and Colour details	50			
Figure 6.3 – Error message	53			
Figure 6.4 – Search	53			
Figure 6.5 – Coding maintenance Guide	54			

Tables		
Table I.0 – Data Dictionary	VIII	
Table 2.1 – Comparison of Different Alarm Monitoring systems	9	
Table 3.1 – waterfall model	12	
Table 5.1- Existing system check list	21	
Table 5.2- Standard Colours	25	
Table 5.3- Check list for proposed system	28	
Table 5.4- Grammatical Analysis	34	
Table 5.5 – ColourID select as row	40	
Table 5.6 – ColourID select as Add	40	
Table 5.7 – ColourID select as Type varchar	40	
Table 5.8 - Splash Screen	44	
Table 5.9 - About Box	45	
Table 5.10 – Not-Commissioned Site Maintenance	47	
Table 6.1 – Priority level bit	52	
Table 6.2 – Coding maintenance guide	54	
Table 7.1 – HAM Alarm Monitor	58	
Table 7.2 – Alarm Maintenance –Select	59	

Data Dictionary University of Moratuwa, Sri Lanka.

Data Dictional	y Omiversity	of Moratuwa, Str Lanka.
Term	Type tronic	Theses & Dissertations
OMC staff	actor	OMC (Operation and maintenance Center) staffs are involving with alarm monitoring.
System	actor	Alarm monitoring system
Show Alarms	Use-case	Main function of Alarm monitoring system is indicating alarms by the system to OMC staff
GSM	Abbreviation	Global System for Mobile Communication
NGN	Abbreviation	Next Generation (IP switching) Telecommunication System
BTS	Abbreviation	Base Transceiver Station
BSC	Abbreviation	Base Station Controller
BSS	Abbreviation	Base Station Subsystem (BTS + BSC)
MSC	Abbreviation	Mobile Switching Center
NSS	Abbreviation	Network & Switching Subsystem
OMC	Abbreviation	Operation and Maintenance center
O&M Server	Abbreviation	Operation and Maintenance Server
ТО	Abbreviation	Technical Officer (OMC staff)

Table I.0 – Data Dictionary