USE OF SATELLITE-BASED DATA AND REAL-TIME RAINFALL DATA TO IMPROVE FLOOD PREDICTIONS IN THE LOWER KELANI RIVER BASIN

Dissanayaka Mudiyanselage Pavithra Sudeshika

208043B

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

Sri Lanka

September 2021

USE OF SATELLITE-BASED DATA AND REAL-TIME RAINFALL DATA TO IMPROVE FLOOD PREDICTIONS IN THE LOWER KELANI RIVER BASIN

Dissanayaka Mudiyanselage Pavithra Sudeshika

208043B

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

September 2021

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print electronic, or another medium. I retain the right to use this content in whole or part in future works (such as articles or books)

Signature: Part

Date: 2021-09-06

The above candidate has carried out research for the Masters under my supervision.

Name of the supervisor: Prof. R. L. H. L. Rajapakse

Signature of the supervisor:

Habil

Date: 2021-09-06

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude to the individuals who have supported me throughout the research to complete the Master's Degree.

I would like to express my sincere gratitude to my research supervisor Prof. R. L. H. L. Rajapakse, Professor, Department of Civil Engineering, University of Moratuwa for his immense support, guidance, and motivation throughout the MSc. Program.

I wish to convey my sincere gratitude to Prof. S. A. S. Kulathilaka, Head of Department of Civil Engineering, University of Moratuwa, and Prof N. T. S. Wijesekera for their support to achieve success in the MSc. Program. I would like to appreciate the valuable suggestions and comments given by Prof. (Mrs.) J. C. P. H. Gamage and Dr. T. M. N. Wijerathna.

I would also like to express my gratitude to South Asia Foundation (SAF) and UNESCO Madanjeet Singh Centre for South Asia Water Management (UMCSAWM) for financially supporting me to undertake this Master Degree at UNESCO Madanjeet Singh Centre for South Asia Water Management (UMCSAWM), Department of Civil Engineering, University of Moratuwa.

I am obliged to give my special thanks to the Department of Meteorology, Irrigation Department, and Center for Urban Water (CUrW) for acquiring necessary meteorological and hydrological data for this research. I would like to appreciate the free software access for the RRI model provided by International Centre for Water Hazard and Risk Management (ICHARM).

Furthermore, sincere thanks to the staff of the Department of Civil Engineering, University of Moratuwa for their massive support towards this research.

Finally, I would like to express my heartfelt gratitude to my parents and my friends for their support and constant encouragement throughout this research work.

Use of Satellite-based Data and Real-time Rainfall Data to Improve Flood Predictions in the Lower Kelani River Basin

ABSTRACT

The downstream of the Kelani river with relatively flat terrain is extremely important as a region with high population density and semi/highly built-up areas. However, this part of the basin is highly flood-prone and frequently affected. Therefore, simulation of rainfall-runoff-inundation processes using hydrological modelling plays a vital role in flood management. However traditional distributed hydrological models are unsuitable due to higher computational time, uncertainties, and no link to accommodate actual and real-time data. The distributed hydrological models such as MIKE-SHE, LISFLOOD, and Rainfall-Runoff-Inundation model are considered to be informative and efficient models. Those have been applied to several event-based flood simulations and inundation analyses.

The research aims to develop a Rainfall-Runoff-Inundation model to improve model accuracy by using available real-time precipitation and satellite-based data for the Lower Kelani River Basin to enhance flood prediction and risk mitigation. It includes three major components named study on impacts of DEM products on RRI model, impacts of land-use change on RRI model, and improvement of RRI model using real-time data such as AWS rainfall data, and satellite-based data such as MODIS yearly global land cover data, and SMAP/ Sentinel-1 soil moisture data.

The RRI model using surveyed cross-sections and satellite-based land-use and soil moisture data shows the best performance with the lowest RMSE of 0.69 m and lowest ME of 0.18 m. The weakest performance indices were shown in the RRI model using AWS with the lowest R² of 0.65, and the highest RMSE of 2.4 m. The RRI models using 3-arc resolution SRTM and ALOS PALSAR DEMs performed well for flood modelling in the Lower Kelani River Basin compared to ASTER, and HydroSHEDS 3-arc resolution DEMs. The upstream flood shows an increasing trend while the downstream water depths and flood inundation show a decreasing trend for the 10 and 50 years return period floods of the Lower Kelani River Basin from 2001 to 2019. However, total flood inundation is in an increasing trend. This study concluded that the RRI performs well for the Lower Kelani River Basin when using SRTM 90-m DEM, surveyed cross-section data, and satellite-based data such as MODIS yearly global land cover and SMAP/Sentinel-1 soil moisture data.

Keywords: AWS, DEM, Event-based Flood Modelling, MODIS, Rainfall-Runoff-Inundation Modelling

TABLE OF CONTENTS

DECLA	RATION i							
ACKNOWLEDGEMENT ii								
ABSTR	ABSTRACT iii							
LIST O	F FIGURES vii							
LIST O	F TABLES xii							
LIST O	F ABBREVIATIONSxiv							
1. Inti	roduction1							
1.1	Background1							
1.2	Study Region							
1.3	Problem statement							
1.4	Objectives4							
1.5	Methodology							
1.6	Arrangement of the Thesis							
2. Lite	erature Review7							
2.1	Water Cycle7							
2.2	Precipitation7							
2.2.1	Introduction7							
2.2.2	Measurements of Precipitation7							
2.3	Optimize rain gauge network10							
2.3.1	Multiple regression method11							
2.3.2	Geostatic method12							
2.3.3	High Accuracy Surface Modelling12							
2.3.4	Machine Learning Algorithm12							
2.3.5	Thiessen Polygon method13							
2.3.6	Inverse Distance Weight							
2.4	Effects of real-time data and soil moisture data on hydrological models13							
2.5	Effects of precipitation data on hydrological modelling15							
2.6	Effect of DEM on flood modelling							
2.7	Effect of Land-use data on flood modelling20							
2.8	Resampling Techniques							
2.9	Progress and future directions in Hydrological modelling23							
2.10	Kelani River Basin							

2.10.1	Introduction	23
2.10.2	Flood in 2016	26
2.10.3	Climate change trends in the Kelani river basin	
2.10.4	Locations of rain gauges in Lower Kelani River Basin	30
2.11	Rainfall-Runoff (RR) models	36
2.11.1	Introduction	36
2.11.2	Modelling process	37
2.11.3	Types of models	
2.12	RRI model	44
2.12.1	Introduction	44
2.12.2	Model Formulation	47
2.12.3	Selection of flood events for RRI simulation	49
2.13	Water and Energy-Based Rainfall-Runoff-Inundation (WEB-RRI).	50
3. Me	thodology	53
3.1	Methodology Flow chart	53
3.2	Model Selection	54
3.3	Data Acquisition	55
3.4	Preparing input topographic data	57
3.5	Preparing Rainfall data	63
3.5.1	Flood event selection for initial model	63
3.5.2	Delineating rain gauge rainfall data for the study region	64
3.5.3	Format of input Rainfall data for RRI Model	65
3.5.4	Calculation of watershed average rainfall	65
3.6	Conditions setting for Simulation	67
3.6.1	Input Evapotranspiration data	67
3.6.2	River Channel Geometry	67
3.6.3	Land Class Settings	68
3.6.4	Boundary Conditions	69
3.7	Calibrate and Validate the RRI model	69
3.8	Visualize Output Data of the Model	69
3.9	Evaluation of the performance of each RRI model	73
3.10	Impacts of land-use change on RRI model using SRTM DEM	73
3.10.1	Sensitivity Analysis	73

3.10	.2 Preparation of RRI models for 10 and 50 year return period flood74
3.11	Improve models with satellite land-use data and soil moisture data75
3.12 mois	Develop RRI model using AWS and satellite land-use data and soil sture data
3.13	Evaluation of the adequacy of existing rain gauge/ AWS system80
4.	Results and Discussion
4.1	Impact of DEM81
4.1.1	Comparison between different DEM Products
4.1.2	2 Delineation of Watershed from different DEM products
4.1.3	3 Impacts of land-use variation on DEM
4.1.4	Effect of DEM product on RRI simulation
4.2	Validation of RRI model91
4.3	Impact of land-use data95
4.3.1	Sensitivity analysis95
4.3.2	2 Effect of land-use data on RRI Simulation
4.4	Improved RRI Models using satellite-based data for 2017 flood events105
4.5	RRI Models using AWS, and satellite-based data107
4.6	Comparison between typical and modified RRI models112
4.7	Adequacy of rain gauges/ AWS114
5.	Conclusions and Recommendations116
5.1	Conclusions116
5.2	Recommendations
6.	References
App	endix – A
A.1.	Cross-section at Hanwella
A.2.	Cross-section at Nagalagam Street

LIST OF FIGURES

Figure 1.1: Site Map of the study region	.4
Figure 2.1: Kelani river basin2	24
Figure 2.2: Location of Meteorological stations, Agromet stations, and Rain gauge	es
by the Met Department in the study region	1
Figure 2.3: Locations of CUrW weather station inside Kelani Catchment	2
Figure 2.4: Location of CUrW water level gauges	34
Figure 2.5: Locations of Hydrometric Stations on the Kelani River Basin	5
Figure 2.6: Modelling Process	7
Figure 2.7: Spatial structure of a lumped model4	2
Figure 2.8: Spatial structure of a semi-distributed model4	2
Figure 2.9: Spatial structure of a distributed model4	3
Figure 2.10: RRI model structure	5
Figure 2.11: Model structure of WEB-RRI	51
Figure 3.1: Methodology Flow Chart	3
Figure 3.2: Delineation of DEM5	7
Figure 3.3: Delineation of flow direction data	8
Figure 3.4: Delineation of Prepared flow accumulation data	8
Figure 3.5: DEM, flow direction, and flow accumulation of the Lower Kelani Rive Basin using HydroSHEDS DEM	er 59
Figure 3.6: DEM flow direction and flow accumulation of the Lower Kelani Rive	ər
Basin using SRTM DEM	50
Figure 3.7: DEM, flow direction, and flow accumulation of the Lower Kelani Rive	er
Basin using ASTER DEM6	60
Figure 3.8: DEM, flow direction, and flow accumulation of the Lower Kelani Rive	er
Basin using ALOS PALSAR DEM6	51

Figure 3.9: Adjusted DEM, and flow direction of the Lower Kelani River Basin using HydroSHEDS data
Figure 3.10: Adjusted DEM, and flow direction of the Lower Kelani River Basin using SRTM data
Figure 3.11: Adjusted DEM, flow direction of the Lower Kelani River Basin using ASTER data
Figure 3.12: Adjusted DEM, flow direction of the Lower Kelani River Basin using ALOS PALSAR data
Figure 3.13: Simulation period selection for initial RRI model
Figure 3.14: Rain gauge Map64
Figure 3.15: Input rainfall data format64
Figure 3.16: RRI control file
Figure 3.17: Total rainfall distribution in the study region
Figure 3.18: Hyetograph of the watershed during the 2016 flood event
Figure 3.19: Cumulative Rainfall vs. Time
Figure 3.20: Land use variation in the Kelani river basin (<i>Natural Resource Profile of the Kelani River Basin</i> , 2016)
Figure 3.21: Discharge boundary conditions input files
Figure 3.22: Flood inundation depth (m) on 15 th May 2016 at 3.00 p.m70
Figure 3.23: Hydrograph at Hanwella station70
Figure 3.24: Hydrograph at Nagalagam Steet station71
Figure 3.25: Water Depth at Nagalagam Street Station71
Figure 3.26: Peak inundation depths (m)
Figure 3.27: Visualize inundation depths
Figure 3.28: SMAP Soil Moisture Map on 25 th September 201776
Figure 3.29: AWS locations

Figure 3.30: SMAP Soil Moisture Map on 12 th September 201978
Figure 3.31: SMAP Soil Moisture on 23 rd September 201978
Figure 4.1: Comparison between different DEM products
Figure 4.2: Elevation Difference along the Kelani river basin related to Hanwella Station
Figure 4.3: DEM of Lower Kelani River Basin
Figure 4.4: Lower Kelani River Basin boundaries of different DEM85
Figure 4.5: Elevation difference in a different version of DEM related to land-use86
Figure 4.6: Elevation difference in different versions of DEM related to land-use change
Figure 4.7: Simulated discharge at Hanwella and Nagalagam Street using different DEM
Figure 4.8: Simulated water level at Nagalagam Street using different DEM
Figure 4.9: Flood Inundation from RRI model using HydroSHEDS DEM
Figure 4.10: Flood Inundation from RRI model using SRTM DEM90
Figure 4.11: Flood Inundation from RRI model using ASTER DEM90
Figure 4.12: Flood Inundation from RRI model using ALOS PALSAR DEM90
Figure 4.13: Simulated Hydrographs at Hanwella and Nagalagam Street for 2017 flood event
Figure 4.14: Water depth at Nagalagam Street for 2017 flood event
Figure 4.15: Flood Inundation for 2017 flood event
Figure 4.16: Simulated Hydrographs at Hanwella and Nagalagam Street for 2018 flood event
Figure 4.17: Water depth at Nagalagam Street for 2018 flood event
Figure 4.18: Flood Inundation for 2018 flood event94
Figure 4.19: River runoff variation with Manning's roughness

Figure 4.20: River runoff variation with effective porosity of the soil96
Figure 4.21: River runoff variation with saturated hydraulic conductivity97
Figure 4.22: Land-use map for the year 200197
Figure 4.23: Land use map for the year 2006
Figure 4.24: Land-use map for the year 2011
Figure 4.25: Land-use map for the year 2016
Figure 4.26: Land-use map for 2019
Figure 4.27: Net area change in each land-use type100
Figure 4.28: Simulated discharge for the 10-year flood
Figure 4.29: Simulated water depth for the 10-year flood101
Figure 4.30: Flood inundation for the 10-year flood101
Figure 4.31: Simulated discharge at Nagalagam street for the 50-year flood102
Figure 4.32: Simulate discharge at Kaduwela station for the 50-year flood102
Figure 4.33: Simulated water depth at Nagalagam Street for the 50-year flood103
Figure 4.34: Simulated water depth at Kaduwela for the 50-year flood103
Figure 4.35: Flood inundation for the 50-year flood104
Figure 4.36: Simulated discharge at Hanwella and Nagalagam street for 2017 flood event
Figure 4.37: Simulated and observed water depth at Nagalagam street for 2017 flood event
Figure 4.38: Simulated flood inundation for 2017 flood event
Figure 4.39: Simulated discharge at Hanwella and Nagalagam Street for rainfall event from 12 th to 22 nd September 2019
Figure 4.40: Simulated and observed water depths at Nagalagam Street for rainfall event from 12 th to 22 nd September 2019

Figure	4.41:	Simulated	flood	inundation	for	rainfall	event	from	12^{th}	to	22 nd
September 2019										.109	

Figure	4.43:	Simulated	and	observed	water	depth	at	Nagalagam	Street	from	23 rd
	S	September 2	019	to 30 th Sep	otembe	r 2019					.110

Figure	4.44:	Simulated	flood	inundation	for	rainfall	event	from	23 rd	to	30 th
	Se	eptember 20	19								.111

LIST OF TABLES

Table 2.1: Details of DEM (Source: (Lakshmi & Yarrakula, 2019), (METI/ERSDAC
et al., 2009))19
Table 2.2: Flood level classification of the Kelani River 25
Table 2.3: Historical flood data in the Kelani river basin
Table 2.4: Daily rainfall throughout the flood period
Table 2.5: Annual average streamflow trends of six stations in Kelani river basin28
Table 2.6: Annual average rainfall trends of eight stations in Kelani river basin29
Table 2.7: Annual average temperature of Colombo and Nuwara Eliya stations30
Table 2.8: Meteorological stations, Agromet stations, and Rain gauges by theDepartment of Meteorology in the study region
Table 2.9: Locations of CUrW water level gauges in the Lower Kelani River Basin 34
Table 2.10: Rainfall stations functioned in Kelani Catchment
Table 3.1: Capabilities of Hydrological models
Table 3.2: Required data for model
Table 3.3: Data for estimation of potential evapotranspiration
Table 3.4: Manning's roughness, effective porosity, and saturated hydraulic conductivity for each land-use type
Table 3.5: Soil moisture condition in 2017 flood event
Table 3.6: Soil moisture condition of each land-use type
Table 4.1: Statistical Coefficient of DEM products relative to 12.5 m gridded ALOS
PALSAR DEM82
Table 4.2: Area of the watershed for different DEM products 84
Table 4.3: Performance Indices for RRI model using different DEM
Table 4.4: FIT indices of RRI models using different DEM

Table 4.5:	Performance	indices	of RRI	model for	or 2016,	2017,	and 2018	flood	event
									95

Table 4.6: Total area of each land-use type for 2001, 2006, 2011, 2016, and 201999
Table 4.7: Total area of each classified inundation depth for the 50-year flood104
Table 4.8: Aggregate Manning's roughness, effective porosity, and saturated hydraulic conductivity for each year
Table 4.9: Performance indices for RRI model using real-time and satellite data112
Table 4.10: Comparison between typical and modified RRI models 112
Table 4.11: Optimum Number of Rain gauges for each flood event
Table 4.12: Optimum Number of AWS for each flood event 115

LIST OF ABBREVIATIONS

ANN	Artificial Neural Network
AWS	Automated Weather Station
СК	Co-Kriging
CMORPH	CPC Morphing Technique
CUrW	Center for Urban Water
DEM	Digital Elevation Model
GAM	Generalized Additive Model
GPM	Global Precipitation Measurement
GSMap	Global Satellite Mapping of Precipitation
GWR	Geographically Weighted Regression
HASM	High Accuracy Surface Modelling
IDW	Inverse Distance Weighting
KED	Kriging with External Trend
ME	Mean Error
ОК	Ordinary Kriging
\mathbf{R}^2	Coefficient of Correlation
RK	Regression-Kriging
RKNNRK	Regression Kriging and Neural Network Residual Kriging
RMSE	Root Mean Square Error
RRFA	Regional Frequency Analysis
SiB2	Simple Biosphere Model-2
STRFA	at-site frequency analysis
TRMM	Tropical Rainfall Measuring Mission
UK	Universal Kriging
WEB-DHM	Water and Energy Budget Distributed Hydrological Model
WEB-RRI	Water, and Energy Budget based Rainfall-Runoff-Inundation