23/DON/48/10

ANALYSIS OF FLASH BUTT WELDING CRACKS IN RIM MANUFACTURING

LIBRARY
UMTVERSITY OF MORATUWA, SRI LANGA
MORATUWA

A dissertation submitted to the

Department of Mechanical Engineering of the University of Moratuwa
in fulfillment of the requirements for the

Degree of Master of Engineering in Manufacturing Systems

Engineering

SANJEEWA PRASANGA KURUNDUWA HEWAGE

Supervised by: Dr. N. Munasinghe

University of Moratuwa

93933

Department of Mechanical Engineering
University of Moratuwa, Sri Lanka
December 2008

 $\frac{93933}{621-7(043)}$

DECLARATION

This Dissertation paper contains no material which has been accepted for the award of any other degree or diploma in any University or equivalent institution in Sri Lanka or abroad, and that to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference is made in the text of this Dissertation. I carried out the work described in this Dissertation under the supervision of Dr. N. Munasinghe

UOM Verified Signature

28.04.09

Signature:

Date:

Name of Student : S.P.K. Hewage

Registration No : 04/8637

UOM Verified Signature

Signature

Date : 28.04.2009

Name of Supervisor : Dr. N. Munasinghe

Abstract

Flash butt welding is a well established economical process for solid state butt welding. It consists indirect electrical heating of the ends of the work pieces to be welded and forging them together. While heating, a thermal distribution characterized by a steep temperature gradient is established along the axial length of the pieces. Flash butt welding is widely used for steel band welding in wheel industry. Major advantages are economical in operation, suitable for mass production and high in joint strength.

Loadstar (pvt) Ltd has six flash butt machines in different production lines for rim and band manufacturing. The major problem is considerably high amount of scrap percentage due to welding cracks. This problem severely affects the lines which have severe forming or stretching operations in latter stages. For this investigation the line 05 was selected which has high scrap percentage. The main aim of this study is to analyze the flash butt welding cracks in rim manufacturing and to find out the main reasons for the defects.

University of Moratuwa, Sri Lanka,

The analysis of flash butt welding cracks in rins manufacturing is done in five stages. In the first stage, attention is paid to literature survey, in which the present stage of the researches carried out in the industry regarding the flash butt welding is discussed. Only few literature sources are available although there are many wheel manufacturing companies in the world. Certainly there might be a lot of researches carried out under this topic in the history, but due to high competitiveness among the companies the research outcomes might be kept as company secrets. In this project, the analysis of flash butt welding cracks in wheel manufacturing will be discussed in detail.

The second stage is process description and principles of flash butt welding. Third stage is problem identification and the fourth stage is methodology to solve the problem. In methodology it has stated that the identified process variables that affect the welding quality and how further testing are carried out. Experimental work and results are reviewed under the fifth stage. In this chapter, the testing done for research is discussed in detail and final conclusion is on how the increasing advance velocity of the movable jaw of flash butt machine while keeping the same voltage will give better results in weld joints for SS 400 material.

Acknowledgements

I would like to express my sincere gratitude to Mr. Tissa Jinasena, Chief Execute Officer, Loadstar (pvt) Ltd. for giving an opportunity to follow this MEng / PG Diploma in Manufacturing Systems Engineering. Otherwise I never have an opportunity to do this reasearch project.

Also I would like to express my gratitude to Dr. N. Munasinghe, one of the experts in welding and material science who is really busy but accepted my request to supervise this project. Under his guidance this project directed to a meaningful end.

I would like to extend my special thanks to course coordinator, Dr. G. Wathugala, for his guidance and flexible arrangement of course schedule. Also I would like to express my gratitude to all the lecturers who conduct lectures in MEng/PG Diploma in Manufacturing Systems Engineering as their contribution also helped me to make this University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

My personal thanks are also specially dedicated to General Manager of Metal Product Division of Loadstar (pvt) Ltd, Mr. H.M.P Jayawardhana for his support by giving permission to use company facilities for my research project.

Also I would like to pay my sincere gratitude to all the staff members and members of line 05 in Loadstar (Pvt) Ltd for the given support to carry out different testing under a lot of difficulties. Also I would like to extend my gratitude to the Head of Materials Engineering Department, Dr. S. U. Adikari for giving permission to use metallurgical laboratory. The support given by Mr. G. U. C. Menaka and Mr. G. H. R. C. Aariyarthana, the trainee undergraduates of Moratuwa University and Mrs. R. A. R. M. P. Ranasinghe are also acknowledged. Finally I would be thankful to all those who have helped me in many ways to complete my research thesis successfully.

S. P. K. Hewage December 2008

Content

1.0 I	ntroduction	1	
1.1	Introduction to the Organization	1	
1.2	Products	1	
1.3	Industrial and Construction wheels and Rims		
1.4	Kyoto Line description	3	
1.5	Products of Kyoto wheel Division	4	
1.6	Construction rim production	5	
	1.6.1 Flanges production process	6	
2.0 I	Literature Survey	9	
2.1	Welding as a joining process	9	
2.2.	Welding processes University of Moratuwa, Sri Lanka.	10	
2.3	Flash butt welding tronic Theses & Dissertations	13	
	2.3.1 Typical applications of flash butt welding	15	
2.4	The principle of flash butt welding	16	
	2.4.1 Preheating	17	
2.5	Flash butt machine components	17	
	2.5.1 Main frame	17	
	2.5.2 Work clamping mechanisms	17	
	2.5.3 Upsetting Mechanism	19	
2.6	Principles of operation	19	
	2.6.1 Welding conditions	21	
2.7	Process Variables	22	
	2.7.1 Flashing voltage	22	
	2.8.2 Flashing time	23	
	2.8.3 Upsetting	23	

	2.8	Flash butt welding defects			24
		2.8.1	Oxides		25
		2.8.2	Die burns		25
		2.8.3	Voids		26
		2.8.4	Cracking		26
	2.9	Resear	rches done to over	come flash butt defects	27
		2.9.1	Flashbutt weldin	g defects reduction by machine improvements	28
		2.9.2	Flashbutt weldin	g defects reduction by material improvements	31
3.0	Pro	oblem i	identification		34
4.0	Ex	perime	ental procedure		39
	4.1	Machi	nes used		39
	4.2	Materials used			40
	4.3	Experimental set up University of Moratuwa, Sri Lanka.			41
	4.4				46
		4.4.1	Shape and dimen	o.mrt.ac.lk asions of test specimens	46
		4.4.2	Test specimens	for appearance test	47
		4.4.3	Test specimens	for tensile test	47
		4.4.4	Test specimens	for bend test	47
		4.4.5	Test specimens	for Hardness test	48
		4.4.6	Test specimens	for macro section	48
	4.5	Sample preparation			48
	4.6	Testin	g and examination	1	49
		4.6.1	Extent of testing		49
		4.6.2	Visual examinati	on	50
		4.6.3	Macro section		50
		4.6.4	Tensile test		51
		4.6.5	Bend test		51

	4.	6.6. M	icrostructure examination	51
	4.	6.7 Ha	ardness distribution	52
5.0	Results and discussion			54
	5.1	Tensil	le test results	55
	5.2	Result	ts of bending test	56
	5.3	Micro	structure examination	57
6.0	Conc	lusion		61
7.0	Refer	ences		62
8.0	3.0 Appendices			63
	Anne	x I :	SAP production reports	64
	Anne	x II :	Quality network focus points	73
	Anne	x III :	Sample tensile test graphs	76
			University of Moratuwa Sri Lanka	

List of Figures

		Page
Figure 1.1	- Products	1
Figure 1.2	- Layout of the plant	2
Figure 1.3	 Schematic diagram of construction wheels 	4
Figure 1.4	- Schematic diagram of tubeless wheels	4
Figure 1.5	- Schematic diagram of split wheels	4
Figure 1.6	- Schematic diagram of multi piece wheels	4
Figure 1.7	- Construction wheel	5
Figure 1.8	- Schematic diagram of a construction wheel	5
Figure 1.9	- Schematic diagram of a construction rim	6
Figure 1.10	- Components of a construction rim	6
Figure 1.11	Basic Flange production process Electronic Theses & Dissertations	7
Figure 2.1	Oxy-fuel welding and cutting equipment	11
Figure 2.2	- Shielded metal arc welding equipment	11
Figure 2.3	- Gas tungsten arc welding equipment	12
Figure 2.4	 Gas metal arc welding equipment 	12
Figure 2.5	- Flash welding	13
Figure 2.6	 Flash butt welding machine for band welding 	14
Figure 2.7	- Principle of flash butt welding	16
Figure 2.8	- Machine components of flash butt machine	17
Figure 2.9	- Basic steps in flash butt welding	19
Figure 2.10	- Flash welding, current, Force and time Variables	22
Figure 2.11	 Satisfactory heat and upset 	26
Figure 2.12	- Insufficient heat or upset or both	26
Figure 2.13	- Cracks due to insufficient heat	26

Figure 2.14	- Behavior of Flashing Voltage and Flashing Current	28
Figure 2.15	- Arc energy	29
Figure 2.16	 Displacement vs Time graph for flash butt welding 	30
Figure 2.17	- SEM image of fractured surface in defect area	31
Figure 2.18	 Effect of preheating and upsetting length on weld crack 	32
Figure 2.19	 Cross-section of welds 	33
Figure 2.20	 Effect of C and Si contents on weld crack length 	33
Figure 3.1	 Comparison of Total production, rework and scrap 	
	in May 2008	34
Figure 3.2	 Segmented production summery in May 2008 	35
Figure 3.3	 Rework segmentation in May 2008 	35
Figure 3.4	 Comparison of Total production, rework and scrap 	
Figure 3.5	University of Moratuwa, Sri Lindune 2008 Segmented production summery Injune 2008 www.lib.mrt.ac.lk	36 36
Figure 3.6	 Rework segmentation in June 2008 	37
Figure 3.7	 Comparison of Total production, rework and scrap 	
	in June 2008	37
Figure 3.8	 Segmented production summery in July 2008 	38
Figure 3.9	 Rework segmentation in July 2008 	38
Figure 4.1	 Section drawing of BG profile 	40
Figure 4.2	 Cause and effect analysis for flash butt defects 	41
Figure 4.3	 Cooling system improvements 	42
Figure 4.4	- Temperature readings after cooling system improvements	42
Figure 4.5	 Monitoring the behavior of machine performance 	43
Figure 4.6	 Spark eroded cavities in electrode path 	44
Figure 4.7	 LABVIEW system for parameter setting 	44
Figure 4.8	 Test sample preparation 	48
Figure 4.9 –	Measuring of insufficient welding	50

Figure 4.10	_	Sample selection for microstructure examination	51
Figure 4.11	_	Microstructure examination points of selected sample	52
Figure 4.12	_	Example of measuring positions for section hardness	53
Figure 5.1	_	Behavior of weld cycle time against advanced velocity	54
Figure 5.2	_	Behavior of weld strength and elongation against advanced	
		velocity	55
Figure 5.3	-	Bend testing	57
Figure 5.4	_	Microstructures at different locations of the samples with	
		different advance velocities	58
Figure 5.5	_	Microstructures of two advance velocities at different	
		locations	59

List of Tables

Table 2.1	 Effect of variables on flash and upset weld quality 	27
Table 2.2	 Chemical compositions of steels used 	
	in research (mass%)	32
Table 3.1	 Segmented scrap summary in May 2008 	35
Table 3.2	 Segmented scrap summary in June 2008 	36
Table 3.3	 Segmented scrap summary in July 2008 	37
Table 4.1	 Welding parameter settings for flash welding specific 	
	to BG profile	39
Table 4.2	 Properties of profile materials used. (mass%) 	40
Table 4.3	- Testing and examination of the test specimens	
	according to ISO 15614-13:2005(E)	47
Table 4.4	- Advance velocity settings used for the testing inka.	49
Table 5.1	Behavior of weld strength against Advance velocity	
	www.lib.mrt.ac.lk settings	55
Table 5.2	- Behavior of bending strength against Advance velocity	
	settings	56