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Abstract

Intelligent robot companions contribute significantly in improving living standards in
the modern society. Therefore human-like decision making skills and perception are
sought after during the design of such robots. On the one hand, such features enable
a robot to be easily handled by a non-expert human user. On the other hand, the
robot will have the capability of dealing with humans without causing any disturbance
by the its behavior. Mimicking human emotional intelligence is one of the best and
reasonable ways of laying the foundation for such an emotional intelligence in robots.
As robots are widely deployed in social environments today, perception of the situation
or the intentions of a user prior to an interaction is required in order to be proactive.
Proactive robots are required to understand what is communicated by the human body
language prior to approaching a human. Social constraints in an interaction could be
demolished by this assessment in this regard.

This thesis addresses the problem of perceiving nonverbals in human behavior and
fusing human-environment semantic representations with a robot’s cognition before
interacting with humans. The novelty lies in laying the background to relate nonverbal
human behavior and the features of the environment to generate context-aware
interactive responses during robot-initiated interaction. That informs the robot about
its environment. Toward this end, we introduce novel methods of perceiving human
nonverbals and spatial factors in the environment which make up a context in which
we integrated that knowledge to determine appropriate responses from a robot to assist
its user. Visual information acquired by a vision sensor was analyzed, and the level of
emotional engagement demanded by the user’s nonverbals was evaluated, before a robot
initiates an interaction. After such an analysis, a robot’s conversational and proxemic
behavior was adjusted to maintain an empathetic relationship between the user and
the robot. Our algorithms efficiently sustained the empathy between user and robot so
that the interaction resembles human-human interaction to a larger extent. To assist
the main problem, we formulated novel methods to recognize human nonverbals such
as postures, gestures, hand poses, psychophysiological behavior of humans and human
activities, and decode the emotional hints displayed to the outside world. In support
of this work, we conducted a series of human studies to explore the patterns in human
behavior which could be perceived by a proactive robot using its cognitive capabilities.

We introduce separate systems which can decode the sentiments of humans using
observable cues based on accepted social norms. We detail the meanings of human
nonverbals by observing human behavior over time and evaluating the context for
any patterns in behavior. Ambiguities in human behavior and random, meaningless
behaviors could be omitted through this approach. This approach further omits the
negative effect of human responses that can be faked, such as facial expressions and
words. Finally we introduce an adaptive approach towards robot-initiated human-robot
interaction by letting a robot observe a context and generate responses while changing
its responses continuously as human behavior changes. We first developed algorithms
based on a limited number of observable human cues and decoded their sentiments
based on modern psycho-physiological interpretations of human behavior. Next,
we expanded such approaches towards multiple observable human cues. Finally we
integrated observations from the human and the environment which create the context
during HRI (Human-Robot Interaction). Hence we integrated all the recognition
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approaches to perceive a complete scenario which comprises the user, robot and the
environment.

Upon unimodal systems to identify these features independently, we propose a multi
modal approach to evaluate above features together to understand a scenario. Through
this approach, we took an effort to make proactive behavior of a social robot
more instinctive, ethical and socially acceptable or simply, humanlike. We evaluate
this approach by means of physical experiments in simulated social and domestic
environments and demonstrate its performance in appropriate occasions as determined
by a robot according to the formulated criteria of perceiving a context.

Keywords- Nonverbal behavior, Interaction initiation, Proactive robots,
Social Human-robot Interaction
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Chapter 1

INTRODUCTION

1.1 Development of assistive robots

Today, robots are deployed in our environments to make most of the tasks

easier. Such robots are expected to have a general sense of the outcomes of

their behavior in human-robot collaborative environments. Many robots entering

social environments are expert in only one or a few given specific tasks. Two

such smart robots used for cooking and cleaning are shown in Fig. 1.1 and

Fig. 1.2. Cleaning robots [1], rescue robots [2], shopping assistants [3] and

healthcare robots [4] are some examples for task-specialized robots which require

lesser overall emotional intelligence. However with the deployment of robots

in social environments, robotic systems have become a demonstrator of social

and emotional interaction among humans and robots [5, 6]. Therefore in the

decades to come, the hospitality and emotional intelligence of artificial agents

are expected to increase with their wide variety of social applications. Most

significantly, the robots have to match between a particular situation and their

emotional behavior [7].

Some situations urge a robot to take decisions regarding the pattern of

interaction expected. Such situations request a conscious observation. Such

robotic systems are already used in teaching, childcare and other social domains.

These systems still require development to adjust according to unexpected

situations where human intentions change. Simulating and comprehending
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Figure 1.1: An example of a cooking robot

diverse social behaviors of humans is a challenging, and yet sought after feature

to be engraved into a robot’s personality [8]. In contrast, there are humanoid

robots which can replicate typical human characteristics in the form of physical

appearance, movements, words, facial expressions, etc. An example system in

which robot’s responses evolved by means of an adaptive behavior is presented

in [9].

Figure 1.2: An airport cleaning robot
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Human ascribes upon robots must be considered before planning this present

robot’s intelligence. For instance, creators in [10] researched how robots can

enhance the personal satisfaction of senior citizens by being a partner to defeat

loneliness. Here, individuals’ mentality that robots are performing overwhelming

undertakings but still lacking in intelligent conduct, could be changed with

such an approach. For example [11] are models for fall detection of elderly by

robots. Thus, robots are acknowledged by numerous communities as a partner

having the required capacities installed within. In such situations, following

a decorum; essentially a “robotiquette” acknowledged by people is expected

[12, 13]. Somehow numerous reactive techniques for human-robot domains have

been set up so far, but yet not many proactive strategies were settled [14].

On the other hand, we live in a complex environment filled with various

distinct phenomena. In the mean time, we revolve around other people we

daily meet and incidents that happen in the surrounding. We react to people

and phenomena around ourselves in various means, based on the nature of a

particular situation. Our reactions are visible to outside through behavior. Out

of such reactions, words, expressions and physical movements are powerful drivers

of human behavior [15]. Perception of such behaviors by such robots is beneficial

in this regard.

Preference-based collaboration with robots is a demanding viewpoint in

human-robot shared situations [16]. In such circumstances, adopting supportive

behaviors which rely on the insight, instead of playing out a requested task are

required. Fitting such smart conduct is as critical as challenging. This is because

of the multifaceted and complex nature of human conduct and perceiving such

practices, outcoming the difficulties in innovation and environment. Accordingly

human-level prediction of situations still needs enhancement [17].

A set of observable cues extracted from humans and their environment can be

used as demonstrators for a perception model to simulate a human-robot scenario.

Hence the level of interactivity within a situation can be determined. Nonverbal
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features of perceiving a situation are the most prominent and effective for an

evaluation of the situation prior to an interaction. Understanding nonverbal

behavior or the body language elevates decision making capabilities related to

the interaction initiation by a robot, as the system outputs a measure of the

emotional state in the human-robot encounter. Two such encounters are shown

in Fig. 1.3. In the first instance in Fig. 1.3(a), the user gives instructions to

follow. Hence the perception of the object placement, user’s gestures and voice

instructions will be adequate to perform the task. In contrast, Fig. 1.3(b) shows

an occasion in which the user was unaware of the robot’s presence. In both the

situations, the state of the user is determined by the intentions of him/her as well

as factors that exist in the surrounding environment. As Fig. 1.3 (b), objects

and people make the environment, while intentions of the user are responsible

for the factors within him/herself which might also affect the emotional state

of that situation. In order to deliver a service in a polite and socially accepted

manner, the robot can adjust it’s approach behavior, dialogs and other actions

regarding interaction to match the situation. User’s engagement in the task and

interest for an interaction have to be predicted by the robot based on the factors

Move to 
this side.. user objects, people

robot

user

robot

(a) (b)

Figure 1.3: Example scenarios where the required level of situation-awareness
differs.
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visible in the scenario. Hence perception of emotional, social, psychological and

other aspects of the situation become prominent during this type of scenario. The

algorithms outlined within this thesis allow a robot to observe such a context,

decode human nonverbals and generate context-aware responses to initiate an

interaction to support its user at its maximum.

1.2 Building Attentive Robots

Theory of Mind (ToM) has been developed in order put various attributes

in mind together, to reason out a certain behavior and it has often been used

to evaluate abnormal or awkward behaviors which have been deviated from the

accepted level of behavior [18,19]. The Theory of Mind has been used in several

architectures to perceive human intention associated with a specific situation [20],

but these approaches still estimate user’s preferences based on a limited number

of cues from its environment. Henceforth adequate evaluation of a situation is

critical for emotional intelligence.

1.2.1 Study of human behavior

A human’s intention alters involuntarily upon the factors that prevailed already

in the surrounding. This perception will be based on various parameters including

the individual’s beliefs. Hence, the user’s reaction upon an interaction which

has been initiated by the robot will take different forms depending on the

scenario. Responses that are most likely to be displayed from a human during a

human-robot interaction scenario, can be used to assess human behavior during

the study [21]. Such observable responses are listed below.

� Gaze - Maintaining or returning to original gaze e.g: looking at the robot

and/or looking away
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� Gestures - Using mainly hand gestures e.g: waving hand, calling in

� Postures - Changes in existing posture e.g: sitting to standing posture

� Utterances - Verbal responses e.g: “Hello”, “May I get you something?”

� Movements - Random or intentional movements associated with activity

� Expressions - Facial expressions e.g: smile, disgust, frown

These responses devote to perceive and evaluate attitudes, attention,

expectations, subjective norms and perceived behavioral control mainly as

explained by the theory of planned behavior.

There are many cognitive and psychophysical theories to explain human

behaviors as well as the behavior of a robot. Even so, we still lack a model

to perceive and predict appropriate behaviors for both the human and the robot

during a human-robot encounter. Humans make an instant evaluation of the

surrounding and its people before approaching anyone. As robots are widely

deployed in social environments, a similar perception of the situation around

its human user prior to an interaction is required. Social constraints during an

interaction could be demolished by this assessment. Through this research, we

tried to utilize such theories and build a criteria for multimodal cognition of a

social robot to interact with humans.

As the basic idea of this thesis is to evaluate the requirement of providing

the robot with the ability of understanding situations or ‘cognition’, we deployed

these theories to investigate how to lay a justifiable background for this. Hence

the cognition in a situation will relate the connection between human’s state and

his/her behavior. Such an approach facilitates a dynamic interplay of flexibility

and adaptation in robot.
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1.2.2 “Meet, Perceive and Act”

Many of the today’s robotic systems are intended to act according to a certain

goal. But there are occasions at which ‘not acting’ is the most appropriate

behavior to suit the condition in that environment. Hence perception of the

situation is important in determining such behavioral requirements.

1.2.3 Multimodal perception

In an normal environment people use to interact with others and the

environment using more than one modality. They speak, use gestures and

look at things to interact with environment and other humans. By listening to

different voice tones, looking at face gazes and arm movements people understand

communication cues. Interaction among humans and animals tend to show a

multimodal behavior due to their biological build. Studies regarding superior

colliculus have revealed that different senses are segregated initially at the neural

level. When those senses reach the brain, sensory signals are converged to the

same target area in the superior colliculus. It also receives signals from the

cerebral cortex and in turn modulates resultant behavior. Also, studies show

that about 75% of neurons leaving the superior colliculus are multisensory. These

particulars encourage the multimodal interaction in HRI especially in social

environments. Aside of the concepts of unimodal and multimodal interfaces, what

really matters is the implementation of those concepts. It requires the assistance

of the field of sensory data fusion. Furthermore Statistical data analysis goes

hand in hand with data fusion. Therefore we tested our algorithms upon robot’s

perception with a thorough analysis of statistical data gathered.

After an insightful evaluation of its context, including its user, a robot will

be capable of generating context-aware responses towards a human, rather than

acting upon a predefined set of behaviors.
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1.3 Problem Statement

This thesis addresses the problem of engraving adequate insight and social

intelligence into proactive social robots to initiate interactions with its human

user. To achieve our objectives in this regard, we tackle the following three

problems. First, we address the problem of recognizing features that make

up a context and have an impact upon the human-robot interaction scenario.

Within this scope, we considered both human features such as nonverbals

and environment features such as space and objects. Second, we introduced

simple models which can analyze a certain human-robot encounter to assess the

favorability of the situation for an interaction. Initially, such models were limited

to a small number of features and, the complexity of models was enhanced and the

number of observed features were increased as the third solution to our problems.

Finally, these context-awareness models were improved to adapt dynamic user

behavior and tackle individual differences in human behavior. We investigate

how a robot can perceive the state of its user and the environment to generate

appropriate responses in order to support the user. Furthermore we develop

cognitive architectures for a social robot to enhance empathetic behavior of a

robot during HRI, based on our findings. Adaptive models were based on these

cognitive architectures to perceive human intent and generate proactive responses

to match the scenario.

1.4 Thesis Contributions

1.4.1 Identifying observable human behavior

A situation between a human and a robot consists of the robot itself, the

user (human) and the environment around the robot and human. When the

robot intends to perceive such a situation, it first has to identify interactive
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factors within itself, the environment and the user. Factors within the robot

itself include the dialog patterns the robot generates, maintaining an interactive

distance in between, and displaying appropriate behavior, etc. Factors within

the user will be numerous, but emotions, social norms, beliefs, personality traits,

activities the user involved in and other psychophysiological factors contribute

majorly to decide the level of interaction readiness within a human. Objects and

other humans in the surrounding, obstacles, etc. make the list of factors in the

environment which have to be perceived by the robot.

We conducted several user studies to first monitor how humans respond

towards such different scenarios within their environment. Human behavior

in daily encounters during human-human interaction (HHI) were evaluated and

compared with their responses towards social robots placed for their assistance

during human-robot interaction. Most of the human studies were conducted by

means of wizard-of-oz (WoZ) experiments. A typical setup during an experiment

is shown in Fig. 1.4. In this scenario, the user is involved in a desk activity in

the bed room. In order to understand the whole situation, the robot has to be

knowledgeable on three aspects; itself, the user and the surrounding environment.

Factors related to these three aspects are marked as 1, 2 and 3 respectively.

Implications derived from these human studies were used in the development of

cognitive models for social robots in the next stages of research.

1.4.2 Recognizing components embodied in a context

A context is made of its people and the objects. Such attributes and the

semantic relationships between them have to be correctly perceived and mapped

for their meanings or general interpretations to understand a particular scenario.

This requirement is the same during human-robot interaction. Therefore

recognizing the compnents which make up a context is the next stage of this

research. We focused on recognizing human features such as posture, movements,

upperbody gestures and several other nonverbals to a great extent in this research,
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Figure 1.4: An example domestic environment is shown.

but we used existing methods to recognize the environment as well. The reason

for this is that, it is important to perceive both these aspects: user and the

environment in order to have a complete understanding of a scenario.

1.4.3 Decoding nonverbals to interpret user situation

There are numerous components associated with a scenario which nonverbally

signals the requirements or sentiments within that scenario. Such components are

illustrated in Fig. 1.5. Semantic relationships between each component have to be

understood to model the situation and generate appropriate responses from the

robot. Such an understanding is required to ensure maximum user satisfaction by

not violating user expectations during robot-initiated interaction with the user

and in the meantime, to serve any requests of the user. Hence the robot can

get ‘experience’ by interacting with people and evaluating their responses during

different occasions. This ‘experience’ will help cognitive models to generate more

context-aware actions from the robot. Therefore we developed our Cognitive

models based on these components of a context.
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Figure 1.5: Different types of settings and components associated with
human-robot encounters and the process of decision making are shown.

1.4.4 Adapting to a situation

Complexity of human behavior outstands the complexities in environments

during proactive HRI. Therefore perceiving individual differences in users’

personalities and the nature of performing activities is important in achieving

intelligent proactive behavior of a robot. Besides, there are dynamic changes in

the environment such as the placement of objects, time of the day etc. Hence

we improved our cognitive models into adaptive approaches which are able to

perceive such dynamic changes in a context in the end.

1.5 Thesis Overview

Overview of this thesis can be summarized as follows.

� Chapter 2- Literature Review. Existing systems for interaction with humans

and possible improvements are discussed. Furthermore, the proposed

system and the research gap is presented.
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� Chapter 3- Presents the design of the system. Overview of the proposed

system and hardware used in the implementation of proposed system are

presented.

� Chapter 4- Human studies conducted in support of the research are

explained. These studies include experiments, wizard-of-oz studies and

surveys.

� Chapter 5- Novel approaches introduced during this research for the

recognition of nonverbals within humans are explained. Among these are

gesture, pose, movements, activity space and human activity recognition.

� Chapter 6- A fuzzy-logic based approach was introduced to decode multiple

nonverbals and evaluate human attention towards the presence of a robot.

� Chapter 7- The previous approach was extended to an autoregressive model

to perceive human behavior to evaluate a situation prior to an interaction

initiated by the robot.

� Chapter 8- This chapter introduces an approach to determine proxemics

and orientation of the robot during an interaction scenario.

� Chapter 9- A learning and adaptive approach is developed as an extension

of the previous systems. This system is based on reinforcement learning

and is an integration of previous recognition techniques as well.

� Chapter 10- Concludes the thesis.
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Chapter 2

LITERATURE REVIEW

2.1 Nonverbal Interaction during HRI

Capacity of making inviting discussions at right occasions is indispensable in

accomplishing a proactive behavior of a robot. Robots are required to have insight

to decide when to cooperate and when not to. When starting communication,

this natural or human-like conduct upgrades joint effort among robots and the

non-master. So as to improve the union between human clients and robots,

robots which can replicate human practices so as to assume the role of a close

contact, for example, ‘companion’ and ‘parental figure’ are being produced [22–

24]. However, the focus of these methodologies is restricted to the investigation

and implementation of strategies that ought to be encapsulated into the robots.

This helps robots to keep up a fluid interaction with their users. However, how

does a robot identify key features to observe during a human-robot encounter?

To find answers to this question, researchers have been trying to establish

common criteria to model human behavior. A large number of the current

frameworks utilize facial expressions and body postures and additionally voice so

as to decide the interaction demanding or the emotional state of a situation [25].

In spite of the fact that voice can be utilized as a factor which demands interaction

from an outsider, this is just conceivable after the user speaks. That is, after

the user initiates the interaction. Meantime, a few methodologies have been

introduced to assess the expressions and body postures during an interaction
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so as to judge user’s likeliness towards an interaction with the robot [26, 27].

However, these realities can be assessed simply after the commencement of the

interaction. Perceived information is used to decide upon the continuation of

interaction flow thereafter. In any case, postures are useful in distinguishing the

interaction demanding of the human subject before beginning a conversation.

Which factors to be selected to analyze a situation is an area which requires

attention. As a situation consists of the robot and its surrounding, factors from

all these three aspects will need to be analyzed. Even so, development of a

criteria which can bring all these factors to a common pool is still confusing and

challenging. Difficulty of quantifying emotional factors for the analysis can be

stated as the reason which retards the progress in respective field of research.

2.1.1 Features to observe

Environmental features

Orientation and locomotion are profound collaborators in ‘interest’ during an

interaction among humans. This fact remains the same during human-robot

interaction as well. Locomotion and attribution of body-based movement as an

interpretation of own intentions are committing factors during HRI [28]. In [29]

provides an example of proactive obstacle avoidance in dynamic environments is

given. Such systems are examples for intelligent agents with situation-awareness

based on spatial behavior of subjects. Spatial arrangement of the two conversant

is an important fact to determine the interactivity of a situation. Furthermore,

the number of outsiders and placement of objects affect both directly and

indirectly towards the emotional state of a situation. The relationships between

people and behavior of the people in the surrounding further affect the responses

of a human to a certain situation. Simply, all the subjects in the environment

which are part of a person’s cognitive mapping have an impact on his/her

behavior [30]. Perception of natural environment such as symbol anchoring [31]
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and tracking dynamic obstacles [32] accounts for a proper understanding of the

environment. However we exclude literature about robot’s perception upon the

environment and robot itself in this review.

Features within a robot

Certain features and practices encapsulated in robots have an effect on

individuals’ willingness to participate in at least a brief interaction with the robot.

Work explained in [33] has displayed a lot of social standards for robot conduct (a

‘robotiquette’) which is convenient and agreeable to people. As indicated by that,

the conceptual space of HRI expects a robot friend in a home to ‘do the correct

things’ and meet their expectations comfortably. Moreover, constant execution

of the robot which pursues human social traditions and standards are bound to

be acknowledged for a long span by its users [34]. In [35], the robot is exemplified

with the ability to express emotions with a humanoid face and demonstrate

attention by turning towards the subject. Creators have theorized that these

highlights were non-negligible prerequisites for a viable social communication

between a human and a robot. Anyway this framework has ignored enhancing

the capacity of the robot to predict or realize user situation before using the

previously mentioned two highlights while having an interaction. This approach

gives an example of socially intelligent behavior of the robot as well. Even so it

focuses on the behavior of the robot rather than that of the human. As per the

model proposed in [36], perception and evaluation are constantly considered

as critical attributes in human-robot interaction.

2.1.2 Earlier Approaches

At the point when these robots are required to perform as domestic

companions, starting a conversation at right events is very demanding among

users. A great part of the users lean toward interaction by means of voice or
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friendly conversations [37]. Such insightful behavior upgrades the attachment and

connection between the user and the robot [22–24, 38, 39]. In this way, gaining

that emotional intelligence is a critical viewpoint concerning social situations.

There have been various psycho-physiological approaches to gain emotional

intelligence through perception of behavior. Cognitive methods to understand the

interactivity during a conversation have already been developed. These address

the problem of identifying the intent of the conversational partner based on verbal

cues and facial expressions. For example, in [40], the engagement of a human is

assessed by the head-nod during a conversation.

In [41], a robot which was an insightful weight reduction mentor has been

presented. This is an excellent example for behavior perception exemplified in

the robot itself and subsequently has been deployed to reduce obesity among

participants. In this case, the robot has been accepted for a long term interaction

as well. Anyway this framework wasn’t completely skilled to perceive rather

general user situations other than monitoring physical health. By incorporating

instinctive behavioral aspects in emotional situations into a robotic architecture,

a higher emotional intelligence as well as a greater user acceptance can be ensured

[42].

There are numerous automated frameworks to shape a discussion between a

human and a robot, yet the ability of these frameworks are restricted simply

after the initiation of an interaction, not before the interaction [43]. Mimicing

human behavior is exceedingly applauded in cooperative discussions [44]. This

methodology is prominent for keeping up interaction which has already been

started, not prior to an interaction. Satake et. al in [45] enhances this scenario

by taking various user cues into scrutiny. Forecasting of walking direction was

valuable in estimating whether the user showed any interest for a conversation.

‘User unaware’ failure was abrogated in this method by moving toward the user

before starting a conversation. In ‘user unaware’ failure, the user leaves the

situation without realizing that the robot approaches to interact with him/her.
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Furthermore, in [45], a model to define an approach behavior for a robot to

initiate a conversation with dynamic users has been proposed. The system was

first intended to use in shopping malls to prevent ‘user unaware’ failure when

a robot approaches a walking user. This mechanism was effective to predict

the intention of dynamic users. Such approaches might not perform in smaller

spaces such as domestic environments, as users adopt much less speeds and short

trajectories in general.

Method proposed in [46] computed the ‘degree of interest’ of a user towards an

interaction with a robot by evaluating the subject’s attention and the distance

from the robot to its subject by using a fuzzy logic based system. This system

could perceive ambiguous situations with a higher accuracy with the help of

linguistic variables that account for the fuzziness. A major concern while having

a conversation is the distancing between the two conversant. Accordingly, the

robot must decide upon the appropriate distancing for their communication before

initiating a conversation. Personal zones suitable for such circumstances were

presented in [47] and [48]. Hence a robot may choose which zone to enter while

having an interaction, depending on the displayed interest of the user.

2.1.3 Modern Developments

A significant number of the past work have investigated the elements which

influence human-robot interaction [33]. However exploring methods of initiation

and maintaining smooth flow of a robot-initiated interaction, have been impeded

due to practical and theoretical constraints. One under-investigated factor in this

manner is perceiving nonverbal human behavior before communication. Once the

robot is able to evaluate nonverbal human behavior at a certain scenario, it could

evaluate the likelihood of initiating an interaction based on the encounter. In

this manner, the impression of user situation is fundamental in such an event.

Conversely, the absence of predictability and the transparency in numerous

advanced mechanical frameworks have adversely influenced human’s trust and
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dependence on robots [49]. A verbal approach for interaction is shown in [50].

During this approach, a robot which reacts dynamically to a visitor is deployed.

Conversational opening is used as a critical influencer in maintaining visitor

engagement. It further analyzed user’s upper-body postures, facial expressions

and head movements as demonstrators of engagement. Likeliness of the robot

being acknowledged as a conversational partner relies upon the surrounding and

also the emotional state of the user. Moreover, it is imperative to investigate

human inclinations towards a communication with a robot since human behavior

before another human could take a different form in comparison to that before a

robot.

In [51], nonverbal user engagement is approximated using initiator and

responder gaze times, face orientation and feedback times for the two speakers as

cues. Bodily postures of humans that are also an interesting parameter just as

the gaze time were excluded in this method.

Mimicking real-world HRI behaviors and simulating scenarios based on

observable information are key features during human-robot collaboration (HRC)

[52]. A predictive and adaptive system based on learning by demonstration is

explained in [53]. This system is an example for robots with supportive behavior

for the user but it does not identify many salient features which portray human

intention. A situation-conscious model is proposed in [54] to improve the design

and interactive capabilities of an industrial robot. These findings show that the

impact of social and spatial environment have to be considered in order to design

a context-aware robot.

In [55], an android system with the capability of monitoring noverbal behavior

of humans. However this cannot generate physically appealing behaviors such as

a robot. There has been systems which were capable to match the appearance

and demeanor as well [56]. Even though such systems cover psychological and

physical aspects in interaction, there should be emotional aspects as well in order

to behave appropriately in social environments.
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A context-sensitive approach to anticipate the human behavior while the

human is followed by a robot has been proposed in [57]. Although this anticipated

human motion while walking, prediction of human behavior during stationary

situations becomes highly dependent of the emotional state and the task of

that human. Hence anticipation of stationary situations is a complex process.

There are CPU-intensive approaches to recognize human activities such as [58].

However less CPU-intensive techniques to monitor human behavior are admired

when real-time decisions have to be taken. Requirement of lesser pre-processing

in such techniques become advantageous in implementing them in real-time.

Perceiving emotional cues that shows affect is important in avoiding

misbehaviors of robots and improving acceptance in human community [59].

Findings suggest that perception of nonverbal behavior positively impacts HRC

and hence the understandability of the robot is increased as well [60]. A situated

interaction method which uses behavioral cues such as proximity, velocity, sound

and posture information is presented in [61]. A virtual companion adjusted

himself according to the situation and outputs an engagement score at each

occasion. Even so only the gaze behavior of the virtual companion was evolved

based on behavioral cues of the user.

2.1.4 Systems with Adaptive Perception of Situation based on Human

Cues

An intuitive, multimodal approach for interaction was introduced in a museum

guide robot in [62]. This robot used audio and video information to shift attention

among humans and to monitor its eye and hand gestures while speaking. This

robot further interacts with multiple users at a time and uses a series of facial

expressions based on users’ interest. This method further determined focus of

attention to be paid on each person based on the time when a person has last

spoken, distance between the person and the robot, and its position relative

to robot’s front. Therefore this method can be stated as a first step towards
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perceiving a situation for adaptive social behavior.

Mead et. al proposed a method to evaluate the perception of distance in [63].

During this approach, robot used gestures and verbal responses of the user to

determine the mutual distance. In [64] a probabilistic approach has been adopted

to analyze the engagement in verbal cues and gestures used by a human during

interaction. However both these approaches are possible only after initiating an

interaction by the user. Hence the task performance of a human-robot team can

considerably be improved by mutually understanding nonverbal cues responsible

for the situation [65]. Therefore perception of nonverbal cues related to human

behavior and relating various cues together to determine the state of the situation

are the attention-seeking requirements during HRI.

An affective robot was deployed to interact naturally with customers in a

shopping mall and to provide shopping information [66]. It further tried to

build a rapport between customer and the robot by remembering customers who

repeatedly visit. This was an effort to identify which kind of robots were required

by people to in their shopping routine. This is an example for a special scenario

where a market-related situation perception was used. However actual human

behavior will be more complex than in a shopping environment. When robots

are deployed in our ecosystems, they have to be self sufficient physically [67] as

well as instincts in order to play the role of an active companion.

A framework to develop mixed-initiative approach for specifying the

relationship between dialog structure and task structure using generic interaction

patterns is proposed in [68]. Action-oriented dialogs were generated by a robot

depending on the current task of its user. Objects from the environment and

the task of a person were linked to find relationship in between, and hence

conversation between the robot and the human was adapted accordingly during

an object-grasping task. The work proposed in [69] is an example for a robot

creating a map and maintaining a knowledge database through interaction with

people in natural language.
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In [70], a social robot was used to handle emotionally charged health care

situations. According to the findings of this research, people’s perception of robot

was affected by how robots cope or how they think robots can cope with their

emotions. In the end, improved intelligence of robots, like in these mechanisms,

will increase people’s acceptance of robots for longer interaction.

During the study of psychological benchmarks in HRI, in many forms of

human-robot interaction there is almost nothing gained functionally by using

a humanoid [71]. Furthermore, intelligence and capabilities become prominent in

a robot upon its appearance. There are also contexts where the humanlike form

might work against optimal human-robot interaction. For example, an older

person might not want to be seen by a robot with a humanlike appearance when

being helped to the washroom. In addition, people may dislike a robot that looks

exactly human but lacks a humanlike behavioral repertoire [72].

An effort to model interactivity of an encounter using four types of connection

events which incorporate gesture and speech: directed gaze, mutual facial gaze,

conversational adjacency pairs and back channels was taken in [73]. This uses

initiator and responder gaze times to determine gaze and gaze is used with the

other three parameters to determine user engagement during interaction. This is

an example for using both verbal and nonverbal cues to perceive an interaction

scenario. Adaptive speech control mechanism as a response for conditions in

the environment has been proposed in [74]. However these are an example for

evaluating a single or fewer number of cues from a situation.

User-awareness has been taken into consideration in [75] for safety and

acceptance reasons. Spatial relationships, objects and dynamic gait behavior

of a human were considered as features of the setting. Another mechanism for

an approach behavior was proposed in [76]. But in this approach the tradeoff

between user’s and robot’s gaze were used as a cue to evaluate the situation.

Here, situation-awareness was used to determine approach behavior prior to an

interaction.
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Museum guide robots observing visitors to find an appropriate situation to

guide has been proposed in [77]. This perception was then used by the robot to

locate himself in a spatial-oriental arrangement with a human. The purpose of

this behavior was to allow humans perceive their participation. A conversation

was possible with a visitor only when both parties; robot and visitor establish a

common belief to share a conversation. In this method, the robot believed that a

visitor is interested in an exhibit if their face and body are oriented towards the

exhibit for a certain duration. Similarly, their requirement to know further about

the exhibit was determined by if they maintain face and body orientation towards

the robot for a certain duration. But in social environments, human encounters

will be more complex than those in a museum. Hence much more cues will be

associated with user behavior.

A mobile robotic system which adaptively attend its user based on

walking/sitting behavior of its user has been deployed in [78]. This system

uses Finite State Machines (FSM) to model transitions of the user’s state. The

robot tracks a person’s position and orientation to determine his/her state. The

decision of the system based on these states was the path followed to approach the

particular human. Here, three states: ‘initial’, ‘walking’ and ‘sitting’ were used

by the FSM to model the transition of the person’s state. Accordingly, dynamic

or static behaviors in humans have a great impact upon the interactivity of a

situation. It considerably affect the approach behavior of the robot as well. Yuan

et. al [79] evaluate the applicability of deep learning approaches to adapt to and

predict comfortable proxemic behavior during interaction. The model estimated

the discomfort when approaching its user. Distance between participant and

robot, angle of approach, gender, age, previous experience with robots, preferred

writing hand, and pet ownership was chosen as the inputs to the algorithm. Even

though the research was about a comparison of different deep learning algorithms,

the approach taken for the proxemic behavior was itself novel and situation-based.

The model was capable of predicting proximity distances that were suitable in

the context of HRI.
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In [80], authors have proposed a system which used Regulatory Focus Theory,

user’s psychological state and game performance information to determine user’s

stress while playing a game. Hence the robot adapted its behavior accordingly.

Different kinds of body-based gestures and speech speeds of the robot were

regulated based on the observations on the scenario. Furthermore this is an

example for using body-based behaviors as a demonstrator of internal state of

humans. [81] is and example for human’s sensitivity towards empethetic and

emotional features in a robot’s speech. This fact can be associated with the

overall performance of a robot as well in addition to speech alone.

In [28] the question ‘How do the spatial distances and orientations of a user in

relation to a robot vary throughout a cooperative task performed in a home-like

environment?’ has been addressed. Hence a spatial conduct for the robot

was developed during this approach. This spatial management behavior was

capable of active monitoring and dynamically reacting to each others’ movement

and position changes. This used the definitions of proxemics introduced by

Hall [82] for interpersonal distancing and Kendon’s F-formation arrangement for

orientation between two persons [83]. The robot was intended to learn and find

objects that were missing from its original location. For this purpose, the robot

had to follow users who were willing to show the objects. Spatial formation of the

human and the robot was analyzed during ‘following the user’, ‘showing an object’

and ‘validating’. As different formations could be observed during each occasion,

it could be deduced that there should be a perception upon each occasion during

an interaction.

In [84], a robot that distributed flyers to pedestrians has been developed. This

focuses on achieving the target by identifying the behavior of pedestrians and

determining appropriate approaching mechanisms. This intended to approach

a human being non-obstructive to the receiver. Approach direction was

computed after a detailed observation on actual scenarios involving human-human

interactions. Hence an entire distribution plan was deployed within a single
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situation.

Most of the findings were based on a limited number of tasks selected from

the environment and the user itself. In a real-life scenario, this number will

be much higher than the number of factors considered in the present systems.

Therefore a maximum number of parameters must be observed from the user and

his/her environment before the decision-making process of a robot. Therefore

these systems could not replicate all parts of the HHI into the HRI scenario.

These methods were based on the assumption that people prefer the same rules

of interaction with the robot as they do when interacting with humans. There

can be certain cultures and social groups in which there are alterations regarding

this fact. Hence such communities would react to robots in a different manner.

In addition, behavior adaptation is as important as behavior monitoring in such

a scenario. Several other factors which might influence interaction such as the

gender, previous experience and familiarity with the robot were not considered

within the context of many methods analyzed during this review. Furthermore

there should be a common platform which can analyze psychophysiological, social,

cultural, and other aspects of a situation. Finding relationships between these

aspects and the emotional state of a situation is still found to be challenging.

Unveiling the intentions behind the web of various human behaviors is another

requirement in modeling cognitive models for social robots.

User-centered Design

User-centered design confronts designers to mold an interface around the

capabilities and requirements of the operators. Rather than displaying

information that is gathered around sensors and technologies which produce it, a

user-centered design unites such various information in ways that set the goals,

tasks, and requirements of the users. As a result of the user-centered design, we

can extraordinarily diminish blunders and enhance productivity without requiring
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significantly new technical capabilities. Alongside user-focused structure, also

comes enhanced user acceptance and satisfaction as a side advantage, by removing

much of the frustration upon limitations of present technologies. User centered

designs provide measures to support humans and then humans will work better

with robots. The requirement of user’s adaptation according to the limitations

in technology is abolished during this approach.

In order to avoid people calling a robot explicitly, proactive robotic systems

which can offer their help voluntarily are required. Therefore the user will not

have to formulate his/her behavior to suit the capabilities of the robot, as the

robot can read the intentions of its user. Simply, the proactivity of the robot

reduces the user’s effort. A robot with cognitive skills engraved into its personality

traits is more reliable [85]. Aspects where a general sense is required from

the robot are shown in Fig. 1.5. Each aspect; user, robot and environment

is subdivided into smaller elements which affect the situation. For example,

factors within the user are categorized into psychological attributes, physiological

attributes, social norms and rules etc. Factors in the environment are divided

into people and objects. Both spatial and emotional attributes of each aspect are

considered.

Psychological state is the reason behind human behavior. This psychological

state is displayed to the outside through both verbal and nonverbal behavior.

Body-based behavior is the result of cognitive processes developed in human

brain. Behavior can be analyzed as an interplay of mental states and actions.

Simply, thoughts and emotions provoke actions. In addition, cognitive elements

such as facial expressions, verbal phrases, etc. fall under ‘behavior’ which includes

both verbal and nonverbal aspects. Furthermore, brain activities such as internal

states of mind, cognition and emotions are responsible for one’s actions. Proper

interaction between brain activity and actions, not only makes him perceive the

world around him, but also enables the others around to perceive him.

Behavioral responses of humans can either be voluntary or sometimes
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involuntary. Furthermore, many involuntary behaviors are nonverbal. There is a

number of psychological theories behind both voluntary and involuntary human

behavior. Among these various theories, the theory of planned behavior and the

theory of reasoned action map human actions and their thoughts in a rather

reasonable and a justifiable basis [86]. Hence a method to perceive and combine

these factors associated with a situation to predict the emotional state of a certain

situation is required.

Introducing an established relationship between these various factors which

are difficult to quantify, has been challenging at all the times. This is the reason

to develop systems which evaluate only a limited number of factors so far. Often

these systems either evaluate human factors or environmental factors alone.

2.2 Outlook

Following challenges have been disclosed during the study of present proactive

robotic systems.

• Robust human detection and tracking systems to analyze gait and nonverbal

behavior are not in par with advanced conceptual design of such systems.

• Establishing a relationship between intent and observable human cues has

been challenging and lacks conceptual basis.

• Monitoring the environment in parallel with human behavior has been

difficult and relating environment factors and human factors upon a certain

behavior has been challenging.

• Deceiving and ironical human behaviors which do not match the shown intent

with the real intent cannot be differentiated by existing robots.

• Bringing all observable cues to a combinable common platform in order
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to make interaction decisions, still needs further development. In other words,

unwrapping the social and emotional attributes in physically observable cues still

lacks conceptual basis.

Hence emotionally intelligent agents need development optimizing these

challenges on the way.

Summary: Most earlier approaches which intended to evaluate human

attention or the interest towards an interaction focused on the face i.e. head nod

or gaze. Verbal cues and facial expressions came next. In addition to movements,

approach behaviors played an important role in finding human intention in

dynamic environments such as museums and shopping malls. Some systems

utilized the body orientation as a cue when recognizing gaze was difficult. Systems

which used multiple cues as input, utilized fuzzy logic to evaluate vagueness in

portraying intentions through behavior. Other approaches used predefined set

of interpretations for most observable cues and appropriate robot’s behavior.

Previous studies further explored that higher emotional intelligence in robots

increased user acceptance. Existing frameworks to interpret human behavior

consider only a limited number of observable human cues. Therefore only a few

aspects of a situation were effectively perceived by these mechanisms. On the

other hand, establishing a common criteria to assess a situation, considering

all the aspects: human, robot and environment, is still confusing and lacks

conceptual basis. The key features of humans that could reveal their internal

state of mind have been identified. In addition, different attributes: emotional

and spatial, during a human-robot encounter have also been identified. This will

create a user-centered perception of a robot, which will demolish the requirement

of the human user to adopt a restricted behavior to accommodate the robot’s

limited perceptive skills. Therefore it has been identified that intelligent and

adaptive decision-making skills in dynamic environments make robots more

appealing and effectively performing in human-robot collaborative environments.
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Chapter 3

SYSTEM DESIGN

3.1 Extracting information

Visual information from user’s environment are captured from Microsoft

Kinect sensor. There are 3 coordinate spaces used in the Kinect camera as color,

depth and skeleton spaces. Color space captures pixel values of the captured

image as RGB information, depth space gives pixel values which can be mapped

to a distance and skeleton space uses above 2 spaces to give coordinates of a joint

as (x,y,z) coordinates. The skeleton data consists of a set of joints. For gesture

recognition, in-built features of the sensor such as palm recognition and joint

tracking were used. The sensor creates the depth map of the body by analyzing a

speckle pattern of IR laser light. Then body parts are inferred using a randomized

decision forest to map depth images to body parts. The mean shift algorithm

is used to compute modes of probability distributions and finalize the joints to

make the skeletal.

3.2 Robot Platform

Moratuwa Intelligent Robot (MIRob) platform shown in Fig. 3.1 is used for

the implementation of the proposed system. It consists of a Pioneer 3DX mobile

robot platform. The robot has two sonar sensor arrays one in the front and one in

the back. The base can reach maximum speed of 1.2 m/s and carries a payload of
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Figure 3.1: Hardware setup used in experiments.

up to 17 kg. An aluminum structure is constructed on top of the base to increase

the height of the robot to a match the height of a human. A Cyton Gamma

300 manipulator is installed on robot for object handling. The manipulator has

7 DOFs and a 1 DOF gripper. It can handle a maximal payload of 300 g. On

the top, a Kinect sensor is placed to capture vision information from the user’s

environment. Google Voice API was used to generate voice responses to initiate

an interaction.

Proposed concepts have been implemented on the MIRob platform. Navigation

maps required for locomotion were created with Mapper3 Basic software. Skeletal

representation of human body was extracted as 3D co-ordinates of feature points

in Kinect sensor. The experiments were conducted in an artificially created

domestic environment with the participation of users in a broad age gap.

3.3 Overview of the system

The functional overview of the proposed system is shown in Fig. 1. Shown

in blue are the information extracted from the users and the environment such
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as object attributes. Green arrows denote the robot’s responses towards the

user after an inspection of the context. The system evaluates unclarifiable

characteristics such as postures considered by humans often before initiating an

interaction with another. This enhances the decision making abilities related to

interaction initiation. The system outputs a method of identifying emotional

situation of a human, using his body parameters and spatial information. The

system has separate functional units to recognize pose, gestures, movements,

human activities and other human behaviors.

All the work explained in this thesis, were generated based on the information

collected by the robot. MiRob collects visual information upon its user and

the environment using the RGB-D sensor. Human body-related information

is extracted by the module called ‘Body Parameter Extractor (BPE)’ and

space-related information such as measurements related to objects, dimensions

and distances were collected by the ‘Spatial Parameter extractor’. Extracted

information for the entire period of observation is stored in the ‘Data Recording

System (DRS)’. Data recorded in the DRS are used for the functioning of

the next modules or calculate new parameters which will be important for

decision making. Hence the DRS contains both calculated parameters and raw

information. Both these types of information are analyzed and used by the ‘Body

Parameter Analyzer (BPA)’ to evaluate user-related behaviors and by the ‘Spatial

Parameter Analyzer (SPA)’ to evaluate space and distance-related settings within

the context. Parameters analyzed by the Body Parameter Analyzer are used by all

these modules: ‘Posture Identifier (PI)’, ‘Gesture Identification Module (GIM)’,

‘Activity Recognition Module (ARM)’, ‘Human Behavior Evaluator (HBE)’ and

‘Context Evaluator (CE)’. These modules are responsible to recognize different

human behaviors and nonverbals, and decode the sentiments wrapped inside such

behaviors.

For instance, Posture Identifier is responsible to recognize a predefined set

of postures (both body and hand postures) based on the information derived
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from the RGB and depth data. Similarly, Gesture Identification Module

recognize a predefined set of hand gestures such as friendly and diectic gestures

which are often utilized in an interaction. The Activity Recognition Module

recognizes daily encountered human activities which play an important role

in determining a person’s current state and decide the level of engagement of

that person. Unclarifiable human behaviors such as activity-related movements

and meaningless or random movements are monitored by the Human Behavior

Evaluator. Context Evaluator examines other parameters in the context such

as the activity space of the subject (user) and verbal responses from the user,

if the user speaks first. Features recognized by these modules are fed into

the ‘Interaction Decision Making Module (IDMM)’. All the cognitive models

which map observations and their semantics to a meaningful interpretation of the

context are included in the IDMM. Information stored in the DRS for the present

scenario are sent to the ‘Learning and Experience’ module to create a memory

for the robot in order to use the current experience and adapt its responses to

the context accordingly, in the future. Appropriate responses of the robot, as

determined by the IDMM are converted into actions by the ‘Interaction Initiator

(II)’.

Two major responses of a robot were considered within the scope of this thesis.

They are verbal responses and proxemics. ‘Verbal Responses’ include the

utterances made by the robot and ‘proxemics’ includes mutual distancing and

orientation between the robot and its user. Utterances are generated by the ‘Voice

Response Generator’ based on predefined keywords and phrases. ‘Navigation

Controller’ takes care of the low level implementation of proxemic decisions. Maps

required for navigation are stored in the ‘Map Repository’ and are accessed by the

robot to move within the context and generate appropriate proxemic behavior.
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Chapter 4

STUDY OF HUMAN BEHAVIOR

4.1 Study 1: Human Interest towards Robot Initiated Human-Robot

Interaction

We conducted a wizard-of-oz study to explore both verbal and nonverbal

human responses towards the presence of a service robot. We further investigated

the responses of humans towards an interaction initiated by the robot itself.

Behavioral changes were used as a mediator to perceive user situation and the

level of interest in engaging in the interaction initiated by the robot. Responses

recorded in the study can be used to improve a robot’s perception of human

behavior in order to be a successful companion to the human (the user), without

violating user expectations.

This human study is intended to explore human tendencies toward an

interaction in different situations. Hence, it will provide means of engraving social

intelligence into robot behavior before utilizing them in social environments.

4.1.1 Monitoring Human Behavior

The experiment was conducted in a simulated social environment within the

laboratory. Participants of this experiment were students and outsiders in the

age range 23 to 60 (Mean-31.59, SD-10.53). There were 26 participants and

all the participants were in good mental and physical health condition to make
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decisions. The effects of gender and the age of the user were not considered

within the scope of this study. Before the experiment, participants were given

instructions regarding the process and the behavior of the robots in the laboratory

upon arrival. Users were allowed to engage in a selected task or just relax as part

of the experiment. They were made aware of the presence of the robot but they

were unaware that the interaction with the robot was a part of the experiment.

The experiment was conducted using MiRob shown in Fig. 3.1.

This experiment was conducted to monitor the behavioral responses of users

towards robot-initiated interactions. Since the responses depend on the priority

given by the user to his/her current activity, we have selected two tasks: reading

an instruction sheet and sitting relaxed. It is assumed that reading is a task

with high priority while sitting relaxed is of low priority. Participants were asked

to perform one task at once. Before the experiment, the participant was aware

of the robot but he/she was not aware that the robot is going to interact with

him/her. Robot was remotely navigated towards a particular participant while

he/she is engaged in the task. The robot initiates a conversation after approaching

a particular user. User responses were recorded from the moment robot starts

approaching the user. Each user was allowed to perform both the tasks mentioned

before. Path planning and navigation tasks of the robot were autonomous while

response generation and tracking a user were teleoperated by the experimenter.

Hence the teleoperator instructs the robot where to approach and what to say. A

single user participated in an experiment and the interaction process was repeated

for each participant separately. Furthermore a single participant was asked to

perform both the tasks at separate times.

At first, the user was asked to relax and his/her responses towards an

interaction initiated by another human were recorded. Again, responses towards

the human when the user was engaged in the given task were recorded. This

human-human interaction scenario was examined with human-robot scenario

in order to be compared. In both the occasions, the external party initiated
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the conversation. Same participants were selected to study the human-human

scenario as well. In human-human occasion, one of the experimenter approached

the participant (user) in order to initiate the interaction process.

As MIRob was monitored by a human operator, its responses were generated

in correspondence with the responses from the user. During the experiment,

responses from the robot include approaching and verbal cues only. User

responses were recorded in the form of a video using a camera fixed in the

experiment area and later analyzed for behavioral changes manually. If the user

responses demonstrate no interest towards an interaction, such as looking at the

robot when he/she notices the robot, but again looks away and engage in his/her

current task, robot was instructed to leave the situation without interaction. In

such a situation, it is assumed that the user does not prefer to interact.

Independent variables used in the study are the two tasks of the user. The

response towards the interaction initiated by the robot is the dependent variable

during analysis stage. Furthermore, it is assumed for comparison purposes

that there is no significant difference between the groups that are used in the

experiment.

The existence of mutual gaze was identified by the ‘yaw’ of participants head,

as measured by the Kinect SDK. All the other behavioral changes were identified

manually by the operator. For the ease of analysis and to avoid missing any

behavioral changes, scenarios were recorded using the external camera mounted

on a wall. Gestures considered during the study were ‘waving hand’, ‘open palm’

and ‘calling towards the user’. Poses considered during the study are given in

Fig. 4.1 and two occasions during the experiment are shown in Fig. 4.2.

4.1.2 Results of the experiment

Responses of a human were categorized into five major groups; Gaze,

gestures, pose, verbal responses and facial expressions. Here, the Gaze is
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(a) (d)(c) (f)(e)(b)

Figure 4.1: (a) - (f) shows the poses that were identified as behavioral changes
during the study. (a) and (c) indicate standard standing and sitting postures
respectively. Other poses are deviations from standard postures.

(a) (b)

Figure 4.2: An example scenario during the experiment. (a) The user was sitting
relaxed (b) User looks at the robot while the robot was approaching her.

the maintenance of mutual gaze at least for a shorter duration. It is used as a

parameter to measure the user’s attention towards the robot. Gestures include

meaningful movements in hands. Smile and frowning are the facial expression

considered considered during the experiment. Out of the 26 participants, the

percentage of participants who used each type of behavior is shown in Table

4.1. Percentage number of participants with a certain response, for both the

interaction scenarios: human-robot interaction and human-human interaction

Table 4.1: Results of the experiment
Robot

Gaze Gestures Pose Verbal responses Emotions
Relaxed 100 46 12 62 92
Engaged 92 0 15 88 58

Human
Relaxed 85 35 19 96 81
Engaged 85 0 27 100 58

Here the number of participants for each occasion is given as a percentage.
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under both user situations; when relaxed and when engaged. A single scenario

during the experiment is demonstrated in Fig. 4.2.

Fig. 4.3 and Fig. 4.4 graphically present these results. Fig. 4.3 displays the

percentage number of participants who adopted each type of behavior while

the interaction was initiated by the robot itself. This was compared with the

percentage number of participants who followed the same type of behavior while

the interaction was initiated by another human, with the same user. Variation

of responses based on the interactive partner (the robot) when the user was in a

relaxing situation can be seen here. Human behavioral responses toward a human

and the robot were compared. Same behavior was observed when the user was

busy with a certain task as illustrated in Fig. 4.4. Here, the task was reading

some additional information regarding the experiment. This task was selected so

that users could be kept engaged with the exact real mindset that they are in the

middle of an important task which they are reluctant to stop.

Table 4.2 shows the results of a t-test performed to test the deviation between

the user responses for the robot and another human during both the occasions:

while relaxed and while engaged. The percentage number of participants

displayed each type of behavior was taken as the data for the t-test.

Table 4.2: T-Test for the comparison among each situation: while relaxing and
while engaged when the person initiating the interaction was the robot and
another human.

vspace1em

Task T- Scores Robot Human
While relaxing mean 62.31 60.95

variance 1289.94 1324.49
dof 4
P 0.45
t 2.13

While engaged in mean 50.77 53.85
a task variance 1755.92 1678.99

dof 4
P 0.23
t 2.13
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4.1.3 Observations and Discussion

From the results displayed in Table 4.1 and Fig. 4.3, behavioral changes

observed during HRI and HHI are compared while the user was in a relaxing

situation. During this scenario, gaze was the type of behavior adopted by almost

all the users. In human-robot scenario, all the users (100%) maintained gaze, but

in human-human scenario, this dropped to 85% and the highest adopted type of

behavior was verbal responses.

Maintenance of gaze and expressions have the least deviation when both the
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Figure 4.3: A comparison of the types of behavioral changes observed before and
just after initiating an interaction by a human and a robot. In this case, the user
was in a relaxing situation without engaging in any task.
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just after initiating an interaction by a human and a robot. In this case, the user
was engaged in a given task.

38



situations were considered; human-human and human-robot scenarios. Simplicity

and the ease of adoption of these behaviors are likely to be the reason for this.

In general, users have tend to adopt behaviors which involve lesser movements.

Gaze, verbal responses and facial expressions received the highest percentage

during both the scenarios due to this reason. As gaze and facial expressions

are most likely to be involuntary, the deviation between human-human and

human-robot scenarios considering gaze and expressions was less.

When compared human-human situation with human-robot situation, out of

the number of expression that humans display, only ‘smile’ could be observed

during the whole process of the experiment. This could be due to the fact that

we considered only the interaction initiation process but not the continuation of

interaction. When gestures and expressions are considered, 22% have used more

gestures and 11% more expressions upon robots during interaction. Hence users

have followed a more displaying friendliness towards robots than for humans.

From the results shown in Table 4.1 and Fig. 4.4, the trend has slightly

been deviated from the previous case. Although users engaged in a task during

this situation, they have tried to respond towards the interaction process. In

both human-human and human-robot scenarios, the highest percentage of users

adopted gaze and verbal responses. Adoption of gestures and expressions has

dramatically been dropped when the user situation changes from ‘relaxed’ to

‘engaged’. No gestures were involved in support of the interaction when the user

was engaged.

From Fig. 4.3 and Fig. 4.4, it can clearly be seen that the least adopted type of

behavior was pose. Hence it can be deduced that humans are more comfortable

with simple behavioral changes such as gaze and verbal responses. As seen from

the charts, gestures and pose are least preferred behavioral changes. Possible

reasons for this are the complexity of such behaviors and the laziness within

humans to break their inertia.
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As seen from the study, on the one hand when the users were relaxed, robots

received more attention and friendlier responses during interaction initiation. On

the other hand, it was also robots which received higher negligence when users

were engaged or busy.

Most important and unexpected patterns in user behavior were demonstrated

from the t-test shown in Table 4.2. In both user situations; when relaxed and

when engaged, p>0.05. In this case p= 0.45 and p= 0.23. Hence the significance

of the effect in the both the user situations becomes of interest. In both these

situations, null hypothesis cannot be rejected. Hence it can be considered that

there is no significant difference between the user response toward a robot and a

human despite the user situation. It can be said that, as a whole humans tend

to respond towards social robots just in the manner they respond other humans.

Although most prominently displayed human behaviors were used for the

study, only a few of them were dominant in the context of interaction initiation

according to these observations. From Fig. 4.3 and 4.4, gaze, verbal responses

and expressions were the frequently adopted by many users. V erbal responses

were limited to smaller clauses or sentences such as ‘hello’, ‘hi’ or other types of

greetings and openings. The sentences became even smaller when the user was

engaged or busy.

According to the results of the t-test, there was no significant difference in

the responses towards the robot and the human in both situations. Therefore, it

can be seen that humans preferred robot-initiated interaction whenever they were

ready to interact. In this case, the user readiness (to which extent the user is

ready to interact) was defined by the task of that particular user; where a relaxed

user was ready to interact and an engaged user was not. In a typical domestic

scenario, there can be other factors which affect user readiness. Furthermore,

there was a tendency in users to treat robots in the same way as they treat

other humans. Also, users were not reluctant to neglect the robot when busy.

Therefore an open minded behavior was observed from users in the presence of
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robot. Another interesting fact revealed during the study was that users preferred

gestures and expressions upon robot rather than for the human. This was more

similar to human responses towards a child. Results of this study suggest that

the trends in human behavior regarding interaction initiation are different from

the trends that are observed during an interaction process. Therefore there is a

requirement of emotional intelligence in social robots to perceive this difference.

4.2 Study 2: Conversational Preferences in Social Human-Robot

Interaction

Likeliness of the robot being accepted as a conversational partner depends

on the environment as well as the current task of the user. We investigate

how the nature of interaction initiated by the robot affects its acceptance by

a human. Subsequently, a set of affect based types of conversation were selected

and implemented on a service robot in a simulated social environment in which

few users were present or only a single user was present. This study is intended to

find human tendencies towards interaction in different situations and hence will

provide means of engraving social skills into robot behavior before utilizing in

human environments. We conducted a wizard-of-oz study to explore the nature

of human conversation with the presence of a service robot when several factors

in the environment vary. Factors which are more likely to have an influence upon

the conversational preference of humans are selected. The type of interaction

preferred by the user was used as a mediator to perceive user situation and

the level of interest towards the interaction initiated by the robot. Responses

observed during experiments were used to upgrade existing robots’ perception of

human behavior. Furthermore we intend to lay a justifiable basis to bring several

such observable factors that can be used by a robot to evaluate an encounter.

We considered observable cues from humans as well as their surrounding, which

were likely to have an impact towards responses generated by a human during a
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certain scenario.

4.2.1 Setting

The experiment was conducted in a simulated social environment in the

laboratory. Participants were students, non academic staff members of the

university and some outsiders in the age range 19-58 (Mean-28.45, SD-9.02) who

volunteered the study. There were 37 participants and they were in good health

condition without any physical defects which will alter their reactions during the

study. More than half of the participants did not have a technical background in

education, majors or research related to engineering. The gender of the user was

not included within the scope of this study. Upon arrival, the users were given

instructions regarding the tasks they should complete but they were not aware

of the fact that they are intended to talk to the robot but they are instructed

to respond towards the robot if the robot initiates an interaction. They were

not knowledgeable about the exact intention of the experiment because that will

cause a bias response from users towards the robot. Hence the participants were

instructed to perform a given activity in the way they are used to perform that

before. The experiment was conducted with MIRob.

The selected user was allowed to engage in a certain task and the robot was

allowed to approach the user to initiate a conversation with him/her. The user

was advised to complete a certain task and if the robot talks to him/her, to talk

back. The set of tasks to be performed by the users was predefined. There were

separate lists of tasks to be performed in living room, bed room and kitchen. The

participant or the user was knowledgeable on the tasks that are to be performed

in each living area. The tasks were selected so that at least three tasks were

performed in each area. These tasks are the most common to that particular

social or domestic environment and few tasks selected for the study are listed in

Table 4.3. While the user was engaged in a task, the robot was remotely guided

towards him/her and was allowed to initiate an interaction in the ways given
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Table 4.3: Some of the tasks selected for the study

Living Area Task
Living room Resting while sitting

Reading while sitting
Having a snack
Watching television
Engaged in a desk activity
Engaged in a conversation

Bed room Tidying up
Resting
Engaged in a desk activity

Kitchen Cleaning
Preparing a meal
Having breakfast

below. The map of the environment was predefined in the simulation. Therefore

the robot navigated to the target positions and its orientation which were defined

by the operator. In this scenario, the target position of the robot was a point

within the interactive area near the user. For the ease of future referencing, these

types of conversational preferences are abbreviated as follows.

NI - No interaction

GRT - Greeting

SER - Asking to deliver a service

TLK - Small talk

CON - Long conversation

How a conversation is categorized into these types are shown in Fig. 4.5.

As the conversation extends, the type of conversation shifts from NI to a CON.

The robot will not talk to its user during NI. In GR, the robot only greets the

person and goes away. The greeting will just be a single sentence saying ‘good

morning’, ‘hey’, ‘hello’, etc. In SER, the robot asks to deliver something for

the user, as an assistance to his/her current task. This will be approximately
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________________________________________________
R: Good Morning!
H: A very good morning!

________________________________________________

R: You want me to get something for you?
H: No, Thank you.

________________________________________________

R: Okay. Are you tired?
H: No, I’m just relaxing.
R: Okay.

________________________________________________

R: Is there something you want me to talk about?
H: Hmm, There’s nothing specific, but I’d like a 
conversation.

R: May I play a song?
H: I would rather hear a poem.

R: Good choice. A poem about nature?
H: That’ll be great. Go on.

.

.

.

.

R: Have a nice day!
H: You too!

________________________________________________

Conversation begins

Small talk

Greeting

Asking to deliver a service

Long Conversation

Conversation ends

Figure 4.5: The nature and the length of conversations determine the ‘type of
conversation’ existed at a certain occasion.

four sentences maximum in the entire conversation. In the TLK, the robot will

say a few additional sentences other than greeting and sometimes will ask if the

user wants something. Such a conversation consisted of about 5-7 sentences. All

the conversations longer than that were considered as CON. Such conversations
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covers a broader scope of topics as well as these existed for a longer duration.

Therefore the duration of the conversation depended on the type of conversation

robot had with a user. In all the occasions, the robot stopped continuing the

conversation depending on the curiosity of the user to engage with the robot or

when the conversation seems to disturb the user. During the experiment, robot

had a CON with its user and in the end a survey was conducted to know the

actual preference of the user. Users were shown how the type of conversations are

categorized and were asked to select their preference at that particular occasion

despite the conversation he/she already had with the robot.

The robot initiated a conversation despite the task of the user and user

responses towards that interaction were recorded. Voice responses were monitored

remotely by an operator without the knowledge of the user. Furthermore, a single

participant was asked to perform all the tasks listed in the experiment separately

in different occasions. Each task was performed twice; when the user was alone

and when few others were present. The second occasion replicates a typical

domestic or a social environment in which family members or few other known

persons were present around. In the experiment, participants in a single setting

were acquaintances. For instance, if there were few people around the user at

the time of the conversation, all these people were acquaintances but were not

related to each other.

MIRob was remotely controlled by a human operator. Robot responses

were generated with respect to the user response in each occasion. It is

expected to assess the effect of considered factors in the surrounding upon human

conversational preferences, in both qualitative and quantitative manners. An

important fact to be considered in this case was that when few other people were

present around, they were not involved in the interaction process except when

the user was having a conversation with them. Voice responses were generated

after the robot approached the user. Path planning and navigation of the robot

were autonomous while tracking of the user and generation of voice responses
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were teleoperated by the human operator. Therefore the operator instructed

the robot where to approach and what to speak. None of the persons in the

environment participated in the conversation with the robot, except for the

intended participant. The responses of the robot during the experiment include

only maintaining a socially interactive distance between the robot and the user,

and voice. If any of the users does not respond the robot, the robot was instructed

to leave without causing any distraction. In such a situation, the robot assumed

that the user does not prefer to interact.

Independent variables used in the experiment were the task of the user,

domestic area and the presence of others in the surrounding. The conversational

preference was the dependent variable during analysis. The assumption made

during the study was that there is no significant difference between the groups

used for comparison purposes.

4.2.2 Results and discussion

After the experiment, the conversational preferences of users were analyzed

using statistical methods. The first question of interest was whether there is a

difference in user responses depending on the number of people in the surrounding.

Table 4.4 shows a comparison of the percentage frequency of each type of

interaction for the two occasions; when the user was alone and when few people

were around. This study was intended for all the tasks listed in Table 4.3. As

seen from the results, there is an increase in demanding a service or limiting

the conversation just for a greeting when few other people were present in the

surrounding. As seen from this information, the demand for interaction types NI,

Table 4.4: A comparison of conversational preferences by the type of interaction
when the user was alone and when with few people around

Alone With people around
NI, GRT, SER 64% 79%
TLK, CON 36% 21%
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GRT, SER have been increased by 15% when the number of people around the

user has increased from zero to a few. An example scenario from the experiment

is given in Fig. 4.6 when the user was alone. A scenario when there were people

around is shown in Fig. 4.7. In this situation the user preferred a long conversation

when she was alone and a service when there was a second person in the kitchen.

Such behavioral changes were recorded during the experiment.

Table 4.4 shows an ANOVA test performed on the same data for the

comparison of percentage frequencies of each type of conversational preference

in each area of the social environment. The test was performed to analyze how

the tendency towards each type of conversational preference changes when the

domestic area changes. Percentage usage of the types of interaction are calculated

and compared. First test was implemented for the case when only the user was

alone in the considered environment and the second test for the case when few

(a) (b) (c)

Figure 4.6: An example scenario during the experiment is shown. (a) The user
was in the kitchen, having a drink (b) The robot approached user and initiated
a conversation (c) Interaction continued.

Figure 4.7: A situation in which the user was having a drink and in the
surrounding there was another human without an interaction with the user.
Robot approached the user and initiated a conversation.
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others were present in the surrounding, in addition to the user and the robot.

From the test, it was intended to find the differences in conversational preferences

when condition of the surrounding with regard to the peer (whether the user was

alone or there were few others around) was kept constant. Furthermore it was

expected to find whether there is a change in user behavior upon where the user

is, despite whether he/she is alone or with few people around.

Table 4.5 shows the results of a t-test performed to test the deviation between

the preference of each type of interaction when alone and when surrounded by a

few. Changes in demand for each type of interaction in the said two occasions were

analyzed without an involvement of other types of conversational preferences.

Frequency of the type of interaction in each domestic area was taken as data for

the t-test.

Shown in Table 4.5 are two ANOVA tests performed on the same set of

data to test the deviation between the conversational preferences during the

list of selected tasks while the user was alone and with one/few people around.

The frequency of using each conversational preference during these tasks was

Table 4.5: ANOVA test for the comparison of percentage frequencies of each
interaction type in each area of the social environment

Alone
Mean Variance

Living room 20 107.39
Bedroom 20 127.99
Kitchen 20 286.66

ANOVA Test
SS DOF F p-value

Between groups 0 2 0 1
Within group 2088.22 12
Total 2088.22 14

With people around
Mean Variance

Living room 20 116.73
Bedroom 20 309.39
Kitchen 20 263.53

ANOVA Test
SS DOF F p-value

Between groups 0.1333 2 0.00029 0.9997
Within group 2756.8 12
Total 2756.93 14
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calculated and analyzed for the deviations between each group. Here the groups

were the conversational preferences from NI to CON and the frequencies were

listed according to the tasks listed in Table 4.3. In both the situations in Table 4.5:

when alone and when surrounded by few people, the F-critical value was 2.539.

4.2.3 Observations and Discussion

From the results displayed in Table 4.5, it can be seen that the tendency of

the user towards a friendly interaction reduced when there were people around.

Even though these people were not directly involved with him/her, their presence

influenced the reactions of the user towards robot. A perceived behavioral control

could be observed within the user due to such changes in the surrounding. From

these results, behavioral changes observed when the user was alone and when

few people were around were analyzed separately. From the first ANOVA test,

a p-value of 1 (≥ 0.05) and an F-value of NI could be observed for comparing

conversational preferences within each social area; living room, bed room and

the kitchen. Therefore, the fact that ‘there is a significant difference in the

Table 4.6: t- Test for the comparison among each type of interaction when the
user was alone and with few people around

Type of interaction T-scores Alone With people
NI mean 20.67 22.33

variance 210.33 16.33
dof 2
P 0.852
t 4.302

GRT mean 8 12.67
variance 7 16.33
P 0.034
t 4.302

SER mean 35.33 44.33
variance 82.33 54.33
P 0.046
t 4.302

TLK mean 21.67 11.67
variance 100.33 9.33
P 0.131
t 4.302

CON mean 14 8.67
variance 9 8.33
P 0.246
t 4.302
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conversational preferences with the social area when the user was performing

a task alone’ cannot be accepted. In the same way, from the second ANOVA

test in Table 4.5; when few people were around, p-value of 0.9997 (∼1) and an

F-value of 0.00029 (∼0). Hence the fact that ‘there is a significant difference

in conversational preferences when the user was surrounded by a few people in

the surrounding’ also cannot be accepted. From the two tests, we could observe

that there is no significant effect of the type of living area upon conversational

preference of a particular user but his task.

Most important and unexpected patterns in user behavior were demonstrated

from the t-test shown in Table 4.6. For all the conversational preferences except

GRT and SER, p>0.05. Hence the significance of the effect in the cases 1 and 2

becomes of interest. A probable reason for this is that, in almost all the occasions

NI was preferred, the user gave prominence to the task despite how many people

were around. In such situations, the user gave prominence for relaxation by

means of conversation, rather than the task. An example was when the user

was in a phone call or a desk activity. In such a situation, user will not prefer

to be interacted. As a whole, conversational preferences at the two ends; NI

and ‘having a friendly conversation’ (TLK and CON) had no influence from the

living area but middle interaction types (GRT and SER) had. For GRT and SER,

where p=0.034 and p=0.046, the null hypothesis could not be accepted. Hence

it can be concluded that there exists a significant difference in the conversational

preference for GRT and SER, when the living area changes.

Significant rises and drops in conversational preferences were observed with

the change in the number of people around. This is demonstrated in the Fig. 4.8.

People became more introvert with the presence of other humans. The expectancy

of service increased when there were few people around. Therefore, a significant

increase for SER was observed when the user situation changed from ‘alone’

to ‘with few people around’. As TLK and CON are rather friendlier types of

interaction, these were preferred by the users mostly when they were alone. The
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1 2 3 4 5

With people around 103 59 188 51 43

When alone 108 38 146 93 59
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Figure 4.8: A stacked graph drawn for the comparison of conversational
preferences with the two conditions; when the user is alone and when surrounded
by few people. The type of interaction is plotted against the frequency of each
type of interaction preferred in above two the occasions.

highest percentage difference for these two occasions was observed in TLK. A

possible reason for this is that TLK is the most flexible type of interaction which

a user can have without getting disturbed to his/her task.

According to the two ANOVA tests in Table 4.7, in both the cases; when the

user was alone and was with one/few people around, F-values (4.442, 21.979)

were larger than F-critical (2.539). Hence in both these cases the null hypothesis

can be rejected. Hence the assumption that ‘there is no significant difference

between each type of conversational preference during the selected set of tasks’

was declined. Therefore it can be deduced that the preferences for NI to CON

were significantly different when the given tasks were considered. Furthermore

in both the occasions, p-values (0.035, 7.053E-11) were smaller than the alpha

variable (0.05). This also suggests that the individual variables were statistically

significant. During ‘with people’ situation, the F-value (21.979) was significantly

larger than the F-critical (2.539). Hence the joint effect of all the variables

together is larger than that when the user was ‘alone’.

Another fact observed during the study was that the existence of a significant

difference in conversational preferences based on the task. This is examined in
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Table 4.7: ANOVA test for the comparison of the frequencies of each
conversational preference during each task

Alone
Groups Mean Variance

NI 24.32 516.63
GRT 8.56 27.67
SER 32.88 317.20
TLK 20.95 256.49
CON 13.29 102.87

ANOVA Test
SS DOF F p-value

Between groups 4338.20 4 4.442 0.0035
Within groups 13429.51 55
Total 17767.71 59

With people around
Groups Mean Variance

NI 23.20 162.64
GRT 13.29 65.69
SER 42.34 193.02
TLK 11.49 25.40
CON 9.68 53.73

ANOVA Test
SS DOF F p-value

Between groups 8800.10 4 21.979 7.053E-11
Within groups 5505.23 55
Total 14305.33 59

the chart in Fig. 4.9. In Fig. 4.9, the frequency of the users who used each

type of interaction is plotted against each type of interaction while the user was

engaged in the selected task. In all the occasions, the domestic area was the living

room and the user was alone in the environment. As seen from the chart, there

were significant differences in user’s conversational preferences when their task

changed. For example, few users have chosen NI while resting but many users

have chosen NI while making a phone call. As a whole, there was a considerable

variation in conversational preferences in the six tasks considered here. People

were comfortable with only certain types of interaction when most tasks were

considered. This fact was confirmed by the results shown in Fig. 4.9.

4.2.4 Conclusions and Implications

In this study, the conversational preference was used as a major contributer

to perceive human interest and attention towards the robot while some factors
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Figure 4.9: This graph depicts how the users picked up conversational preferences
during the selected tasks while the domestic area and people in the surrounding
were kept constant. Here, the domestic area was the living room and the user
was alone in the area.

in the environment or factors within the user change. As we have studied the

behavior of humans among acquaintances, their responses will be friendlier in the

presence of family or relatives (e.g: a domestic environment) and less friendly in

the presence of strangers (e.g: a public space). Therefore this study can be used

to find tendencies of humans in general and to derive those in other occasions.

The experiment was intended to reveal the relationship between surrounding

factors and conversational preferences of humans. Interesting facts regarding

conversational preferences based on the changes related to the user and the

surrounding were revealed during the analysis of data. The findings of the

study are expected to be used to rebuild modern interaction mechanisms among

humans and robots, so that the two conversant are motivated towards a sustaining

conversation. Results show that there are considerable effects of factors in the

surrounding and the user, upon the conversational preference of a user at that

particular time. Moreover, despite age differences, these factors have become

prominent in deciding conversational preferences during a particular moment.
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Furthermore these findings can be made useful in developing adaptive robotics

systems which are expected to be used in social environments.

4.3 Study 3: Human Gaze Behavior

From the existing literature, we could observe that many robotic systems

developed so far have considered ‘gaze’ as a parameter to evaluate a certain

situation between a human and a robot. Therefore we tried to find the role of

‘gaze’ during an interaction to find how important it is to evaluate this feature

and what other facts can be explored by analyzing gaze.

During this study, we tried to find answers to the following questions.

1) How humans use gaze-related features as actions during

human-human interactions?

2) How similar features were associated with human-robot

interactions?

3) How similar are HHI and HRI in terms of gaze behavior?

For that we conducted a series of experiments with dyads of humans, and

robots and humans to find patterns in their gaze behavior and hence find answers

to the above questions.

4.3.1 Understanding Human Behavior: Evaluate Attention

4.3.2 Time scales of human actions

In this study, we have selected ‘gaze’ behavior which is also a cognitive act.

Gaze can sometimes be an automatic behavior and sometimes, a controlled

behavior [87] where the reaction time may take up to about 1.3 s. Alongside this,
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three parameters involved in gaze: response time, duration, averted/not were

analyzed during this study. These occur at different time scales when initiating

an interaction. Fig. 4.10, the delay represents the time taken by the responder

to react, once a ‘change in situation’ was detected. When considering gaze,

the ‘change in situation’ was the presence of an outsider who seeks attention.

Duration of gaze relates to the entire time the responder looks at the approacher.

Averted gaze is when the responder returns his gaze back at his previous task.

These features associated with gaze can say a lot to an outsider about the

inner intents and priorities of the responder. Hence these three features of gaze

during human-human interaction (HHI) have been investigated thoroughly in our

experiments.

4.3.3 Monitoring Gaze Behavior

The experiment was conducted in study areas and laboratories inside the

university with the participation of 47 graduate students, postgraduate students,

and the members of non-academic staff in an age range of 25-51 years (mean

of 38.6 and SD of 11.31). Nearly half of the participants have not had a

Time=0 s Time= t s Time= t+D+T sTime= t+D s

Delay (D s) Gaze time (T s) time0 t

responder
approacher

Figure 4.10: Phases in a typical encounter prior to an interaction are shown. At
time= 0, the approacher intends to approach the target person: responder. At
t=t s, he approaches the responder. The responder notices his presence, but takes
another D s to give attention. The responder looks at him for a duration of T s
and averts his gaze to continue his work.
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strong technical background. The experiment was conducted in 2 stages: HHI

(Human-human interaction) and HRI (Human-robot interaction).

Initially participants were asked to be seated and read guidelines of the

experiments in the form of a document opened on a laptop on the table. While

each participant was reading, a person previously known to them, but not a

relative, approached him/her. The participant’s reaction to the approaching

person were recorded. These observations were analyzed under stage 1: HHI.

The same procedure was repeated in stage 2. But this time, the approacher was

a robot. Stage 2 was conducted once a week over a period of 3 weeks to give

the participants some time to adapt to social robots. We terminated the set of

experiments once we noticed several trends in HRI which were similar to HHI.

Stage 2: HRI was conducted over 3 weeks as 3 occasions. These occasions are

HRI-week 1, HRI-week 2 and HRI-week 3 in which the experiment was conducted

in the first, second and third week respectively. The reason to conduct only stage

2 along 3 weeks is that human-robot interaction process is not normalized as

human-human interaction even at present. Therefore we gave participants time

to adapt to the human-robot collaborative environments. Therefore we repeated

the same experiment thrice within 3 consecutive weeks. The only difference in

stage 2 was that the approacher was the robot, wherein the approacher was

another human in stage 1.

Therefore, in the end there were 4 occasions considered as follows. HHI- Both

the approacher and the participant were humans. HRI (HRI-week 1, HRI-week 2,

HRI-week 2)- The interaction took place between human participant and robot.

In all 4 occasions, the interaction was dyadic. We kept people in the surrounding

who were not involved in the interaction scenario away as much possible as, human

responses might have an influence from outsiders. The interaction scenario was

stopped before a conversation between the two parties begins. In all the occasions,

the parameters associated with the gaze were recorded using a video camera set

up in front of the setting. At a later stage, this video was analyzed to extract
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required features during the interaction. Two example scenarios from HHI and

HRI from the experiment are shown in Fig. 4.11.

4.3.4 Results of the experiments and Discussion

We analyzed whether gaze existed or not in a scenario and if existed, we

recorded parameters or properties of existed gaze behavior. In the end, we

looked for the existence of other responses towards an interaction between two

participants in addition to gaze. An in-depth analysis of our observations is given

in the following paragraphs.

Several labels have been used for the ease of referring parameters related to

gaze. These are mentioned below.

Continued gaze - The user looked at the approacher and continued looking

(a)                                           (b)

Figure 4.11: Two scenarios during the experiment are shown. (a) HHI scenario
is shown. Both the responder and approacher are humans. (b) An HRI scenario
is shown. The approacher is a robot while the responder is human. In both the
occasions, the responses generated by the responder after noticing the presence
of the approacher were recorded.
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until the interaction ends

Averted gaze - The user looked at the approacher and averted gaze after a

while.

Delay - The time taken by the participant to look at the approacher after the

person approached him/her.

Duration - The duration of existed gaze before the participant averted gaze.

0 and 1 in graphs denote non-existence and existence of a considered parameter

respectively.

Fig. 4.12 shows the presence of gaze parameters during HHI. Even when

at work, more than half of the participants (55%) maintained gaze with the

approacher. That is many participants signaled that they give attention to the

approacher. Even so more than half of them (54%) averted gaze and gave their

attention back to work. However it is interesting that most individuals tried to

be interactive and not to be disturbed at the same time.

The existence of continued/averted gaze as a percentage in each of the 4

Figure 4.12: Existence or nonexistence of gaze during HHI is plotted against each
user. If the user averted his/her gaze, such gazes are marked in light blue while
continued gazes are marked in dark blue.
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occasions is shown in Fig. 4.13.

Considering scenarios with averted gaze, the duration of gaze is plotted against

the average delay of the gaze for the four occasions in Fig. 4.14. From this, it can

be seen that, when humans are engaged robots received much higher negligence

from humans. Similar to the properties of averted gaze in Fig. 4.14, Fig. 4.15

shows the properties of continued gaze.

[!b]

Figure 4.13: The percentage (%) of encounters with any kind of gaze (continued
or averted), out of the total encounters considered, is plotted against the occasion:
HHI, HRI-week 1, HRI-week 2 and HRI-week 3.

Figure 4.14: Of the total encounters where averted gaze could be observed, the
average duration of existed gaze was plotted against the delay. All the units are
in seconds (s).
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Figure 4.15: Of the total encounters where continued gaze could be observed,
the average delay of gaze was plotted against the occasion: HHI, HRI-week 1,
HRI-week 2 and HRI-week 3. The average delay was measured in seconds (s).

In continued gaze, HHI and HRI-week 3 recorded only a slight numerical

difference.

The delays of averted gaze in the four occasions are plotted against the occasion

in Fig. 4.16, with the markers scaled according to the duration of each gaze. It

Figure 4.16: The delays of encounters where an averted gaze was present. The
box plots are drawn to identify the behaviors of parameters and their evolution
with time and experience. The markers are drawn to the scale of the duration of
gaze.
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Figure 4.17: The delays of encounters where a continued gaze was present. The
box plots are drawn to identify the behaviors of parameters and their evolution
with time and experience.

can be observed that most delays accumulated between 0 to 3.75 s. The durations

of the gaze lied within this range also recorded an average value in general. If

the two outliers are excluded, the trends in HHI and HRI-week 3 were similar to

each other.

Fig. 4.17 illustrates boxplots showing the gaze delays in encounters where a

continued gaze was present for the four occasions. When the average delay of the

four occasions were considered, HRI-week 1 recorded the least average delay in

continued gaze. This value gradually increased by week 3 and, HHI and HRI-week

3 resulted in close average delays in continued gaze. The trend in HHI and HRI

in terms of gaze delay, at the end of the 3 weeks. A possible reason for the

scatter of data in week 2 is that people are getting familiar with social robots

in their environments after week 2. The scatter of data was again normalized in

week 3. This can be the reason to observe negative delays in gaze as well. The

unfamiliarity of humans with robots resulted in giving much more attention to

robot’s behavior when they approach.

Fig. 4.18 plots several boxplots to identify the behavior of gaze delay of

encounters where a continuous gaze was present.
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Figure 4.18: The delays of encounters where an averted gaze was present. The
box plots are drawn to identify the behaviors of parameters and their evolution
with time and experience. The markers are drawn to the scale of the duration of
gaze.

Similar to the previous graphs, duration of averted gaze also recorded similar

trends in HHI and HRI-week 3 in terms of the average duration and the pattern

of data scatter. HRI-week 2 recorded data considerably scattered as in previous

graphs. As seen from the box-plots, the trend in delays of averted gaze received

numerically slightly different values in HHI and HRI-week 3. These trends

were further analyzed statistically in Table 4.8 to derive into conclusions upon

similarities between HHI and HRI.

In addition to gaze-related behaviors, several other responses towards the

interaction were observed during the study. These were voice responses such

as greetings (e.g: “Hey”, “Hello, how are you?”), smile, changes in body pose

and changes in hand pose. Fig. 4.19 illustrates these behaviors adopted by the

participants to react to the approacher, in addition to gaze.

It can be seen that humans use several other responses to support an

interaction even when engaged. Proactive robotic systems have a challenge in

perceiving such behaviors as well as analyzing gaze behavior.

Most important and unexpected patterns were demonstrated from the results
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Figure 4.19: Responses observed from users during HHI, in addition to gaze are
plotted against each individual.

of the T-test shown in Table 4.8. For both continued gaze delay and averted

gaze delay p>0.05. Hence the significance of the effect in the cases: continued

gaze delay and averted gaze delay, becomes of interest. But this significance

is slight in continued gaze delay. A probable reason for this is if users are

interested they paid attention for both robots and humans. But if they are

not interested in an interaction, they will tend to neglect the robot for long. The

null hypothesis: There is no difference between the two groups in terms of the

gaze parameter, was rejected in averted gaze duration as p=0.0079 (p<0.05).

Therefore it can be assumed that there is a significant difference between human

responses towards humans and robots in terms of averted gaze duration. This

difference can also be seen in Fig. 4.16. Even though the mean values of averted

gaze duration in HHI and HRI- week 3 are close, the actual durations in HRI

were scattered over a wide range of values. Familiarity and past experience with

robots and personal opinions on robots can be stated as a probable reason for

this observation. Humans still consider a robot as a ‘machine’ rather than a

‘companion’. Such perceptions can also support this observed behavior.
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Table 4.8: T-test for the comparison of gaze parameters among HHI and
HRI-week 3

Gaze parameter T-scores HHI HRI-week 3
Continued gaze delay mean 0.855 0.602

variance 2.473 1.717
dof 46
P 0.0535
t 1.678

Averted gaze delay mean 0.963 0.998
variance 2.425 3.949
dof 46
P 0.434
t 1.678

Averted gaze duration mean 0.885 0.536
variance 2.072 1.106
dof 46
P 0.0079
t 1.678

4.3.5 Finding Answers to previous questions

As mentioned in the beginning of section 4.3, the objectives of this set of

experiments were to find answers to following questions and the answers that

were derived from the study are stated.

1) How humans use gaze-related features as actions during

human-human interactions?

During the study we observed the existence/nonexistence of gaze and if gaze

existed, the delay and the duration of that gaze. These parameters associated

with gaze were numerically measured as a part of the study. In addition, four

other responses were observed; voice, smile, pose changes and hand movements.

From the results, it could be observed that gaze was the most frequently used

behavior during HHI, upon all these observed behaviors. Hence exploring

gaze-related behaviors received much higher attention while analyzing results.

2) How similar features were associated with human-robot

interactions?

Once humans were comfortable with social robots, similar responses they use

towards other humans could be observed towards robots as well. Comparison
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of results in Fig. 4.19 testify to this. According to these two studies, when

users were busy, robots received lesser attention than humans, as a result lesser

responses as well. Somehow the behaviors observed in front of robots were not

different from those in front of humans, expect in number.

3) How similar are HHI and HRI in terms of gaze behavior?

Out of the three parameters considered: continued gaze delay, averted gaze

delay and averted gaze duration, we could observe similarities between HHI and

HRI in continued gaze delay and averted gaze delay. Averted gaze duration during

HHI and HRI showed a significant difference. Therefore we can say that there are

dissimilarities between HHI and HRI in terms of gaze. It is important to identify

these changes as an insight for the future cognitive models of robot assistants. It

is also important in evaluating the human acceptance of social robots as well.

Results confirmed the fact that ‘gaze’ play an important role in HHI as

well as HRI with some observable variations. These findings will help future

proactive robots to take situation-cautious decisions in human-robot collaborative

environments. Trends in human-human interaction that could be adopted in

human-robot interaction are suggested as the outcomes of this study.
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Chapter 5

RECOGNITION OF NONVERBALS

5.1 Psychophysiological Aspects of Human Behavior

5.1.1 Simple Human Activities

Utilization of the space around a human vary with the movements involved

in the activity. Most human activities involve hands. Movements involved with

hands also vary depending on the handedness of that particular person performing

the activity. Therefore, in this section we introduce a model to monitor spatial

behavior of hands which make a convenient feature for observation and perceive

simple human activities.

Space around the user, except his back, is divided into 50 regions for the

ease of identification of the task, the human is engaged in. These are shown in

Fig. 5.1. One or few regions will be associated for a certain activity. Generally,

only an identified number of regions is covered during a certain task. Activities

that involve gestures which are not directly interpreted by a robot can be made

certain using this fact. Information is analyzed to examine which regions are

mostly visited by joints such as elbow and palm, which are mostly responsible

for gestures. Finally, the Interaction Decision Making Module outputs the task

identified by the system after the period of observation.

Two approaches are implemented for comparative assessment of activity space.

Modules called Activity Space Analyzer(ASA) and Quatitative Activity Space
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Analyzer(QASA) are used for this. In ASA, only the touched portions of activity

space are analyzed while in QASA, the percentage of times each portion is visited

or the frequency of visits, is also analyzed simultaneously.

5.1.2 Criteria used to analyze activity space

Front and side personal space of the human is divided into sub spaces called

‘zones’ as in Fig. 5.1. For accurate prediction of behavior, 50 zones are identified.

The larger the number of zones, the higher the capability to track even smaller

movements. Even so, training of data is difficult when the number of zones

increase. Therefore 50 regions are selected to match these 2 requirements.

Coordinate locations of elbow and palm are tracked and their respective zone

is recorded. This is due to the fact that sholder, elbow and palm are the most

responsible joints for upper body gestures. Among them, sholuder coordinates

do not change considerably during activity. Therefore, elbow and palm joints are

selected for this system. This way, all the zones that each joint visits through out

the period of observation,t are recorded. Zones are numbered as below.

(level1, far right, front) - Zone 1 (level1, right, front) - Zone 2 (level2,

Figure 5.1: Arrangement of activity zones near a person (a) and (b) shows the
division of side and front space which altogether makes 50 zones. Any region
outside the marked boundaries is categorized as the 51st zone.
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right, far front) - Zone 34 (level5, far left, far front) - Zone 50 all other

areas - Zone 51

At the end of t seconds, the percentage of visits to each zone by elbow joint

and the palm joint are calculated separately. Set of zones does not depend on the

whole body movement of the person, as zones are generated relative to specific

body joints as in Fig. 5.2. The optimum number of zones required for accurate

activity recognition is determined empirically.

Shoulder joint-LeftShoulder joint-

Right

Elbow-Right

Palm-Right

floor

h

l

2l/3 15cm 15cm

h
/4

face

Figure 5.2: Dimensions and joints used to separate zones are shown in the skeletal
diagram. The distance between right and left shoulder joints is denoted as l and
the height from the floor to face joint is denoted as h. Values used for length and
width are marked.
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5.1.3 Analyzing Extracted Information

Out of the 2 approaches, ASA uses zones visited by each joint as inputs.

QASA takes the zones as well as the number of visits to each recorded zone as a

percentage. An example scenario is given below.

Consider an occasion in which the user was walking. Zones recorded during

the walk were as follows.

Right elbow ={20, 51}

Right palm = {11,36,51}

Activity Space Analyzer (ASA)

This system takes the input sets shown above. While walking, hands move

freely forwards and backwards. Therefore the area covered by the palm is greater

than that of elbow joint. Therefore elbow visits zone 20, while palm visits zones

11 and 36. Backward movement of joints is the reason for having zone 51 as an

input in both scenarios.

Quantitative Activity Space Analyzer (QASA)

Inputs to the system are as in Fig. 5.3. Not only the zones but also their

percentage out of the total number of visits to all the zones are taken as inputs

to this system. This allows the user to distinguish tasks which use same activity

space but have a different pattern in behavior.
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1 2 3 …......... 20 …….... 48 49 50 51

0% 0% 0% 48% 0% 0% 0% 52%

1 2 ….......... 11 ……….. 36 ……….. 49 50 51

0% 0% 56% 23% 21%

Zone

Zone

Percentage

Percentage

(a)

(b)

Figure 5.3: Approach of QASA. It records the zones each joint visits and finally
calculates the percentage visit to each zone. (a) and (b) gives the zones and
respective percentage of visits of each zone for elbow joint and palm respectively.

5.1.4 Decision Evaluation

A feed forward neural network was used to relate zones visited during a

particular task. In ASA, inputs to the neural network were the set of zones

numbered from 1-51, visited during the period of observation. Zones related to

elbow and palm were given as separate inputs. QASA takes the percentage of

times each zone was visited(visiting frequency), in addition to the inputs of ASA.

The output from this neural network was the closest task out of the specified tasks

within the system. Input variables of 17 persons during each task performed over

6 minutes are taken to train the system.

The robot was placed in the domestic environment and the experiment was

carried out under 2 cases. In both the cases same activity set was performed

by the 11 participants and same activity was performed 10 times by a single

participant in order to identify the behavior of the system accurately. A set of 9

standing tasks were selected for the experiment. These tasks are listed below.

� Task 1: Walking, hands aside

� Task 2: Standing, arms crossed

� Task 3: Standing, scratching head

� Task 4: Standing, heavy object in hand

� Task 5: Standing, desk activity
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� Task 6: Standing, brushing teeth

� Task 7: Standing, holding phone in the ear

� Task 8: Standing, waving hand towards robot

� Task 9: Standing, touching face

Among these, were tasks recognized as difficult to be distinguished by other

activity recognition techniques. Scratching head, brushing teeth and holding a

phone in the ear can be stated as examples. Tasks were numbered to avoid

confusion with other tasks. During practical implementation, 20 s was used for

t. Two frames were captures per second.

Case 1

ASA is implemented. Each Participant was allowed to perform tasks numbered

from 1-9. System observed the task for 20 s after the person is tracked. Spatial

arrangement of right elbow and palm were recorded and analyzed by the system

as described in previous sections. Output of the system was compared with

the actual activity. Eleven participants were asked to perform the same task in

their own way. These eleven participants were asked to perform all the tasks ten

times, with a time gap in each trial, to validate the system. Ten trials are selected

because the regions covered during the same task by same user in two different

times will be different.

Case 2

QASA is implemented and the same procedure as case 1 is followed. The

number of inputs to the neural network was increased as the percentage

distribution of 6 most visited zones are taken in addition to the zones itself.

All the other factors are same as case 1.
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Several occasions analyzed by the 2 approaches are shown in Fig. 5.4.

Information used by the Data Analyzer during each scenario in Fig. 5.4 are

given in Table 5.1. The zones recorded during the corresponding activity during

the 2 cases are given under ‘Zones in ASA’ and ‘Zones in ASA’ columns.

Number of times the activity was correctly identified was given under ‘Recognition

Accuracy’. To find the relationship between the tasks and activity space during

both cases, mean values of the results are compared in Fig. 5.5.

In Fig. 5.5, the mean values for tasks 1-8, during case 2 is greater than that of

case 1. Therefore QASA seems more appropriate for these 8 tasks. Recognition of

task 9 is more accurate in case 1 but the overall accuracy of task 9 even in case 2

is not high. ‘Touching face’ is often done by humans involuntary, but habitually.

Therefore, various humans perform task 9 in various ways. This made the task

identification complex.

All the below facts were supported by the results presented in the box plot

in Fig. 5.5. Results of the study confirms the fact that the activity space is a

demanding feature for human activity recognition. Many tasks that were confused

by complex techniques could be recognized with a satisfactory accuracy, by the

second approach(QASA) proposed.

(a) (b) (c)

Figure 5.4: Various occasions tested with the 2 systems (a) An occasion in which
the person is reading a book. This is regarded as a desk activity (Task 5) which
keeps the forearms just below the chest. Marked in red, are elbow and palm
joints considered by the system. Corresponding skeletal diagram used to locate
these joints and to create the mesh is shown on left. (b) The user is waving hand
towards the robot (Task 8) (c) User standing with his hands crossed (Task 2).
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Certain tasks which do not use activity zones repeatedly, could be identified

by SA. Examples are tasks 2, 3, 4 and 9. These tasks use fewer zones as well as

fewer number of visits to each zone. Therefore recognition accuracies of ASA and

QASA are not highly deviated. This rule does not apply for tasks with repetitive

movements such as 1, 6 and 8. During these, specific but fewer number of zones

were visited constantly. Therefore, these tasks were difficult to be differentiated

just by zones, but by the percentage of visits per each zone. By comparing 2

approaches as in Fig. 5.5, it can be observed that the mean recognition accuracy

of most of the activities by QASA is larger than that of ASA. Therefore, QASA is

a suitable approach for many activities except for the exclusions discussed above.

Summary: This model presents a comparison of the results of two approaches

that use activity space. The first approach called ‘Activity Space Analyzer’ is

used to study the relationship between the usage of activity space and a certain

task. Second approach which is called ’Quantitative Activity Space Analyzer’, is

to find the best approach to use activity space for task recognition. An experiment

Figure 5.5: Boxplot from the results obtained for case 1 and 2. Box represent
inter quartiles. The tasks are numbered from 1-9. y- axis denotes the number of
times tasks of 11 participants were recognized accurately (out of 10 performance
trials made by each person for a single task).
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was conducted to assess the usefulness of each approach towards recognition of

certain tasks and restrictions in each approach is discussed. Furthermore, results

confirm that the suitability of each approach depends on the type of task but

Quantitative Activity Space Analyzer showed positive results for many activities

involved. The key factors found during two approaches were highlighted in the

discussion. The results of these two approaches can be used to improve existing

activity recognition techniques with an additional feature called ‘activity zones’.

5.2 Hand pose

Gestures made by hands are a way of utilizing the perceived environment.

In another perspective, hands are a rich source of body language and affect

an on-going task and inner (psychological) state as well. Gestures used when

relaxed and engaged are different. Meantime, gestures used in human activities

are different in each activity as well. The intention of this research is to develop

a system which can identify the psychological or emotional state as well as

possible physical activities in order for a social robot to gain several aspects

of situation-awareness.

5.2.1 Recognizing hand pose

The approach used to recognize gestures was evolved from the approach

proposed in section 5.1. The same concept has been adopted in this section

to differentiate and recognize gestures. The space around a person while engaged

in a certain task or just relaxing, is divided into smaller regions to identify each

portion of space separately. Hence this approach is simply how a person fills the

space around him/her, by means of a gesture.

The space occupied by gestures is different from each other when different

gestures are considered. The criteria used to identify the activity space and set
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boundaries in length, width and height of the considered space are shown in

Fig. 5.6. The front and side space of a person is divided into two as ‘front’ and

‘far front’. Each of these regions is 20 cm wide. These lengths were chosen to

be adequate in differentiating the selected gestures through trial and error. The

higher the number of zones, the greater the capability to track even gestures

that are alike. However training of data will be cumbersome when the number

of zones increase. The mesh created by selecting the optimum number of zones

in this way is shown in Fig. 5.7 and activity zones are numbered from 1 to 70.

Space outside these smaller regions is numbered as 71. Different gestures occupy

different zones and Fig. 5.8 demonstrates this fact. Optimum number of zones

required for accurate recognition of gestures is determined through trial and error.

Figure 5.6: Criteria used to determine length, width and height of the mesh are
shown. (a) The height from the ground level to the head joint (J1) is divided into
six levels as shown. The vertical space is divided into five regions as ‘Far right’,
‘right’, ‘mid’, ‘left’ and ‘far left’ and the length of a single region is taken as 2/3
of the distance between two shoulder joints of the person (J2 and J3). (b) The
plan view of a person is shown.
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1

10

11

20
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36
36 37 38 39 40

4142434445

46 47 48 49 50

5152535455

56 57 58 59 60

6162636465

66 67 68 69 70

71

71
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Figure 5.7: The 3D mesh created out of the ‘activity zones’ established around
a human subject is shown. The zones are numbered from 1 to 71 for the ease of
differentiation of portions of 3D space.

Space consumed by the hand

Human hand has two limbs: fore arm and the upper limb. Limb from the

shoulder to elbow makes the upper limb and the elbow to hand tip makes the

forearm. Hence we consider the spatial formation made by these two limbs by

means of shoulder, elbow and wrist locations. The zone occupied by each joint

A

B

C

shoulder

elbow

wrist

x

y

z

30 31 32 33 34

29 28 27 26 25

2423222120

71

Figure 5.8: Utilization of zones during a certain gesture is shown. The shoulder,
elbow and wrist occupy the zones 26, 25, 71 respectively.
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was identified in order to recognize the gesture of the hand. Fig. 5.8 shows how

these zones were filled by these body joints while making a gesture. The set

of gestures considered during this research was shown in Fig. 5.9. The reason

for choosing a spatial approach to recognize these gestures is demonstrated in

Fig. 5.10. Basically, two shoulder joints hold the grid. When the person walks,

the grid will follow him/her immediately.

a
b

c
d e f

g
h

i
j

k

Figure 5.9: The set of gestures used to recognize using the proposed approach
are marked with a rectangle colored in red. These gestures are named from a to
k for the ease of reference.

a b c d e f

g h ki j

Figure 5.10: Depth images corresponding to the gestures from a-k are shown.
Relatively deep points are shown in black while relatively shallow points are
shown in white. As seen, each gesture has equal or unequal depths in shoulder,
elbow and wrist.

78



5.2.2 Experiment and results

Experiments are carried out with the participation of 14 individuals on an age

gap of 25-51 years ( mean of 35.6 and SD of 10.7). A deep neural network (DNN)

was trained to map the set of zones occupied by the shoulder, elbow and the

wrist, to the corresponding gesture. We used a DNN of 6 layers and 24 neurons

in the first layer. Training data set consisted of gesture information of 34 human

subjects. The model resulted in a training accuracy of 97.05%. Considering the

gesture shown in Fig. 5.8, the inputs and the output can be stated as follows.

Inputs: 26, 25, 71

Output: j

Here inputs denote the set of zones occupied by the shoulder, elbow and wrist

respectively. First we asked each participant to represent each gesture in front

of the camera. Hence the participants were not covered by any obstacles in

the surrounding. Then we asked the same participant to repeat the gesture while

seated. The participant was allowed to sit on a chair with a table in front in order

to evaluate the system performance with a few obstructions. The intention of this

task was to find the impact of obstacles and self-occlusion upon the behavior of

the recognition system. The recognition accuracy was calculated as a percentage

of correctly recognized gestures out of all performed gestures. In each of the two

occasions, participant was asked to perform the gesture twice. The reason for this

is that in different occasions, we alter the same gesture, sometimes significantly.

Results of the experiment are shown in Table 5.2. The accuracy of the

proposed algorithm is given in two occasions and the correctly recognized number

of gestures out of 28 trials is given in the brackets. Gestures with most of the

body parts adequately visible to the camera showed a higher recognition accuracy.

Highest accuracy was obtained for ‘a’ while posing for the sensor. The recognition

accuracy of the same gesture while seated showed a relatively lower value as most
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Table 5.2: Results of the experiment obtained for two occasions: while users were
posing for the sensor and recognition accuracy of hand pose while the users were
seated.

Gesture Accuracy (%) Accuracy (%)
Posing for display During an activity

a 100.0 (28) 82.1 (27)
b 89.2 (25) 85.7 (24)
c 89.2 (25) 85.7 (24)
d 96.4 (27) 85.7 (24)
e 85.7 (24) 82.1 (23)
f 82.1 (23) 85.7 (24)
g 96.4 (27) 89.2 (25)
h 92.8 (26) 85.7 (24)
i 92.8 (26) 82.1 (23)
j 85.7 (24) 78.5 (22)
k 53.5 (15) 39.3 (11)

parts of the hand were covered by the person him/herself when performing this

gesture.

As a whole, the recognition accuracies of gestures were lower when seated.

A probable reason for this behavior of the system is the self-occlusion resulted

by the person’s posture and obstruction by nearby objects such as tables, and

chairs. Except for ‘k’, the approach seemed to give promising results in gesture

recognition. As most of these gestures are displayed by humans while standing,

where the system showed a satisfactory recognition accuracy. As this approach

can be used real-time, it has the possibility of being utilized for behavior

monitoring in many applications. In seated arrangements, the sensor was set

at an angle from the direction the participant was facing. The reason for this is

that the most of the participant was visible to the sensor in such an arrangement.

Otherwise tables or other objects will obstruct the vision of the sensor. Except

for ‘k’ which was confused with ‘g’, the approach showed promising results for

the recognition of gestures a-j.

Summary: In this section, we identified a method to recognize the body

language of hands by means of the spatial orientation of hands. The ‘activity

space’ around a human was divided into smaller units called ‘zones’ and a 3D

mesh was generated around the particular subject with the combination of a

number of zones. Location of major joints of human hand: shoulder, elbow and
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wrist, were recorded by means of these zones. The set of zones occupied by

each joint vary in each gesture and this feature was used to distinguish each

gesture. An artificial neural network was used to map the location of joints

into the corresponding gesture. The experiments were conducted in simulated

laboratory environment to evaluate the system. In the end of the experiment we

found that the concept of ‘activity space’ is an interesting aspect to explore human

body language by means of gestures. Hence this method can be used to recognize

most of the frequently used gestures in social settings. Implementation of this

approach showed promising results in identifying selected 11 human gestures with

a decent accuracy.

5.3 Pose recognition and robot-initiated interaction

When relaxing postures are considered in domestic environments, often

humans tend to attain unusual postures such as leaning on chairs and sitting

on floor. Although relaxation of a person is directly related to his/her posture,

there’s no exact method of defining that relationship. Therefore, in this section,

we present how commonly used poses of standing and sitting postures were

recognized and interpreted to relate them with the relaxation level of a user.

Out of the selected, some poses which can exactly be clarified as ‘sitting’ or

‘standing’, are used as references. Other poses which are deviated from these

reference poses are divided into categories, considering how these poses are used

by humans in their casual behavior. For example, in working or writing a person

may sit on a chair with his spine bent forward. The same person will sit with his

spine erect, during an ordinary situation. Such often encountered postures are

considered to be evaluated by the proposed system.

There are 9 postures considered in the present system, as in Fig. 5.11 and

Fig. 5.12. At the end of t seconds, spatial parameters are analyzed prior to body

parameters. This stage evaluates the distances to the user within the observed
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1 2 3 4

(a) (b) (c)

Figure 5.11: Types of Standing poses used in the experiment (a) Standing pose 1,2
with ‘Low’ Interaction Readiness (b) Pose 3 with ‘Medium’ Interaction Readiness
(c) Pose 4 with ‘High’ Interaction Readiness.

5 6 7 8 9

(a) (b) (c)

Figure 5.12: Types of Sitting poses used in the experiment (a) Pose 5 with ‘Low’
Interaction Readiness (b) ‘Medium’ Interaction Readiness in poses 6, 7, 8 (c)
‘High’ Interaction Readiness in pose 9.

duration of time and determines the walking direction of the user. If the user is not

walking away, further information from DRS is processed. Angular information

is extracted once every second and the rate of change of these angles are also

calculated and stored in DRS. Extracted and calculated information in every

second is stored in this way during t seconds. At the end of t seconds, these

values stored in the DRS are compared with the corresponding values throughout

previous (t-1) seconds. Final decisions are made after the analysis of information

within these t seconds. At the tth second, Pose Identifier (PI) analyses user’s

pose using the extracted joint angle data within that second. Most probable 9

postures to be found in a domestic environment including 4 standing and 5 sitting

postures are defined in PI.
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A variable called ‘Interaction Readiness’ is used along with the rates of change

of joint angles as inputs to the fuzzy system from PI. A measurement of natural

tendency for interaction in each pose is defined as the ‘Interaction Readiness’ of

that particular pose. Interaction readiness is considered to be high when the user

is highly interested to interact with an outsider.

In relaxing standing postures, torso will sag slightly to a side and legs will

slightly be bent. Therefore pose 4 in Fig. 5.11 is used as the most relaxing

standing position. In convention, when the user covers his chest with arms as in

pose 1, it’s a sign of interaction rejection. Therefore, pose 1 is considered to be

a least suitable occasion for interaction. The torso of a resting pose will be well

balanced, but will not curl up forward as in fear. Therefore, user leaning back,

as in pose 9 in Fig. 5.12 is used as the most relaxing sitting pose, while pose 5

has high tension and is therefore considered as a less relaxing pose.

Considering the above reasoning, pose 3 in Fig. 5.11 is the defined standard

standing pose of a user in this system, while 1 and 2 have ‘Low’ interaction

readiness and pose 4 has a ‘High’ interaction readiness wherein humans normally

tend to lean during long term interaction. In the same way, in sitting poses,

6,7,8 in Fig. 5.12 are considered as normal sitting poses while 5 has ‘Low’

interaction readiness and 9 has ‘High’ interaction readiness. The standard poses

3,6,7,8 have ‘Medium’ interaction readiness. In other words, these 4 poses are

used as reference poses. The system further determines the user’s walking

direction through comparison of stored distance values in DRS. Joint angular

speeds and whether the user is still or walking towards or walking away were

considered before measuring user readiness. These parameters were analyzed in

the ‘Information Processing’ stage. Interaction readiness and highest angular

speed throughout t seconds recorded were input to a fuzzy inference system to

decide the interaction demanding level of the particular user. This phase met

within Interaction Decision Making Module (IDMM). IDMM made the decision

regarding interaction and outputs the time to wait and the social distance
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that should be maintained before interaction. In relaxed body language, fluid

movements are made. These movements do not prevail over a time. This is the

reason to observe user’s body parameters stored in DRS for a t duration.

After evaluation, if interaction demanding of the user is high, robot waited for

a predefined time and then moved towards the user until the distance between

two conversant becomes equal to the output from Interaction Initiator. With

this step, conversation initiation factors are achieved and hence it’s deduced as a

favorable condition for interaction. This is performed in the final phase.

During each body information extraction stage, angular movement was

calculated and stored in DRS. During information processing, information stored

in DRS were used. IDPI decided whether the user was in a standing or a sitting

position using such information regarding joint angles. After this evaluation

only, the data from DRS was analyzed for pose selection. A feed forward neural

network is used to relate body angles to a particular posture. Inputs to the neural

network are the set of body angles α, β, θ and γ where the variables are shoulder

joint angle, elbow joint, hip joint and knee joint respectively. The output from

this neural network was the closest pose out of the specified poses. If the angular

speeds were constantly changing, the maximum recorded speed was obtained as

the second input of the fuzzy system.

Here, in this system the sleeping relaxing poses were excluded as humans

often do not prefer long term communication in these poses. Often when seated,

people involuntarily shake their legs or flung their legs out to music. Therefore

dγ
dt

was not considered during the analysis of joint angular speeds, to measure

interaction level. Here, dγ
dt

is the rate of change of knee joint angle. This avoids

misinterpretation of the occasion as a ‘busy user’. IDMM had two inputs as the

interaction readiness and the angular speed. For example, consider the following

inputs; Input 1 = HIGH and Input 2 = max{dα
dt
, dβ
dt
, dθ
dt
}. Input 1 indicates the

interaction readiness of the user after analyzing the pose information and Input 2

gives the maximum recorded angular speeds out of the 4 joints considered. Given
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above is an occasion like pose 4 of Fig. 5.11. IDPI output for this scenario will

be ‘Medium’ while all the angular movements are close to zero. Hence Input 2

is recognized as ‘Very Slow’. The mutual distancing between robot and the user

are determined as in Fig. 5.13. S1 and S2 denotes distances traveled by a robot

during ‘high’ and ‘low’ interaction demanding respectively.

5.3.1 Interpretation of Fuzzy Information

In this approach, some poses are given more weight as ‘relaxing’ positions while

some are considered less relaxing when a domestic environment is considered.

After pose identification from DI, interaction readiness is decided from that pose.

This is the final phase of the PI. IDMM is implemented by Mamdani type fuzzy

inference system to evaluate the level of interaction demanding of the user. The

fuzzy logic controller in FIDMM takes interaction readiness and highest angular

movement as input. Singleton membership functions are used to represent poses

identified from the neural network.

Output is the extent to which the user demands interaction. This is illustrated

as ‘Interaction Demanding’ and is scaled from ‘Very Low’ to ‘Very High’. Centre

d

S2

robot

user
S11

4

3

2

Figure 5.13: Routes followed by robot during various situations.
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of area method is used for defuzzification of this output. Membership functions

of corresponding inputs and outputs are shown in Fig. 5.14.

Angles related to a similar posture of two users will be slightly different

from each other. Therefore, defining a boundary to define a posture will be

inaccurate. To interpret vagueness in this situation, several fuzzy labels are

defined for postures. Standing position 1 and 2 were considered to be highly

unlikely to interact and were categorized under fuzzy label ‘LOW’ interaction

readiness during standing while 4 is considered to be highly interactive. Therefore,

that posture is categorized under ‘HIGH’ interaction readiness. If the angular

movement was greater than 95◦, the system identified the user as ‘busy’. In

this case 95◦ was the angular speed limit for interaction and was denoted by

dφ
dt max

. Therefore, only angular movements below the above limit are considered

in applying the rule base. Otherwise, the user is approached by applying the

Interaction Initiator. The rule base was defined using the natural tendency in

considered postures. Rule base for this fuzzy inference system is shown in Table

I. VL, L, M, H and VH denoted fuzzy labels ‘Very Low’, ‘Low’, ‘Medium’, ‘High’

and ‘Very High’ respectively.

µA

Very           Slow    Medium  Fast                 Very

Slow                                                                Fast

Angular Movement (Deg/s)

𝑑φ
𝑑𝑡max

1

0

(a)

µID

0 1

Very         Low         Medium         High          Very 

Low                                                                 High

Interaction Demanding

1

(b)

Figure 5.14: (a) represents the input membership function corresponding to
angular movement and (b) represents the output membership function which
corresponds the level of interaction demanding.
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Results and discussion

The experiment has been carried out with 8 persons aged from 25 to 58 years

(Mean of 36.34 and SD of 11.21). The neural network was trained for 9 postures

of 27 persons to identify each pose. As sitting and standing positions do not

deviate much on age, the results did not show a considerable difference for the

same posture of an adult and a youth. Experiment results for several users are

given in Table 5.3. Two occasions during the experiment are explained below.

A user was selected and asked to sit in a preferred relaxing pose as in Fig. 5.15.

Angular speed was zero and therefore angular movement was ‘Very Slow’ and the

output from layer 4 was ‘High’. If the pose changed from one to another within the

considered time interval, the rates of change of angles in considered joints must

become high. The system decided that the user is busy. This type of occasion

was met when the user was exercising or running. Fig. 5.16 shows an occasion

where the user was walking away from robot. Hence interaction demanding was

decided to be zero. In that case the robot did not reach the user but continued

wandering around. Table 5.3 presents the results of the experiment conducted

with 8 persons selected out of a selected sample and user satisfaction regarding

interaction initiation process followed by this system. One difficulty faced during

this experiment was that differentiation of the two standing positions, ‘hands on

(a) (b)

Figure 5.15: (a) MIRob approaches a user with ‘high’ interaction demanding
state. The skeletal tracked during that position is shown on right in (b).
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Figure 5.16: The user walks away and MIRob does not approach the user after
analyzing information for 5 seconds.

back’ and ‘hands crossed’ was cumbersome as a result of equal range of angles

obtained in both the occasions. Therefore, it was difficult to differentiate poses

1 and 2 in Fig. 5.12 using only angles. We could observe dissatisfied users when

the robot decided to interact with them even though the user was engaged in a

task. Except for such exclusions, general behavior was identified and interaction

process took place with higher user satisfaction.

Summary: A fuzzy based attention evaluation system is presented. The system

takes angular movements as well as human pose as inputs to assess the level of

attention given by a human towards a robot while working. Experiments and

results are presented to evaluate the behavior of the proposed model. But there

are other factors except angular movements and pose, which may affect human

attention. This can be stated as a limitation in the presented system.

Before going for direct conversation, the robot will be able to assess the

level of busyness and the suitability of having a conversation depending on

the scenario. The major improvement of this system is the involvement of

a nonverbal mechanism to perceive favorable human behavior for interaction.

Over the existing systems, this system has the capability to define user readiness

for interaction through complete analysis of posture information without being

framed to face and emotional details of the human. Furthermore, the introduced
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system does not rely on verbal instructions from user for interaction initiation.

5.4 Interpreting movements of the body

We conducted a study to explore the tendencies in users approving his/her

robotic companion under different conditions. Under the circumstances, the

activities humans engage in may vary and activities deploy various bodily

movements. During this study, users were allowed to engage in a set of activities

and movements of the users were tracked for a certain duration. Properties in

these movements such as speed, frequency and fanning were used to determine

the engagement of a particular user. As the engagement in an activity reduces

the interaction demanded by the user from outsiders, degree of affect in a highly

engaged activity will be low and vice versa. This fact was evaluated during the

study using various activities that humans usually engage in during daily chorus.

Depending on the degree of affect, factors considered before the interaction were

evaluated. The type of conversation, proxemics between the two conversant and

the approaching path were the factors considered here. Finally this approach was

compared with an ordinary interaction scenario by initiating a direct interaction

with the human without considering behavioral aspects for the same situations.

These two approaches were compared by obtaining user feedback during each

scenario.

Hence the objectives of this work focus on identifying the effect of factors which

affect the perception of nonverbal human behavior and human responses towards

a situation-aware robot with the above mentioned capability.

5.4.1 Measuring Behavioral Responses

A qualitative study will base on immeasurable human features such as facial

expressions, staring, etc. As a robot cannot perceive such features without
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analyzing body geometry, facial contours, etc., we focused on quantitatively

studying the motion of human body for a period of time, before going for decisions

regarding his/her behavior. Hence we translated behavioral observations into

discrete figures and statistical outputs in order to perceive their meaning.

Evaluation of verbal responses will only be possible after starting a

conversation. In this scenario, the robot requires to evaluate human behavior

before an interaction. Therefore only nonverbal cues were selected to evaluate

situation for the appropriateness of an interaction.

5.4.2 Observable Nonverbal Human Behavior

Three major features included in bodily movements were used as cues to

perceive the situation during this study. These features are mentioned below.

1. Speeds of selected body joints

2. Positioning of body joints

3. Maximum occupied areas around the individual

Out of the observable human cues, the above cues were used to analyze a

situation. Body-based movements were used as the factors which drive robot’s

decisions regarding interaction. The most fit variables that can define motions

of a human were selected for the study. The robot perceives its environment

through qualitative information derived from quantitative information.

The above features were measured quantitatively in order to determine such

emotional parameters associated with the movement. Here, the emotional

parameters include the priority given to the task, usage of activity space and

user’s engagement. All the above factors are determined mostly by the task

of an individual. Even so, humans adopt both rational and irrational behavior

in the same environment. Here, rational behavior is the influence by emotions
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or thoughts while irrational behavior is not. Therefore there can be illogical

movements associated with irrational human behavior. Random movements in

hands and legs are an example for such movements. But these movements prevail

over a very short duration. Misinterpretation of such behavior is omitted by

analyzing the usage of maximum occupied areas around the individual over the

period of observation.

Body joints considered for monitoring human behavior in this way, are shown

in Fig. 5.17 (a). These joints include head, spine-base and elbow, wrist and

ankle of right and left sides of the body. Joints which are mostly utilized during

a task were tracked during this study. Variables associated with each motion are

shown in Fig. 5.17 (b). These variables are the distance from a reference and

joint speeds. Here, the vertical going through the spine-base was chosen as the

Figure 5.17: Skeletals extracted from a standing and a seated person are shown.
The joints used to track movements are marked and the right, center and left
regions are shown in (a). (b) shows the distances measured from the line going
through the spine-base of the person. Distances to head joint, left elbow, left
wrist and left ankle are marked as d1, d2, d3 and d4. The corresponding joint
speeds are marked as v1, v2, v3 and v4. Similarly, the distances and speeds of
joints on the right side are also considered for analysis.
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reference to measure distance, as spine-base is least subjected to movements due

to the inertia of human body.

These variables observed through out the period of observation, are

plotted against time in Fig. 5.18. This shows the speed, fanning and

maximum occupied areas of the joint with the highest speed. The reason for this

is that this joint is the most actively used during the task. Hence robot considers

adjusting the interaction scenario using these properties associated with the user.

As the robot determines proxemic behavior in addition to conversation, analysis of

spatial behavior of the user will play an important role in being situation-cautious.

5.4.3 Decision Making Criteria

Two decisions; proxemic behavior and conversational preference to suit the

occasion were taken after an analysis of the observed cues. The proxemic behavior

included the approach direction or the path to be followed and the mutual
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Figure 5.18: Nonverbal behavioral responses observed during the experiment (a)
joint speed (here, the speed of the right wrist is shown) (b) the distance from
the vertical drawn through the spine-base joint to the considered joint is marked
against the time of observation (c) a radial graph showing the highest occupied
area. Areas were denoted as right, center and the left of the user. Right, center
and left were denoted as 1, 0 and -1 respectively. The responses observed by the
robot over 10 s are shown.
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distance between the human and the robot. Conversational preference included

the type of conversation to have with the user. Conversational preferences are

categorized according to the length of the conversation.

Determining the proxemics

The approach direction was chosen so that the maximum occupied region out

of right, center and left, was least obstructed by the robot. For example, if the

maximum occupied region was right, robot approached the user on his/her left

and vise versa. If the center was occupied maximumly, the robot approached the

user on the right. If both right and left were equally occupied during the task, the

robot approached from front. The accepted interpersonal distance for a mutual

interaction is within 1-1.5 m. Therefore we chose an interpersonal distance of 1.2

m for a still user. Otherwise the interpersonal distance was calculated as in (5.1).

The units are in meters.

Interpersonal distance = 1.2 +maximum fanning to the front (m) (5.1)

Determining the conversational preference

Types of conversations robot chose to have with each user were as in the

previous experiments. A typical example for such conversations are given in Fig.

4.5 Here we omitted long conversation during this study.

The conversational preference was based on the speed of the joints and fanning.

This was due to the fact that maximum occupied area will have no impact upon

the conversation that the user intend to have with the robot. Joint speeds and

fanning were chosen as the demonstrators of engagement in a specific task. Values

of these variables were categorized as ‘high’, ‘average’ and ‘low’ for the ease of

analysis. The exact figures for these boundaries were chosen by trial and error,
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repeating the experiment for a number of times. Conversational preferences were

decided using the criteria given in Fig. 5.19.

5.4.4 Monitoring Human Behavior

The experiment was conducted in a simulated social environment within the

laboratory. Participants of this experiment were students and some outsiders

in the age range 23 to 28 (Mean-25.64, SD-1.68). There were 17 participants

and all the participants were in good mental and physical health condition to

make decisions. Participants were given instructions regarding the process and

the behavior of the robots in the laboratory upon arrival. Users were allowed to

engage in a selected set of tasks as part of the experiment. The experiment was

conducted using MIRob.

The experiment was conducted to monitor the behavioral responses of users

towards robot-initiated interactions. The robot initiated the interaction after

considering the movement-based behavior of its user. Movements of head joint,

spine joint, right and left wrist, elbow and foot joints were monitored for a period

of time. Decisions of the robot included appropriate proxemic and conversational

behavior.

Since the responses depend on the priority given by the user to his/her current
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Figure 5.19: The decision grid: Conversational preference chosen at each occasion
are shown.
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activity, we have selected a set of tasks. These set of tasks are as follows. Tasks

encountered in a typical domestic and lab environments were selected for the

study. These tasks are as follows.

� Engaged in a desk activity

� Resting on a chair

� Engaged in an exercise

� Cleaning floor

� Standing relaxed

� Having breakfast

� Engaged in lab work

� Listening to a song

� Making a phone call

Robot was remotely navigated towards a particular participant while he/she

was engaged in the task. Before approaching, the robot observed the behavior of

the individual for a duration of 10 s. The robot initiated a conversation after

approaching that particular user. Each user was allowed to perform atleast

three tasks listed above. Path planning and navigation tasks of the robot were

autonomous while response generation and tracking a user were teleoperated by

the experimenter. Hence the teleoperator instructed the robot where to approach

and what to say. A single user participated in the experiment at a time and the

interaction process was repeated for each participant separately.

As MIRob was monitored by a human operator, its responses were generated

with respect to the responses from the user. During the experiment, the

responses of the robot towards its user include proxemic and verbal cues only.
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If the situation was not favorable for interaction in the form of displayed

nonverbal behavior of the user, robot was instructed to leave the situation without

interaction. In such a situation, it is assumed that the user does not prefer to

interact.

Independent variables used in the study were the movements made by the user.

The response of humans towards the interaction initiated by the robot was the

dependent variable during analysis stage.

Joint coordinates of a particular user were measured by the Kinect SDK. All

the behavioral changes were identified according to the explained criteria, through

the algorithm. The map of the environment was predefined in the simulation.

Therefore the robot navigated to the target positions and its orientation were

defined by the operator.

As each participant was asked to perform three out of the nine tasks mentioned

above, 51 different scenarios were encountered during the experiment. MIRob

was allowed to observe each individual once the activity was started. After the

evaluation of user behavior according to the model, the approach behavior of the

robot was rated by the participant. User rated the robot’s behavior based on

the convenience or the discomfort he/she felt as the robot approached. Here, the

period of observation, 10 s, was determined so that an adequate amount of data

were obtained for the analysis and so that the user does not feel uncomfortable

by a longer observation. Visual information was extracted at a rate of 2 per sec.

Proxemic decisions were taken so that highly engaged areas were least obstructed.

The study included two experiments. One to evaluate user responses for a

direct approach behavior with a fixed conversational and proxemic behavior. The

second as a situation-based approach behavior which is referred o as adaptive

approach behavior.
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5.4.5 Experiment 1

The robot directly approached the user with a predefined proxemic behavior

and initiated a predefined conversation (direct approach method). This direct

approach method was used in experiment 1. Hence the approach behavior of the

robot was not adaptive in this experiment. The robot always reached the user

from his/her front and the conversation was TLK. A mutual distance of 1.2 m was

kept between robot and user during the interaction process. After the interaction

with the robot, the user was asked to rate the behavior of the robot in the form

of a feedback score (out of 10). This approach scenario is shown in Fig. 5.20 (a).

In Fig. 5.20 (a) and (b), the robot approached the user from front, with a mutual

distance of 1.2 m in between. Fig. 5.20 (c) and (d) shows the approach behavior

of the robot while the user was dining. As the right hand did most of the work

during the activity, the maximum occupied area was user’s right. Hence robot

approached from left. As the user keeps his hands in the front region, hands

are the farthest to the body. Therefore the robot counted that distance before

keeping the mutual distance. Hence the mutual distance was greater than that

in Fig. 5.20 (b).

5.4.6 Experiment 2

This experiment was conducted in two occasions as follows. Occasion 1:

The robot approached the user after an analysis of his/her behavior. Hence

the approach direction, mutual distance and the conversational preference were

adapted according to the conclusions derived after the observation. The user

was asked to rate the behavior of the robot as in experiment 1. Meantime, the

participant’s expected behavior from the robot was also recorded.

Occasion 2: After participating at occasion 1, user was allowed to take part in

experiment 1 again and give a feedback score.
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(c) (d)
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Figure 5.20: Two occasions from the experiment (a) and (b) show the direct
approach behavior. (c) and (d) show the adaptive approach behavior after an
analysis of the movements made by the user.

Adaptive behavior of the robot during two tasks could be observed in Fig. 5.21.

Fig. 5.21 (b) shows the adaptive approach from user’s right, as the front region

was obstructed by his hands. In Fig. 5.21 (c) and (d), the robot approached

from front, as right and left were equally occupied by the user. This decisioning

system is as described in 5.4.3.

The three feedback scores received for experiment 1 and occasion 1 and 2

in experiment 2, were compared to find human trends towards each type of

interaction.

5.4.7 User Responses Towards Robot

A comparison of feedback scores for the experiment 1 and occasion 1 in

experiment 2 is shown in Fig. 5.22. When the feedback scores are considered,

occasion 1 in experiment 2 has received a higher feedback score during most of

the tasks. The users were impressed with the fact that robot respected their
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(a) (b)

(c) (d)

Figure 5.21: Two occasions in which adaptive approach behavior was
implemented. (a) The robot observes the user for a duration. The user was
doing an exercise. (b) After the observation, robot approached the user from
right and initiated the conversation. (c) The robot observed a user listening to a
song. (d) robot approached the user from front and initiated interaction.

activity space while approaching that user. Another reason for higher feedback

score was the selection of appropriate verbal interaction. In tasks such as desk
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Figure 5.22: A comparison between the average feedback scores received for the
behavior of the robot during only the direct approach only vs adaptive behavior
after comparing both the situations; direct approach and adaptive behavior.
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activity and resting on a chair, where less bodily motions could be observed,

users preferred shorter conversations. This preference remained same for tasks

such as exercising and cleaning the floor, where speedy and wide motions could

be observed. Motions were at the two ends (very fast or very slow) when the

users were highly engaged in their task. Motions of average speed and width

could be observed for usual tasks where user engagement is not very high. In

such scenarios, the robot used conversations such as a SER or TLK. In the tasks:

‘resting on a chair’, ‘exercising’ and ‘engaged in lab work’, second experiment

received a lower feedback score and the difference was considerable in ‘resting

on a chair’. The reason behind this trend was that users preferred to talk to

the robot while ‘resting’. But the conversational preferences during experiment

1 and occasion 2 in experiment 2, were TLK and GRT respectively. Hence it can

be observed that there is a requirement of comprehending the complete task, in

addition to behavior.

A comparison of feedback scores for the occasion 1 and 2 in experiment

2 is shown in Fig. 5.23. After users were allowed to encounter with the

proxemic-aware approach behavior of the robot in experiment 2, the feedback

scores for experiment has been decreased considerably. It could be observed that

the users were impressed with the situation-awareness of the robot. This trend

had an anomaly in ‘resting on a chair’ as in the previous comparison. Again, the

reason for this is that users preferred a longer conversation but movement-based

analysis suggested an interaction limited to just a few words.

In experiment 2, a confusion matrix was created in order to evaluate user

satisfaction regarding the evaluation of the robot. This is shown in Table 5.4. The

experiment was designed to meet assumptions mentioned below. In the confusion

matrix, Cohen’s kappa value was calculated with linear weighting. Used weights

were equal in the confusion matrix. Since kappa values for the systems were over

0.6, it can be proved that the systems was satisfactorily capable of making good

judgments that substantially agree with those of the user. Hence the adaptive
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Figure 5.23: Two occasions from the experiment (a) and (b) show the direct
approach behavior. (c) and (d) show the approach behavior after an analysis of
the movements made by the user.

Table 5.4: An analysis of the confusion matrix generated from the results of
experiment 2

Observed Cappa
Standard Error

.95 Confidence Interval
0.722 Lower Limit Upper Limit

Method 1 0.0841 0.5572 0.8868
Method 2 0.082 0.5613 0.8827

0.9382 maximum possible unweighted kappa, given the observed marginal frequencies
0.7696 observed as proportion of maximum possible

approach scenario can well replace direct approach scenarios utilized by most of

the robotic platforms.

Summary: This study evaluated observable human cues such as body-based

movements as a demonstrator of degree of engagement in a certain situation.

For comparison purposes, responses from humans during an interaction initiated

without any pre-concerns of the situation were analyzed in support of the

major experiment. The experiment was intended to explore the requirement

of situation-awareness of a robot deployed in a social environment. Interesting

facts regarding human intentions on proxemics and conversational preferences

were revealed during the study.
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Results confirm the fact that the capability of the robot to perceive human

behavior makes an impact to sustain interaction between robot and its user.

Moreover, there are still other aspects in humans which may affect the degree of

engagement in a certain situation, such as the internal state of mind, traditions,

beliefs and norms followed by that human. However as these aspects are

non-observable, there is still a huge space for novel methods to evaluate similar

psychophysiological behavior in humans.

This proved to be helpful in determining appropriate approach behavior for

the robot when a human was encountered. A robot evaluated human behavior

in all physical, social and emotional aspects according to this experiment, the

robot could behave with situation-awareness. Hence user dissatisfaction occurred

due to inappropriate behaviors of the robot such as disturbing the user without

invitation or invading the personal space have been eliminated.

5.5 Recognition of Hand and Body Pose

We present a Body Geometry-based approach for arm and body posture

recognition, which was then used to determine the user situation which can be

used for a number of postures and for the realtime use of a robot.

Recognized arm and body postures were used as nonverbals which

communicates internal state of mind of a user. Observing a user for a

certain duration gave an insight to the robot to determine how ‘stressed or

relaxed’ the person is. Finally, based on this knowledge of user behavior,

appropriate behaviors such as approach behavior and verbal responses that

should be adopted by the robot were determined. Hence we tried to launch

an insightful robot-initiated human-robot interaction during daily encounters in

social environments.

Arm and body posture recognition techniques which can recognize an adequate
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number of postures with a higher accuracy are scarce. Furthermore, above

systems evaluate a number of parameters for evaluating the possibility of an

interaction but integration of posture and gaze factors are not adequately utilized

in monitoring user behavior. Therefore, this section presents a model to interpret

user situation before interaction by analyzing postural behavior by means of

arm and body-based geometry derived through postures encountered during each

scenario.

The proposed system adopts a novel Geometry-based approach for

differentiating human arm and body postures. Basic body postures considered

here were sitting, standing and bending, which were most frequently adopted

by humans in domestic environments. In addition to that, frequent relaxing

postures are considered as well. The same approach was applied to recognize often

encountered arm postures as well. In addition to that, postural behavior of the

user was monitored by the system to identify user’s interest towards interaction

by evaluating his/her body language. This approach enabled the robot make

intuitive decisions rather than adopting a behavior just based on a predefined set

of actions. This evaluation determined the appropriate behaviors for the assistive

robot. We considered the nature of conversation and approach distance as the

‘approach behaviors’ of the robot.

Therefore this experiment had two contributions.

1) A novel method to recognize a number of arm and body postures.

2) Evaluation of the effect of considering arm and body postures to generate

human-aware responses by a robot prior to an interaction. In this context, the

robot’s responses were related to its approach behavior which included mutual

distancing and the type of conversation.

The functional overview of the overall system is shown in Fig. 5.24. This

system evaluates factors that can be used to describe the nonverbal interaction

demanding of a user, such as postural behavior. This ‘postural behavior’ includes
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Figure 5.24: Overview of the system

the changes in body posture and arm posture of a person over time. It is intended

to enhance the capability of understanding user situation for deciding whether or

not an interaction is appropriate at that particular moment.

This system took spatial orientation of limbs as input to determine a particular

posture. Limbs critical in forming a certain posture were used as vectors that

make the posture arrangement. Joint information required to form such vectors

was extracted from an individual by the Information Extraction Unit through

RGB-D camera. Extracted information and calculated parameters were stored in

the Data Recorder (DR) for further analysis at a later stage. After observing the

user for a predefined period of time, Posture Identifiers (Body Posture Identifier

and Arm Posture Identifier) were accessed to determine the current posture of its

user and postural changes made by that user during the period of observation, T .

Arm and body postures determined by Arm and Body Posture Identifiers were

fed into the Interaction Decision Making Module (IDMM) to determine whether

the postural behavior of the human is favorable for interaction. In addition to the

outputs from Posture Identifiers, data recorded in DR are used to take decisions

regarding interaction initiation, by IDMM.

Decisions regarding initiation of interaction with the user are then transfered

to Navigation Controller and Voice Response Generation Modules to take basic

steps toward interaction such as moving toward the user and greeting. Navigation

Controller was used to achieve a socially interactive distance between the two

conversant. In this case, conversant will be human and the robot. Maps required
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for navigation within the specified environment were held in Map Repository.

Voice responses were generated from the Voice Response Generation Module as

the final stage of initiating the interaction. Sentences for the conversation between

the user and robot are generated here.

5.5.1 Changes in Behavior

To decode user behavior, the robot will observe him/her at a distance in our

approach. Hence, neither the observation nor the interaction will be intrusive.

For example, a person may distance herself from someone by leaning away. All

such behaviors are controlled by the brain according to [88] and indicates whether

a person is interested in or getting ready to avoid an encounter. Another similar

example is that a person may rub his face or cheeks when in need of getting rid

of a situation. Therefore hands and the body are important to be considered

in reading body language. In this research we considered a number of arm and

body postures to be distinguished by a robot before initiating an interaction

with a human. A set of often encountered body and arm postures are shown in

Fig.5.25 and 5.26 that we tried to recognize using the proposed concept. Hence

the robot might be able to interact with a human without territorial violations

and disturbing behaviors.

Set of body postures shown in Fig.5.25 identified by the proposed approach

are abbreviate as follows.

STA- Standing

STDUP-Standing, with one leg up

LEA-Leaning forward

PIK- Picking up something

CRO-Crouch

SEA- Seated

SEAF- Seated, with spine bent forward

SEAB- Seated, with spine bent backward
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STA STDUP PIK CRO

BENSEA SEAF SEAB MED SEAUP

LEA

Figure 5.25: A set of body postures encountered daily are shown. Each posture
is called by an abbreviated form of their actual name and their actual names are
explained in section 5.8.1.

MED- Meditation

SEAUP- Seated, with one leg up

BEN- Seated, with legs up and bent

Similarly, the set of arm postures shown in Fig.5.26 identified by the proposed

approach are abbreviated as follows.

DWN- Hand down

FRO- Hand in front

UP- Hand up

DWN FRO UP FOR SID WAI CHK DES WAV HEA

Figure 5.26: A set of arm postures encountered in daily chorus are shown. Each
posture is called by an abbreviated form of their actual name and their actual
names are explained in section 5.8.1.
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FOR- Hand forward

SID- Hand to side

WAI- Hand on waist

CHK- Hand on cheek

DES- Hand as in a desk activity

WAV- Waving hand

HEA- Hand on head

5.5.2 Mechanism used to differentiate postures

To detect a posture uniquely from a set of postures, orientation of vectors

drawn along selected limbs in human body was considered. In other words,

each limb that a posture, becomes a vector. A vector is formed by combining

two adjacent joints in the skeleton. Once a person is tracked, his/her skeletal

arrangement is extracted to analyze the positioning of selected set of vectors in

3D space. This is demonstrated in Fig. 5.27 and Fig. 5.28. Fig. 5.27 shows two

vectors- fore arm vector and upper arm vector, which are used to determine arm

posture. To determine the spatial orientation of the body, 3 major limbs; spine,

femur bone and knee are considered. A vector is drawn across the limb, joining

the end joints of that limb, according to the extracted skeleton. The angles this

vector makes with the XZ plane (horizontal) and Y are also measured. Spine,

femur and tibia vectors shown in Fig. 5.28 are the vectors used to determine the

body posture. Front view of a skeletal while sitting is shown in Fig. 5.28.

Arm Postures

As already explained, three limbic vectors used to derive arm posture are

marked in Fig. 5.27. Following equations are used to calculate each vector

considered. A, B, and C denote the coordinate positions of shoulder, elbow and
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Figure 5.27: Body angles derived from the limbic vectors of a person with
stretched hands are shown. Coordinate system as seen from the camera is shown
as X-Y-Z. The angles formed by the 3 limbic vectors with the XZ-plane are
marked as α and β while the angles made with the XY-plane are marked as θ
and δ. These angles are used to recognize the arm posture. A, B and C denote
shoulder, elbow and wrist joints.
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Figure 5.28: Limbic vectors of a seated person are shown here. The limbic vectors
are derived by joining A (spine-mid), B (spine-base), C (knee) and D (ankle)
joints.
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~AB = (xelbow − xshoulder)~i+ (yelbow − yshoulder)~j + (zelbow − zshoulder)~k (5.2)

~BC = (xwrist − xelbow)~i+ (ywrist − yelbow)~j + (zwrist − zelbow)~k (5.3)

Where AB and BC denote the vectors drawn along the upper arm and the

fore arm. x, y and z denote the coordinates in i, j and k directions respectively

in usual vector notation. Labels shoulder, elbow and wrist denote the shoulder,

elbow and wrist joints. The set of inputs required to identify the particular arm

posture is represented by H as follows.

Hi = {Â, B̂, Ĉ, δ, θ, α, β | i = 1, 2, ..., n} (5.4)

Here, i denotes the ith posture considered out of n number of postures. Â, B̂,

Ĉ, δ, θ, α and β are measured as marked in Fig. 5.27. δ and θ are the angles

measured from the vertical (XY-plane) drawn through the spine-base joint of the

skeletal. α and β are angles measured in 3-dimensional space from the horizontal

(XZ-plane) drawn through the spine-base joint of the skeletal.

For example, the set of angles made by limbic vectors corresponding to a

standing human posture can be represented as follows.

Hi = {18◦, 148◦, 14◦, 2◦, 17◦,−70◦,−87◦} if the ith arm posture is considered

as an ordinary standing posture: STA with hands down: DWN as shown in Fig.

5.26.

Body Postures

Angles related to knee and femur bones are calculated for the right hand

side of the body. Orientation of these three vectors is different from posture to
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posture. Even though other limbic vectors that change with respect to posture

are present, these three vectors are critical in differentiating two postures that

are slightly deviated from each other. Furthermore, majority of the human body

responsible for a posture is included in the above three vectors. Vectors along

the limbs in arms are not considered as hands are often moved by humans even

without a specific need to do so. Therefore, arms are not considered for body

posture recognition during this study. The set of angles denoted by Pi in (7)

includes the angles used to calculate the orientation of limb vectors shown in

Fig. 5.28.

Limbic vectors required to calculate these angles are shown in Fig. 5.29 and

these vectors are calculated as follows.

~AB = (xspine base−xmid spine)~i+ (yspine base− ymid spine)~j+ (zspine base− zmid spine)~k

(5.5)

~BC = (xknee − xspine base)~i+ (yknee − yspine base)~j + (zknee − zspine base)~k (5.6)

~CD = (xankle − xknee)~i+ (yankle − yknee)~j + (zankle − zknee)~k (5.7)

Where AB, BC and CD denote the vectors drawn along the spine, femur and

tibia limbs. x, y and z denote the coordinates in i, j and k directions respectively

in usual vector notation. Labels mid spine, spine base, knee and ankle denote

the spine-mid, spine-base, knee and ankle joints marked in Fig. 5.29.

Pi = {Â, B̂, Ĉ, α1, β1, D̂, Ê, F̂ , α2, β2 | j = 1, 2, ...,m} (5.8)

Here, Â, B̂, Ĉ, α1, β1, D̂, Ê, F̂ , α2, β2 are as marked in Fig. 5.29. j denotes

the jth posture considered out of m number of postures. A set of actual values

obtained for a specific posture are shown below.
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Figure 5.29: Body angles derived from limb vectors of a seated person as in
Fig. 5.28 are shown here. Coordinate system as seen from the camera is shown
on bottom left. The angles formed by the 3 limb vectors with the xz plane are
marked as α1, β1, α2, β2. (a) Orientation of the upperbody vectors is shown by
the triangle ABC (b) Orientation of the lowerbody vectors shown by the triangle
BCD.

Pi = {6◦, 162◦, 12◦,−82◦,−87◦, 5◦, 167◦, 8◦,−77◦,−73◦}

if ith body posture is considered as ‘standing’ or STA in Fig. 5.25.

Identifying postures in the above manner is a function of the Body Posture

Identifier and Arm Posture Identifier. A deep neural network was trained to

relate the above body angles in Pi and Hi, to a particular posture. Inputs to

the neural network are Â, B̂, Ĉ, α1, β1, D̂, Ê, F̂ , α2 and β2 in Body Posture

Identifier. The output from this neural network is the closest posture out of the

specified m postures. This output is considered for all sets of angles recorded

each second throughout T s. This is similar in Arm Posture Identifier as well.

Here, the inputs to the neural network are Â, B̂, Ĉ, δ, θ, α and β in Arm Posture

Identifier and the output from this neural network is the closest posture out of

the specified arm postures.

Table 5.5: Observations made through time

time (s) t= 1 t= 2 t= 3 t= 4 t= 5 ..... t= T
Body Posture CHK CHK STA STA STA ..... STA
Hand Posture DES DES DES DES DES ..... DES
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5.5.3 Behavior Evaluation Model

Posture change over a timeline

During certain activities, a human changes his/her posture at least once.

Therefore, posture changes must be analyzed for an adequate duration. The

system observed its user for T s from the moment a user’s skeletal was identified.

DR records raw information such as coordinate positions of specific joints and

calculated parameters such as joint vectors throughout this period. At the end of

T s, set of information recorded in DR is analyzed for posture identification and

decision evaluation. An example of this evaluation for the period of observation

equal to i s is shown in Table 5.5.

In Table 5.5, arm and body postures perceived by the model in each second

throughout the period of observation are shown. This postural behavior is taken

into consideration prior to the interaction. Hence the decision making is affected

by this ‘postural behavior’ of the user. The ‘initial posture’ was recorded at t=

1 s and the ‘final posture’ was recorded at t= T s.

Availability of the user

The intention of the assistive robot is to uplift the mental condition of its user,

through friendly interaction at user’s leisurely or lonely hours. Therefore, the

robot’s interaction approach must consider appropriate situations to achieve this

outcome. IDMM assesses the availability of the user by analyzing the change of

his/her behavior by means of posture over time. The idea behind this evaluation

is as follows.

According to behavioral sciences, there’s a trend in humans to change their

behavior when somebody is around. Therefore, the user’s response toward the

robot changes, when he/she sees the robot nearby. A common example for this
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type of situation is that humans slant their spine (SEAB in Fig. 5.25) when seated

for a long duration, but when some one comes near, they adjust their postures to

standard sitting posture (SEA in Fig. 5.25) with erect spine. Humans notice such

changes in behavior in someone when they intend to interact with that person.

Instead of the human, it is the assistive robot who assesses such incidents in

domestic environment in this context.

5.5.4 Posture based Interaction Decision Making

A number of postures are found in humans while engaged in various activities

in domestic environments. Out of these, often found 11 (m=11) postures shown

in Fig. 5.25 were recognized using our approach. These include ‘standing’

and ‘seated’ postures and postures in-between. Postures such as LEA and PIK

can also be found while performing a certain task. These are referred to as

‘intermediate’ postures. Bending down to pick a fallen object is an example

of a task with such postures. Awkward postures that are unique to humans,

which are especially found in children, are not considered here. Postures SEAUP

and STAUP have two different angles for right and left femur and knee vectors

respectively. In such instances, training data sample has postures with both right

and left sides included. The reason is that only the main postures are responsible

to assess the availability of a human for interaction. Limbic vectors vary during

each posture considered here. Similarly there are 10 arm postures (n=10) which

were selected to be recognized using the proposed approach.

As a prior step before interaction, it’s important for the robot to evaluate the

user’s posture to gain knowledge on current situation of the user. On the one

hand, posture is a measure of the emotional condition of a person. On the other

hand, postures are related to a user’s current activity according to [89]. Therefore,

the robot is expected to evaluate posture as a measure of interactivity of a

particular person. Although there aren’t strict rules on the relationship between

posture, emotional state and physical activities, there are conventional scenarios
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where user situation can be approximated by analyzing posture information.

Interaction decisions are made after analyzing posture changes according to

behavior evaluation model. Information required by the IDMM are given in the

set denoted by Hi and Pi in (5.4) and (5.8).

5.5.5 Valence of a situation

Once the postures observed in a single scenario are known, a variable called

‘valence’ is calculated to assess the ‘internal state’ of that person quantitatively.

To calculate valence, we categorized postures into 3 groups namely, ‘relaxing

poses’, ‘neutral poses’ and ‘stressed poses’. This is shown in Fig. 5.30. Postures

adopted during relaxing situations were categorized as ‘relaxing poses’ and are

assigned a positive valence. Similarly, postures adopted during stressed situations

were categorized as ‘stressed poses’ and are assigned a negative valence. Standard

postures were assigned the value zero for valence. This categorization was done

after analyzing some simulated domestic encounters according to the generally

accepted social norms. Valence for each posture was determined after this analysis

and the values assigned for the valence are given in Table 5.6. Assigning valence

Neutral 
poses

Valence

Body pose

Hand pose

Relaxing 
poses

Stressed 
poses

Neutral 
poses

Relaxing 
poses

Stressed 
poses

Figure 5.30: A semantic map illustrating the components that make valence; hand
and body poses. Each pose is categorized into three groups; relaxing, neutral and
stressed. This categorization is based on the emotions associated with each pose
in general human perception.
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and categorizing postures according to their emotional state were empirical and

based on how humans react in social encounters in general. Hence we simulated

such encounters and arranged arm and body postures in an order of their positive

emotional state. Values for the valence were assigned after this step.

In a single scenario, a person adopts both body posture and hand posture. In

such a case, the valence of the scenario was calculated as follows.

V alence = k1 ∗ V alenceBody Posture + k2 ∗ V alenceHand Posture (5.9)

V alenceBody Posture and V alenceHand Posture indicate the valence corresponding

to body posture and hand posture as given in Table 5.6. k1 and k2 indicate the

weights given to body posture and arm posture respectively in determining the

valence of a situation.

Interaction decisions made by the robot based on the calculated valence are

shown in Fig. 5.31. The values to separate margins between each type of

conversation and mutual distancing was empirical and were decided by repeating

a few trial experiments before implementing the IDMM. Corresponding type of

conversation and the mutual distancing appropriate for a particular instance were

determined according to the value of the valence as shown in Fig. 5.31. The

margins for each approach behavior are set by simulating a number of occasions

in domestic encounters and human responses if a human approaches another

human instead of the robot. This simulation helped in determining the values

which were used for the valence in each arm and body posture shown in Table

5.6. Postures were listed in order of their relaxing or stressed nature as per the

Table 5.6: Valence assigned for each hand and body posture depending on the
general interpretation of emotional state behind each posture

Arm Posture HEA FOR SID DES DWN FRO UP WAI CHK WAV
Valence -8 -6 -4 -2 0 2 4 6 8 10

Body Posture MED LEA PIK SEAF SEAB STA SEA CRO STDUP SEAUP BEN
Valence -10 -8 -6 -4 -2 0 0 2 4 6 8
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human perception and then a numerical value for the valence is assigned.

5.5.6 Decision-making in dynamic user behavior

In a dynamic user behavior, several changes in body and arm postures could

be observed. In such occasions, the initial and final postures observed during the

period of observation, T were considered in decision-making. The conversation

types used in this work are the same as in Fig. 4.5.

For instance, if the valence was increased during a certain occasion and the

approach behavior corresponding to the final valence is ‘Greeting’ and 1.5 m,

this is incremented to ‘offering a service’ and 1.8 m. A combination of a mutual

distance and the corresponding conversation is referred to as a ‘set’. Similarly, if

the difference between the initial and final valences is a decrement, the approach

behavior is demoted by 1 set. For instance, if the final valence is ‘greeting’ and
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Figure 5.31: Marginal values for valence to determine appropriate approach
behavior of the robot. (a) Initial valence is marked as 0 and this corresponds
to ‘Greeting’ at a distance of 1.8 m as the appropriate approach behavior (b)
Final valence increased to +8 which resulted in an approach behavior of ‘asking
for a service’ and keeping a mutual distance of 1.5 m.
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1.5 m, this is demoted to ‘no interaction’ and 2 m. If the difference between the

two valences: Initial valence and the final valence, is an increment, the approach

behavior is promoted by 1 set. This decision making criteria is given in the

algorithm below.

Algorithm 1 Decide appropriate approach behavior

Require: Initial valence, final valence
Ensure: Mutual distance, type of conversation ( Approach behavior)

Arm and body posture transformations known
if final valence = initial valence then

Select the corresponding set of approach behavior
else

if final valence <initial valence then
Select the corresponding set of approach behavior for the final valence
Decrement corresponding approach behavior by 1 set

else
if initial valence <final valence then

Select the corresponding set of approach behavior for the final valence
Increment corresponding approach behavior by 1 set

end if
end if

end if

5.5.7 Experiment and Results

A set of experiments were conducted in support of the proposed concepts of

posture recognition and robot’s decisioning.

The robot was placed at a predefined location in the map and was allowed to

wander within the specified map. The routes that were covered by the robot are

determined by a remote experimenter. Once a body was tracked, the robot stops

its motion and starts observing. During this observation, DR stores information

and Body Posture Identifier and Arm Posture Identifier are initiated. After the

recognition of postures, IDMM is initialized to take interaction decisions. Once

the robot decides an appropriate type of conversation and the mutual distance,

this is achieved by the remote experimenter as in wizard-of-oz experiments. Hence

the experimenter instructs the Voice Response Generation Module to utter the
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statements that he types. Navigation Controller takes care of maintaining the

mutual distance decided by the IDMM. We implemented the proposed concept

to the right side of the body and the corresponding gesture was performed by the

right hand.

The set of experiments are explained below.

Determination of T (Experiment 01)

An experiment was conducted to determine a reasonable value for T .

Therefore, a set of domestic activities were selected and a person was allowed

to engage in a particular activity for a period of time. During that period,

posture changes and the time gap between two consecutive different postures

were recorded. For the experiment, 11 users aged from 26-59 years (SD-12.83 and

mean-31.63) participated. Details of the activities selected are given in Table 5.7.

Average values for the variables observed during each activity are given. Here, a

single user was observed for 30 minutes unless the user walked away in the middle

of observation. To determine T , we observed for only body postures because the

hands are dynamic and change faster than the body in general.

Recognition of Arm and Body Postures (Experiment 02)

A deep neural network (DNN) was trained to map the set of angles made by

the limbic vectors to the corresponding arm posture. We used a DNN of 3

layers and 50 neurons in the first and second layers. Training data set consisted

Table 5.7: Results of experiment 01

Activity Postures observed Average time between Minimum and maximum times
2 consecutive between 2

body postures(s) consecutive body postures (s)
1 Standing, waiting STA, STDUP 3.8 2, 8
2 Sitting, relaxing SEA, SEAF, SEAB, SEAUP, BEN 5.1 3, 9
3 Desk activity(reading/studying) SEA, SEAF 6.4 3, 12
4 Cooking STA 6.1 4, 16
5 Making a phone call, sitting SEA, SEAF, SEAB, SEAUP, BEN 8.4 5, 76
6 Making a phone call, standing STA - -
7 Standing, engaged in lab work STA, LEA 5.3 3, 16
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of posture information of 21 human subjects. The inputs and the output of this

network can be stated as follows.

Inputs: Â, B̂, Ĉ, δ, θ, α, β

Output: Corresponding hand posture out of {DWN, FRO, UP, FOR, SID,

WAI, CHK, DES, WAV, HEA}

The module: Arm Posture Identifier performed the above functions.

Another DNN was used to map the set of limbic vectors to the corresponding

body posture. This DNN also consisted of 3 layers and 50 neurons in the first

and second layers. Data related to body posture was also taken from the same

subjects as for the hand posture.

Inputs: Â, B̂, Ĉ, α1, β1, D̂, Ê, F̂ , α2, β2

Output: Corresponding body posture out of {STA, STDUP, LEA, PIK, CRO,

SEA, SEAF, SEAB, MED, SEAUP, BEN}

Different seating arrangements make a body posture slightly different from

each other. Furthermore, people tend to keep their legs at different angles when

seated. Fig. 5.32 shows three examples for this. Such instances were also

considered while collecting data for the training data set.

The module called Body Posture Identifier performs the above functions.

Implementation of IDMM (Experiment 03)

Before implementing IDMM, the robot was remotely navigated towards the

participant adopting the approach behavior as ‘offering a service’ and 1.5 m.

User was asked to give a feedback score for the robot’s behavior by considering

user satisfaction. This is used as the ground truth for this experiment. Then the

entire scenario was performed again and the valence of the set of postures was
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Figure 5.32: A comparison of the limbic arrangement for regular sitting posture
(SEA) when the seating arrangement changes. This occurs due to the difference
in dimensions of each chair type. (a), (b) and (c) represents the user posture, the
corresponding skeletal image and 2 angles β1 and β2 for side chair, stool and arm
chair respectively.

calculated for each scenario according to (8). Then the robot was commanded by

a remote experimenter to adopt the approach behavior determined by the IDMM.

IDMM decided upon an approach behavior by evaluating the valence. For the

experiments, we assigned 1 for k1 and k2 in (8), assuming that the arm and body

postures contribute equally for the current user situation. Then the participant

was asked to give a feedback score for the approach behaviors of the robot during

the two occasions. Users were asked the reason to give their corresponding

feedback score and important remarks during reasoning are highlighted in the

discussion.
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5.5.8 Results and Discussion

Determination of T (Experiment 01)

According to results presented in Table 5.5, several postures could be observed

during a single activity. Results obtained for a single user during the listed

activities are shown in the table. All the postures that were observed from each

user are listed under ‘postures observed’. Number of postures encountered during

an activity increases with the duration of the activity. Therefore, when the person

was allowed to engage in an activity for a long duration, up to 6 postures could

be observed. In contrast, during short term tasks such as standing/waiting or

making a phone call, only few postures were observed. Number of posture changes

were observed in ‘making a phone call while sitting’. This is because the person

finds more relaxing postures when the duration of the call is longer. Out of the

results obtained, it was at the 8th second on average, the person started to change

the posture. That is the average time between two postures was 8 s. Therefore,

8 s was used as the practical value for the period of observation, T . This value

was used for the period of observation in rest of the experiments.

Recognition of Arm and Body Postures (Experiment 02)

The model developed to recognize hand posture resulted in a training accuracy

of 97.05% and testing accuracy of 96%. The model to recognize body posture

resulted in a training accuracy of 98.5% and a testing accuracy of 97.5%. These

two models were integrated to achieve the outcomes of the IDMM.

User responses prior to interaction (Experiment 03)

Table 5.8 shows the results of the experiment 03: implementation of the IDMM.

‘Initial Postures’ column indicates the set of body and hand postures observed
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by the robot at the beginning of time T . ‘Transformation’ column gives the set

of body posture and hand posture at the end of T . The column ‘Description’

gives a detailed image of the user situation. The valence of each scenario is

given in the ‘Valence’ column. The type of conversation and the mutual distance

are given as a set in the ‘Robot Responses’ column. ‘Feedback score (IDMM)’

shows the feedback (out of 10) received by the user in each scenario when the

IDMM was implemented. ‘Feedback score’ gives the score given by the same user

for the same occasion when the ground truth was implemented. When the user

was stationary, no transformation was found in the initial set of postures and

therefore the column is kept empty. When the users had posture changes over

the period of observation, the finally observed set of postures was given in under

the ‘Transformation’.

In the scenario 1, the initial postures were (STA | DWN) and there were no

transformations in the postures for the entire duration. During the scenario, the

person was walking slowly. Therefore the person was standing (STA- valence

0), holding hands down (DWN- valence 0). This recorded a valence of 0 when

both hand and body postures were considered, which resulted in a greeting and

a mutual distance of 1.8 m according to the criteria in Fig. 5.31. As the user was

walking, he preferred a greeting rather than a conversation. But once the robot

spoke, he stopped to greet back. This occasion is shown in Fig. 5.33 (a). The

approach behavior received a high feedback score as 9. The feedback received

for the third scenario, was low compared to the previous occasions. Here, the

person was cleaning the floor, where he was engaged, as perceived by the robot.

Therefore the robot’s decision was not to have any interaction any interaction,

even though the user preferred to have a friendly conversation in such a task.

It could be observed from Fig. 5.34 that the user rated the system with IDMM

with a higher feedback score in general and the mean value of this was 8.56. That

of the system without IDMM was 5.52. Both the systems received a maximum

feedback score of 10 while the minimum scores received by the two systems were
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(a)                                       (b)                                 (c)                                       

STA | FRO

1.8 m

Hey!
SEA | DES SEAB | FRO

2.2 m 1.8 m

Good 
morning!

Figure 5.33: Two occasions during experiment 3 is shown. (a) Occasion 1:
Responses of the user when the approach behavior: ‘greeting at 1.8 m’ was
adopted by the robot (b) Occasion 2: Robot observes the user at a distance
(c) Final position of the robot and the behavior of the user. Recognized postures
and mutual distances are marked.

4 and 3.5. From the results, it could be observed that the participants preferred

a much higher intelligence from the robot if possible.

Facts observed during these occasions can be summarized as follows.

Interactivity of a human strongly depends on activity that the particular human

is engaged in at the moment. As a clue of the activity, posture changes are

Figure 5.34: This box and whisker plot shows the mean values of feedback scores
received from users for the acceptance of the robot’s proactive behavior in the two
occasions: with IDMM and without IDMM. Error bars represent the minimum
and maximum scores received.
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considered during this work. Using posture changes and gaze as behavioral

measurements of human readiness toward interaction, showed positive results

towards interaction decision making by a robot. In some occasions, where the

feedback scores were average, the users preferred to speak more even though they

were engaged. For instance, in the tasks such as cleaning or just doing nothing.

In such tasks, recognition of the task, becomes important. This is an implication

derived from this study. Sometimes, they did not prefer to be distracted.

User feedback was low in some occasions because it is not only the pose which

contribute to determine a human’s state. According to the behavior of the model

it can be observed that postures such as sleeping, running can also be identified

using this approach. We excluded such postures to ensure the comfort of in our

experiments.

Summary: A method has been presented to identify often met human

postures using a simplified method rather than using hardware intensive complex

mechanisms. The proposed method was based on orientation of limbs and proved

to be an efficient method to recognize a selected set of postures with a considerable

accuracy and these postures cover a majority of domestic postures that are

encountered during daily chorus.

After recognizing arm and body postures, the robot went through a logical

argument about user’s behavior before deciding upon an action. One major

improvement of the system was the implementation of a novel vector-based

approach for posture recognition using spatial orientation of limbs and the other

was the utilization of a non-verbal mechanism for evaluation of user situation.

Over the existing systems, presented system has the ability to perceive user

situation using uncountable features such as posture and postural changes which

are deviated from often used characteristics to measure the attention such as

facial expressions and emotional responses.

As a whole, a robot could be able to generate adaptive and proactive responses
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based on a user’s postural behavior. Furthermore the proposed system proved to

be a convenient mechanism to identify a defined set of postures and to perceive

nonverbal interaction demanding of a human, at a distance. This fact was

confirmed by the experiments and the results presented.

5.6 Recognition of complex human activities

We present an approach to integrate several features that contribute to an

activity in order to increase the probability of recognizing the correct activity.

These features include behaviors adopted by a person while performing the

activity, objects in the surrounding and the location of the activity. The approach

is based on a semantic map drawn by relating how these features make an activity.

5.6.1 Robot, user and the context

Therefore recognizing an activity requires a logical analysis on how

activity-related factors such as movements and configurations, related objects,

location and attributes of objects are linked to each other. Therefore not only

the performer, but also his/her surrounding takes part in an activity. Even so,

there can be individual differences in utilizing such features during an activity due

to various reasons. Therefore allowing some space for such differences is crucial

in activity recognition approaches.

Fig. 5.35 illustrates the semantic features considered in this approach to

recognize an activity. As in Fig. 5.35, five features have been semantically

mapped in forming an activity. Features observed in the performer are called

‘user parameters’ and those observed within the environment are referred to as

‘environment parameters’. These are pose, movements, related minor and major

objects and the utilization of space. ‘Pose’ includes the body and hand poses

of the individual performing an activity. Here the ‘body pose’ corresponds to
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Related major 
objects

Activity

Utilized space

Pose

Movements

Related minor 
objects

User parameters

Figure 5.35: A semantic map which shows the co-relation between various
aspects of a human activity. Features that can be observed during an activity are
divided into ‘user parameters’ and ‘environment parameters’.

the pose of the performer and the ‘hand pose’ corresponds to the pose of his/her

hands. ‘Movements’ represent the speed of the body and hands. We used the

speed of the spine joint of the performer as the body speed. The reason for

this is that the spine joint lies in the center when the entire body is considered

and the spine makes up most of the torso which is involved in most activities.

Pace of the hands was also considered as almost all the activities involve hands,

in comparison to other body parts. We considered the domestic area under

‘utilization of space’ and four domestic areas; living room, kitchen and the bed

room were considered here. Larger objects such as tables, chairs, beds, stools

(furniture) etc were considered as ‘major objects’ and much smaller objects such

as kitchenware, cooking aid, computer, stationary and books, etc were considered

as ‘minor objects’. It can be interpreted that major objects accommodate minor

objects. For the ease of understanding, examples for each semantic feature is

given in Fig. 5.36. Here, the n number of body poses and m hand poses given in

Fig. 5.25 and Fig. 5.26 were identified as a previous work of this research which

is explained in section 5.8.

There are some common complexities attached to activities. Sometimes people

engage in more than one activity at once. For instance, a person may cook dinner

while listening to music. In such situations, recognizing both the activities is

important to get an overview of the context. In addition, it is equally important to

know which activity has to be given much attention. Furthermore some activities
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Activity

Body pose Hand pose Minor objects

Major objects

Domestic areaBody speed Hand speed

Pose 1

Pose 2

Pose 3 Pose n…..

Pose 1

Pose 2

Pose 3 Pose m…..

range 1

range 2

range 3

range a

range 1

range 2

range 3

range a
…..

…..

Dining table

pen

magazine
book newspaper

Water bottle

Vacuum cleaner

mug

heater

Hair dryer

vase

computer

Study table

Dining chair

Stool bed

cupboard

wardrobe

Arm chair

…
…
...

Kitchen

Dining room

Living room
Bedroom

Figure 5.36: Objects and aspects related to each semantic feature are shown.
Hand and body poses are numbered and, objects and domestic area are labeled
for the ease of referencing. Body and hand speeds are categorized into a number
of groups which include a range of speeds in one category.

will have different features over time. In such activities, the ability to forecast the

activity’s future is required in making activity-related decisions. Such a situation

has to be closely monitored and analyzed before recognizing and forecasting a

task. This analysis is sought after in distinguishing closely related tasks. For

instance, doing a yoga exercise and seating relaxed may take the same form

unless observed for a while. How these aspects are related to each other is shown

in Fig. 5.37 as a flow diagram.

Dynamic 
environment, user 

dynamics

Existence of 
behavioral patterns 

over a time

Requirement of the 
context-awareness

Forecast

Analysis

Recognition

Activity

Figure 5.37: The relationship between various steps involved in an activity is
illustrated here.
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Therefore in our semantic approach for activity recognition, a robot makes

several guesses upon an activity in case there are several possibilities for an

activity. While the task having the maximum probability of being performed

is selected, the algorithm outputs other possible tasks as well.

There can be more than one component in semantic features during an activity.

For instance, while reading poses such as seated with spine leaned backwards

(SEAB), seated straight (SEA) or seated with spine leaned forward (SEAF) can

be observed as the ‘body pose’. Similarly, various objects can be around as well.

The person use different seats such as the arm-chair or a dining chair. Therefore

we have kept space to update such information regarding an activity. Fig. 5.38

illustrates how the proposed approach works.

According to Fig. 5.38, there are three aspects of the features associated with

an activity. These are forecast, analysis and recognition. For accurate prediction

of an activity, the behavior of dynamic components such as the environment and

Robot

Learning activity Recognizing activity

Updating the 
semantic map

Existing task New task

Update objects

Update probabilities

Update performer 
information

Update environment

Figure 5.38: The decision flow of the approach during learning and recognizing
activities.
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individuals have to be forecast properly, patterns of behavior have to be analyzed,

and the context have o be recognized adequately. Here, the ‘context’ corresponds

to everything around a person under observation such as the objects being

utilized, others in the surrounding, and the nature of the activity’s environment.

5.6.2 Features of an activity

If the numerical value of speed is considered, there can be hundreds of different

values for various activities. Besides, the speed of doing work might have

differences depending on the person itself. To reduce the effect of such slight

differences, we considered a range of speed for an activity instead of considering

value by value. These ranges are shown in Fig. 5.39. Maximum value for the

speed was determined empirically by analyzing the speeds recorded for different

tasks performed by different individuals.

Assume that the set of observations made at a time during a certain activity

for body pose, hand pose, range corresponds to body speed, range corresponds

to hand speed, major object, and minor object are body pose i, hand pose i,

body speed range i, hand speed range i, domestic area, major object i and

minor object i respectively. These observations given to the system are denoted

by the set S in (5.10).

range 1 range 2 range 3 range 4 range 5 range 6 range 7 range 8 range 9 range 10

0                  20                 30                40                  50                  60                 70        80                 90                 100           120

Speed limit (cm/s)

range

Figure 5.39: As the movements are unique to individuals, instead of considering
the speed, a speed range is considered. On average we divided the range from
still position to the maximum speed of 120 cm/s into 10 ranges. The maximum
speed limit was found empirically by allowing people to perform several activities
before the camera and recording their movement speeds.
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S ={body pose, hand pose, range corresponds to body speed, range

corresponds to hand speed, domestic area,major object,minor

object 1,minor object 2,minor object 3}

(5.10)

5.6.3 Recognition of activities

Once these inputs are recorded, the number of appearances of the particular

input in its corresponding semantic feature is calculated. Then the probability of

appearance of that input is calculated as given in the following equations. The

number of appearances of the input in the already recorded set of body poses is

denoted by fbody pose i and the total number of body poses recorded throughout

the lifetime is denoted by
∑n

i=1 fbody pose i.

Pbody pose i =
fbody pose i∑n
i=1 fbody pose i

(5.11)

The same meaning of notations were used to calculate the probabilities of

other semantic features as well. The probability of having the ith body pose is

denoted by Pbody pose i and there are n number of different body poses considered

throughout the method. All the information stored when learning the tasks are

searched through the ‘activity database’ to calculate this probability.

Phand pose i =
fhand pose i∑m
i=1 fhand pose i

(5.12)

Similarly, the probability of having the ith hand pose is denoted by Phand pose i

and there are m number of different body poses considered through out the

method.
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Pminor object i =
fminor object i∑a
i=1 fminor object i

(5.13)

The probability of having the ith minor object is denoted by Pminor object i and

there are a number of different minor objects considered through out the method.

Pmajor object i =
fmajor object i∑b
i=1 fmajor object i

(5.14)

The probability of having the ith major object is denoted by Pmajor object i and

there are b number of different major objects considered through out the method.

Pbody speed range i =
fbody speed range i∑c
i=1 fbody speed range i

(5.15)

The probability of having the ith speed range is denoted by Pbody speed range i

and there are c number of different values recorded as speed range through out

the method.

Phand speed range i =
fhand speed range i∑c
i=1 fhand speed range i

(5.16)

The probability of having the ith speed range for hands is denoted by

Phand speed range i and there are c number of different values recorded as speed

range through out the method as for the hand speed range.

According to our approach, there could be up to three minor objects depending

on the context. We considered the closest three objects during this study for the

ease of processing information and to avoid unrelated objects.

Assuming the semantic features are independent from each other, P(A), the

probability of an activity to be the selected was calculated as follows.
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P (A) =Pbody pose i ∗ Phand pose i ∗ Pminor object 1 i ∗ Pminor object 2 i ∗ Pminor object 3 i∗

Pmajor object i ∗ Pdomestic area ∗ Pbody speed range i ∗ Phand speed range i
(5.17)

When there were two activities recorded with a considerable probability, both

the tasks were selected to be considered as taken place. But we chose a minimum

probability for an activity to take place for real and this probability was chosen

by repeating experiments over and over again. We denote this probability as

P (A)min for future referencing. Once P(A) calculated for a set of inputs, S is

greater than P (A)min, the corresponding activity (or activities) is selected as the

most probable activity that the performer was doing. If there were only one

object was detected in the vicinity of the performer, Pminor object 1 i is calculated

and Pminor object 2 i and Pminor object 3 i are omitted. In such an instance, P(A) is

calculated as in (9).

P (A) =Pbody pose i ∗ Phand pose i ∗ Pminor object 1 i ∗ Pmajor object i ∗ Pdomestic area∗

Pbody speed range i ∗ Phand speed range i
(5.18)

P (A) =Pbody pose i ∗ Phand pose i ∗ Pmajor object i ∗ Pdomestic area ∗ Pbody speed range i∗

Phand speed range i
(5.19)

If no nearby minor objects were found, P(A) is calculated as in (10). Similarly,

if any object was not recognized, the corresponding probability was omitted when

calculating P(A).
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5.6.4 Learning new activities

While learning, the robot is allowed to ask questions from its user to learn new

activities. The robot initiates a conversation with its user to gather information

regarding an activity which cannot be recognized using the existing information.

A typical conversation between the robot and the user when learning an activity

is shown in Fig. 5.40. Keywords used to identify semantic features are marked in

bold letters. Once all the required inputs or the corresponding set S is identified

through the conversation, a database is updated with the acquired information

and the corresponding activity. This database is referred to as ‘activity database’.

We used this method to identify the following 21 activities.

� Desk activity

� Sweeping

� Cleaning floor

� Standing relaxed

� Standing stressed (hands on hip)

Robot  : Hello there!
Human: Hello!
Robot  : Mind if I ask you a few questions?
Human: Go ahead.
Robot  : What are you doing?
Human: I’m reading a newspaper.
Robot  : I see. What other objects do you use while reading?
Human: A pen and a cup of tea may be.
Robot  : Okay, thank you. Another question. Where do you prefer when reading?
Human: Here, in the living room and sometimes in bed room. 
Robot  : How do you like to read?
Human: Here in the study table or on the sofa.
Robot  : Well, thank you. You helped me understand your actions in the future.
Human: You’re welcome!
Robot  : Have a nice day!

Figure 5.40: A typical conversation between the robot and its user when the
robot learns an activity. Robot acquires relevant information by searching for the
‘keywords’ marked in brown.
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� Cooking

� Sleeping

� Combing hair

� Seated relaxed or loll (hands hanging loosely)

� Seated stressed (hands on head)

� Making a telephone call

� Meditation

� Walking

� Ironing clothes

� Folding clothes

� Picking something up from above

� Picking something up from a surface

� Picking something up from floor

� Stretching, seated (loll or hands hanging loosely)

� Stretching, standing

We selected activities which are daily encountered in a domestic environment.

It is possible to teach new activities and related features once the environment

changes. For instance ‘engaged in lab work’ is an activity that can be observed in

a laboratory environment and various objects such as electronic equipment, lap

tops, soldering iron, and circuit boards etc. could be observed in the surrounding.

Either the user may update the activity database voluntarily or the robot will

update it itself through a friendly conversation. A typical such conversation is

given in Fig. 5.40. For the ease of handling information, minor objects were
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labeled with its original name. For instance the laptop is labeled as ‘laptop’ in

the activity database. Major objects were labeled using letters in the English

alphabet as shown in Fig. 5.41. The environment consisted of four domestic

areas: living room, kitchen, dining hall and bed room.

5.6.5 Experiment and Results

5.6.6 Setting

The ways of performing an activity change from community to community

or the external influences such as family. Therefore two experiments were

conducted to measure the performance of the system under two circumstances.

One circumstance is when a robot encounters many individuals as in a social

environment. This was called experiment 1. The other is when a robot

accompanies members in a domestic environment, i.e. four members in a family.

This was referred to as experiment 2. We used Google Voice API to initiate the

conversation between the robot and the human. Voice is converted to text in

order to update the activity database. We used MIROB, a social robot of height
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G- Stool
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J- Table
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Bed room

Figure 5.41: A map of the domestic area used for the study. Letters from A-M
denote objects and numbers from 1-24 mark blocks of free space including and
without including objects. Note: Objects are not to scale.
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1.25 m developed at Robotics and Control Laboratory, University of Moratuwa.

A web cam was used to detect objects with YOLO.

Experiment 1

We allowed selected 31 individuals of age 27 to 51 (mean age-31.5, SD-11.6) to

perform the list of activities given in section 5.6.4. The activities were performed

in a simulated domestic environment and its arrangement is illustrated in Fig.

5.41. The information in the activity database is used to recognize the activities

performed by each individual. The same setting was used to update the activity

database. Once we have updated the database with around 400 example scenarios

(20 different occasions of each activity), we tested the recognition accuracy of the

proposed approach and this stage was referred to as stage 1. As there were

only a limited number of examples stored in the activity database by the end

of stage 1, we allowed the robot to learn other different occasions of activities

by updating the activity database manually and allowing the robot to learn by

itself through conversation. Once around 750 examples were collected within the

activity database, we tested the accuracy of the system with the same set of

participants plus 10 more (mean age-35.5, SD-9.3). This was referred to as stage

2.

Previous two stages were performed based on the objects found by using

their predefined positions as in the Map. Even so, in a social environment or a

domestic area, object positions might change when they are being used. Therefore

predicting that an object must be at a certain place becomes impractical in such

situations. Hence we used a realtime object recognition system to identify nearby

objects during an activity. We used YOLO V3 to recognize objects around a

person and repeated stage 1 and stage 2 to test the accuracy of the system. We

developed these two stage by expanding already collected data in the activity

database, in order to cover a maximum number of scenarios. Without changing

the positions of objects used for activity recognition ‘with predefined objects’,
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we added several other objects during activity recognition ‘with realtime object

recognition’. As a result, the existing activity database could be expanded during

the activity recognition ‘with realtime object recognition’.

Experiment 2

We selected 4 participants (age 26-female, 28-male, 50-male, 52-female) out of

the group of participants and updated the activity database from the beginning.

Then we evaluated the accuracy of the system at stage 2 with realtime object

recognition. We repeated the same procedure as in experiment 1, to update the

activity database and finally evaluate the system performance. As the number

of participants was limited to four, we included 450 different examples in the

activity database (at least 20 examples for each task) to determine the recognition

accuracy.

5.6.7 Results

By repeating several trial experiments, P (A)min was decided to be 0.008 to

confirm an activity.

Several occasions during the experiment are shown in Fig. 5.42. As an

example, occasion (b) in Fig. 5.42 shows a user engaged in a desk activity.

The set of observations made by the system, S corresponding to this occasion at

stage 1 ‘with predefined objects’ can be stated as in (9).

S = {SEAB,DES, range 1, range 1, living room,C(study table), cup, bottle, book}

(5.20)

The probabilities of each element in the set in activity database were {0.45, 0.8,

0.6, 0.5, 1.0, 0.5, 0.5, 0.6} respectively. This resulted in a P(A) of 0.0162 for the

activity to be ‘desk activity’. When all the elements of the set were considered,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.42: Different occasions encountered during the experiment. (a) User
engaged in a desk activity (b) User engaged in a desk activity in a different
posture (c) User engaged in a desk activity with different objects (A computer
is added) (d) User was walking (e) User was folding clothes (f) User was seated,
relaxed (g) The user was cleaning the floor (h) The user was cleaning the floor in
a different posture. Bounding boxes show the objects recognized during realtime
object recognition.

this also recorded a probability of 0.000814 for the activity to be ‘seated relaxed’,

which is quite small in comparison with the highest probability recorded (0.0162).

Hence the activity was recognized as ‘desk activity’.

The set of observations made by the system, S corresponding to the same

occasion at stage 1 ‘with realtime object recognition’ can be stated as in (10).

S = {SEAB,DES, range 1, range 1, living room,C(study table), book, bottle, }

(5.21)

Here, the cup was not adequately visible for the system. Hence not recognized.

But the set fulfilled the minimum requirement of at least having 4 correct elements

to recognize the task. Hence the probabilities of each element in the set in

activity database were {0.5, 0.9, 0.6, 0.45, 0.8, 0.2, 0.6, } respectively. This

resulted in a P(A) of 0.0116 for the activity to be ‘desk activity’. When all the
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elements of the set were considered, this also recorded a probability of 0.00021

for the activity to be ‘seated relaxed’, which is even smaller than in stage 1

‘with predefined objects’, in comparison with the highest probability recorded

(0.0116). Hence the activity was recognized as ‘desk activity’. Probabilities of

some elements have been reduced, in contrast to what is expected. The reason for

this is that the number of appearances of new objects/ speeds have been added

to the database with learning. For instances such as Fig. 5.42 (c), new objects

have been introduced to the context. To recognize such contexts better, realtime

object recognition is important. That is one major reason why we compared the

two approaches: with predefined objects and with realtime object recognition,

for performance.

Recognition accuracies of the system with predefined objects and realtime

object recognition (Experiment 1) are shown in the Table 5.9. These results are

plotted in a graph for the ease of visibility in Fig. 5.43. Results of the experiment

2 are plotted in Fig. 5.44.

From the results of experiment 1, it can be seen that realtime object recognition

increased the recognition accuracy of activities as well. This is important

especially when there are no objects involved or multiple objects are involved

during an activity.

Table 5.9: Observations made through time

Activity Recognition accuracy (%)
With predefined objects With realtime object recognition
Stage 1 Stage 2 Stage 1 Stage 2

Desk activity 35 72 76 84
Sweeping 42 59 61 79
Cleaning floor 14 34 49 67
Standing relaxed 55 79 89 94
Standing stressed (hands on hip) 52 76 86 91
Cooking 18 64 66 74
Sleeping 34 76 81 86
Getting ready 15 41 63 65
Seated relaxed or loll (hands hanging loosely) 38 72 75 87
Seated stressed (hands on head) 31 54 76 83
Making a telephone call 42 86 84 89
Meditation 41 67 76 83
Walking 29 73 86 94
Ironing clothes 21 59 83 89
Folding clothes 19 47 73 82
Picking something up from above 27 78 81 88
Picking something up from a surface 31 42 68 51
Picking something up from floor 26 61 61 69
Stretching, seated 39 70 77 93
Stretching, standing 45 79 89 96
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In stage 1 with ‘with predefined objects’, most activities were recognized

with lower accuracy. The reason for this is that the database lacks adequate

observations regarding each task. As a result, the recognition accuracies were

between 14 and 45%. Amongst these activities ‘standing stretched’ received

the highest recognition accuracy whereas this activity does not involve a larger

variation in associated objects or postures. In contrast, ‘cooking’ involves a larger

variation in utilized objects as well as a greater number of individual differences

in postures and joint speed. Therefore recorded a lower recognition accuracy in

the beginning.

As standing postures are clearly visible, the recognition was easier. Also,

recognition of activities was less cumbersome, in activities involving stretched

hand postures. The reason for this is that such hand postures reduce

self-occlusion, which is a main obstacle to recognize a posture precisely.

In general, activities which involve standing body postures and stretched hand

postures were recognized with a better accuracy than the activities with seated

body postures and covered hand postures. Hence ‘visibility’ plays important role

during this recognition process. Incorrect recognition of hand postures, body

postures and objects and hardware limitations are found to be the other reasons

for the difficulty in recognizing some activities.

It can be seen from Fig. 5.43, both the occasions: with predefined objects

and with realtime object recognition, stage 2 recorded a higher accuracy than

stage 1. The obvious reason for this is the accuracy of the system increased as

it stored more and more different scenarios during each activity. In other words,

the accuracy increased as the experience was greater.

People’s speed of doing work differ from each other. As there are three-four

people live in a social environment, teaching such deviations to robot became

easier to customize robot’s behavior to that particular domestic context. Hence

the robot receives the capability of adapting its capabilities to match the context.
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Figure 5.43: Recognition accuracies of the 4 occasions: Stage 1 with predefined
objects, Stage 2 with predefined objects, Stage 1 with realtime object recognition
and Stage 2 with realtime object recognition are plotted against the corresponding
activity.
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of participants and with a set of participants (stage 2 with realtime object
recognition) are plotted against the corresponding activity.

The system showed a satisfactory performance in recognizing most activities

when the context was adequately visible. In other occasions, one major hindrance

for the system performance was self occlusion and hardware limitations of vision
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cameras to recognize people in reduced lighting conditions.

From Fig. 5.44, it can be seen that some activities that were difficult to be

recognized in experiment 1, showed an improvement in recognition in experiment

2. Hence this personalized approach was successful for activities such as ‘cleaning

floor (73%)’, ‘cooking (84%)’ and ‘combing hair (77%)’ which were recognized

before with accuracies of 67%, 74% and 77% respectively. The recognition

accuracies of the rest of the activities were not very deviated from that of the

experiment 1. Hence it can be seen that some activities have personality traits

which have to be distinguished by an automated agent. Still in activities such

as ‘combing hair’, recognition of the object (e.g: the comb) was difficult due to

occlusion. Hence were not recognized with a higher accuracy as the activities

which do not involve objects.

5.6.8 Conclusion

Most recent activity recognition techniques rely on spatio-temporal behavior

and trajectories of a performer during an activity. Although such techniques

recognized some tasks with a reasonable accuracy, maintaining that accuracy for

complex tasks becomes difficult. Furthermore new tasks are being added to our

lives as new technologies invades our homes. Therefore we need a more structured

and intelligent representation of activities rather than looking for patterns. We

introduced a semantic space which includes features from the performer: pose

and movements, features from the surrounding: the location where the activity

is performed, and features from objects: related major and minor objects. We

consider these features could capture meaningful details of an activity based on

the context not being restricted to the performer itself. Furthermore we kept

space to introduce new activity as they come along and update related semantic

features. This enhanced the capability of the system and the understanding of

the surrounding in the process of recognizing an activity.

144



Chapter 6

DECODING NONVERBALS AND MODELLING USER

BEHAVIOR

A model is developed to perceive user attention considering a number of

important parameters that humans deploy to show attention towards someone

nearby. These include major components of nonverbal behavior such as gaze,

changes in pose and friendly gestures. In addition, above major categories are

sub divided into minor properties as well. For example, gaze is analyzed in 3

sub categories as gaze direction, gaze time and whether the gaze is returned to

original position by the user.

6.1 Identification of Gaze

The system recognizes gaze, friendly gestures and change in pose after the user

has been notified of robot’s presence. Out of these, gaze is analyzed under 3 sub

categories as gaze time, gaze direction and gaze return. Gaze direction is zero if

the user is looking directly at the camera mounted on robot. Gaze return is the

extent to which the user turned his head back to original direction after looking

at the robot. In the same way, friendly gestures are sub divided into happiness,

gesture speed and gesture time wherein gesture speed and time are not involved

with smile. How friendly gestures are evaluated is given in section 5.5. Change

in pose is evaluated separately without sub categories. These 3 are analyzed by a

fuzzy system to evaluate the level of attention given by the user in each scenario.
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6.1.1 Determination of Gaze direction and Gaze time

Gaze is determined by the deviation of user’s yaw angle of the head. This is

taken from the point of view of camera mounted on robot. Yaw of the head of

the person’s skeletal tracked by the robot is denoted as θ1.

|θ1| ≤ θgaze lim (6.1)

where θgaze lim is the angular limit for the gaze direction to be towards robot. If

the condition in (1) is fulfilled, the system identifies the user to be looking at the

robot.If the user satisfies the above requirement for tgaze seconds, the gaze time

will be tgaze. The total duration system extracts information is t where tgaze ≤ t.

6.1.2 Return of Gaze

When the user is not interested in interacting with the robot, he will look away

though he first looked at the robot.

|θ1 final − θgaze lim| ≤ ∆θlim (6.2)

Here, θ1 final is the yaw at tth second and ∆θlim is the angular limit after

which the gaze is decided to be returned. Above scenario is analyzed using the

criteria given by (2). Gaze is not returned while the above criteria is fulfilled. In

situations where the user looks at the robot and then looks away, many robots

interpret such gaze as a favorable factor for interaction. But in real life,the

condition is the opposite. Analyzing the above initial and final angular values,

avoids a situation in which the robot tries to interact without the consent of its

user. |θ1 final− θgaze lim| decides the extent to which the user has turned his head

back. All the 3 parameters, gaze direction, gaze time and return of gaze are
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analyzed by a fuzzy system to interpret gaze level. Gaze level is the extent to

which the person’s gaze is favorable from the point of view of an observer.

6.2 Identification of Friendly Gestures

Smile and waving hand are used as the parameters which defines friendly

gestures. Built in open/closed palm property in Kinect is used as one condition

to look for waving hand.

ywrist − yhandtip ≥ ylim (6.3)

where ywrist and yhandtip are y coordinates of wrist joint and hand tip

respectively as seen by the camera. ylim is the angular limit after which the

gesture will not be considered as waving hand. The requirement in (3) must

be fulfilled together with open/closed palm property for ‘waving hand’ gesture.

Smile is detected using positions of the facial features in color and infra-red space,

especially mouth left corner and mouth right corner.

Gesture speed is evaluated by movement of open palm across the X-plane

within a second of time. The speeds through out t is considered and average

value is used as the input for fuzzy system. For example, gesture speed at the

1st second out of t duration is shown in (4) below.

Gesture speed = {xwrist}t=1 − {xwrist}t=0 cm/s (6.4)

Gesture time is the duration at which hand waving is detected. Happinenss

is measured using smile and waving hand. Happiness is considered ‘high’, if

both smile and waving hand are present. Happiness is ‘average’ if only one out

of smile and waving hand is present. Happiness is ‘low’ if none of the two are
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present. All the three parameters, gesture speed, gesture time and happiness

are required to evaluate gesture level of the user. Here, gesture level is the extent

to which the person’s friendly gestures are favorable for an interaction with an

outsider.

6.3 Identification of Changes in Pose

When a human notice another human expecting interaction with him,

involuntarily he changes pose. This is analyzed as an input for the fuzzy system

in ALE. This fuzzy system takes, changes in pose into account with gaze level

and gesture level talked in the previous section. This scenario is illustrated in

Fig. 6.1. Skeletal corresponding to the particular pose is shown on right of the

image. Vectors shown in Fig. 6.2 are used to determine how the initial skeletal

is changed from the final. IEU keeps track of the following vectors for further

(a)

(d)(c)

(b)

Figure 6.1: Change of behavior encountered before and after approaching a
human. In (a) Initially the user is engaged (b) skeletal which corresponds to
that pose (c) change of pose when somebody reaches (d) Skeletal of the final
pose.
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r1

r2
r3

r6

r5

r4

Figure 6.2: Spatial vectors related to the body joints used to differentiate two
poses of the same user. The initial pose and the final pose are shown in green
and orange respectively.

analysis in GRU. Vectors shown in the figure are expanded in (5)-(10) below.

r1 = ∆xheadi+ ∆yheadj + ∆zheadk (6.5)

r2 = ∆xnecki+ ∆yneckj + ∆zneckk (6.6)

r3 = ∆xshoulderi+ ∆yshoulderj + ∆zshoulderk (6.7)

r4 = ∆xelbowi+ ∆yelbowj + ∆zelbowk (6.8)

r5 = ∆xwristi+ ∆ywristj + ∆zwristk (6.9)

r6 = ∆xspinei+ ∆yspinej + ∆zspinek (6.10)

For further clarification, consider vector r1. If i, j, k components of the vector

satisfy below conditions, a considerable change has been observed in user’s pose.

Here,∆x,∆y and ∆z are differences between final and initial x, y and z coordinates

of the particular vector.

|∆xhead| ≥ ∆xhead lim, |∆yhead| ≥ ∆yhead lim,

|∆zhead| ≥ ∆zhead lim
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The other 5 vectors are also analysed in the same way as above. Vectors are

related to joints in the upper body which are most probably involved in pose

changes. Number of vectors which satisfy the above condition is selected as the

input for the fuzzy system. Angular and magnitude limits for condition checking

in this research are derived through experimentation.

6.3.1 Evaluation of attention

Impact of gaze, friendly gestures and change in pose towards the attention of

the user is evaluated from a fuzzy system. Before evaluation of these 3 parameters,

gaze and friendly gesture levels are evaluated by another fuzzy system. Inputs to

evaluate gaze level are illustrated in Fig. 6.3. Triangular membership functions

are used for the ease of handling information, as the system is involved with a

number of parameters. In the same way, Fig. 6.4 shows the input parameters

and membership functions used to determine the friendly gesture level. Gaze

level and friendly gesture level are used with change in pose as inputs for the

second fuzzy system. Evaluation of this system is shown in Fig. 6.5.This system

evaluates the overall behavior related to attention. Output membership functions

of the system are illustrated in Fig. 6.6.

µgaze_direction

LD HDMD

Gaze direction(Deg)

µgaze_return

HM

Returned gaze(Deg/s)

µgaze_time

L HM

time(s)
(a) (b) (c)

L

Figure 6.3: Input membership functions of the gaze parameters
(a) Gaze direction (b) Gaze time (c) Level of returned gaze
Fuzzy labels: L, M, H, LD, MD, HD denote Low, Medium, High, Less
deviated, Medium deviated and Highly deviated respectively.

150



µgesture_speed

S FM

speed(cm/s)

µgesture_time

L HAVG

time(s) Level of 

happiness

µhappiness

L AVG H

(a) (b) (c)

Figure 6.4: Input membership functions of the gesture parameters
(a) Gesture speed (b) Gesture time (c) Level of happiness
Fuzzy labels: S, M and F for Slow, Medium and Fast respectively for
Gesture Speed. L, AVG and H denotes Less, Average and High for Gesture
time. L, AVG and H denote Low, Average and High respectively for Level of
Happiness.

µGaze

VL M

Gaze Level

L H

Change in pose

µpose

L AVG H

µFriendly_gestures

VF M

Friendly Gesture  Level

F H

(a) (b) (c)

Figure 6.5: (a) Output from Gaze parameters (b) Output
from Friendly gestures (c) Change in Pose. These are
used as the input parameters of second fuzzy evaluation
Fuzzy labels: VL, L, M, H denote Very low, Low, Medium and Very high
for Gaze Level. VF, F, M, H for Very few, Few, Medium and High in friendly
gestures. L, AVG, H denote Less, Average and High for Change in Pose.

µattention

VL M

Attention Level

L H VH

Figure 6.6: Output Membership Functions of second fuzzy evaluation
Fuzzy labels: VL, L, M, H, VH, VVH denote Very low, Low, Medium, Very
high and Very Very High.
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6.3.2 Interpretation of Fuzzy Parameters

Gaze level shown in Fig. 6.5(a) is evaluated from the input parameters in

Fig. 6.3. The rule base for this is shown in Fig. 6.7. Some of the rules are

omitted in actual implementation. For example, When the gaze direction is ‘low’,

Gaze return automatically becomes ‘medium’ or ‘high’. Therefore it does not

become ‘low’ at the same time. When the Gaze direction is ‘high’, Gaze return

does not become ‘high’ at the same time. Rule base for Friendly Gesture Level

evaluation is also performed in the same way. Rule base to evaluate attention

level is given in Fig. 6.8. Boundaries for membership functions were determined

through implementation.

6.3.3 Decision Making

Final decisions are taken by considering gaze level, friendly gesture level

and change in pose to evaluate attention level. Input parameters of this fuzzy

system are shown in Fig. 6.5 and the output membership functions are illustrated

in Fig. 6.6. The type of interaction with the user may vary according to the

Figure 6.7: Rule Base to evaluate Gaze Level

Figure 6.8: Rule base for Attention level evaluation
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attention level determined by the robot. Factors such as whether to reach the

user or not, duration of conversation etc. can be determined from the measured

attention level.

6.3.4 Experiment and Results

The experiment is carried out with 11 persons in a broad age gap from 25 to

58 years (Mean of 35.4 and SD of 11.4).The robot was placed at several locations

of a domestic environment and it was allowed to wander within the specified

map. Once a body is tracked, the robot stops its motion and records extracted

information for consecutive 8 seconds which is denoted by t in previous sections.

Two occasions during the experiment are explained.

Results obtained from the proposed system

Results obtained by this method for several daily encountered tasks are given

in Table 6.1. Here, few tasks are considered due to the fact that the parameters

considered in the system does not vary much depending on the task. Even

so, evaluation of gestures, return of gaze can nullify the error occurred by not

recognizing the tasks individually. Out of the 11 participants, the variation of

their decisions for the same task if another human was engaged in each task is

shown in the column named ‘Humans with same decision’. In this scenario, the

situation of the user depends on the task. Extracted information and calculated

parameters are given. Approach decision to reach the user, making the mutual

distance 1.5 m , is taken only when the interaction decision is ‘yes’. Robot

decides to interact only during ‘Low’, ‘High’ or ‘Very high’ attention levels are

encountered. The system decision is compared with the decision of same group

of participants. In this case, a participant is allowed to observe the human user

behavior and his decision on initiating an interaction is recorded. In the same

way, all the participants are allowed to take their own decisions regarding the
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suitability of an interaction during each task. During ‘Sitting and making a call’,

human users did not try to interact, but the user’s behavior made the system

decide it as a favorable occasion for interaction initiation due to friendly gestures.

This type of confusions are present due to the incapability of the system to identify

tasks separately. During task 5, ‘working on a table’, due to the considerable

change in pose, 4 users decided it as a favorable occasion for interaction if there’s

a necessity to interact. Otherwise the decision of the robot contradicts normal

human behavior. An example scenario from the experiment is shown in Fig. 6.9.

Comparison of results of a human study and the system

A human study was conducted with the same 11 participants, to identify

human tendency in the same scenario, if a human was in place of the robot.

In other words, the human-robot interaction scenario was compared with a

human-human scenario. This is shown under ‘Humans with same decision’

column and percentage accuracy under ‘Accuracy’ column in Table 6.1. Despite

the stated issues, the system performed satisfactorily during interaction scenarios.

(a)

(d) (e)

(b) (c)

(f)

Figure 6.9: Occasion 01 (a) User at the time of detection (b) User smiles
and waves hand when she notices robot’s presence (c) Robot approaches user
Occasion 02 (d) User sees the robot (e) User looks away (f) Robot does not
approach the user.
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6.3.5 Conclusions

A method has been introduced to interpret a human’s attention towards the

presence of a robot wherein the robot approaches the user with the intention of

initiating an interaction. The intention of the robot is starting a conversation

with the user by analyzing posture and body movements related to joints. Before

starting a conversation, the robot will be able to assess the attention given by

the user towards robot. The major improvement of this system is making use

of a nonverbal mechanism to identify favorable human behavior for interaction.

Furthermore, the proposed system does not rely on verbal instructions from

the user for interaction initiation. Results show that the system is capable of

understanding user situation without verbal communication with the user, as

in many commonly used service robots. Furthermore the system was able to

perceive user attention towards robot satisfactorily through just observation.
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Chapter 7

DETERMINING ROBOT’S PROACTIVE BEHAVIORS:

PROXEMICS

This work is about how proxemic behavior of a social robot is determined

through a probabilistic evaluation of activity space of a person. Through this

work, an effort was taken to minimize the problem of formulating a relationship

between task related human behavior and appropriate proxemics for his/her robot

companion. This work includes an analysis of the usage of local areas within

the activity space to determine probable areas to approach a human without

causing any disturbance to that person. This work demonstrates a design space

for proxemic-based developments in social robotics. We used the concept of

‘activity zones’ discussed in section 5.1.1 to implement this approach.

We present a geometry-based evaluation of wrist movements of a human in

order to predict the movements of that human to determine an appropriate

approach behavior for a robot which intends to initiate an interaction with that

human. Unlike most of the present methods, a robot observes its user for a specific

duration before making decisions regarding its approach behavior through this

method. The approach direction, orientation and mutual distance to be kept are

included in the ‘approach behavior’ in this method.
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7.1 Probabilistic analysis

After the frequency of visits to each zone is calculated at the end of t s,

the probability of each zone to be visited during the same activity under same

conditions - probability of occupancy, is calculated. (1) shows the equation

used for this evaluation.

Pzone i =
fzone i∑51
j=1 fzone j

(7.1)

where i=1,2,...,51. Here, Pzone i is the probability of occupancy of zone i at

the end of t s. fzone i and fzone j denote the frequency of visits to zone i and

j respectively during t. The values obtained for P1 to P51 are compared before

making interaction decisions. Often, only a few zones are visited during a certain

task. Therefore the probability of the rest of the zones will be zero. Fig. 7.1 shows

the probabilities of occupancy for each zone visited while the user was ‘standing’.

In this scenario, zones 11, 36 and 51 have been occupied for 56%, 23% and 21% of

the time respectively. Hence, Pzone 11 = 0.52, Pzone 31 = 0.23 and Pzone 51 = 0.21

according to (1). This probability provides the tendency of the user to initialize

the same zone again during the task.
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Figure 7.1: Approach of QASA. It records the zones each joint occupies and
finally calculates the percentage visit to each zone. The observation was made
upon an individual who was standing, relaxed.

158



7.2 Decision making criteria

Movements of the individual are recorded in the form of probabilities calculated

using (1) for the ease of figurative or quantitative comparison.

The distance between robot and user-d was calculated with respect to the

numerical value of the highest probability of occupancy after observation. The

equations used to calculate this distance is shown in (2) and (3). It is assumed that

a minimum gap of 1.0 m has to be kept in order to follow the social norms. This

marginal value for interpersonal distance- 1.0 m was chosen as in [45]. If i is the

zone with the maximum probability of occupancy and Pzone i is the corresponding

probability of occupancy,

if the highest occupancy is in front,

d = 1.0 + Pzone i ∗ 1.0 m (7.2)

if the highest occupancy is in far front,

d = 0.2 + 1.0 + Pzone i ∗ 1.0 m (7.3)

These equations were formulated so that an adequate mutual distance is kept

to least distract the highly occupied zones.

The orientation of robot after approaching the user is calculated in a similar

manner. The orientation of the robot at two occasions are shown in Fig. 7.2. In

ordinary scenarios, maintaining an orientation close to 90◦ is rare. Therefore we

chose a range from 0− 80◦ for θ.
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Figure 7.2: The top view of the HRI scenario is shown. The orientation of the
robot is marked as θ. θ is measured clockwise (if reaching user from his right) or
anticlockwise (if reaching user from his/her left) from the vertical.

θ = Pi max ∗ 80◦ (7.4)

Here, Pi max is the zone recorded with the highest occupancy during

observation. This allows the robot to maintain an orientation proportional to

the highest probability of occupancy. As the robot positions himself on the side

(right/left) of least occupancy, the robot will face towards the zone with highest

occupancy from the side with least occupancy. This is similar to the human

behavior when dealing with somebody highly engaged. During such occasions, the

outsider will be cautious about the movements of the opponent while continuing

interaction. The higher the occupancy of a region, the greater the repulsion of

a robot from that region. Furthermore, the higher the occupancy of a region,

the lesser the robot tends to choose the opposite region. θ is measured clockwise

or anticlockwise from the horizontal drawn at 0o head orientation as marked in

Fig. 7.2. From (4), it is expected to scale the angle of deviation with respect to

the occupancy. Hence the robot will deviate much from highly occupied areas to

least disrupt the user. Using (2), (3) and (4), the robot identifies the approach

direction and mutual distancing by considering the user behavior. Hence the
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robot tries to follow an etiquette-based behavior by respecting its user’s personal

space.

The criteria used for making major decisions regrading the approach direction,

orientation and mutual distance to keep between the user and robot are given in

algorithm 1 below.

When choosing the direction to approach user according to the algorithm, for

a maximum occupancy in far right allows the robot to approach user from left.

Similarly, for maximum occupancy in right, mid, left and far left allows the

Table 7.1: The set of zones and their corresponding probabilities of occupancy
obtained for each task

Task (I, P {zone i})
DES (15, 0.76) (14,0.24)
CLN (11, 0.01) (12,0.03) (13,0.39) (14,0.19) (15, 0.1) (16,0.05) (20,0.06) (36,0.04) (37,0.08) (45,0.05)
EXR (11,0.06) (13,0.05) (14,0.01) (15,0.06) (16,0.32) (17,0.11) (18,0.05) (19,0.11) (20,23)
WTV (11,0.07) (32,0.1) (35,0.02) (36,0.67) (42,0.09) (45,0.05)
SEA (11,0.04) (32,0.12) (36,0.76) (37,0.03) (42,0.05)
LAB (7,0.1) (8,0.11) (13,0.3) (14,0.34) (15,0.1) (38,0.05)
PHN (17,0.12) (18,0.18) (19,50) (22,0.03) (23,17)
LAP (14,0.20) (15,0.80)
CK (7,0.14) (8,0.15) (14,0.30) (15,0.06) (38,0.08) (39,0.04)
LEA (11,0.50) (20,0.50)
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robot to approach user from far left, far right, zone 51 from right and right

respectively. The gap between the front and far front regions (0.20 m) must

be kept if the highest number of movements were recorded in far front region.

This way, the robot gets the opportunity to avoid highly engaged areas within the

user’s personal space which makes an interaction adaptive and situation-cautious.

7.3 Results and Discussion

Experiments were conducted with the participation of 21 individuals of 25-50

years (mean of 26.3 and SD of 8.96).

Tasks encountered in a typical domestic and lab environments were selected

for the study. The list of selected tasks is shown below. The task names are

shortened for the ease of future reference.

� DES- Engaged in desk activity

� CLN- Cleaning floor

� EXR- Exercising

� WTV- Watching television

� SEA- Seated, relaxing

� LAB- Engaged in lab work

� PHN- Making a phone call

� LAP- Working on laptop

� CK- Cooking

� LEA- Leaning to a wall
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Each participant was asked to perform the ten tasks mentioned above. Hence

210 different scenarios were selected during the experiment. First, MIRob was

allowed to approach each user in direction A in Fig. 7.2 where orientation is

0◦ and d= 1.2 m. Then MIRob was allowed to observe each individual once the

activity was started. After the evaluation of user behavior according to the model,

robot navigated towards the user keeping an orientation, a mutual distance and

an approach direction as determined by the proposed model. This approach

behavior of the robot was rated by the participant. By comparing this approach

behavior with that in direction A in Fig. 7.2. Hence approaching the user from

front as in A, is used as the ground truth during this experiment. User rated

the robot’s behavior based on the convenience or the discomfort he/she felt as

the robot approached. Here, the period of observation or t was taken as 10 s.

This value was determined so that an adequate amount of data were obtained

for the analysis. Visual information was extracted at a rate of 5 sets of data per

sec. This data included the positions of user’s body joints. The head orientation

was obtained at the first instance only in order to avoid the algorithm becoming

computer intensive. Proxemic decisions were taken so that highly engaged areas

were least obstructed. To evaluate the performance of the system, we conducted

the same experiment two more times with a gap of 7 and 14 days. The feedback

scores received at each stage were analyzed. Robot was allowed to wander around

in a given map and it stopped and started observation once a human is tracked.

7.3.1 Observations and discussion

Zones recorded for a single occasion and the calculated probabilities for each

zone during each task are shown in Table 7.1. Only the zones with a nonzero

frequency of visits are given. The zones with the highest probability of occupancy

was chosen and the distance from the user was calculated according the decision

making criteria. Fig. 7.3 shows the distances calculated for the 10 tasks in Table

7.1, considering the highest probability of occupancy. Except for the zones given
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Figure 7.3: Distances marked considering maximum occupancy regions of the
selected set of tasks are marked here. The red triangle denotes the position of
the user and the other colored triangles denote the position and orientation of
the robot during each task. The size of the triangle is not scaled with the size of
the user or robot but the orientation is marked by measuring θ. Colored contours
represent the restricted area for the robot to invade while approaching its user.

in Table 7.1, all the other zones received a zero occupancy probability since these

zones were never occupied during the activity. After selecting Pi max for each task,

the approach direction, orientation and the distance between user and robot were

calculated. Results obtained for each occasion are given in Table 7.2. The mean

feedback score received from the users at their first encounter with the robot is

given here. The position and orientation of the robot with respect to its user after

implementing the model are marked in Fig. 7.3. Shown in dotted and dashed lines

are restricted area including the region with the maximum occupancy. Fig. 7.4

shows the implementation of the model during PHN as given in Table 7.2.

According to Table 7.1 and Table 7.2, while the user was performing a

desk activity: DES, zone 15, which is on the Far left region, recorded the

maximum probability of occupancy. Therefore after implementing Algorithm

1, the approach direction was obtained as Right. Similarly, the orientation was

0.76 ∗ 80◦. Hence the figures for d and θ were 1.76 m and 61◦. Robot behavior

during this situation received an average feedback score of 8.17 out of 10. During

all the other instances except WTV and SEA, the behavior of the robot received

feedback scores above 8.
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Table 7.2: Results of ten scenarios during the experiment and average feedback
score received for each task

Task Pi max, Approach direction d (m) Orientation Average feedback
Region (ˆ{◦}) score (out of 10)

DES 0.76, Far left Right 1.76 61 8.17
CLN 0.39, Mid Far right 1.39 31 9.31
EXR 0.32, Far left Right 1.32 26 9.33
WTV 0.67, Far right Left 1.87 54 5.83
SEA 0.76, Far right Left 1.96 61 6.07
LAB 0.34, Left Far right 1.34 27 8.31
PHN 0.50, Right Far left 1.5 40 9.50
LAP 0.80, Far left Right 1.8 64 9.05
CK 0.53, Left Far right 1.53 42 9.30
LEA 0.50, Far right Left 1.5 40 8.33

(a) (b)

2.4 m

θ = 45o

θ = 40o

1.5 m

Right

Left

Left

Right

Figure 7.4: Two occasions encountered during PHN in Table 7.2. (a) Positions
of the robot and the user initially as the robot observes user (b) Positions of the
robot and user after approaching the user. The orientation and the interpersonal
distances during these two occasions are marked.

The feedback scores received when the experiment was repeated after 7 and

14 days of the first experiment were given in a box and whisker plot in Fig. 7.5.

We intended to analyze how user acceptance regarding the behavior of the robot

evolve with experience. The mean values have shown an increase with time as

users get the experience of this user-aware behavior of the robot. This could

clearly be seen in the tasks: DES, WTV, SEA, LAB, and LAP. CLN, EXR, PHN

and CK recorded higher feedback scores from the beginning and therefore there

was only a slight difference between the scores received for these tasks afterwards.

Table 7.3 represents the results of a t-test performed to analyze the differences

between the feedback scores received by the robot for its approach behavior in

initial and final stages. Initially, it is assumed by the null hypothesis that there is

no significant difference between the compared groups. From these results it can

be seen that p< 0.05 in DES, WTV, SEA, LAB, LAP, and LEA. Hence it can
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Figure 7.5: This graph shows the mean values of feedback scores received from
users for the acceptance of robot’s behavior in the three occasions: initial stage,
after 7 days of initial stage and after 14 days of initial stage. The error bars
represent the minimum and maximum scores received.

be deduced that the null hypothesis cannot be accepted. It shows that there is a

significant improvement in the feedback scores in these set of tasks. In contrast,

for the tasks; p<0.05 in CLN, EXR, PHN, and CK null hypothesis is accepted.

Hence it can be seen that there was no significant improvement in the feedback

Table 7.3: T-test for the comparison of user feedback scores in initial and final
attempts

Task t-scores Initial stage final stage
DES Mean 8.17 8.5

Variance 1.55 0.85
P 0.011

CLN Mean 9.31 9.404
Variance 0.84 0.51
P 0.081

EXR Mean 9.33 9.48
Variance 0.51 0.26
P 0.081

WTV Mean 5.83 6.86
Variance 0.98 1.6
P 0.0084

SEA Mean 6.07 8.17
Variance 0.98 1.68
P 0.0000016

LAB Mean 8.31 8.5
Variance 2.26 1.8
P 0.036

PHN Mean 9.5 9.31
Variance 0.325 0.886
P 0.179

LAP Mean 9.048 9.26
Variance 0.597 0.29
P 0.012

CK Mean 9.31 9.38
Variance 0.562 0.572
P 0.093

LEA Mean 8.33 8.71
Variance 1.28 0.964
P 0.049
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scores. But it can already be seen that the feedback scores received for CLN,

EXR, PHN and CK are much higher. In all the cases considered here, dof and

tcritical was 20 and 1.724.

In general, the minimum feedback scores have been increasing with time, with

an exception in PHN and CK. Maximum feedback scores either stayed constant

or increased with time. From these trends it can be concluded that there was a

significant improvement in determining appropriate approach behavior of a robot

and the performance of the system could make a positive effect upon the users’

acceptance of robots as well.

7.3.2 Conclusions

Various tasks utilize activity space differently. This fact was deployed in

this research to determine an appropriate approach behavior for a robot to suit

a situation. The ‘approach behavior’ included approach direction, orientation

and mutual distance between the person and the robot. This chapter is

about probabilistic evaluation of human activity space. The probability of a

certain region being utilized by a person in the future, is assessed by a robot

before deciding to approach a person from that side. The region with the

highest probability of being occupied by a person is identified and avoided when

approaching that person. This probabilistic analysis of human activity space

was implemented on a social robot in order to determine appropriate proxemic

behavior to approach humans. Feedbacks upon robot’s behavior were taken to

evaluate the functionality of the proposed mechanism. Results obtained during

various situations in a social environment were used to validate the system. An

etiquette for a robot based on proxemics is developed in this study with the

feature called ‘activity zones’. The empirical results of this study could be used

to reveal the human response towards a robot with proxemic-based etiquettes.
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Chapter 8

MODELING A CONTEXT: AUTOREGRESSIVE

MODEL

In this work, a method to identify the interest of a human towards an

interaction, based on observable nonverbal cues has been proposed. These cues

were applied to an autoregressive (AR) model to obtain a quantitative measure

for the displayed interest of the human towards an interaction. This measure was

referred to as the ‘Level of interest (LOI)’. This evaluation will be deployed by

the robot itself to initiate an interaction with its user, if the situation is favorable

for an interaction. The interaction was followed by decisioning upon which

behaviors and etiquettes robot has to follow, in order to make the scenario more

comfortable and humanlike. The system evaluates unclarifiable characteristics

such as movements adopted by humans often before initiating an interaction with

an outsider. This enhances the decision making abilities related to interaction

initiation as the system outputs a measure of the emotional state in a human

encounter.

Even so there are other factors in a human which can display their inner

state to the outside world. Therefore, we present a mechanism based on

autoregressive(AR) models considering a number of nonverbal human cues

related to different aspects. We used multiple AR models to represent different

psycho-physiological aspects of human behavior uniquely. Hence the behavior

that is likely to be expected from the robot at that particular situation is

determined by these AR models. This model determines robot’s ‘behavior’ by
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means of three variables: orientation with the user, proximity and the nature of

conversation to have with the user.

8.1 Level of Interest

The relationship between observable human cues and planned psychophysical

behavior of a robot according to the observations is mapped in Fig. 8.1. ‘Level

of interest (LOI)’ defines to which extent a person is interested in an interaction

with the robot. Human interest was classified under three aspects: mutual gaze,

gestures and movements. According to the features associated with each aspect,

LOI changes. Therefore three different LOIs have been introduced to distinctly

identify what is communicated by each aspect. Depending on the magnitude of

three LOIs psycho-physiological behavior of the robot is tuned. For instance, if

the magnitudes of LOIs show a less user interest towards an interaction, the robot

Interest

mutual 
gaze

gestures

movements

LOI1

LOI2

LOI3

existence 
of gaze

Nonexistence 
of gaze

exitance of 
gestures

number of 
gestures

head 
movements

hand 
movements

nature of 
conversation

Psycho-
physiological 

behavior

Interactive 
distance

orientation

uttering few 
words/ greeting

small talk

long 
conversation

social 
distance

proximity

interpersonal 
distance

slightly 
inclined

very inclined

while engaged in an activity / relaxed

observable 
interest

positive/negative interactive responses

Positive interaction decision

Negative interaction decision

in front

Figure 8.1: A semantic map which shows the co-relation between various aspects
in human behavior considered during this study and responses generated from the
robot in correspondence with its observations. The directions of increment and
decrement of interactivity are marked in red and blue respectively. Interactivity
increases as the situation turns favorable for interaction.
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may decide to utter a few words, without going for a long conversation. Similarly,

the robot may adjust positivity or negativity in interaction decision, based on the

user behavior. This will facilitate an encounter with least discomfort due to the

violation of expectations of both parties. Furthermore ‘mutual gaze’ will have

a significant effect upon the proximity between two conversant while ‘gestures’

having the least effect. Therefore we used multiple levels of interest which can

contribute to determine robot’s behavior in different amounts.

In our approach, most distinctly perceivable and often used cues were chosen

as the input features to assess the situation. Observable features; mutual gaze,

gestures and movements were used as a representation of interest for an

interaction. These three parameters are sub categorized as follows.

� Mutual gaze: existence of gaze, non-existence of gaze, averted gaze

� Gestures: nonexistence of gestures, fewer gestures, a number of gestures

� Movements: head movements, hand movements

The system further analyzes gaze for the existence, non-existence (looking

away) or if averted. Similarly, gestures were evaluated according to the number

of gestures used, and movements as speeds on head and hands. These parameters

are measured and used as the inputs of an autoregressive model to determine the

level of interest of an encounter.

8.2 AR model to calculate LOI

As several features can be used in combination to make different interaction

decisions, LOI is sub divided into three, as LOI1, LOI2 and LOI3. These

are chosen based on similar features that are used as observable human cues

which display interest. As usually done in AR models, we assumed that these
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similar variables are linearly related. Gaze (α) was taken as a parameter to

determine LOI1. Friendly gestures (θ) and walking speed (β) are considered in

the calculation of LOI2, while initial head (γ) and hand (φ) movements determine

LOI3. Fig. 8.2 illustrates the minimum and maximum ends of each input of the

AR model. The equations (1), (2) and (3) are used to calculate LOI1, LOI2 and

LOI3.

LOI1 = a1.α (8.1)

LOI2 = b1.β + b2.θ + b3 (8.2)

LOI3 = c1.γ + c2.φ+ c3 (8.3)

Here, a1, a2, a3, b1, b2, b3, c1 and c2 are constants, values of which were

determined empirically before the experiment. Predefined example scenarios

were modeled using (1)-(3), assigning 1 for all the above constants. Depending

on the interactivity of the situation, these values were changed until socially

acceptable interaction decisions were made by the model. Magnitudes of the

three LOIs are evaluated before making decisions regarding interaction with

the user. Psycho-physiological behavior required to initiate the interaction is

determined in this way. Three features which determine robot’s behavior are

found. These are the orientation between robot and user, proximity and the

Inputs of the AR model

β =1

γ =1 φ =1

Gaze (α)

α =0 α =1
No gaze Mutual gaze

exists

Medium 
gaze

Walking speed (β)

β =0
stationary Fast walkSlow walk

Head movements (γ)

γ =0
Fast reactionSlow 

reaction
Medium speed 
reaction

Hand movements (φ)

φ =0
Fast movements Medium speed 

movements
Slow 

movements

Friendly gestures (θ)

θ =1θ =0
No gestures Both the gestures 

involved

One gesture

Figure 8.2: Features used as the inputs to the AR model are shown.
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nature of conversation. Here, the nature of conversation was decided by the

duration of the conversation. The distance that has to be maintained between the

robot and the user was determined by the proximity. Orientation determines to

which extent the robot should face the user. These parameters are determined

as per their sub categories as follows.

� Nature of conversation: greeting (few words), small talk (few sentences),

long conversation (large number of sentences)

� Proximity: social distance, interactive distance, interpersonal distance

� Orientation: directly towards user (in front), slightly inclined towards user,

very inclined

Therefore the nature of conversation was decided as a greeting or a small

talk or else a long conversation depending on the values obtained for LOI1, LOI2

and LOI3. Similarly, proximity was determined as an accepted social distance

or an interactive distance or else as an interpersonal distance and orientation as

an angle directly towards the user or inclined from the user.

8.3 Decision making criteria

Based on the features used to calculate LOI1, LOI2 and LOI3, interaction

decisions were taken after considering some of the values obtained for LOI1,

LOI2 and LOI3. All three are considered when determining the proximity. The

nature of conversation was determined by LOI1 and LOI2. LOI1 and LOI3

determined the orientation of the robot. LOI2 is omitted here since the gestures

exist only for a small duration so that the proxemic behavior of the robot will not

interrupt user behavior. The marginal values required to determine these output

parameters are shown in Fig. 8.3 and Fig. 8.4. These marginal values were

selected by comparing the values of LOI1, LOI2 and LOI3 during non-interactive
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Figure 8.3: Marginal values to choose the nature of conversation and proxemics
of the robot.
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Figure 8.4: Marginal values to choose the orientation of the robot.

situations in which humans were alone, with interactive situations when the robot

was present. In any case where LOI1, LOI2 and LOI3 associated with the scenario

do not fall under any of the shown classifications, the prominence is given to LOI1.

Reason for this is that gaze is a prominent feature during interaction than any

other feature considered. The interaction decision was a ‘no’ if any ‘averted gaze’

or ‘walking away’ condition encountered. The ability to trace both stationary

and dynamic human behaviors can be stated as an advantage of this method.

8.4 Results and Discussion

It must be noticed that words and sentences preferred during each

conversation, were preprogrammed in the algorithm. In-built gaze recognition
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and open-palm property in Kinect sensor were used to identify gaze angle and

‘open-palm’ and ‘waving hand’ gestures respectively. Side-to-side movement of

wrist and elbow joint positions and the open-palm property associated with the

gesture were considered to recognize the ‘waving hand’ gesture. Gaze is extracted

from the ’face yaw’ property associated with the Kinect sensor. All the other

movements were extracted from the skeletal representation of human body from

the Kinect sensor.

Behavior of the proposed model was evaluated during a number of scenarios.

For that, the model was implemented on MIRob, and the responses generated

from the system during each scenario were evaluated using a feedback score given

by the participant. Feedback score indicates a value out of 10, depending on

the user’s satisfaction upon robot’s behavior. The experiment was conducted

with the participation of one person at a time. He/she was allowed to perform

a given task (the performer). Then MIRob was allowed to monitor the behavior

of that person using the proposed model and finally, the interaction responses

were generated. Hence the robot decided the orientation and proximity to reach

the observed user and the nature of conversation which was appropriate at the

occasion as deduced by the model, after the evaluation. This behavior of the robot

was reviewed by the performer according to the appropriateness of behavior in

the particular situation. Tasks selected for this experiment were the same as in

Fig. 8.5. The task names are shortened for the ease of future reference as follows.

� DES- Engaged in desk activity

� CLN- Cleaning floor

� EXR- Exercising

� WTV- Watching television

� SEA- Sitting relaxed

� LAB- Engaged in lab work
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Figure 8.5: Values obtained for LOI1, LOI2 and LOI3 during ordinary situations
encountered in a typical domestic and lab environment are shown. LOI2 was zero
as there were no friendly gestures observed when people are engaged in work and
they were not walking (gestures= none, speed of movements=0).

� PHN- Making a phone call

� LAP- Working on laptop

� CK- Cooking

Tasks encountered in a typical domestic and lab environments were selected

for the study. Out of the 21 participants, each had to perform the 9 tasks in the

above list. Therefore 189 different encounters were reviewed and the performer

was asked to give a feedback score for the robot’s behavior by comparing his/her

expectations about the encounter.

During implementation, for the two stages of gaze; existing gaze and averted

gaze the value of a1 were 1 and -1 respectively. In the same way, b1 was -1, 0

and 1 for the three occasions; walking away, stationary and walking towards the

robot. b2, c1 and c2 were chosen to be 1 and b3 and c3 were chosen to be 0 for

all the occasions. These values were chosen by considering the human trends in

behavior when similar conditions appear.

The movement of spine joint was used to track the walking direction of the

user. The interpersonal, interactive and social distances used in this study were
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1.2 m, 1.5 m and 1.8 m respectively. Angular values for the orientation were 0◦

(in front), 30◦ (slightly inclined) and 45◦ (very inclined). These values were chosen

based on acceptable behaviors during human-human interaction. The period of

observation, t was chosen to be 10 s and this value was chosen so that an adequate

amount of data is collected for the evaluation process to begin. Vision information

was extracted 5 times a second. The maximum frame rate for RGB-D processing

of visual information was 30 fps. To evaluate the performance of the system, we

conducted the same experiment two more times with a gap of 7 and 14 days. The

feedback scores received at each stage were analyzed. An average feedback score

was calculated in the end for each category of task.

8.5 Observations and Discussion

Results obtained for several tasks performed by 14 participants are given in

Table 8.1. Values calculated for LOI1, LOI2 and LOI3 by the model are also

given. Decisions corresponding to the observations and calculations made by the

model during selected scenarios are shown in Table 8.2. A feedback upon the

behavior of the robot was taken from the participant during each interaction.

Facts such as the convenience in the situation initiated by the robot, following

social etiquettes and violations of user expectations were considered by the users

to give feedback. Finally, the average feedback score received upon robot’s

behavior for the task category is given.

Consider the first occasion in Table 8.1 where the user was engaged in a desk

activity (DES). Here, the gaze was not averted. Hence α was 1 for this occasion.

This gives an LOI1 of 0.78. As there were no gestures associated with the

user behavior, LOI2 was zero. As the user was stationary, and only very slow

hand movements (of 6 cm/s) were recorded, LOI3 was 1.96. Neither these values

belonged to ‘no interaction’ region in Fig. 8.3 and Fig. 8.4 nor ‘walking away’ or

‘averted gaze’ was recorded in this situation. Therefore the interaction decision
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was ‘yes’. By comparing LOI1, LOI2 and LOI3 with the marginal values found

from the study, interaction decisions were taken. These decisions corresponding

to the tasks in Table 8.1, are shown in Table 8.2. Average feedback score for

the first implementation of the experiment is given in Table 8.2. Accordingly,

an interpersonal distance for proxemics, a small talk as the conversation and

an orientation of 0◦ towards the user were obtained as the modes of interaction

for the situation. This received a feedback score of 7. This was not more, as

the user was less interested in relaxing while engaged in work. DES received an

average feedback score of 7.89 as there were 21 different performances for each

task. However, as a whole, the user was satisfied by the behavior of his robot

companion. For the purpose of explanation, scenarios with feedback scores closer

to the average feedback score of the task were chosen. Fig. 8.6 shows an occasion

related to the HRI scenario encountered during the experiment.

According to these results, despite few exceptions, evaluations of the model

received higher user satisfaction.

Fig. 8.7 illustrates how the feedback scores evolved when the same set of

experiments was repeated after a period of 7 and 14 days respectively after the

first implementation of the system. We took an effort to reveal the tendencies

in user acceptance upon such a system with situation-awareness. In general,

Table 8.2: Results of the experiment

Task Modes of Feedback Average
interaction score feedback

(out of 10) score
DES smal, intp, 0◦ 7 7.89
DES* - 10
CLN greet,intp, 0◦ 9 8.74
CLN* smal,intr, 30◦ 8
EXR smal, intp, 0◦ 4 4.89
WTV smal, intp, 0◦ 5 5.02
WTV* - 10
SEA smal,intr, 0◦ 9 9.02
SEA* - 8
LAB - 10 9.19
PHN smal, intp, 0◦ 5 4.48
PHN* - 10
LAP smal, intp, 9 9.30
CK smal, intp, 0◦ 10 8.93
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(a) (b) (c)

40o
1.2 m

2 m

Figure 8.6: Occasions involved during SEA (a) the user was unaware of the robot
initially (b) When he notices robot, he maintains mutual gaze, and waves hand
towards the robot (c) Robot approaches the user after analyzing the situation.
Here the orientation was 45◦.

user feedback for the tasks: DES and SEA showed a noticeable increase in 1.18

and 0.55 points respectively. A similar trend, but less in magnitude, could be

observed in the average feedback scores received for CLN, CK, LAB and LAP.

The scores improved by 0.16, 0.17, 0.17 and 0.26 for CLN, CK, LAB and LAP

respectively. Although the scores of these tasks improved insignificantly, the

scores have already been higher, unlike in DES and SEA. The more the experience

with the situation-cautious behavior of the robot, the more users were delighted.

An interesting trend in user behavior was revealed for the tasks: EXR, WTV

Figure 8.7: This graph shows the mean values of feedback scores received from
users for the acceptance of robot’s behavior in the three occasions: initial stage,
after 7 days of initial stage and after 14 days of initial stage. The error bars
represent the minimum and maximum scores received.
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and PHN. The three tasks: EXR, WTV and PHN recorded drops of 0.26, 0.27

and 0.67 points respectively in the three occasions considered. A possible reason

for this is that user’s didn’t expect to be distracted by the robot when they

were highly engaged. This expectation increased with their knowledge of the

capabilities of the robot, especially the implemented situation-cautious behavior.

8.6 Conclusions

This chapter presents an autoregressive model based on nonverbal human cues

which demonstrate interest for an interaction with outsiders. Cues which are

confusing to be measured in a quantitative manner were selected for the study.

These features were used by a robot to determine whether to interact with the

person or not and if interacting, how to behave with the human. This model

was capable of determining appropriate nature of conversation and proxemics

for the robot. This proved to be helpful in determining appropriate behavior

for the robot when a human was encountered. As the system evaluates human

behavior in all physical, social and emotional aspects, the robot could behave

with situation-awareness. Hence user dissatisfaction due to inappropriate or

disturbing behaviors such as disrupting the user without invitation or invading the

personal space have been eliminated through this approach. This fact is validated

using the results of the experiment and suggestions for the improvement of future

robotic models for initiating interaction with humans are stated. Results further

confirmed that autoregressive modeling of human behaviors to be producing

satisfactory evaluation of a situation in proactive HRI.
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Chapter 9

A SOCIAL ROBOT WITH EXPERIENCE AND

LEARNING

In the previous chapters, techniques for the recognition of the following

nonverbal human cues were developed and our models used to perceive an

encounter were based on these recognized cues.

� Psychological aspects of human behavior

� hand pose

� body pose

� friendly gestures

� movements

� time of the day

� activity space

� activities

We used fuzzy logic-based models, supervised machine learning and

autoregressive models to map observable nonverbals in humans during our first

attempts to understanding human behavior prior to robot-initiated interaction.

Robots can be intuitive about its decisions regarding interaction by adapting to

the situation. Meantime, a situation comprises of the user and the factors which
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prevail in the surrounding. These factors in the surrounding also influence the

internal state of mind of a human and are partially displayed to the outside world

though his/her behavior.

In our model, the model parameters are as follows.

� Environment: human-robot encounter or the setting

� Agent: Robot

� States: Specific to user

� Rewards: User behavior

These are shown in the action-state model in Fig. 9.1. The decision flow of

the system after implementing this model is shown in Fig. 9.2. The robot will

first observe its user and the context to make an ‘observation plan’. During this

Action, At

Robot

Environment

Reward, RtState, St

Rt+1

St+1

Figure 9.1: The action-state model

User behavior Robot behavior

Surrounding

Context

Observation Plan

Monitoring Plan Perceiving choices

Choices upon robot 
behavior

Figure 9.2: Decision flow of the robot platform
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stage it will identify the observations that have to be recorded for further use.

‘Monitoring plan’ includes the observations which have to be monitored for long.

For instance, the immediate distance between the robot and the user, before the

robot approaches him/her. Then the robot analyzes its observations according to

the trained model, to take decisions regarding its own behavior. These actions are

monitored at the ‘Perceiving choices’ and ‘Choices upon robot behavior’ stages.

Once the user’s interaction demanding or the requirement is perceived, the robot

initiates an interaction. Hence changes its behavior.

9.0.1 Semantic Mapping of the features

Fig. 9.3 shows how various human cues are being used in our cognitive model.

Stage 1 or ‘Environment Observation’ falls under the Observation Plan in Fig. 9.2

and stage 2 or ‘Learning’ falls under ‘Monitoring Plan’. The robot first observes

its surrounding and some behaviors of its user under stage 1. These behaviors

are whether any user exists or not, if exists whether the user walks away, and

whether the user moves in a wider range of distance. The robot will not try

to interact with a user who walks away or with movements that cover a wider

range (probably engaged or busy). After stage 1, the robot explores stage 2, by

trying to perceive the situation. For that it will look for the user’s gaze behavior

(gaze angle and whether the gaze is averted or not as determined in chapter 8),

Environment 

Observation
Learning

Whether a human 

exists

Whether the 

person walks 

away/stays

Spanning of 

person’s 

movements Gaze

Current activity

Time of the 

day

Friendly 

gestures

Gaze angle Averted/not

Hand pose

Major objects

Minor objects

Domestic area

Hand speedNon exists One or a few 

exists

Body pose

1 2

User, robot and environment

Body speed

Figure 9.3: The interrelations of semantic features during the Observation Plan
and the Monitoring Plan.
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current activity (as determined in chapter 5.6), friendly gestures (as determined

in chapter 5.5) and the time of the day. We considered ‘time of the day’ as an

input feature to identify personality traits in humans to recognize when a person

wants to relax the most. We divided a day in to 5 time categories from 1 to 5 as:

Early morning (until 7 am), Morning (7am - 12pm), Afternoon (12pm - 4pm),

Evening (4pm - 6pm) and Night (6pm - 12am).

These features included in stage 2 were used as the states of a particular

situation.

9.0.2 Robot behavior

Once the state-action model is executed, the model outputs three actions of the

robot appropriate for the situation. These are the orientation, mutual distance

and the length of the conversation. The learning algorithm outputs whether

to increase or decrease each of these variables. Fig. 9.4 illustrates how these

variables change according to the robot’s decisions.

9.0.3 Selection of participants and creating training data

We selected eight users who are different in age, and have different traits of

personality. Hence we selected people with friendly/extrovert personality as well

as introvert personality. In addition we selected a child, 2 youths and 4 ordinary

ɵ
ɵ

0o

Increase tilt

decrease tilt

Orientation

L

R

Mutual distance Conversation

Hello..!
How’s your day?

Hey…A little 
busy, but 

okay.

Would you like 
me to get 

something?

No, I’m good, I’ll
go work a little.

Sure, Have a 
nice day!

Figure 9.4: Observational parameters considered in the system for robot
decisioning.
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adults of age range 12 to 60 (mean-38.4, SD- 9.6). The participants were selected

as: user 1- with friendly/extrovert behavior, user 2- with a less friendly/introvert

behavior, user 3- an ordinary adult, user 4- an ordinary adult, user 5- an ordinary

adult, user 6- youth, user 7- youth and user 8- child.

We asked selected one participant at a time and asked to simulate certain

behaviors in his/her own way and recorded the cues in Fig. 9.3 under ‘Learning’.

Then we inquired what types of robot responses were preferred at each occasion.

This is how data was collected for training. Similarly, data was collected for each

participant separately.

Fig. 9.5 shows Q-value tests for Q[1,2], Q[33,0], Q[33,2] and Q[45,3]

respectively. We used a learning rate which starts with 0.4 and deceases by

0.00001 in each iteration, a discount factor of 0.9 abd 10 maximum steps of 10

per episode.

We collected data for consecutive 7 days. First, we trained the model with

a limited set of data after 1 day of the data collection. In the end, we showed

the robot responses for each user and asked them to rate (out of 10) the robot’s

responses according to his/her satisfaction upon robot’s behavior. Similarly we

repeated the same process after 4 days and 7 days of data collection. We plotted

the user feedback score for these three occasions: after 1 day, 4 days and 7 days.

This is shown in Fig. 9.6.

According to the results, the adaptive behavior improved as the robot gains

more and more experience. Thus increases user satisfaction. Participants except

the child, was least satisfied with less experienced robot behavior (day 1), while

they were mostly satisfied with the experienced, adaptive behavior at a later stage

(day 7). A probable reason for this is that children expect the least capabilities

from a robot, hence have the least expectations upon not getting disturbed.

During this stage, postures were identified by the ‘Posture Identifier’ explained

in 3. Similarly, gestures and activity were recognized by the modules:
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(a)

(b)

(c)

(d)

Figure 9.5: Q value tests for 4 occasions during training are shown. (a), (b),
(c) and (d) show Q[1,2], Q[33,0], Q[33,2] and Q[45,3] respectively against the
iteration.
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Figure 9.6: The user feedback scores over three days during the period of
collecting training data are plotted against each user. The feedback scores are
given out of ten.)

‘Gesture Identification Module’ and ‘Activity Recognition Module’ respectively.

Movements were monitored by the ‘Human Behavior Evaluator’. Objects in

the surrounding and the context were recorded by the ‘Context Evaluator’.

Decisions regarding proxemics and conversations were taken by ‘Interaction

Decision Making Module’ after considering the outputs of the previous modules.

Memory on previous occurances was maintained by ‘Learning and Experience’

unit. All the information regarding interaction and the context was stored

in ‘Data Recording System’ through out the time. ‘Interaction Initiator’ was

responsible for converting the decisions of the IDMM into real-world actions.

9.1 Conclusions

The previous chapters put forward various methods to recognize human

behaviors and built cognitive models to decode human behavior by observing

different features. In this chapter, all the previous recognition techniques were

incorporated to be used in a single cognitive model to perceive traits in different

encounters. In addition to the features identified in these models, two new

features of a situation: the person and the time of the day, which are more

particular to an individual’s personality were introduced to the cognitive model

in this chapter. We trained a deep Q-network with these features. We collected
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the training data by simulating different scenarios with each user and taking a

feedback from them about the nature of interaction they would like to have. We

improved the model by increasing the number of human cues under observation.

The Q-network proved to be reliable in training a social robot to generate

user-specific responses towards an interaction. The responses of the robot

included the orientation, mutual distancing, and the length of a conversation. The

test results confirmed the fact that the users preferred the personalized behavior

of the robot upon a predefined generalized behavior.
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Chapter 10

CONCLUSIONS

There are many cognitive and psychophysical theories to explain human

behaviors as well as the behavior of a robot. Even so, we still lack a model

to perceive and predict appropriate behaviors for both the human and the robot

during a human-robot encounter. Humans make an instant evaluation of the

surrounding and its people before approaching anyone. As robots are widely

deployed in social environments, a similar perception of the situation around

its human user prior to an interaction is required. Social constraints during an

interaction could be demolished by this assessment. Through this work, we took

an effort to report functional units which come into play during such an encounter.

This further identified the cues that were utilized by such intelligent agents to

simulate and evaluate outcomes of its environment. As a result, we identified

the requirement of a unified platform of robot’s cognition during human-robot

encounters and based on that, we developed multimodal methods of perceiving an

encounter or to gain situation-awareness in order to generate instinctive responses

towards humans. Understanding nonverbal signals shown by people associated

with a situation is the most sought-after means of situation-awareness. Verbal

signs are fairly immediate in conveying messages to the outside. However this

is conceivable only after the initiation of a conversation by a person. This way,

nonverbal means of perceiving a situation are demanding and less aggravating in

a specific social situation. Without going for a direct interaction, situation-based

adaptive behavior gives a robot more human-like personality based on society’s

accepted social manners. Consequently the ability to interpret emotional state
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of a scenario and evaluate that scenario for the appropriateness of an interaction

makes HRI more adaptive and less disturbing for humans around. We derived

several methods to recognize nonverbal human behaviors such as movements,

postures, gestures, proxemics and the usage of activity space. The reason for

using such methods without using the already existing systems is that these

methods are capable of recognizing nonverbal cues with a reasonable accuracy

and can be used for the realtime evaluation of a scenario. Realtime evaluation

of a scenario is crucial in adapting to an encounter and generating appropriate

responses through out the interaction scenario. These methods were based on

Geometry of the human body and that Geometrical assessment was reliable than

most of the existing methods to monitor human behavior. This was another

reason to use such approaches during our research.

We identified that the following challenges have been faced by present proactive

robotic systems.

-Robust human behavior detection and tracking systems dedicated to analyze

nonverbal behavior are not in par with the advancement of the conceptual design

of similar systems.

-Establishing a relationship between the intent and the observable or audible

human cues has been challenging and lacks conceptual basis.

-Ironical human behaviors such as ‘smile to show disgust or sarcasm’ which do

not match the shown intent with the real intent cannot be differentiated by the

existing models.

-Bringing all observable or audible cues to a common platform which can

analyze cues of different disciplines, still needs further development in order to

make satisfactory interaction decisions.

Hence emotionally intelligent agents and their cognitive models need

development optimizing these challenges on the way. Through this work, we
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tried to address the above challenges to develop the situation-awareness models

of robots to a socially acceptable level. Through human studies we further

established the requirement of observing nonverbals associated with a scenario to

interpret that scenario and identified which cues we should look for. As the next

stage, we developed models to combine these cues, decode them and perceive a

situation through logical reasoning.

In our models, we began with only two cues: pose and movements, and

expanded the number of cues to more than ten including a person’s hand pose,

body pose, gestures, movements, current activity, usage of activity space, and

mutual gaze. Fuzzy logic-based assessments shown an improvement in the user

acceptance for robots since such approaches could assess the vagueness in human

nonverbals and handle a number of variables at once. As the complexities grew in

an encounter, fuzzy-based assessment upon the scenario was inadequate. We used

auto-regressive models in such situations to evaluate multiple factors associated

with the scenario. AR models proved to be more convenient that fuzzy-based

approaches in analyzing events that are different from each other and belong to

various aspects: robot, user and the environment. Defining a rule base to assess

these multiple aspects was confusing in our previous approaches and AR models

demolished this difficulty to a great extent. We analyzed recognition accuracies

and user feedback scores statistically to evaluate our methods.

In the end we extended our model into an adaptive approach so that it could

adjust the robot’s behaviors according to the dynamics in the factors within a

context. Such factors included user responses and changes in observable cues

within the context. Adapting to such changes in context, immensely enhansed

the capability of the system to replicate dynamic human behaviors during an

interaction. This improvement could be proven by the user feedbacks received

upon the robot’s proactive behaviors in this regard.

Our findings and human studies revealed that, helping each other or altruistic

behavior, taking optimum decision, friendly or cooperative behavior, are the most
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important, yet challenging due to the lack of the skill of “situation-awareness”.

Making right assumptions and predictions upon a complex scenario still needs

improvement. Hence this “artificial awareness” contribute to a great deal of

robot’s acceptance by humans in a majority of their environments. Human

tendencies during experiments showed that humans were delighted with the

context-cautious behavior of robots [24]. Therefore such skills can create a lively

personality within the robot. Hence the perception of robot as a ‘machine’ will

be transformed into an idea of a ‘creature’ with the use of such intelligence upon

small but emotional encounters. The capability of such robots to model the

inexplainable emotional relationship between human psychology and behavior is

still questionable when compared with human cognitive capabilities. Limitations

of existing models to simulate and integrate multiple cues for decision-making

have been identified and our models to perceive a situation by means of nonverbal

behavior were improved based on these findings.

The following key points could be highlighted from the research.

- Understanding nonverbal signals shown by people associated with a situation

is the most sought-after means of situation-awareness.

- Verbal signs are fairly immediate in conveying messages to the outside.

However this is conceivable only after the initiation of a conversation by a person.

This way, nonverbal means of perceiving a situation are demanding and less

aggravating in a specific social situation.

-Without going for a direct interaction, situation-based adaptive behavior gives

a robot more human-like personality based on society’s accepted social manners.

Consequently the ability to interpret emotional state of a scenario and evaluate

that scenario for the appropriateness of an interaction makes HRI more adaptive

and less disturbing for humans around.

- Modern systems evaluate cues from the two aspects of a situation: user

and the environment to gain situation-awareness. Ability of a robot to perceive
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nonverbal cues plays an important role in gaining awareness of that situation.

Even so, most of the modern approaches use verbal cues and properties of voice

to understand a situation during interaction. But this will not possible before an

interaction. Hence, the evaluation of a number of nonverbal observable cues is

required for situation-aware proactive interaction.

- Limitations of existing models to simulate and integrate multiple cues have been

identified and possible future improvements that have to be implemented upon

cognitive models have been suggested.

-In summary, capability of existing robotic systems to make proactive decisions

based on the cues belonging to multiple disciplines is far below that of a human.

Therefore we discussed the requirement of developing cognitive intelligent systems

using a multimodal approach or a ‘Unified theory of cognition’ in this regard.

-As an effort towards this, we combined a number of cues which could be observed

by a robot at a distance to get an idea of a situation prior to an interaction.

Although it yielded successful outcomes, yet, there are other cues related to many

aspects of a human. Developing a cognitive model to perceive such contrasting

cues using a model has a lot of space to grow in the future.

We would suggest the following implications from our findings to improve

future research in the field.

10.1 Implications for Theory

Even though our models evaluate a number of human psychophysiological cues

of a human, still there are so many factors which have been under-evaluated by

proactive models. Therefore this does not replicate all parts of HHI into HRI

scenario. Among all, the current activity of a person plays an important role in

determining his/her priorities at the moment. Therefore understanding the task

of the user plays an important role in gaining situation-awareness for a social

robot.
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Our work was mostly based on the assumption that people prefer similar

proxemic rules when interacting with robots as they do while having interactions

with other humans. Several factors which influence personal space such as the

gender, previous experience and familiarity with the robot were not considered

within the context of these experiments. Furthermore, human cues are sometimes

deceiving as well. Humans use ironical responses in certain situations and

perception of such behaviors is still difficult for a robotic platform. For example,

differentiating a smile which was meant for humiliation and a smile showing

affection are yet difficult to be differentiated by a robot.

Human tendencies during the experiments showed that humans were delighted

with the context-cautious behavior of robots. Therefore such skills can create a

lively personality within the robot. Hence the perception of robot as a ‘machine’

will be transformed into an idea of a ‘creature’ with the use of such intelligence

upon small but emotional encounters.

In the experiments we simulated a prototype of a social environment. We

believe that there will be other factors which could be influential in human

preferences upon an interaction. Hence such factors within the environment,

robot and the user can also be considered in development of cognitive robots. In

addition, patterns in speech, physical appearance and personality traits of the

robot might influence the acceptance of the robot. Therefore evaluation of such

factors is important as well. The conceptual design of a robot’s cognition must

consider these factors before implementing them in general applications.

The findings of our studies were based on the assumption that humans reaction

for HRI is similar to HHI. However there are communities that have a different

opinion of robots and such incidents may create complications in perceiving such

encounters. It is important to overcome these limitations to define a rather

completed physical, behavioral and emotional states of a human-robot encounter.

Activities which require object’s attributes such as the material, color, nature
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of the surface etc. cannot be recognized with our approach. Even though such

activities are rare in a domestic environment, some special environments such as

laboratories, work sites and children’s homes can be benefited by expanding the

semantic features in activity recognition up to object attributes as well.

From the results we could see that there is an interesting relationship between

objects and activities. Therefore in addition to monitoring individual behavior,

human-object interaction must clearly be perceived in order to recognize an

activity.

Although we did not consider the voice as a semantic feature to interpret a

situation, voice makes recognizing some activities easier. For instance, when

making a phone call, listening to the person’s voice is more promising than

recognizing the hand pose and the presence of the phone. Therefore considering

‘voice’ as another semantic feature can be stated as a design guideline for future

proactive robots.

Lastly, there are numerous gestures and major and intermediate postures

associated with hands and the body. In our approaches, we recognized only

a selected number of such features. Therefore, to have an idea of a situation

entirely, recognition of the remaining postures will be advantageous. This will be

another implication derived from this research.

10.2 Implications for Design

Based on our findings, we can state that this evaluation offers better means of

determining an appropriate approach behavior for a robot to initiate interaction

with a user based on nonverbal cues displayed. As users prefer not getting

disrupted by the behavior of robots, the first design guideline proposed by the

study is improving the sense of respecting the personal space of an individual

based on both physical and emotional aspects. It is vital to design social robots
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that do not violate user expectations. This will gently allow the user to establish

the idea of ‘accompanying a social companion’ upon ‘using a machine’ in his

work. The feature of ‘maintaining appropriate approach behavior’ can be used as

an ‘etiquette’ for social robots deployed in human environments. Therefore this

can be introduced as the second design guideline for robots.

The third guideline proposed by the study is to consider human cues as much

as possible. It is important to get a clear representation of the situation. In

addition, considering more factors from the surrounding as well as the user can

be a plus for a better situation awareness. Therefore it is required to equip

the robot with hardware having adequate capabilities. Reaction towards the

presence of the robot may differ from user to user. Therefore perception of

different psychophysiological human behavior will help make a situation-aware

robot companion. This shall be considered as the forth guideline derived from

the study.

We considered approach behavior and initiating a conversation as a proactive

robot’s responses upon an encounter. Often, movements of humans are generated

as a result of their tasks. Recognition of the task is an important aspect to

determine appropriate approach behavior in this regard. It is important to predict

the dynamic user behavior during a task in order to determine the suitability of

a conversation at a particular situation. This will be the fifth design guideline

derived from the study.

10.3 Considerations for future

Most common areas in which situation-awareness is critical and will take

life or death decisions can be listed as warfare, self-driving vehicles, rescue,

health care, disaster management, and surveillance in atmosphere and space. In

addition, the most common applications of situation-aware robots can be found
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in domestic and social environments, shopping malls, museums, elderly and child

care. Development of task specialist robots offers only a narrow AI. In order

to broaden the applications of AI, we need situation-aware robots which can

theoretically come up with solutions in even unfamiliar situations. A general

theory of behavior adoption is required to cope in such scenarios. This is a

suggestion to convert machine autonomy into a less stressful but useful with

the ability of perceptive intelligence. Human judgment upon robots and robot’s

judgment upon humans can be taken to a successful level of cooperation through

such an approach. When dealing with uncertainties associated with input sensors

a Multi-Modal Perception (MMP) model can be used. But real time processing

of multiple human inputs is one of the most difficult challenges out there in this

research area. Range of sensor inputs for human interaction is much larger than

for most other robotic domains in current research. Computer vision methods

used to process human-oriented data such as facial expression and gestures

recognition will need to be developed in order to handle a wide array of possible

inputs and scenarios. Outcoming such difficulties is critical in developing faster,

realtime cognitive robots.

Limitations of existing models to simulate and integrate multiple cues have to

identified further and existing cognitive models have to be extended. In summary,

capability of existing robotic systems to make proactive decisions based on the

cues belonging to multiple disciplines is still far below that of a human. Therefore

we discuss the requirement of developing cognitive intelligent systems using a

multimodal approach or a ‘Unified theory of cognition’ in this regard.
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