
Optimizing Web Services Security

Processing Models
I E. Suriarachchi and N.S. Mihindukulasooriya

Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

<soapenv:Envelope>
<soapenv:Header>

<wsse:Security soapenv:mustUnderstand=” 1 ">
<wsse:UsemameT oken>

<vvsse:Usemame>aIice</wsse:Usemame>
<\vsse:Password Type=,,..#PasswordTextM>

bobPW
</wsse:Password>

</wsse: U semameT oken>
</wsse:Security>

</soapenv:Header>
<soapenv:Body>

<ns:add>
<paramO>2</paramO>
<param 1 >6</param2>

</ns:add>
</soapenv:Body>

</soapenv:Envelope>

Abstract — Security is a major concern of today’s enterprise
web services due to its message oriented nature. Web services
messages containing confidential information can be transmitted
on unsecured networks thus should have proper mechanisms to
protect them possible attacks. To cater those requirements, Web
Services Security specification defines enhancements to SOAP
messaging providing authentication, message integrity and
confidentiality without losing the interoperability. Security
requirements and capabilities of web services are expressed using
Security Policy language. Thus security policy processing plays a
vital role in any web service security engine. Security processing
model should be efficient and invincible to possible attacks.

In this paper, we evaluate the current web service security
processing models and discuss their weaknesses. We propose an
improved security processing model for web services security
which is more efficient and less vulnerable to attacks such as
denial of service attacks.

Index Terms — Denial of Service Attacks, Performance
Optimization, Security, Security Policy, Web services

Fig. 1. A secure SOAP message including the mandatory SOAP body
element and a SOAP header with a security header block. Security header
contains a Username token which used to provide authentication in web
services security.

I. Introduction

\\TITH the wide adoption of service oriented architecture
▼ V in the industry, web services have influenced of most of

The web services policy framework provides a general
purpose model and corresponding syntax to describe the
policies of a web service. Web services policy framework
which is built on web services policy specification defines a
base set of constructs that can be used and extended by other
domain specific web services policy specifications to describe
a broad range of service requirements and capabilities. A
policy, according the specification is a collection of policy
alternatives and a policy alternative is a collection of policy
assertions where a policy assertion represents an individual
requirement, capability, or other property of a behavior of a
web service. Web services security policy specification defines
a set of standard policy assertions to express security
requirements and constraints.

the software systems. Web services mostly use SOAP protocol
[2] for message exchange. SOAP message construct consists
of a SOAP envelope which has a mandatory SOAP body and
an optional SOAP header. SOAP body is used for actual
message payload while SOAP header carries the Meta data
about the message. Web Services Security specification [1]
defines how security related information should be conveyed
using a security header block in the SOAP header. Web
Services Security specification defines a standard way of
constructing and validating SOAP security header so that it
will interoperable in all the web services stacks.

Web services security policy specification [4] which is an
extension of web services policy framework [3] defines a
standard
capabilities of a web service in an interoperable manner.

andof expressing security requirementsway

1

includes username token validation with user informati
authentication, time-stamp validation to prevent replay attacks
signature verification for integrity and non-repudiation'
decryption for confidentiality and etc. In the policy validation
task, the message is checked for all the security requirements
expressed in the policy. For example, a policy
which parts of the SOAP message must be signed or
encrypted. Let’s say there is a policy which specifies that body
of the message and addressing header must be signed. A client
can send a message only singing the body of the message with
a valid signature. Even though this valid signature web
services security processing model should reject this message
because the addressing header is not signed. Thus, the
objective of the policy validation task is to make sure that all
the security requirements mentioned in the policy are satisfied.

on for
<wsp:Policy wsu:Id="UsemameTokenPolicy">

<wsp:ExactlyOne>
<wsp:All>

<sp:SupportingTokens>
<wsp:Policy>

<sp:UsemameToken/>
</wsp:Policy>

</sp:SupportingTokens>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

can express

Fig. 2. A security policy sample with a single policy alternative. This policy
express the requirement that the request should accompany a Username
Token. These assertions are defined in WS - Security Policy specification.

II. Web Services Security Processing Models

Web service security policy model represents the semantics
of constructing a secure web service message according to the
corresponding policy and also validating a secure message
according to its applicable policy.

Secure
Message

Credentials,
keysSecurity Policy

IF
Web service security

processing model
(validation)Credentials,

keys
Plain text
message Security Policy

IF IFI Plain text
message

Validation
resultWeb service security

processing model
(construction) Fig. 4. Validating a secure message. Secure message validation logics

performs cryptographic operations according to the meta data in the security
header of the secure message and validates the message against the
corresponding security policy. Credentials, keys are used for validation.IF

Secure
Message There are two main web service processing model classes

based on how they perform security policy validation, namely
two pass security processing model and integrated security
processing model.

Fig. 3. Building a secure message. Secure message construction logic
performs the cryptographic operations on the plain text message and generate
secure message with security meta data included in the security header
according to the security policy. Credentials, keys arc used for cryptographic
operations. III. TWO PASS SECURITY PROCESSING MODEL

In the two pass security processing model, security protocol
validation and security policy validation is done in two phases.
In the first phase, all the elements in the security header are
validated not taking the policy in to account. This phase also
extract information about what was present in the security
header and how the message has been secured. Then these data
is fed in to second phase, policy validation. In the policy
validation phase, policy validation algorithms run on the
extracted data to verify all security requirements
constraints enforced by the policy are satisfied.

One of the advantages of this model is it allows policy
validation algorithms to evolve without much effect. For
example, this model can be extended to process multiple
policy alternatives without increasing the complexity to a

Building a secure message consists of two major tasks
including performing cryptographic operations on the plain
text message to fulfill the requirements expressed in the
security policy and constructing a security header with the
meta data required for the validation of the secure message
according web services security specification.

Validation of a secure message also consists of two major
tasks including doing a protocol validation of cryptographic
and other security mechanisms used and also doing a policy
validation to make sure all the security requirements and
constraints expressed in the policy are met. In protocol
validation task, elements in the security header of the SOAP
message is validated according to the web services security,
XML signature and XML encryption specifications. This

and

2

V. Integrated security processing model

Integrated security processing model tries to overcome the
issues in two pass security processing model and provide
better security policy validation model. The main objectives of
integrated security processing model are

Security
Header
I

KSecurity protocol
validation

Crypo and identity
information

NO 1) Preventing Denial of Service (DoS) attacks
2) Improving the efficiency of security policy processing

Reject
message alid 7

YES
security

data
In the integrated security processing model, both security

protocol validation and policy validation is done
simultaneously. In this model, security protocol validation is
made policy aware. Thus policy violations are detected before
further processing preventing the risk of denial of service
attacks. Integrated security processing model also eliminates
the need to run two iterations to do the complete validation as
both protocol validation and policy validation done in a single
iteration. This removes the requirement of populating and
managing intermediate data about security header at the
protocol validation layer which will also contribute to the
efficiency of the new security processing model.

This model can be further improved by adding a pre policy
validation before the actual policy aware protocol validation
phase. Here we use the principle of rejecting the invalid
messages as early as possible without wasting computational
resources for further processing. Structure of the security
header can be deduced from the applicable policy of the web
service and the derived structure can be used to do a quick
validation by traversing only through the top level elements of
the security header without doing any processing. This enables
the security processing engine to reject the invalid messages as
earliest possible stage without doing any further processing.

T

-
Security Policy

Validation Security Policy

Accept N
y message J

Reject
message

Fig. 5. Two pass security processing model. In this model, validation is done
at two phases. In the first place security protocol validation is done and
security policy validation is done at the second phase.

greater deal. At the same time, separation of policy validation
to a second phase leads to main disadvantage of this model.
The main disadvantage of this model is policy violations are
found only in the second phase. This can make this model
vulnerable to attacks like denial of service attacks.

IV. Denial of Service (DoS) Attacks

Major goals of information security are to protect the
confidentiality, integrity and availability of information. A
denial of service attack is an attempt to make a service or a
resource unavailable to its legitimate users. Most common
method of DoS attack is to saturate the service with large
number of requests which will lead to resource exhaustion at
the service provider. This will eventually lead the service
provider to crash or unable to process further legitimate
requests. Thus this is an attack on service availability.
Now let’s see how the two pass security processing model is
vulnerable to DoS attacks. An attacker can send large number
of encrypted message to the service without worrying about
the other requirements of the security policy. On public key
infrastructure attacker only needs to know the public key ot the
service which is publically available in order to generate an
encrypted message for the service. Thus the encrypted
messages are valid according to XML encryption specification
and will pass the first phase. Security policy validation will
only be detected in the policy validation phase and messages
will be rejected in second phase. Decryption is a compute­
intensive cryptographic operation and having to decrypt large
number of messages unnecessarily is wastage of resources.
Even though this model prevents the service being exposed to
attackers this can lead to resource exhaustion at the service
Provider. So this is a threat against the availability of the
service.

Security
Header
I

Pre policy
validation

4NO(Reject
message

Security Policyalid ?
ES

KPolicy aware
protocol Validation

Crypo and identity
information

NO()YES,Reject
message

Accept
messagealid 7

Fig. 6. Integrated security processing model with pre - policy validation.

VI. Apache Rampart and Rampart2
Apache Axis2 is an open source web services engine which

is extensively used by the industry. Apache Rampart is the
security module of Axis2 which extends the Axis2 engine with
Web Services Security functionality. Apache Rampart

3

supports Web Services Security, Web Services Secure
Conversation, Web Services Trust and Web Services Security
Policy specifications. Apache Rampart engine uses a two pass
security processing model. Thus it is used to measure
performance of two pass security processing model. Ramaprt2,
the next generation of Apache Rampart implements an
integrated security processing model. Rampart2 is used to
measure performance of integrated security processing model.

Scenario 01

VII. Results

Apache Rampart and Rampart modules were used to
measure the performance of each of these security processing
models. This section presents the results of three scenarios that
were tested with both implementations. Requests/sec was
measured by varying the payload size.

Same asymmetric binding security policy was used for all
three scenarios. Here are the requirements and constraints
described in the security policy.

"" Rampart
“ Rampart2

30 KB 60 KB 100 KB

Payload Size
TABLE i

Security requirements and constraints

ValueProperty Fig. 7. Performance comparison of Apache Rampart and Rampart for the
scenario 01.X509 certificate

X509 certificate
Basic256
Message body
Binary security tokens
Message body
Message Signature
Encrypt before sign

Initiator token
Recipient Token
Algorithm suite
Singed Parts

Above table and graph shows the results which are obtained
in scenario 01. This clearly shows that Requests/sec value for
Rampart2 doesn't depend much on the payload size. But it
reduces for Rampart when the payload size is increasing. The
reason for this is the optimized message processing model in
Rampart2. In the security protocol validation stage of
Rampart, it performs all validation steps and doesn't identify
that the body is not encrypted until it comes into security
policy validation stage. Therefore, processing time depends on
the payload size. But Rampart2 identifies the policy violation
very early as it's protocol validation is policy aware.
Therefore, it doesn't process the message and processing time
does not depend on the payload size.

B. Scenario 02
According to our policy, message parts should be encrypted

before signing. In this scenario, an invalid message was sent
by signing the message before encrypting. This is a violation
of the protection order.

Encrypted Parts

Protection order

Complete security policy used is available in Appendix A.

A. Scenario 01
According to above mentioned policy, message body must

be encrypted. In this scenario, an invalid message was sent by
not encrypting the message body.

TABLE II
Test scenario 01

Payload Size Rampart Rampart2
1 KB 71.62

52.12
41.53

122.38
119.44
114.93

30 KB
60 KB TABLE III

Test scenario 02100 KB 34.78 109.33
Rampart2Payload Size Rampart
124.16
121.55
115.27
110.69

1 KB 24.26
15.95
10.60
07.35

30 KB
60 KB
100 KB

In this scenario also, Rampart2 shows similar results to
scenario 01. Rampart2's processing model identifies this policy

4

violation before going into protocol validations and rejects the
message. Therefore, again Rampart2 doesn't

Rampart2’s performances. Rampart constructs additional data
structures to hold results of protocol validations and validate
those structures with security policy. But Rampart2 performs
both validations in parallel.Scenario 02

140 Scenario 03
120

100
o
0w 80

| 60

I 40

& Rampart
— Rampart2 “ Rampart

~ Rampart2

20

0
1KB 30 KB 60 KB 100 KB

Payload Size
60 KB 100 KB

Payload Size

Fig. 8. Performance comparison of Apache Rampart and Rampart for the
scenario 02. Fig. 9. Performance comparison of Apache Rampart and Rampart for the

scenario 03.

In addition to that, Rampart2 uses Axiom as the xml info-set
representation model throughout. But the bottom layer of
Rampart (Apache WSS4J) uses DOM and a conversion
between the two models (called DOOM) is done in a middle
layer. This also can support the improved performances in
Rampart2.

The point which is addressed in this paper is the
contribution of an improved processing model for better
performances. In scenario 01 and scenario 02, there are huge
improvements in Rampart2 over Rampart. That is mostly
because of the improved processing model which is used in
Rampart2. In scenario 03 also Rampart2 showed better values
and that is due to processing model improvement and some
other improvements as well.
Security processing model of Rampart2, does not do the pre
policy validation step of the proposed security processing
model yet. So these results show the improvements of security
protocol validation being policy aware.

perform any heavy operations. For Rampart, this scenario
shows the same pattern of reducing the Requests/sec value
with increasing payload size. That is because it again validates
protocols before identifying policy violation in the second
phase of the message processing. But the Requests/sec values
are lower for Rampart in this scenario compared to scenario
01. That is because the body is encrypted this time and
Rampart performs all cryptographic operations before policy
validation.

C. Scenario 03
Finally in this scenario, a valid message according to the

above policy was sent.

TABLE IV
Test scenario 03

Rampart2RampartPayload Size
VIII. Future Work

As mentioned above. Rampart2 doesn't follow the exact
validation model which is described above. The “Pre policy
validation" step which compares the message header structure
with the security policy is still to be implemented in Rampart2.
It will further improve the performance results of Rampart2.

Another area that needs further research is handling
alternative policies in the integrated security processing model.
Handling alternative polices becomes a tedious task when
policy validation is done simultaneously with security protocol
validation.

34.39
23.94

22.13
14.90

1 KB
30 KB
60 KB 16.8710.08

13.6007.27100 KB

Rampart2 is considerably faster than Rampart in this valid
message scenario as well. A message processing model
hardly affect the results of a valid scenario. Because all
protocol validations and policy validations should be done
anyhow. But as Rampart's processing model is two phase and
Rampar2's one is single phase, there can be an improvement in

can

5

</sp:Layout>
<sp:SignBeforeEncrypting />
<sp:EncryptSignature />

</wsp:Policy>
</sp:AsymmetricBinding>
<sp:WsslO >

<wsp:Policy>
<sp:MustSupportRefKeyIdentifier/>
<sp:MustSupportReflssuerSerial/>

</wsp:Policy>
</sp:WsslO>
<sp:SignedParts>

<sp:Body/>
</sp:SignedParts>
<sp:EncryptedParts>

<sp:Body/>
</sp:EncryptedParts>
<sp:SignedSupportingTokens>

<wsp:Policy>
<sp:WssX509V3Token 10/>

</wsp:Policy>
</sp:SignedSupportingTokens>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

IX. Conclusion

Above test results clearly show that Rampar2 with policy
aware protocol processing, shows an extremely high
Requests/sec value for invalid messages compared to Rampart.
This implies that this processing model rejects invalid
messages for earlier compared to a two phase validation
model. Therefore it minimizes the resource exhaustion in DOS
attacks. And also even for valid messages, this improved
processing model is much efficient.

Appendix

A. The security policy used to measure the performance of
the two security processing models.

<wsp:Policy wsu:Id="perfTests"
xmlns: wsu="http://docs.oasis-open.orgAvss/2004/01 /
oasis-200401 -wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/

policy"
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/

securitypolicy">
<wsp:ExactlyOne>

<wsp:All>
<sp:AsymmetricBinding

<wsp:Policy>
<sp:InitiatorToken>

<wsp:Policy>
<sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/sec
uritypolicy/IncludeT oken/Al waysT oRecipient">

<wsp:Policy>
<sp:WssX509V3Tokenl0/>

</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientT oken>

<wsp:Policy>
<sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/sec
uritypolicy/IncludeToken/Never">

<wsp:Policy>
<sp:WssX509V3T oken 10/>

</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:RecipientT oken>
<sp:AlgorithmSuite>

<wsp:Policy>
<sp:Basic256/>

</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>

<wsp:Policy>
<sp:Strict/>

</wsp:Policy>

References

[1] K. Lawrence and C. Kaler. (2006, November).Web Service Security
specification. [Online]. Available: http://www.oasis-
open.org/committees/download.php/21256/wss-v 1.1 -spec-errata-os-
SOAPMessageSecurity.htm

[2] N. Mendelsohn, D. Box, D. Ehnebuske,G. Kakivaya, A. Layman, H. F.
Nielsen, S. Thatte, and D. Winer.(2007, April). SOAP Version 1.2
Messaging Framework (2nd ed.)[Online]. Available:
http://www.w3 .org/TR/soap 12-part 1/

[3] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N.
Nagaratnam, M. Nottingham, C. Riegen, and J. Shewchuk. Web
services policy framework (WS-Policy), May 2003.

[4] K. Lawrence and C. Kaler. (2007, July). WS-SecurityPolicy 1.2.
[Online]. Available: http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/v 1.2/ws-securitypolicy.html

[5] S. Ekanayake, S. Jayasoma, K. Ruwanpathirana, and I. Suriarachchi,
Rampart2 presented at 9th International Information technology
Conference, Colombo, Oct. 28-29, 2008.

[6] N. Gruschka, R. Herkenhoner, and N. Luttenberger, “WS-
SecurityPolicy Decision and Enforcement for Web Service Firewalls”,
[online]. Available: http://www.diadem-
firewall.org/workshop06/papei-s/monam06-paper-11 .pdf'

[7] B. Blanchet. An efficient cryptographic protocol verifier based on
Prolog rules. In Proceedings of the 14th IEEE Computer Security
Foundations Workshop, pages 82-96. IEEE Computer Society Press,
2001.

[8] K. Bhargavan, C. Foumet and A. D. Gordon, “Verifying Policy-Based
Security for Web Services”. Tech. Rep. MSR-TR-2004-84, Microsoft
Research.

[9] A. Pcrrig, D. Song, and D. Phan. AGV1 - automatic generation,
verification, and implementation of security protocols. In 13th
Conference on Computer Aided Verification (CAV),LNCS, pages 241-
245. Springer, 2001.

6

http://docs.oasis-open.orgAvss/2004/01
http://schemas.xmlsoap.org/ws/2004/09/
http://schemas.xmlsoap.org/ws/2005/07/
http://schemas.xmlsoap.org/ws/2005/07/sec
http://schemas.xmlsoap.org/ws/2005/07/sec
http://www.oasis-open.org/committees/download.php/21256/wss-v
http://www.oasis-open.org/committees/download.php/21256/wss-v
http://www.w3
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v
http://www.diadem-firewall.org/workshop06/papei-s/monam06-paper-11
http://www.diadem-firewall.org/workshop06/papei-s/monam06-paper-11

