
PlagiaBust- A Plagiarism Detection Framework using

Text Mining

W.U.C. Costa, K.P.K.C. Jayasinghe, G.G.A.D.N.D. Seneviratne, I.A. Wijesinghe, M. Walpola
Department of Computer Science and Engineering,

University of Moratuwa,
Moratuwa, Sri Lanka.

Abstract—With the rapid growth of online resources and data

processing tools, today plagiarism is considered as a serious issue

in the academic field. Plagiarism can be considered as a theft of

intellectual property and many academic institutions are keen to

take action against plagiarism. In this paper we discuss about a

plagiarism detection framework which enables detecting

plagiarism in textual documents. Here we address both the

common plagiarism scenarios, namely peer plagiarism detection

and Internet plagiarism detection. In our plagiarism detection

algorithm, we consider not only copy-paste plagiarism but also

paraphrase plagiarism because we consider both methods to be

equally important. Also we present the implementation details of

our plagiarism detection framework and the core components of
our system.

Keywords-PlagiaBust, Plagiarism, Text Comparison,

Paraphrase, Query Creation, Shingle Cloud Algorithm,
Preprocessing.

I. INTRODUCTION

The use of electronic documents has become increasingly
popular and nowadays almost every academic institute uses
online submission of assignments, projects, reports etc. Even
though these procedures are followed to gain efficiency it has
increased the possibility of someone copying from another’s
work and presenting it as their own. This kind of action is
called plagiarism and academic institutes are keen to detect
such actions and penalize those responsible. In a world where
securing intellectual property is a challenging task, detecting
plagiarism of documents is becoming a very important aspect
of the academic environment. But with the advancement of
technology and techniques, this task is becoming much more
complex. Following are some of the common plagiarism
scenarios.

 Copying, modifying or paraphrasing other’s ideas and

designs without a proper citation procedure.

 Changing the structure of the words or sentences of

the original source without explicit reference.

 Giving incorrect citation about the source of a text or

a design.

 Directly turning the other person’s work as your own

work

 Changing the original reference source to a different
one.

 Not giving acknowledgment or citation of a unique
phrase

Currently there are a lot of software available for plagiarism
detection; both commercial and free. Almost all of them have
some kind of limitation and limited accuracy of the techniques
they use. There are no products that provide fully functional
and fully accurate results. In this research we found out that
there is no complete fully functional free and open source
solution for plagiarism detection. Some of them provide a wide
scope for plagiarism testing. Some of this software is capable
of checking one document with multiple documents being
submitted by the user. Some of them maintain a database with
a large volume of papers, books, magazines, and blogs and
compare them to provide plagiarism reports. In addition, they
test with cached and live Internet pages. In these tools,
plagiarism is extracted through a large number of testing
phrases.

Mainly there are two types of plagiarism that can be
identified within the academic context; namely peer plagiarism
detection and Internet plagiarism detection. Peer plagiarism is
the case where a student copies another student’s work
implicitly. Internet Plagiarism is where a student copy online
documents and present it as their own work. With the rapid
growth of Internet resources, possibility of Internet plagiarism
is becoming higher than ever before.

II. RELATED WORK

Currently there are a few commercial and non-commercial

products available for plagiarism detection. Those products

have been developed based on different plagiarism detection

technologies.

A. Turnitin
 Turnitin is a commercial web based product and users can

subscribe via a web portal. The user uploads the documents

that need to be checked for plagiarism. Turnitin then checks

for plagiarism in those documents as well as word phrases that

have been copied directly from the Internet [1]. Turnitin also

has the ability to check for documents in the paper mills.

Technical details were not revealed since this is a commercial

application.

B. CopyCatch

 CopyCatch is a standalone application and does not require

web access. Therefore, it does not check for internet

plagiarism. It checks for plagiarism among multiple submitted

documents. It can be installed on a network for the use of

multiple users. The CopyCatch system works based on the

lexical similarity between two texts. It removes the irrelevant

texts using lexical cohesion techniques and then it will strictly

check for hapaxlegomena words. Hapaxlegomena words are
the words that only appear once in a document. They believe

that similar hapaxlegomena words between two documents

indicate a possible plagiarism activity [2].

C. Essay Verification Engine – EVE2

 EVE2 is basically an interface for searching through the

Internet for plagiarism activities. It only checks for documents

copied from the Internet and can’t compare documents with

each other. EVE2 is a commercial application, hence its

technical details are not revealed.

.

D. WordCheck
 WordCheck is another standalone application that does not

check for Internet plagiarism. It only detects plagiarism among

a set of documents. From a technical aspect, the system uses a

simple method to detect plagiarism. It counts the number of

occurrences of each word in every document and compares the

results.[2]

E. JPlag

 JPlag is a web based service and all the files that need to be

examined must be in a single folder. JPlag considers all of

them as belonging to a single submission. JPlag uses a
“Greedy String Tiling” approach which is discussed later in

this report. [3]

F. Plagiarism.Org

 The tutor is facilitated to register his/her class in the system

and students are allowed to upload their assignments. At the

end of the process, a report is e-mailed to the tutor.

Implementation details of the system are not disclosed, since it

is a commercial application.

III. DESIGN AND IMPLEMENTATION

A. System Overview
The Core of our application consists of 5 main modules

namely Data Extraction Module, Data Preprocessing Module,

Document Similarity Detection Module, External Source

Detection Module and Report Generation Module. Data

Extraction Module captures the files submitted by the user to

detect plagiarism and extract the data on each file by

converting them into text format. Data Preprocessing Module

is responsible for processing the output documents of the Data

Extraction Module using approaches such as synonym
replacement, stemming and stop word remover etc. The details

of each of these methods will be discussed later in this paper.

The Document Similarity Detection Module is responsible for

accessing the document content, compare and return the

possible plagiarized phrases using an advanced plagiarism

detection algorithm. Detecting the possible plagiarized

Internet sources and PlagiaBust Server Sources is done by the

External Source Detection Module. The details of the possible

plagiarized document with detailed analysis will be handled

by the Report Generation Module. Each of these Modules with

their detailed description and the functionalities will be

discussed later in this paper.

Figure 1. System Overview

B. Data Extraction Module

There are various document formats that are available

nowadays in student work. Most commonly used document

formats are Microsoft office “docx”, “doc” formats, “PDF”

format, “RTF” format and plain text format. No matter in

which format the documents are supplied to the system, it

should be able to convert them in to plain text format. So the

initial preprocessing stage requires extracting text from these

types of documents. This module outputs text from different
file formats and gives this text as input to the pre-processor

module. This procedure enhances the document processing

speed.

C. Data Preprocessing Module

 Main objective of the pre-processing module is to generate

a normalized form of each document. It means we have to take
each submitted document and make them to a single document

format. Usually text documents contain lots of unwanted

words which are not relevant in document comparison in the

comparison phase of plagiarism detection. Therefore, a stop

word list [4] is used to filter out the most common words in

English language that are not carrying information about the

content of the document.

In the next step, we stemmed all the words using Porter

stemming algorithm [5] to get the stemmed form of words, so

that the tense and the form of the words become uniform in all

the inputted documents. Then, we use synonym replacement.

The motivation for using synonym recognition comes from

considering human behavior, where people may seek to hide

plagiarism by replacing words with appropriate synonyms. If a

sufficient number of words are replaced by synonyms, then
most of the common copy detection methods fail. So, the best

solution is to transform words having the same meaning into a

unique identifier. A consideration has to be given to words

that have more than one meaning; if a significant impact on

the accuracy is expected, a disambiguation process is required

to determine the appropriate meaning.

Synonym Replacement is another key task in text

preprocessing because one of the common ways to change the

original sentence is to replace some words with their

synonyms. Considering this factor, paraphrase detection and

text comparison methods can benefit from use of synonym
replacement strategy. WordNet [6] is the most well known

lexical database for the English language. As we described in

our literature review, WordNet provides facilities to find

synonyms for a given word. A set of synonyms for a given

word is called a “synset”. There are so many Java APIs for

accessing the database like JWNL, JWI, lucene – wordnet etc.

From those APIs we have selected lucene-wordnet API in our

project. Compared to other APIs lucene-wordnet uses a

memory map and accessing time for a synset is much less than

the others.

D. External Source Detection Module

External source detection module is responsible for

downloading possible sources of plagiarism from the Internet.

At the most basic level, the system can only compare two

documents and provide a measure on whether plagiarism is

present in that work. So to detect places where it has been
copied from Internet, first the system must download possible

sources from the Internet. Internet has billions of documents,

so it is not easy to predefine the sources where a student may

use to copy. Obvious solution is to dynamically search for

documents from the Internet where similar texts are presented.

This module uses Internet search services (optionally Bing

or Google) to find sources for some document. By providing a

set of word sequences generated from the suspicious

document and looking for the results retrieved by the Internet

search service it is possible to detect sources which have
similar text to the suspicious document. Even though the

query made by module is very specific, there still can be

millions of results for a single query. Internet search services

have a number of measures when it comes to sorting out these

results.

 Query selection algorithm is the key bottleneck of

performance for Internet source detection. A list of queries

selected to represent the document is the key point to

identifying download sources from Internet. If this list is

unnecessarily large then the Internet search time will increase,

which consequently increases the overall system response

time. Moreover, if the query list is too large then we have to

be more concerned about constraints set by the Internet search

service. And if the query list is large then there will be a huge

number of collective hits, where the system has to sort it and

find the web links with the highest frequency of occurrence.
As the results suggest, if the document is nearly copied from

internet sources, selecting a huge list of queries will not

improve the result a great deal.

Figure 2. Avarege query list size

According to the tests we have carried out which is
presented in the above graph showing the average number of

queries generated by each query selection algorithm,

exhaustive query selection algorithm recorded the maximum

number of queries and the paragraph wise algorithm the

minimum. As a matter of fact the amount of time taken for

retrieving the possible sources for a particular document will

depend on the time spent on querying the internet live search

service. Furthermore, if more queries are used, then the list of

all retrieved internet links will be very large which need more

time to be sorted and find out the links with the maximum

number of occurrences. So an algorithm with a minimum will

be more preferable. But it is important that the result should be
accurate to a great extent. Once these sources are marked, they

are downloaded to a local directory and checked thoroughly

against the suspicious document. The document content can

be from different sources. In the Internet there are websites

with same content. For example Wikipedia articles can be

found in other websites as well. Retrieving these both sources

can increase the precision of the algorithm but it will not make

much of contribution to finding all the sources that the

suspicious document copied from. So recall can be considered

as the most significant measure of performance of the query

selection algorithm.

The paragraph wise query selection algorithm selects the

least set of queries and it has recorded a greater level of

accuracy. This is a very important design decision as the

system should not unnecessarily compromise its performance.

Readability score based algorithms have greater level of

accuracy irrespective of the level of the copied content. But it

has shown poor values for recall. Also creating a query list

from the readability based algorithm involves complex

calculations compared to the other three algorithms.

Considering all the facts we can say that paragraph wise

query selection algorithm is the most appropriate solution. It

has produced less overhead to the system by generating the

least set of query lists with fairly good accuracy. With huge

query spaces, random and exhaustive selection algorithms are

infeasible to use, and readability score based algorithms have

a poor level of recall.

Internet source detection is one of the most time
consuming tasks of overall plagiarism detection process. It

depends on lots of circumstances like internet connectivity and

size of possible sources that need to be downloaded to the

system. Querying the internet live search service can take a

huge amount of time depending on the size of the query list. If

we are going to check for hundreds of documents this time

gets multiplied. The other issue with using Internet live search

service is that only a limited number of maximum queries can

be made. If the collective number of queries to be made

overran this number, then the system will not be able to detect

Internet sources for some documents. If the size of the
document corpus is very large these issues make Internet

source detection using Internet live search services, an

infeasible one.

PlagiaBust web search service is introduced as the

alternative to Internet search service. This is a very practical

solution if the PlagiaBust software is used by a University or

any other education institute. Then university can maintain a

PlagiaBust search server so that all client programs from

university can access to store and query. PlagiaBust web

search service will index all the required documents and

provide search service for PlagiaBust client programs. By this
method, the system need not consider about overrunning of

query space. Furthermore if the search service is deployed in a

Local area network, then querying the search service will be

faster in large scale compared to Bing Internet live search

service. More importantly downloading sources will be faster

by few times.

E. Document Similarity Detection Module

1) Text Comparison

One of the most important aspects of this research is to

find a suitable textual comparison algorithm which enhances

the accuracy of plagiarism detection. The selected text

comparison algorithm should be able to accurately measure

the similarity between two given texts and indicate whether

there is a possibility of plagiarism. There are several text

comparison algorithms such as Cosine Similarity, Euclidean

Distance, Greedy String Tiling [7] and Shingle Cloud [8] that

can be used for this purpose. We conducted our research on

these algorithms and tested them on various inputs.

Following graph shows the average similarity measures

given by the algorithms we considered for nearly 60% copied

set of texts.

Figure 3. Text similarity algorithms comparison graph

According to the above graph we can see that similarity

measures of Cosine, GST and ShingleCloud algorithms are in

similar range while the similarity measure given by Euclidean

distance algorithm is highly deviated from those values. As a

result we ignored Euclidean distance as it gives values much

larger than we anticipated. So we had to select one from

Cosine, GST and Shingle Cloud algorithms but Cosine

Similarity algorithm does not provide a set of matching

phrases among two texts so it could not be used. GST

algorithm is based on a greedy approach and sometimes it can
ignore smaller matching phrases and look for single larger

matching phrase. Taking these constraints in to consideration

Shingle Cloud was selected as the text comparison algorithm

to be used.

“ShingleCloud” is a string comparison algorithm

developed using the n-gram-overlap approach [8]. The two

strings that are to be compared are called as the “needle” and

“haystack”. The comparatively shorter string is called the

needle and the other one is the haystack. Before proceeding

further the two strings are preprocessed using techniques such
as “stop word removal”, “stemming”, etc. The next step is to

extract n-grams from the haystack using a sliding window of

size “n”, which are ultimately called shingles. Then those

extracted shingles are stored in a data structure suitable for

fast lookups. Then a bit string is created according to the n-

gram considered. If there is a corresponding match for a

particular n-gram in the needle, 1 is appended or otherwise 0

is appended to the bit string. At the end, a bit string is

generated corresponding to the haystack and needle

containment. This bit string is used to calculate the

containment measure to compare the two strings. There are

two important parameters for declaring a match. The first one
is the minimal number of consecutive ones, which is the

minimum number of consecutive ones that need to occur to

consider it as a match. The second one is the maximal number

of zeros, which is the maximum number of zeros that can be

included in a single match.

2) Selecting Parameters for ShingleCloud

There are two important parameters for ShingleCloud

algorithm. One is the N-Gram size and the other one is the

minimum number of ones in a single match.

a) Selecting N-Gram size

ShingleCloud algorithm divides the given text into N-

Grams and these grams are used for comparison. Selecting a

suitable value for the size of a gram is important since it

directly affects the similarity value. Following table shows the
change in similarity value with the change in N-Grams.

TABLE I. CHANGE IN SIMILARITY WITH N-GRAM SIZE

Size

of N-

Gram

No of

Matching

Shingles

Containment

in Haystack

Containment

in Needle

Similarity

1 4 0.7878788 0.82539684 0.806638

2 4 0.76515156 0.8015873 0.783369

3 5 0.76515156 0.8015873 0.783369

4 5 0.76515156 0.8015873 0.783369

5 4 0.7348485 0.76984125 0.752345

6 4 0.7348485 0.76984125 0.752345

We can see that with the increase of n-gram size similarity

value decreases. If the n-gram size is smaller, the algorithm

looks for similar tokens with shorter length. If the n-gram size

is larger it looks for longer matching phrases. To have a

balance between these two extremes we selected n-gram size

to be 4.

b) Selecting minimum number of ones

Minimum number of ones in a single match is the

number of ones a match should have to consider it to be a

match.

TABLE II. SIMILARITY WITH MINIMAL NUMBER OF ONES

Minimal

Number of

Consecutive

Ones

No of

Matching

Shingles

Containment

in Haystack

Containment

in Needle

Similarity

1 8 0.6136478 0.637899 0.62577

2 8 0.6136364 0.6377953 0.625716

3 8 0.6136364 0.6377953 0.625716

4 7 0.5681818 0.5905512 0.579367

5 6 0.5151515 0.5354331 0.525292

6 4 0.39393938 0.4094488 0.401694

Looking into these results we can see that with the increase

of minimum number of ones similarity decreases. If the

selected value is too small similar n-grams will be matched

and if the value is too large it can easily miss shorter matching

phrases. So to have a balance between these two, minimum

numbers of ones was selected as 4.

IV. PARAPHRASE DETECTION

Some of the plagiarism cannot be detected using normal

text comparison as paraphrasing is one of the techniques done

in plagiarism. Two sentences are paraphrased if they “mean

the same thing”. If we think of a more broad definition to

paraphrasing we can say paraphrase methods recognize,

generate, or extract paraphrases, meaning phrases, sentences,

or longer texts that convey the same, or almost the same

information [9]. For an example consider following three

sentences:

(1) Wonderworks Ltd. constructed the new bridge.
(2) The new bridge was constructed by Wonderworks Ltd.

(3) Wonderworks Ltd. is the constructor of the new bridge.

We can say that 1 and 2 are paraphrased clearly. But we

cannot say that 3 were paraphrased from1 and 2 directly

In our method we have used the Semantic Similarity

calculation method to detect paraphrased sentences.

 The basic function to semantic similarity value:

In our algorithm we have to add some other similarity

calculations like synonym similarity and sentence length

similarity. For each sentence pair we calculate the similarity

value using similarity calculation function. We modified the

similarity calculation function as below.

Here,

In the sim(T1,T2) function maxSim(T1,T2) also changed:

Here,

with the use of similarity measure for two sentences, we

decide whether two sentences are paraphrased or not. If the

value is greater than the threshold value we take those

sentences as paraphrased and if the value is less than threshold

value (we have selected the threshold of 0.27) we take those

sentences as not paraphrased. Next, the paraphrased sentences

are sent to the reporting module.

V. PARAPHRASE DETECTION METHOD ACCURACY

MEASURES

For testing the accuracy of the method, we have used the

Microsoft Research Paraphrase Corpus [10]. To compare with

other methods we have used the common accuracy measures
(Accuracy, Precision, Recall, and F-measure).

TABLE III. PARAPHRASE DETECTION METHOD ACCURACY

VALUES FOR THRESHOLD VALUES

Threshold Accuracy Precision Recall F-

measure

0.25 71.01 73.37 89.25 80.54

0.26 71.22 73.87 88.50 80.53

0.27 71.31 74.38 87.43 80.38

0.28 71.03 74.64 86.20 80.00

0.29 70.84 75.09 84.74 79.62

0.30 70.47 75.37 83.28 79.13

0.35 69.14 77.00 76.00 77.00

In this section we compare our paraphrase detection

method with other available methods in the literature.

Microsoft Research Paraphrase Corpus was used to compare

because other available methods have results for this tool as

well. All the accuracy measures used in above analysis were

used in this comparison as well. Accuracy, Precision, Recall,

and F-measure values for other methods were taken from

published research papers and a survey paper [9].

TABLE IV. COMPARISON OF AVAILABLE METHODS

In above comparison we have mentioned two base cases.
BASE1 classifies all pairs as paraphrases. That means the

recall value is 100% this is because there are no false negative

values. BASE2 classifies two sentences as paraphrases when

their surface word edit distance is below a threshold value.

Even though our method has lower accuracy value than

other methods, all the other measures are quite similar to other

methods. Our method is a simple method which uses semantic

similarity measure with synonym similarity and length

similarity. So the calculation is quite simple compared to other

available methods. As other methods use complex calculations
and syntactic analysis to detect paraphrases, they take some

time to detect paraphrases from documents. Therefore for an

application like plagiarism detection our method is more

suited.

VI. REPORT GENERATION MODULE

Report Generating module handles the overall presentation

of the plagiarism-check results between documents. It enables

the user to visualize the plagiarism results in a graphical

manner so that the user can easily evaluate the plagiarism

between documents. It mainly consists of key components

such as text highlighting component, connectivity graph
generating component, final report generating component etc.

which provide visualization of the plagiarism results.

 Text highlighting component- This component

provides text highlighting capability for onscreen

viewing of two suspected document. It highlights the

possible plagiarized phrases between two documents

in the onscreen view. The color of the highlighter

changes depending on the matching phrase.

 Connectivity graph component: The plagiarism
results are shown as a connectivity graph inside the

module. Here the nodes represent the document and

the edges between them represent that the two

documents are plagiarized. The colors of the edges

change depending on the plagiarized percentage

between documents.

 Final report generating component: The plagiarism

check results are printed in a report which can be

exported into many common document formats such

as PDF, HTML, DOC, DOCX etc. This report can be
seen inside the module also using a viewer. It has

zooming capability and the paging capability also.

 Onscreen view component- The suspected document

is displayed inside the module along with the

plagiarized phrases highlighted in red color. When

the user clicks on the phrases it displays the

suspected source of the phrase. If it’s an internet

source it will display the content of the web page in

the integrated browser component.

VII. RESULTS AND DISCUSSION

For the performance analysis of PlagiaBust we selected a

plagiarism detection corpus downloaded from [18], which

contains sample documents. From that corpus we created a

Method Accuracy

(%)

Precision

(%)

Recall

(%)

F-measure

(%)

Corley &

Mihalcea [11]

71.5 72.3 92.5 81.2

Das & Smith[12] 76.1 79.6 86.1 82.9

Finch et al. [13] 75.0 76.6 89.8 82.7

Malakasiotis[14] 76.2 79.4 86.8 82.9

Qiu et al. [15] 72.0 72.5 93.4 81.6

Wan et al. [16] 75.6 77.0 90.0 83.0

Zhang & Patrick

[17]

71.9 74.3 88.2 80.7

Our Method 71.31 74.38 87.43 80.38

BASE1 66.5 66.5 100.0 79.9

BASE2 69.0 72.4 86.3 78.8

dataset suitable for our context. Following is the constitution

of that dataset.

TABLE V. PLAGIARISM DETECTION CORPUS CONSTITUTION

No of

Documents

Original

Documents

Near

Copy

Light

Revision

Heavy

Revision

No

Plagiarism

76 5 14 15 16 31

 Original Documents – These documents are answers

to five questions given and they are not plagiarized.

 Near Copy – The document is created from copying
text from an original document.

 Light Revision – The document is constructed based

on the content of an original document it may contain

some copy pasted parts. Some of the copied contents

are altered in some basic ways including substituting

words and phrases with synonyms and altering the

grammatical structure. But the order of information

found in the sentences is not changed.

 Heavy Revision – The document is constructed based

on the content of an original document but the texts

are rephrased to generate a document with having a
same meaning as original text. Some of the sentences

are split into more sentences and no restrictions are

given on how the text should be altered.

 No Plagiarism – The document answers the given

five questions not based on the original documents.

No part of the document is plagiarized from other

documents or the Internet.

TABLE VI. PLAGIARISM DETECTION RESULTS

 Near

Copy

Light

Revision

Heavy

Revision

No Plagiarism

Sample 14 15 16 31

Detected 10 7 6 0

Accuracy = 1 = 1.0000

Recall =

Looking about the results we can see that there are no false

positives given by the system, and it has a good accuracy of

0.9111. In this calculation we didn’t consider lightly and

heavily revised documents because there is no indication to
actually know whether they have been plagiarized or not. But

we can see that certain documents from those two categories

are still detected as plagiarized documents by the system.

The overall performance of the PlagiaBust was measured

by the time spent for the system to produce results. This

period covers the time taken from the start at preprocessing

documents to finish at document comparison. The experiment

was carried out using several test cases while varying the no of

files processed and the size of a single file. Measured results

are shown below.

TABLE VII. PLAGIABUST PERFORMANCE WITH FILE SIZE AND NO

OF FILES

No of files Size of a single file(KB)

2 4 8 16

10 2.959 3.567 6.159 11.298

25 8.938 9.497 13.962 31.355

50 15.081 20.532 54.378 182.741

75 22.432 49.002 148.294 596.478

100 31.627 106.725 323.269 945.921

Through observing above graphs we can say that when

numbers of files are increased, execution time has also

increased with that. This is quite obvious since when there are

more files to process it takes more time to preprocess, index

and compare them. We can also observe that with the increase

of file size, execution time also has increased. The primary

reason for this is with larger files, system has to process larger

data so overheads in using memory and processing power

causes PlagiaBust to slow down its operations.

VIII. FUTURE WORK

In this paper we have presented a method for the

comparison of documents aimed at spotting plagiarism only in

unstructured English text. For future improvements we can

extend this work to detect plagiarism in code assignments and

also in other languages. Paraphrase detection can be improved

to get more accuracy. Currently the described method doesn’t

have the support for getting the evaluator’s feedback on the

plagiarism results between documents. This can be further

improved to get the evaluator’s feedback on the results

obtained and perform a new check according to the feedback

on the plagiarized phrases. We can also extend this plagiarism

detection method to support student profile system, where
each student in a university has a dedicated profile including

the past assignments submitted and statistics about the writing

style etc. This can be implemented in the future to enhance the

plagiarism results accuracy of the student assignments.

REFERENCES

[1] (2010, December) turnitin. [Online].

http://turnitin.com/static/index.php"

[2] Paul Clough, "Plagiarism in natural and programming

languages: an overview of current ," Department of

Computer Science, University of Sheffield, 2000.

[3] Guido Malpohl, Prechelt Lutz, and Michael

Phlippsen, "JPlag: Finding plagiarisms among a set of

programs," Fakult ¨ at f ¨ur Informatik Universit ¨ at

Karlsruh, D-76128 Karlsruhe, Germany,.

[4] (2011, March) Stop Word List. [Online].

http://www.lextek.com/manuals/onix/stopwords1.html

[5] M.F. Porter, An algorithm for suffix stripping., 1980,

vol. 14, ch. no. 3, pp. 130-137

[6] WordNet. (January, 2011) A lexical database for
English.[Online].

http://wordnet.princeton.edu/wordnet/

[7] Michael J Wise, "Running Karp-Rabin Matching ,"

The University of Sydney, ISBN 0

86758 669 9 , March 1993.

[8] Arno Mittelbach, James Cummings, Christoph

Rensing, Ralf Steinmetz Lasse Lehmann,

"Automatic Detection and Visualisation of Overlap

for Tracking of Information Flow,"

KOM Multimedia Communications Lab, Technische

Universität Darmstadt, Rundeturmstr.

10, 64283 Darmstadt, Germany and Research
Technologies Service, Oxford University

Computing Services - University of Oxford, 13

Banbury Road, Oxford, OX2 8NP, UK ,.

[9] Prodromos Malakasiotis Ion Androutsopoulos, "A

Survey of Paraphrasing and Textual Entailment

Methods," Journal of Artificial Intelligence Research,

vol. 38, pp. 135-187, May 2010.

[10] (2011, May) Micosoft Research. [Online].

http://research.microsoft.com/en-

us/downloads/607d14d9-20cd-47e3-85bc-

a2f65cd28042/
[11] C. Mihalcea and R. Corley, "Measuring the semantic

similarity of texts," in Workshop on Empirical

Modeling of Semantic Equivalence and Entailment,

2005, pp. 13–18.

[12] D. Smith and N.A. Das, "Paraphrase identification as

probabilistic quasi-synchronous recognition," in 47th

Annual Meeting of ACL and the 4th Int. Joint Conf. on

Nat. Lang., Singapore, 2009, pp. 468–476.

[13] A. Hwang, Y. S. Sumita, and E. Finch, "Using

machine translation evaluation techniques to," in 3rd

Int. Workshop on Paraphrasing, Jeju Island, Korea,

2005, pp. 17-24.
[14] Y. Malakasiotis, "Paraphrase recognition using

machine learning to combine similarity measures," in

47th Annual Meeting of ACL and the 4th Int. Joint

Conf. on Nat. Lang., Singapore, 2009.

[15] L. Kan, M.Y. Chua, and T. Qiu, "Paraphrase

recognition via dissimilarity significance

classification," in Conf. on EMNLP, Sydney,

Australia, 2006, pp. 18-26.

[16] R. Neumann and G. Wang, "An divide-and-conquer

strategy for recognizing textual entailment," in Text

Analysis Conference, Gaithersburg, 2008.
[17] Y. Patrick and J. Zhang, "Paraphrase identification by

text canonicalization," in Australasian Language

Technology Workshop, Sydney, Australia, 2005, pp.

160-166.

[18] Clough P. and Stevenson, Developing a Corpus of

Plagiarised Short Answers, Language Resources and

Evaluation: Special Issue on Plagiarism and

Authorship Analysis, In Press. [Download], 2011

September.

