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Abstract—Complex Event Processing (CEP) is one of the most
rapidly emerging fields in data processing. Processing of high
volume of events to derive higher level events is a vital part of
several applications. The use-cases found in Business applications,
financial trading applications, operational analytics applications
and business activity monitoring applications are directly related
to complex event processing.

This paper discusses different design decisions associated with
CEP Engines, and proposes to improve CEP performance by
using a stream-processing-style pipelines. Furthermore, the paper
discusses Siddhi, a CEP Engine that implements pipelines for
stream processing and presents a performance study that exhibits
that Siddhi CEP Engine has significantly improved performance.
Primary contributions of this paper are, a critical analysis
of the CEP and Event Stream Processing engine architecture
and identifying areas for improvements, implementing those
improvements through Siddhi, and demonstrating the soundness
of those suggestions through empirical evidence.

Index Terms—Event Stream Processing, Complex Event Pro-
cessing, Events, Data Processing

I. INTRODUCTION

During the last half a decade, Complex Event Processing
(CEP) [1] has become one of the most rapidly emerging field
in data processing. The major task of the CEP is to identify
meaningful patterns, relationships and data abstractions among
unrelated events and fire an immediate response. Due to
massive amount of business transactions and numerous new
technologies, like RFID (Radio Frequency Identification), it
has now become a real challenge to provide real time Event
driven systems that can process data and handle high input data
rates with near zero latency. In this paper, we are proposing
a high performance Complex Event Processing Engine which
performs Event processing in an efficient manner.

As shown in Figure 1, Complex Event Processing is used in
applications such as Monitoring, Manufacturing and Financial
Trading that requires low latency, while applications such as
data warehousing, web analytics and operational analytics that
need to handle higher data rates. Both these categories of
applications can utilize CEP Engines to efficiently perform
their tasks. Due to these real time requirements, producing a
real time Event-driven system that can handle high input data
rates and process data with near zero latency has posed major
challenges.

Siddhi addresses some main concerns of Event processing
world where there is an absolute need of processing huge flood

Figure 1. Use cases of Complex Event Processing

of Events that may go well over one hundred thousand Events
per second with a near-zero latency.

Goals of this paper are to critically evaluate decisions
taken at CEP and Event Stream Processing Engine design
and to present Siddhi CEP Engine that incorporates several
improvements covered at the discussions. To that end, next
section presents a survey of CEP Stream processing Engine
designs, and the section 3 describes the design and the
implementation of Siddhi. Thereafter, section 4 presents a
performance comparison of Siddhi and Esper [2], where latter
is an open source, established CEP Engine.

Primary contributions of this paper are, a critical analysis
of the CEP and Stream Processing Engine architectures and
identifying areas for improvements, implementing those im-
provements through Siddhi, and demonstrating the soundness
of those suggestions through empirical evidence.

II. RELATED WORK

In relation to previous work we can find many papers and
projects on Complex Event Processing and Stream Processing
systems. Here we discuss a representative subset of those
projects and their architectures to come up with an optimal
design for a high performance Complex Event Processing
Engine. When it comes to processing large number of data,
the obvious decision is to use databases and perform data-
mining on the collected data. But in the context of processing



incoming continuous data streams, using databases will not be
effective [3] as these database systems have an architecture
which stores all incoming events in a database and then query
them whereby significantly affecting the performance.

Therefore to overcome this issue, while leveraging the
power of databases and data-mining the field of stream
databases [4]–[6] emerged. Systems like these have very
powerful query languages, typically subsuming SQL with
provisions for sliding windows and stream grouping features.
TelegraphCQ [4] is a such system that was designed to provide
Event processing capabilities alongside the relational database
management capabilities. In TelegraphCQ they have utilized
PostgreSQ [7], an open source database, modifying its exist-
ing architecture to allow continuous queries over streaming
data [4]. Since TelegraphCQ was designed with a storage
subsystem to exploit sequential write workload and with a
broadcast-disk style read behaviour, queries accessing data
spans memory and disk raising significant Quality of Service
issues. This eventually leads to deciding what work to be
dropped when the system is in danger of falling behind the
incoming data stream. Further, though these query languages
are powerful, they are not optimized for processing sequen-
tial patterns that occur frequently in the target applications,
and all its expressiveness only comes with the trade-off of
their performance. TelegraphCQ has also being improved and
commercialized into Truviso [8] where enabling storage of
historical data by integrating them with relational databases.
Still these systems have failed to perform well when it comes
to real complex event processing tasks in real time.

On the other hand there are also Event Stream Processing
engines that follow the model of publish-subscribe systems [9],
[10]. They support query languages that has a very limited
expression power and allow only simple selection predicates
applicable to individual Events in a data stream. These systems
trade expressiveness for performance.

The basic functionality of the Complex Event Processor is
to match queries with Events and trigger a response. Queries
describe the details about the Events that the system needs
to search within the input data streams. The Event Stream
Processing engines are enough to handle all the primitive CEP
tasks. In contrast to traditional databases, Event Stream Pro-
cessing engines operate with stored queries running constantly
against extremely dynamic data streams. In fact, these Event
processing systems are an upside down view of a database.

One such notable project is Aurora [11] where their devel-
opers describe it as a general-purpose data stream management
system. Its primary goal is to provide a single infrastructure
that can handle real-time streaming in applications such as
monitoring. As described in Figure 2, the overall system
architecture of Aurora is based on the ”boxes-and-arrows”
process and work-flow systems [12]. Here the data flows
through the system as Tuples, along pathways, which are
arrows in the model. The data gets processed at operators,
which are the boxes and after the last processing component
they are delivered to an application for protestation [13].

Systems like these can optimize themselves by combining

Figure 2. Aurora Architecture

two boxes into a single larger box, reordering boxes, and load
shedding [14]. STREAM CEP [15], [16] also follows a similar
structure to Aurora [11] where the incoming Data Streams are
processed using a pipeline architecture. Here the intermediate
states of the queries are stored in queues and passed on to the
next processor for further processing. The continuous queries
of STREAM remain active until they are explicitly deregis-
tered. The results of these continuous queries are transmitted
as output data streams. Similar to Aurora, though STREAM
has many advantages in the stream processing, currently it
has several limitations. The most important limitations are
merging sub expressions and handling intermediate queues. As
illustrated in Figure 3, the number of Tuples in a shared queue
at a particular moment of the STREAM Query Plan depends
on the rate at which Tuples are added to the queue, and
the rate on which the slowest subscribed operator consumes
Tuples. Here, monitoring which subscribed operator has not
yet processed a Event Tuple in the shared queue, which Event
Tuples has been processed by all the subscribed operators
of the shared queue and ready for deletion, are some major
monitoring processes that needs to be done related to stream
processing. This drastically reduces the performance of these
systems [6]. Though STREAM CEP has now officially wound
down [15], it is being used as base for Coral8 CEP [17] which
is now a part of Event Zero CEP [18].

Further the CEP Engines like Esper [2], Cayuga [19] and
SASE [20] use a different approach to handle Complex Event
Processing. Since these systems mainly focus on the state
machine implementations to identify patterns in the incoming
streams, they have not optimized themselves in stream process-
ing. Where in SASE, since it outputs all the Events that match
a pattern query, its architecture does not allow those events to
be streamed into a new query. On the other hand in systems
like Cayuga, since they are only having one core processing
thread, it is not efficient enough for processing many thousand
of Events in a higher speed. Therefore stream based systems;
due to the nature of their architecture, they have the ability to
provide much better performance than a typical CEP Engine.

Some CEP implementations such as TelegraphCQ [4] and
Cayuga [19] uses priority queues to handle ’out of order



Figure 3. STREAM Architecture

Event arrivals’, and in stream based systems this issue has
been seamlessly tackled by the use of existing queues in the
systems. The use of queues also helps to manage the memory
requirements of the stream based systems just by adjusting the
queue size [21] over time. Load-shedding techniques can be
used to handle failures of the systems. Here load shedding
is one of the most important optimization technique used
in stream based systems [13], where the number of Events
presented for processing are reduced to handle the overloaded
states.

As discussed above, though stream based systems have sev-
eral advantages, their performance depends on many decisions
such as;

• Threads per Query or thread per task of execution,
• Query optimizations when leveraging multi core proces-

sors
• Efficiently streaming Events
• Temporal window implementation
In the next section we will describe Siddhi, which was

developed after critically evaluation of each design decisions
in order to improve the performance.

III. METHODOLOGY

A. System Overview

The basic functionality of a complex event processing
engine is to match queries with events and trigger a response.
These queries describe the details about the events that the
system needs to search within the input data streams. Unlike
traditional systems like typical Relational database Systems
which are operating with hundreds of queries running for
short durations against stored static data, event driven sys-
tems operate with stored queries running constantly against
extremely dynamic data streams. In fact, an event processing

system is an upside down view of a database. The tasks of
CEP Engine is to identify meaningful patterns, relationships
and data abstractions among unrelated events and fire an
immediate response such as JMS message or a SOAP response
or simply an alert message. Here we discuss the design and
implementation of such a system–Siddhi CEP–which provides
high throughput and efficiency. The high level architecture of

Figure 4. Siddhi System Architecture

Siddhi CEP is presented in Figure 4. In a very high level
Siddhi can be viewed as follows. The events come in to the
system, and goes through several predefined customer rules
(queries). If a match occurs on any one of the rules, system
triggers the corresponding complex event. In other words,
data go through a set of queries and the matching data will
be triggered as complex events. So as explained above the
system functionality can be split in to several sub-categories as
follows. Capture incoming events from several event sources
(i.e. stock exchange, Enterprise Service Bus etc.) through input
adapters. Input adapter will pass the events to a thread safe
blocking queue. There are several threads which does the
dispatching events from event queue to the event processor.
Event processor/processors will process events and when a
match occurs it will pass to a callback method where customer
can do whatever he wishes with that event.

B. System Design

When designing Siddhi we have taken some critical design
considerations which have eventually made Siddhi much bet-
ter.

Siddhi receives events through its input adapters. The major
task of input adapters is to work as an interface for event
sources to send events to Siddhi. These input adapters can be
of different types where each accepts different types of events
such as XML events, POJO (Plain Old Java Object) Events,
etc. and convert all of those different types of events in to a
particular data structure, a Tuple, for internal processing. We
decided to use Tuple as the data structure to represent an Event
because Tuple is very simple and since it closely resembles
a row in relational database tables, by using Tuples, Events
in the data stream can be simply mapped into a relational
table. This will allow us to use SQL like queries and introduce



Figure 5. Siddhi Event Tuple

relational database optimization techniques in the system.
Further retrieving data from a Tuple is also quite simple
compared to other alternatives (like XML) which help Siddhi
to process events much faster by minimizing the overheads in
accessing data in each event. Siddhi-core is the heart of the

Figure 6. Siddhi Core

Siddhi complex event processing engine. All the processing
is done by this component. The Siddhi-core consists of many
sub components as shown in Figure 6. The input events to
the core are placed in queues before processing, and the
processors use the producer-consumer architecture to fetch
events from the queues and process them to find matching
occurrences. When a matching event was found the processors
will create the appropriate output events according to the user
query and place them in the queues for dispatching or further
processing. As we can see from the literature, some complex
processing engines such as Cayuga, uses more of a single
processor architecture where just a single thread is used for
core processing. Though this may produce some advantage
over the complexity of the query we can still achieve the same
complexity by processing the complex queries like pattern and
sequence marching using a single processor within the pipeline
architecture. The efficient implementations of the pattern and
sequence processors are out of scope of this paper.

Leveraging multi-core processors is essential for CEP en-
gines to have high throughput. Therefore, when comparing
stream based systems to Esper and Cayuga, Stream based
systems seems to be more attractive. Its quite obvious that
multi-threading achieves higher performance, but it also needs
a careful division of tasks between threads because processing
happens in real-time. There could be some erroneous results
due to arrival of events out of order, etc. So, we have
studied various implementations, and found that allocating
each query a thread produces much better performance with
100% accuracy.

Though thread-per-query model produces high performance

it also has some drawbacks when it comes to resource utiliza-
tion. This is because in most cases many complex queries have
common sub queries, and Stream based systems usually ends
up by running many duplicate sub queries at the same time.
This issue was appropriately handled in Siddhi using pipeline
architecture model and using transparent query object models.
The Query object model is the internal representation of the
Siddhi query, which the Siddhi-core can understand. Due to
the transparent nature of the Siddhi Query object module,
it facilitate the users to easily understand what internally
happened with in Siddhi whereby enabling them to write much
better queries.

Figure 7 provides a Siddhi Query snippet which is closely
related to SQL. This decision was taken in order to make
the object model to fall in-line with the relational algebraic
expressions by following SQL standards. Through this, Sid-
dhi queries can also be optimized using SQL optimization
techniques that are used in relational databases. This method
is acceptable because SQL queries mostly express the same
set of functions the CEP engines have. In Siddhi, users can
create the queries via its Java API which consists of simpler
methods for adding SQL-like statements such as SELECT,
WHERE, FROM etc. It is planned to provide the usual way
of input SQL queries, i.e. entering the query in direct SQL-
like language, in near future. One of the Significant feature

Figure 7. Siddhi API

of the Siddhi Query model is where each query will produce
a stream on its name and these streams can be then passed
to other queries whereby creating complex queries similar to
Nested SQL queries. These loosely-coupled query objects not
only facilitate easy query construction but also enable queries
to be written in order to eliminate common sub-queries.

Query optimization is also done at Executors which are
critical components in Siddhi processors. Executors are the
principle processing element in Siddhi processor. These Ex-
ecutors are generated by the Query parser by parsing the
transparent Siddhi Query Object Model which is defined by



the user. The formed Executors will have a tree like structure.
When an Event is passed to the Executor tree, it will process
and return true if the Event matches the query or return false
if the event does not match the Query. At the same time,
there can be many Executor trees present in the processor;
but only one get executed at any given time. These Executor
trees are processed in a Depth First Search (DFS) order. If
a mismatch is occurred at any of the nodes while processing,
the process gets terminated and the nodes in Executor tree will
recursively returns false until the root and notifies the failure to
the processor, making that event obsolete. If the tree achieved
a success state either by travelling through all or part of the
nodes, the root will notify true to the processor which then
appropriately handles that success event.

These Executors could also have been processed sequen-
tially but it will result in rejecting non-matching Events at an
early stage, due to the duplicate Execution nodes in sequences.
Therefore the Tree executor model was used whereby the
Executors can not only be arranged in an optimal order but
they also enable SQL query optimization techniques by the
use of Siddhis transparent Query Object Model. It also allows
the users to construct the Executor tree in an optimal manner
where the nested condition object passed to the WHERE
clause are simply converted into a Executor tree with same or-
dering. This greatly improves early detection of non-matching
events.

Hence, we rectify the issues occurred in the Stream Based
systems using the transparent query object model by enabling
the construction of running only one sub-query at any given
time. Through this we ensure that the underline pipeline
architecture only runs one sub query in the system facilitating
higher performance. Along with this since the processors
are running in separate threads this also facilitates higher
performance through the parallelisation of execution.

When it comes to streaming events, Siddhi has a much
different implementation in contrast to STREAM. Through
this Siddhi over comes the issue in handling intermediate
queue outputs. Siddhis logical event stream representation and
the actual physical streams implementation in here are quite
the opposite. In Siddhi, when defining a query, we can assign
one or more input streams to each query where the query
will then produce one output stream in its name. But in the
physical implementation since we are using queues to store
intermediate events, we use only a single input event queue
for each query. This is to overcome the issues of managing
many event streams where when a query is assigned two
input streams checking both input queues and keeping track
of which event is yet to be processed by queries, which events
have already being processed by all queries and which should
be discarded makes this process much complex. Further the
use of a single queue to represent all incoming streams will not
be an issue because each processor only process one event at
a time. To facilitate the above architecture the implementation
of output event streams is also changed. Here the use of
single output queue was eliminated and whenever an output is
produced by the processor the reference of the output events

are simply adds to all the subscribed queries input queues.
Through this approach of using single input queue model we
can easily eliminate monitoring of intermediate events and
accelerated streaming of events whereby improving the overall
performance.

Siddhi also has the ability to handle aggregation of events by
the means of averaging, summing, counting and finding mini-
mum & maximum within a given time-window/length-window
frame. Here, when an event is arrived to the time/length
window it will be treated as a new event and the expired
events which are falling out from the window are treated as old
events. Siddhi also uses an effective architecture in processing
the temporal windows (time and length windows). In contrast
to many other CEP Engines, Siddhi handles the processing
of temporal windows as part of its queues then processing
them with in its processors. Through this it also achieves much
better performance because it provides the ability to utilize the
same temporal window by many queries facilitating in high
performance

Siddhi also supports dynamic adding and removing of
queries at run-time which most of the previous works [22]
did not handle.

IV. RESULTS AND DISCUSSION

As our major objective is producing a high performing CEP
engine we continuously did testing and profiling in order to
come up with an effective architecture that facilitates high
performance. As part of performance analysis we compared
Siddhi against one of the existing CEP Engine, Esper, which
is currently the most popular and the best performing open
source CEP implementation in the market [23].

The results obtained through testing are depicted in Figure 8
& 9. These results are obtained by testing both CEP Engines in
exactly the same conditions and we compared the performance
with two different types of queries which cover most of the
important CEP functionalities that are related to streaming of
data. These are simple filtering of Events and filtering Events
within a given time windows. In-order to test the performance
we selected a machine having a configuration of Intel- Core 2
Duo 2.10 GHz processor, and 1.9GB memory running Ubuntu
9.10 with Linux Kernel 2.6.31-14-generic and GNOME -
2.28.1.

Following graphs illustrate throughput while processing
various number of Events which are programmatically sent
to both Siddhi and Esper. With each graph, the table below
the graph shows actual numbers.

Performance of simple filter for the Event Processing Lan-
guage (EPL) query;

select symbol, price
from StockTick(price>6)

This shows the performance comparison of a bare filter without
any specific temporal Event processing. This analysis shows how both
CEP Engine frameworks perform without any additional work load.
Here though both CEP Engines were performing very well when
number of Events increases, Siddhi outperforms Esper more then
three times.



Figure 8. Siddhi Vs Esper Simple Filter Query Comparison

The aggregation of Events on temporal windows are also tested,
here we are presenting the performance Comparison graph for
average (the most costly aggregation function) with a given time-
window.Figure 9 depicts the performance comparison of average over
time window using EPL query;

select irstream symbol, price, avg(price)
from StockTick(symbol=’IBM’).win:time(.005)

Figure 9. Siddhi Vs Esper Average over Time Window Query Comparison

This shows the performance for a query that gets Events from
the StockTick stream with a time-window of five milliseconds. The
output Events of this query consist of attributes symbol, price and
average price. Here, both new and expired Events are taken in to
consideration when conducting performance testing and calculating
the performance gain. As we can see here Siddhi only have a marginal
gain over Esper, performance of Siddhi will be further improved when
more complex queries are defined, this is because in Esper it handles
the temporal window processing in the query itself but in Siddhi, it
manages the temporal Events in its Event queues. So in situations
where many queries needs to use a temporal window, in Siddhi they
can share the same temporal window queue whereby achieving much
better performance. Overall, Siddhi shows considerable improvement
in performance compared to Esper. Further, considerable time has
also been spent on the Siddhi design to make its architecture to be
extensible, such that adding features later, can be done in a minimum
cost.

As we discussed in the literature, Event Stream Processing engines
have demonstrated better performance and here using SIddhi we have
further enhanced the streaming capabilities using a better architecture
whereby leveraging multi-threading and pipelining in order to achieve
higher performance.

Consequently, Siddhi architecture also provides the facilitates
to query optimizations whereby eliminating the bottlenecks in the

stream processing systems such as eliminating multiple common
sub queries, managing pipelines and streams to deliver Events to
more than one Processor in an efficient manner, optimizing execution
patterns and seamlessly using the pipeline architecture reusing the
temporal windows over multiple queries. Through Siddhi architecture
users can also achieve high performance by efficiently constructing
the queries were the proper use of the simple processes such as filters
can be used to massively reduce the number of Events. Placing these
processors at the front end of the streams and more complex time
consuming tasks coming later can facilitate the throughput of the
systems to be massively increased. Here the query optimizer can still
be based on the semantics of the traditional transformation rules.

Siddhi results demonstrate that proposed approach can provide
better performance, and use of the pipeline architecture enables future
CEP Engines to take advantage of ample computing power available
(e.g. through multi-core). An important future work to Siddhi is to
design a textual query language which would make it easier for users
to define queries rather than using the current Java API.
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