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Distribution mechanisms (Data Distribution and load 
Distribution) [4. 5, 6, 7, 8,9] and using secondary storage 
as an intermediate memory [10. 2] are two methods 
widely used in achieving scalability. Though 
manipulation in main memory is the best way to obtain a 
significant performance gain, it limits the ability' to scale. 
In our framework we utilize main memory for algorithm 
execution, while using the hard disk for storing the data 
set. The Vertical structure allows us to reduce the amount 
of disk accesses, thus improving the performance of the 
algorithms.

Since the algorithm optimization is done by the external 
developer who designs it, we focused more on providing 
an efficient method of representing, storing and 
manipulating a huge dataset in the main memory and 
provide the data into the algorithm for faster execution. In 
achieving this particular objective, our research was 
mainly focused on initially finding a data representation 
mechanism and in fact more preferably a representation 
mechanism where we could apply a compression scheme 
to cater for large amount of data in the faster main 
memory. In figuring out a suitable internal data 
representation, we came across an emerging data 
representation technique culled vertical data 
representation. According to some of the earlier 
research, it has been found out that there are considerable 
advantages in vertical data representation over 
conventional horizontal layouts for data mining [2, 11 ].

Abstract— Through this paper we consider how the 
representation, access and organization of the data 
drastically affect the performance of Data Mining 
Techniques. The framework we propose utilizes vertical 
data representation which is an emerging data 
representation technique, combined with couple of 
compression schemes to facilitate efficient data mining, 
scaling over large datasets. The key aspect of using a 
compression scheme in SEED Miner lies in its vertical data 
representation (where a column-based data representation is 
considered in contrast to the conventional horizontal row- 
based representation) and we also provide the results of 
empirical simulations to validate our analysis of WAH 
compression applied on top of vertical data would provide 
the scalability and efficiency of the applications and 
algorithms embedded in SEED Miner.
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I. Introduction

The proliferation of databases has created a great demand 
for new, powerful tools for turning data into useful, task- 
oriented knowledge, thus giving birth -to a separate field 
called Data Mining. Data Mining can be defined as semi- 
automatically finding useful patterns existing in large 
databases [2]. Data mining inherently deals with large 
databases usually of sizes starting from several gigabytes 
to several terabytes. Though there have been many 
standard algorithms to analyze data, with the escalating 
amounts, maintaining efficiency has become quite a 
challenge due to which many research have been carried 
out on finding special structures, data representation 
models which could preserve the efficiency of data 
mining solutions.

Since Data Mining Solutions are applied to a large 
variety of data sets, developing general solutions and 
scaling up has become another major problem [2, 3].

Most of the existing data mining solutions are at two 
extreme ends. Either they are optimized to a particular 
data set or application domain with scalability' or 
generalized to w'ork with multiple domains but without 
scalability and high performance [ 19].

Mining large datasets efficiently is strictly coupled with 
the efficient usage of system resources such as memory 
a,td perhaps processing power, which becomes a 
considerable challenge for algorithm developers. As a 
result, a significant researching effort has put forward on 
improving the efficiency of the mining algorithms. We, 
through SEED Miner, consider how the representation, 
access and organization of data can 
performance. We, in our approach make use of vertical 
data representation in overcoming the above mentioned 
challenges and to provide a general Data Mining 
framework.

Initially, in the case of data mining algorithms such as 
Association Rule Mining, vertical representation gives us 
a considerable advantage in computing the supports and 
confidences of itemsets in a simpler and faster way, as it 
involves carrying out bitwise operations like AND,OR 
and NOT among vertical bit streams[ll). And also in 
deducting association rules, it's about finding patterns in 
the vertical data bit streams which can also be carried out 
quite simply using bit stream intersections. But as in 
contrast, in horizontal counterpart, it requires complex 
hash-tree data structures and functions to perform the 
same task which is more complex and will be 
comparatively inefficient as well. (e.g. [1])

Data used for Data mining are inherently redundant. 
After converting to the vertical bit sliced format, the 
sequences of 0’$ and i’s provide means for compression, 
which is the aspect we concentrate when applying 
compression schemes to achieve a performance gain. 
Later throughout this paper, vertical bit level compression 
is discussed with experiments.

Within the scope of our research regarding SEED 
Miner, we do not provide the flavor of the parallelism but 
we have a very strong belief that parallelism applied on

affect the
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has been some algorithms designed using an unbalanced 
binary tree to traverse through it until a leaf node is found 
in order to retrieve a particular data item as well [17]. 
Although there are research carried out on last searching 
of data items using encoded data stream, no method has 
been proposed to compute basic operations AND, OR and 
NOT , which is frequently using operations in data 
mining, without decompressing the data stream.

William A. Maniatty and Mohammed J. Zaki specify 
the requirements of a Data mining framework in [3]. 
Though Data Mining Phase ,only a single step in the total 
KDD Process, since 80% of times is spent on data 
integration , preprocessing and post-processing steps they 
suggest that a Data Mining framework should also 
support all the steps in KDD such as preprocessing 
(discretizing , subset selection), post processing (rule 
grouping, pruning summarization) caching , efficient 
retrieval and meta level mining. Under the algorithm 
evaluation capability of such a framework, i:hey mention 
that reducing the number of database scans should be 
another requirement of such a framework.

The work by Perrizo et al. in [19] describes the 
structure and composition of a distributed vertical data 
mining framework. In their framework Ptree, a block- 
wise lossless compressed structure is used for vertical 
data representation.

top of SEED Miner will provide more flexibility and 
efficiency for the data mining applications and algorithms 
embedded in SEED Miner.

The rest of the paper is organized as follows. In Section 
two we present related work. Section three describes the 
design and implementation, of the framework. And finally 
we are showing scalability to through presenting some 
data mining results.

II. Related Work

Numerous works have been carried out in coming up 
with general purpose data mining techniques. VIPER 
[12] is one such effort, which is a scalable Association 
Rule Mining algorithm making no assumptions about the 
underlying data base.

In VIPER data is stored as compressed bitstreams 
called “snakes”, which provides efficiency in snake 
generation, intersection, counting and storing [12]. When 
a horizontal dataset is provided during the execution of 
the algorithm, internally data is converted to the 
corresponding vertical data representation called Vertical 
Tid List (VTL). Golomb Encoding scheme [13] is used to 
increase the redundancy and to gain a better compression 
ratio, when storing generated frequent itemsets. During 
the mining process these compressed frequent item sets 
have to be decompressed over and over.

DiffSet is another vertical mining structure which is an 
optimized data representation for Association Rule 
mining. It is a representation that only keeps track of the 
difference in the transactionlD’s(tids) of a candidate 
pattern from its generating frequent patterns. It 
significantly cuts down the size of memory required to 
store intermediate results. The initial database stored in

III. Design and Implementation

Keeping with the basic requirement of the supporting a 
number of different data sources and a number of 
different algorithms, the first step was to decouple data 
mining phase from data gathering phase. This was done 
by introducing a common storage and creating separate 
modules for data extraction and data mining. Logically, 
the framework consists of three main layers as illustrated 
in Fig. 1;

the diffset format, instead of the tidset, can also reduce the 
total database size [21].

PTrec is another distributed compressed vertical data 
mining ready data structure. Formally, PTrees are treelike 
data structures that store relational data in column-wise, 
bit-compressed format by splitting each attribute into bits 
(i.e. representing each attribute value by its binary 
equivalent)[14]. Once the PTree representation is there,
Data querying can be achieved through logical operations 
—such as AND, OR and NOT—referred to as the PTree 
algebra in the literature. [15][16]

Since we are using a vertical data representation in 
framework, and the particular representation provides the 
opportunity for compression as one of its advantages, 
implemented two compression schemes on lop of the 
corresponding vertical data. In 
appropriate compression scheme, 
numerous encoding schemes like Huffman Coding [17],
Golomb Coding [13], and Byte-aligned Bitmap Code
(BBC) [22]. Fig. 1 The high level architecture of the framework.

Huffman compression schema is another methodology Data Feeding Layer: 
that can be used to compress vertical bit slices. The This layer focuses on gathering data from different 
importance of this schema is that we can achieve high sources and converting them to the format supported by
compression ratio since the symbols are assigned thf internal storage. Data extraction module implements
according to a probability distribution. But the t*1's layer,
compression scheme is a variable length coding scheme 
where it is rather cumbersome to identify and

our
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Data Storage:
separate

each encoded bit word when it comes to decoding. There
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Manages the vertical data structure and provides 
to access elements in the dataset. Data Extraction Module 
and Compression Module implement this layer.

Algorithm Layer:
Provides basic component algorithms for manipulating 

the vertical data source. These component algorithms 
be used by for developing actual data mining algorithms 
(such as Apriori.) The Algorithm Module implements this 
layer. Preprocessing Module is a module built on top of 
this layer.

A. Data Ex fraction Module
Data Extraction module is acting as the interface to 

external raw datasets and responsible for taking in 
whatever the selected amount of data supplied by the 
external
conventional SQL database, a text file, a CSV file or 
different type of data file where user defined field and line 
separators can be specified. New types of data sources can 
be attached to the framework by extending this module.

Once the data is extracted into the system, the vertical 
data representation of those horizontal raw data will be 
carried out by the module. When it comes to integer type 
of data, direct bit representation of them will be taken 
using the dynamic bitset provided by boost [20] and then 
partition the data into vertical representation. In case of 
floating point type of data, a particular precision will be 
decided internally by inspecting the statistics of the raw 
data and then convert the floating point values into integer 
type by multiplying it by the precision and then they will 
be treated same as the above mentioned procedure and 
here an additional metadata entry will be there to keep 
track of the precision value. Partitioning categorical data 
is being done by assigning integer index value to each 
categorical data, while the index is prepared by scanning 
through the raw data once and finding out the unique data 
items and assigning those unique items to a vector and 
then sort it and the corresponding index of the vector will 
be considered as the index value assigned to each 
categorical data while partitioning. Once an integer set is 
obtained where indexes are replaced for categorical data 
values, it then will be treated as a conventional integer 
type of data and here an additional metadata entry will be 
there to keep track of the unique data items. In values 
w hich are in the format of Date, we convert the dale value 
to an integer in the form of YYYYMMDD and treat it as 
an integer ty pe value.

We also in our framework provide the facility to save 
whatever the extracted and partitioned data into the 
secondary storage as an XML file, and load the data from 
that external XML file later, which may be useful at a 
later time when the same dataset is to mined for a 
different purpose. This facility is provided due to the fact 
that the extracting external data from conventional 
database or a text or CSV file and then vertically 
partitioning them going through each value will be a time 
consuming activity and hence in order to save the time 
and space, it will be an unnecessary effort to carry out the 
same thing tw ice.

means

source. The external source can be a

can

The raw data extracted from external data sources are
stored column wise. The raw data is then analyzed and 
encoded to their corresponding vertical representation. 
While doing so, we keep track of some important Meta 
information depending on the type of data retrieved from 
the external data source. According to the structure of our 
framework, the highest level entity will keep track of the 
data sources available and encoded. Each data source will 
keep track of the attribute wise information such as 
cardinality of the dataset, occurrence of null values, labels 
for categorical attributes. Apart from basic Meta 
information it maintains the list attributes and in those 
Attributes framework keeps track of the details of the 
actual values that are retrieved. The Meta information 
stored in an Attribute entity depends on the type of the 
data each attribute holds (which will be described further 
in later). In the same time, an attribute contains a list of 
vertical bitstreams which are the vertical representation of 
the horizontal raw data. A bit stream entity' which is the 
basic entity will keep track of the actual vertical bit 
stream and also some important Meta information like 
bitstreamID, bitStreamAIIocationName, etc... The 
structure is illustrated in the Fig.2.

0 11 0l
00 001
111 1
l01 0 1
11 0 10
000 0 0

0 0 B. Data Preprocessing Module 
Data Preprocessing is done prior and alter the data 

mining is carried out, once we have the wrapped data 
source which will be created during data extraction or 
data loading via the saved data in XML. Data processing 
is available as three flavors in our framework; NULL 
Elimination, converting continuous data into discrete data 
and splitting numerical data into ranges as a categorical 
data attributes. There can be different types of other 
preprocessing filters available in other frameworks and 
applications, which can also be implemented in the same 
way in our framework as well.

1 1
0 0
1 1
1 0

1
0

f'8 2. A high level representation of data organization within the
framework

In a design point of view', our framework execution is 
categorized into four predominant components.
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Though originally this contained 1 million 
instances, this was randomly multiplied to generate a 5 
million dataset. For observing the relationship with time 
vs. confidence for Apriori, soybean dataset ( 25] was used 
(This was also multiplied to create a 5-miilion dataset). 
For testing accuracy of Naive Bayes, intrusion dataset 
was used [26].
When testing data mining algorithms, they were first 
tested for their accuracy. When implementing the data 
mining algorithms the code provided by Weka [27] was 
used. When testing the accuracy same dataset was mined 
by both Weka and SEEDMiner and the results were 
compared.

B. Experimental Setup
All the tests were performed on an Intel Core Duo, 
1.83GHz speed, with 1 GB of main memory. When 
measuring time all the algorithms were executed 5 times 
and the average was taken.

C. Experiment Results and analysis
Before going deeply into the algorithm analysis we first 
describe a horizontal model to execute the same 
algorithm. This will provide a basis for a detailed analysis 
of algorithm execution times and the related complexities 
comparatively. Let’s assume that data is first arranged in 
to a relational model, where a dataset can be expressed in 
terms of attributes and Tuples. Many models could be 
proposed to represent this data using an Object oriented 
approach, but for simplicity let’s consider a two 
dimensional matrix, capable of holding any data type. In 
this representation each attribute could be accessed by 
providing the row id and the column id.
Let’s consider an algorithm for taking the sum of a 
particular numeric attribute.

used.C. Data Compression Module 
If the complete data set can be loaded in to the memory at 
once, mining can be performed much efficiently since the 
disk accesses can be reduced to a greater extent. 
Compression module enables compression of original 
data and generation of compressed bitstreams of 
intermediate results. Even though compression makes it 
possible to store large amounts of data, if it is required to 
decompress during execution, then it’ll incur a 
considerable overhead during the execution phase. Since 
all the high level operations can be reduced to a set of 
basic operations such as bit stream intersection, (AND) 
bit stream union (OR), it would be sufficient to find an 
encoding scheme, capable of performing these operations 
while compressed. We have included such a scheme, 
described in [18]. Theoretically this scheme compresses 
only a subset of the all possible bitstreams. Hence the 
framework will determine if space can be saved by 
compressing the data source.

D. Algorithm Module
This module provides efficient implementations for a 

set of recurrently used algorithms such as attribute sum, 
range count, etc... In data mining, a lot of time is spent on 
taking count of certain patterns occurring in a dataset. 
Though implementing such operations are straightforward 
in a horizontal model, in vertical model it may appear bit 
awkward, which may lead the developers to create 
inefficient algorithms. Due to this, we have implemented 
the heavily used algorithms as described in [19] . When 
performing a complexity analysis it can be seen that the 
vertical implementation has the same complexity as its 
horizontal counterpart, but executing in an efficient 
manner.

IV. Experimental Results

This section discusses how common operations such as 
attribute sum, pattern count and range count are 
performed using vertical structures and how compression 
contributes in reducing corresponding execution times. 
First we present the detailed analysis of some component 
algorithms along with their complexities. By analyzing 
algorithm complexities we argue that by using a vertical 
model for data representation the algorithm complexity 
doesn’t change. Then we move into a probabilistic 
analysis to reason out why vertical model performs better 
than the horizontal model.

Algorithm: Attribute Sum (data_set [ ] [ ] , att__no) 
for i =0 until data_set.length

sum - sum + data_set(il[att_no];
end for

return sum;

Since the array access and addition are constant time 
operations, the running time of the algorithm is only 
dependant on the number of rows of the data set. Hence it 
can be expressed as O(n).

Now let’s consider the equivalent vertical model. Each 
attribute can be expressed by several bit streams. If the 
particular attribute is a numeric value then the maximum 
value for that field can be obtained by a single pass 
through the dataset, and the relevant number of bits 
needed to represent that could be determined. Since all the 
other numbers can be represented using this many of bits 
this will be the optimal number of bit streams needed for 
representing that attribute. The bit streams are held in an 
array which keeps the bit stream for the relevant bit 
position. This array is enclosed by another array which 
represents an attribute.

The bit stream corresponding to the first bit position of 
the third attribute could be obtained by data__sct[3|(0].

A. Experiment Description
Most of the component algorithms were designed for 
manipulating numerical attributes. To test these 
algorithms, a dataset having cardinality of 10000000 
used. When carrying out the tests for numerical 
algorithms, accuracy was tested by performing the 
operation in the horizontal model and comparing the 
answers. The STL implementations were used when 
performing horizontal operations.

was

same

For testing the data mining algorithms, standard datasets 
provided in UCI repository were used [23]. For 
performing the scalability test Pokerhand dataset [24] was
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D. Comparison of attribute Sum 
By taking the count of each vertical bit stream, the sum of 

numerical attribute can be easily calculated.

Since both the algorithms fall into the same complexity 
class, one may conclude that no performance gain can be 
obtained by using a vertical model. However, as 
illustrated by Fig.3. the test results show 3 significant 
difference in the two executions.

Here Naive algorithm refers to the algorithm developed 
on the horizontal model. Even though it scales with the 
data set, still it takes a considerable time when compared 
to the vertical algorithm. When observing the graph we 
can see that even the times recorded for the horizontal 
algorithm is larger than they are not asymptotically larger 
than the horizontal model.

Let's consider the effect of compression over algorithm 
executions.

a

Attribute Sum(data_set[][],att_no)
// obtaining the number of 
representing the attribute 
max_bits data_set [att__no] . cardinality 

for i =0 until max_bits -1 
sum

data_set fatt_no][i].count(); 
end for

bits used for

sun 2‘

return sum;

Here count() operation returns the number of true bits in 
the bit stream. When analyzing this algorithm it is evident 
that the outer loop is independent of the number of rows. 
It’ll run log2(tnax_vaIue[att_no]) number of times. When 
considering a 32 bit integer the maximum times the outer 
loop will run will be 32. Since the count operation is not a 
constant time operation we should take its complexity as 
well.

120
_ 100
cn __

I

1
The simplest implementation of the count operation 

would be as follows.
:

Algorithm:Count() 
for i=0 until num_of_bits 

if(bitstream[i] =1) 
sum++; 

end if; No of Rows..end for; 
return sum; Without Compression Hlf— With Compression?

Usually more efficient implementations are used for 
taking the count of a bitmap, such as separating the 
bitmap to a number of bytes and using each byte as an 
index to a lookup table, which contains the count for each 
byte [28]. Though the algorithm complexity remains the 
same, execution of the latter implementation is much 
faster. Since we are comparing complexities let's refer to 
the algorithm proposed above. Since the complexity of 
count proves to be O(n), the attribute sum also yields a 
complexity of O(n) .

Figure 4: Effect of compression on the algorithm Attribute Sum

By observing the Fig. 4 it is evident that compression 
works on reducing the overall execution time of attribute 
sum. Even though the numbers used are random, when 
they are aligned closely certain bit positions may create 
long recurring segments of pure ones or zeros making 
them easily compressible. When performing basic 
operations as count, since the bit streams are compressed 
the corresponding inner loops will execute less times than 
n/8. This feature will help in reducing the overall 
execution time. On the vertical model algorithm exhibit a 
linear scale up.

E. Comparison of Range Querying
Range queries are heavily used in classifiers such as 

C4.5 and NaTve Bayes for calculating probability and 
creating data partitions according the information gains. 
For most of the occurrences, obtaining the number of 
instances satisfying a particular query may be equally 
important as obtaining the places they are occurring. 
Since vertical model is capable of giving an existence 
bitmap of the results satisfying a particular condition, 
when creating the equivalent horizontal model we had to 
consider about a mechanism to track down the 
occurrences of those result. Therefore in a horizontal 
model, the algorithm for taking range queries is as 
follows;
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* ‘8 3. Attribute Sum over a large Dataset
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Algorithm:
Gr eat© r__Than (limit, data_set[] [] ,att__no)

for i 4-0 until data_set.length-1 
if data_set[i][att_no)>

existence_map[i] 4- 1 
end if

limit

end for
return existence_map; A rr tA0

Since the array access, assignment and the greater than 
comparison (>) can be treated as constant time operations, 
the running time of the algorithm is only dependant on the 
number of rows of the data set. Hence it can be expressed 
as O(n).

Now let’s consider the counterpart of the greater than 
algorithm that we’ve implemented in our framework 
using the vertical model. The algorithm has been adopted 
from the works mentioned in [29].
Algorithm:
Greater__Than (limit,data_set[] [] ,att_no)

// bitstream(O) assigns a bitstream 
totally consisting of zeros

result 4- bitstream(O)
/* encode functions gives the binary 
representation of limit using that many 
of bits used to represent the attribute 
considered.

Without Compression Naive Algorithm

Fig. 5. Range Querying over large dataset using vertical, vertical with 
compression and horizontal models

Although the running times of both models are the 
same, we can observe from Fig. 5 that a significant 
performance gain can be obtained, even without applying 
compression, using the vertical model.

Let’s consider how the compression affects the 
performance of the algorithm. As the graph in figure 6 
clearly indicates, we can achieve a considerable amount 
of performance gain when applying compression on 
vertically modeled dataset. Even though the numbers used 
are random, when they are aligned closely certain bit 
positions may create long recurring segments of pure ones 
or zeros making them easily compressible. When 
performing basic bitwise operations as AND and OR, 
since the bit streams are compressed the corresponding bit 
slices that are used to carry out Intersection and Union 
operation are fewer than that of uncompressed version. 
This feature will help in reducing the overall execution 
time.

V

v 4- encode (limit, 
data_set(att_no].cardinality);

for i 4-0 until v.length - 1 
if(vj = 1)

14- i+1;
end if

end for
if i < v.length

result 4- data_set{att_no][i] ;
end if;
for i4-i+l until v.length - 1

if Vi = 0
result 4- result |

data_set[att_no][i]; 
else

3500

3000result 4- result &
data_set(att_no)[i]; 

end if 2500
end for; 
return result;

*5/T
E 2000 f 
| 1500 -I---

When analyzing this algorithm, it is evident that the 
running time is dominated by the running time of bitmap 
intersection (AND) and bitmap union (OR) operations in 
the last for loop where the resultant bitmap is generated. 
Since both of those operations takes running time of 
0(n)vrt can consider that the above algorithm for 
calculating the Greater_Than procedure has a running 
timeo fO(n).

1000

500

Fig. 6. Comparison of Range querying over a large dataset.

Execution ot particular operation entirely depends on 
the efficiency of the bitmap count. Though the complexity 
of this operation is 0(n)t since hamming weights are used 
for taking the count [28], the actual number ot

92

aSSf



instructions executed are a fraction of n (which is the 
cardinality of the dataset), which gives a better 
performance than the horizontal model.

F. Experimental results for 
Algorithms

By performing tests for both vertical and horizontal 
models proved that vertical model is good for certain 
numerical algorithms. But in order to prove that the 
framework can be used to design efficient data mining 
algorithms, we performed another series of tests by 
implementing some widely used algorithms both in 
vertical and horizontal models.

Our first candidate was the NaTve Bayes Classifier. 
This is a classification algorithm using the naive 
assumption that events are independent of each other [30], 
When implementing data mining algorithms we simply 
adopted the implementations provided by Weka [27]. 
Weka followed a horizontal model. Since we have only 
changed the pattern counting methods 
implementing the algorithm on the vertical model, we 
could isolate the effect of vertical computations. Since 
Weka is a Java application before performing the tests, we 
had to implement the same algorithm in C++.

Since the dataset can increase in row wise and also 
column wise, we had to test the algorithm for both of 
those cases. Figure 7 shows the scalability test when 
number of rows is increased, and Figure 8 shows the 
scalability test when increasing the number of attributes.

By observing the graphs we can see that for both cases, 
vertical model simply outperforms the horizontal model. 
In the horizontal model, the running time directly depends 
on the number of attributes. Due to that we can see that 
when the numbers of attributes are increased, the 
corresponding scale up in the horizontal model is worse 
than that of the previous case (when number of rowrs is 
increased). Though the horizontal model does have a 
linear scale up, it is much worse than the vertical model.

Since it is a known fact that vertical model performs 
well for Apriori[l 1.2]. we tested the vertical model with 
another approach. In [10], another flavor of Apriori 
algorithm is presented which uses a tree structure called 
Trie. Though the data is accessed horizontally, since the 
internal data structure is independent from the horizontal 
model , we thought of selecting this for our experiments. 
The results are illustrated in Fig.9;

Data Mining
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Trie Based Apriori 

Fig. 9. Total Execution Time in Apriori
Here when measuring time we had to consider the time 

taken for compression as well. Since a significant time is 
spent in compressing data, the compressed version tends 
to be slower than the uncompressed one. When observing 
the graph we can see that the Trie based approach [ 10], is 
good for small datasets. But when the cardinality is 
increasing, the vertical implementations simply 
outperform the Trie based approach.

%
0 !

10000002000000300000040000005000000 
No of Rows 

Without Compression

Weka Implementation 

•"-A-" With Compression

Fig- 7. Performance Comparison of Naive Bayes Classifier with 
WEKA's implementation (increasing# of columns) V. Conclusion

In this paper we presented requirements, design, and 
implementation of a scalable data mining framework. As 
the first step in making computations efficient, we have 
chosen a vertical representation model which is proven to 
be efficient for computationally intensive algorithms. We 
have implemented the framework in a manner that it can 
be used in the complete cycle of K.DD process. By 
analyzing algorithm complexities we have proven that the 
vertical algorithms have the same complexity as the 
horizontal algorithms. Further we have shown the 
efficiency of the framework by using experimental 
results. Therefore, this framework can be introduced as a 
useful piece of work for data mining since it addresses the 
two main problems scalability and efficiency.
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