
73

Quota: Wi-Fi Data Managing and Costing System
Version 1.0 – for Windows platforms

JALP Jayakody
Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka.
lahiiru.13@cse.mrt.ac.lk

Abstract— Project Quota is about wireless local area networks
and managing its data usage. There is no simple way to
calculate and restrict individual data usage in a small scale
wireless local area network. Quota enables that ability by
forcing network users to use a third party software when
connecting to the network. That software syncs users’ usage
statistics to a central node. Owner of the wireless router or
access point can remotely manage data usage of clients after
signing in to a web application hosted in central node. This
document describes the design and implementation of the
Quota 1.0 which includes a client application and a central
server web application. Since windows platform is targeted in
this version of the product, client application consists of a
windows Graphical User Interface application and a windows
service.

Keywords—wireless LAN;data usage monitoring; data usage
tracking; Wi-Fi data usage;

I. INTRODUCTION
Today, most of the developing countries do not provided

completely free internet. Hence people have to purchase and
use metered networks. Widely using and flexible way of
sharing internet connectivity today is wireless local area
networks over Wi-Fi. These connections are shared among
several people in most of the cases, due to various reasons.
Single person may not be able to afford the monthly bill or
the package sizes offered by internet service provider may
not fit in to their needs.

In case of such a situation, owner of the internet
connection has to monitor and restrict others’ network
utilization. There is no existing direct simple way to achieve
that necessity in small scale Wi-Fi networks. Alternatively,
the Wi-Fi router can be flashed with a firmware that is
capable of measuring individual usages of clients. However
It voids the router warranty and gives limited features.
Fortunately, Quota solution can integrate with existing Wi-Fi
network as a completely separate system. It is a complete
solution for sharing a Wi-Fi internet connection with
multiple users in a proper way.

The software solution consists of a web application and a
desktop application. Owner of the Wi-Fi router registers as a
Quota admin using the web application hosted in [1].
Thereafter he or she can manage shareholders who willing to
use Quota admin’s internet package. Those shareholders
have to install Quota desktop application. That software

handles the data usage of the device and sends usage
statistics to Quota web application.

At present people are moving towards Wi-Fi and number
of small scale Wi-Fi networks are growing rapidly. In such a
situation applications of Quota system will be many more. It
will be used in houses with home broadband, in boarding
places with fixed 4G connections. Further, it can be
distributed free of charge as a product as the income would
be generated by displaying advertisements in desktop
application.

This document describes and explains about the design
and implementation of the Quota solution in following
sections. Section II reviews relevant systems and
technologies. Section III is about an overview of the system.
System models, System design, implementation and testing
are discussed thereafter. Final section of the paper includes
conclusion and future works.

II. LITURATURE REVIEW
When comparing and contrasting similar systems, an

important observation is that there are no known similar
products or alternatives for Quota. However, there are
products and procedures that can be used together to fulfil
some requirements from the complete requirements
specification covered by Quota. Those products, procedures
and capabilities are explained hereafter in this section.

Major activities in a Wi-Fi data managing and costing
system are as follows,

T1 – Measuring Wi-Fi network usage.
T2 – Persisting usage statistics.
T3 – Ensuring the controllability of the connection.
T4 – Connecting to given access point with a passkey.

In order to meet the requirements of the system, T1, T2
and T3 are compulsory. Depending on the approach T4 can
be optional. There is no known system which can achieve all
the considered requirements. But following methods can be
compared with Quota.

Method A: Configuring the router to monitor
bandwidth.

Method B: Installing a bandwidth monitoring software
in each client.

74

In method A, we have to update firmware of the router.
That process needs technical knowledge and can be critical.
These firmware such as DD-WRT [2] and Gargoyle [3] may
not support for home routers. Although supporting firmware
exists, it voids service provider warranty and has limited
capabilities. Therefore, method A is not a feasible option for
general users. The requirement is a single point and platform
independent solution which accomplished T1, T2 and T3.
Quota system does not modify router and doesn’t need
technical knowledge. Therefore Quota is a feasible option for
general users and it is platform dependent. Platform
dependency is a disadvantage in Quota compared to method
A.

In method B, usage statistics are manually read from the
device operating system tools or pre-installed third party tool
which accomplishes T1 and T2. Method B is simple to do
than method A but less reliable, as a client user can bypass or
modify those tools. Further, most tools don’t count network
usage separately for each access point. These methods are
described in “Howtogeek” by Hoffman, C [4].

In Quota system, special application and Windows
service is used to monitor the usage and achieve T3 [5].
Therefore, unreliability of method B is avoided and all
manual steps are automated. Task T4, which is not covered
by either method A or B, is accomplishes Quota by means of
Native Wi-Fi API [6]. Temporal profiles are used when
connecting [7]. Then passkey is not stored anywhere and T4
becomes more secure.

Hence in Quota, accuracy and performance is low
compared to method A. In general usage, Quota
implementation is desirable and acceptable rather than the
two discussed methods. Further, Quota is the only product
available, which achieves four tasks listed above to provide
complete Wi-Fi data managing and costing system.

III. SYSTEM MODELS

A. System requirments
Main functional requirement of the system is measuring

usage statistics and syncing with the central server. Users
should be able to connect to and disconnect from the network
using the client app. Client app should display the usage
summary of a user for the current billing month.
Additionally, the user can send requests to admin. Main
request types are register request, package change request
and message request. Register requests are used to send
newly registering users’ information. Package change request
can be sent when user needs to change his or her current
package. Message request carries a custom message to the
Quota admin.

Quota admin should be capable of registering new users
and monitoring their usage remotely using the system. It is
achieved by the central web server application. Additionally,
Quota admin can adjust client packages, respond to user
requests and add user payments. Further, he or she can
download latest version of the client app from admin
dashboard anytime. Quota system has to maintain a web
server which costs monthly. These costs are to be covered by
displaying advertisements in client applications. Therefore,

the client application should be capable to display dynamic
advertisements.

As a usability requirement, one click installation for
client app is preferred [8]. It is nice to have the ability to
connect to access point without asking passkey at the very
first time too, then users doesn’t need another internet
connectivity for registration as Quota user. By providing
Facebook and Google logins for system users, their sign up is
simplified [9].

As supportability requirements, Quota admin users are
guided at first time as they can easily get started. Client app
should update automatically. It is convenient since it helps to
release bug fixes and security patches immediately. All
contributors for the project should follow naming
conventions and edits should be well commented with proper
reasoning.

B. Use case diagram
.

<<include>>

Response	to	
client	requests

List	pending	
requests

Accept	pending	
package	change	

request

Change	client	
package

List	client	
packages

Download	latest	
version	of	client	app

<<extend>>

<<extend>>
<<extend>>

Connect	to	
AP

Disconnect	
from	AP

Send	join	
request	for	
new	user

Close	
application

Check	
updates

Send	request	to	
admin

View	
payments

<<include>>

<<include>>

<<include>>

<<include>>
<<extend>>

Client	user

<<extend>>

Accept	pending	new	
client	request

Enter	passkey	
manually

Add	payment

Admin	user

View	package	
info

Apply	
updates

View	user	wise	
statistics

Fig. 1. Abstract use case model for Quota system

 Figure 1, the use case view describes the set of scenarios,
or use cases, that represent some significant functionality that
have a substantial architectural coverage. Use cases related to
the core functionalities are included and optional use cases
are omitted to simplify the diagram. The overview of the
system can be represented using the case diagram.

Quota system consists of two main sub system as
represented in the diagram. In the central server web
application, all use cases except “Response to client
requests” are followed by a signing in process. The
“Response to client requests” use case is triggered when
client app sends a request to central server and acknowledged
by a JavaScript Object Notation (JSON) response.

75

“Enter passkey manually” use case is triggered when
“Connect to AP” is unable to find correct passkey. Then
system asks the client user to enter passkey manually. Then
system admin comes and enter the passkey.

IV. SYSTEM DESIGN

A. Logical view

<<control>>
DefaultController

<<control>>
ClientController

<<dataAccess>>
FetchData

<<control>>
SettingsController

<<control>>
RequestController

<<dataAccess>>
InsertData

<<entity>>
ClientStatusDTO

<<entity>>
ClientSumaryDTO

<<entity>>
AuthUser

<<entity>>
DataPackage

<<entity>>
SlavePayment

<<entity>>
SlaveUsage

<<entity>>
SlaveUser

<<entity>>
UsageType

1
1

0..*
1

0..*
1

1
0..*

uses

uses

uses

uses

uses

uses

Fig. 2. Abstract class diagram for Quota web application sub system

Figure 2 shows abstract class diagram with all methods
and attributes are removed for the simplicity. SlaveUser,
AuthUser, SlaveUsage, UsageType, SlavePayment and
DataPackage classes represent real world entities; Client
user, System admin, Usage record of a user, Usage record
type (e.g. Day or Night), Payment of a client user and
internet service provider’s data package respectively.
ClientSummaryDTO and ClientStatusDTO are data transfer
object classes which are used for data retrieval [10].
AuthUser has its own set of SlaveUsers and set of
UsageTypes but only one active DataPackage. SlaveUser can
have multiple payments including past records and set of
SlaveUsage records.

Remaining classes are Controller classes which helps to
follow Model View Controller (MCV) architectural pattern.

All the utility classes and framework border classes are
eliminated for the simplicity.

B. Process view

	Connect	to	AP

Client	appClient Web	app

Ph
as
e

Press	
connect	
button

	connected?

N

check	client's	status

Y

retries>=3 Y

Manual	authentication	
use-case

N

Respond	
to	client	
request	
use-case

Decode	response

response	has	
OK	flag?

N
Y

Update	GUI	from	last	
response

Check	update	
use-case

connect	using	primary	
key

Disconnet	
from	AP	use-

case

Fig. 3. Activity diagram for Connect to AP use case

Figure 3 the activity diagram corresponds to Connect to
access point use case. Client user trigger the use case by
clicking the connect button in client app. The app tries up to
3 time to connect. If it fails, app assume that passkey may
have corrupted or invalid. Then it prompts for passkey. Then
system admin enters the passkey. If connection is
established, app tries to retrieve client’s status by uploading
pending usage data if any. If it was successful, app checks
for updates and keep the connection. If client’s state says
client is not eligible for consuming data, app disconnects the
connection immediately.

76

V. SYSTEM IMPLEMENTATION

A. Implementation precedure
System is developed using Rational Unified Process

known as RUP software development methodology. It is an
iterative process framework. Tools used for reporting were
Microsoft Word for word processing, Microsoft Visio for
diagrams and Microsoft Project is used to create project
schedule. PhpStrom 10 and VisualStudio 2015 IDEs were
used for server application and client application
development respectively.

Git was used as version controlling tool and Symfony2
framework was used for server application implementation.
HWIOauth bundle and FOSUserBundle was used
respectively for OAuth signing and User management.
MySQL, SQLWorkBench and phpmyadmin were used to
manage database instances. PHPUnit was used as the main
testing framework for server application while VisualStudio
test projects were used to test UI and client app [12]. Further,
an AWS EC2 instance was maintained with RDP access to
test the client app [13].

The development was divided into 4 main phases
according to RUP [14]. There were 5 iterations in
implementation phase. First iteration delivered a reliable
usage monitoring system. Second iteration delivered a
central server which can be used to persist client usage. Next
iteration both client app and server application implemented
to work together to sync relevant information. In 4th iteration
user acceptance was enhanced. Final iteration delivered
alpha release of the product.

B. Algorithm

Fig. 4. Abstracted psudocode for client app basic functionality

Figure 4 shows the pseudo code that explains the process
of client app in a very abstract way. Threads, background
processes, error handling and optional features are omitted.
All variables defined at the top are public. Init function
summarizes the procedure of starting the app. Function
getDefaultWi-Fi returns active Wi-Fi adapter object and
getSendRecieve fuction returns data usage since device turn
on time in bytes. Function onTerminate called whenever the
user tries to end the program process. Function getPending
retrieves the usage amount pending to be uploaded from last
session from local storage. Function setPending persists
existing pending value on local storage.

Fig. 5. Usage measuring procedure in windows client app

Figure 5shows the usage measuring procedure. When the
client app is started, it reads usage from Wi-Fi interfaces and
the session start point S is identified. Time to time, Wi-Fi
interface usage is read and the known usage point K
coincides with the actual usage point A at that moment.
Since sampling has finite frequency these normally stay as
distinct points. When usage is updated to the server, the p
ersisted usage point P coincides with the known usage point
K. Since uploading usage has less frequency, Pending usage
(d) may contain more data. Since it is risky, uploading is
done when d>T bytes where T is the threshold of pending.
Normally it is set to 20Mb.

wifiCard ← getDefaultWifi()
mac ← wifiCard->getMAC()
zone ← getSSID()
initialUsage ← wifiCard->getSentRecieve()/1024.0
pending ← getPending()
lastUsage = 0
uploadThreashold ← 20000

Function Init(){
 Connect(zone)
 res ← checkStatus(mac,zone)

updateUI(res)
If (isBlocked(res)) Disconnect()

 If (isNewUser(res)){
 showRegistrationUI()
 Disconnect()

}
Repeat mainLoop()

}

Function mainLoop(){
 If (pending > uploadThreashold){

 res ← uploadToServer(mac,zone)
 If (isSuccess(res)) pending = 0

If (isBlocked(res)) Disconnect()
updateUI(res)

}
kb ← wifiCard->getSentRecieve()/1024.0
usage ← Kb - lastUsage – initialUsage
lastUsage ← usage

}

Function onTerminate(){

Disconnect()
 setPending(pending)
 End
}

Fig.7. Admin user registration
UI viewed in Nexus 5X

Fig. 6. Windows service installer

77

C. Main interfaces (UIs)

Fig. 8. Registration UI for windows client users

Fig. 9. Dashboard UI for client users

Figure 6 shows windows service installer which runs

when windows service is updated. This UI configures the
system while indicating progress to the user. Figure 7 is the
mobile view of admin user registration UI on Nexus 5X
device. It allows Quota admins to choose a unique zone
identifier for their shared Wi-Fi network which is called
Quota network. Figure 8 is one time GUI which displays
when new client user tries to connect to a registered Quota
network. User can choose package size there and maximum
size a user can choose is limited to non-shared data balance
of currently connected Quota network.

Figure 9 is the client user’s main Graphical User
Interface (GUI) for Windows users which allows users to
connect to and disconnect from Wi-Fi network. As well as it
provides all other additional functionalities described in
requirements specification.

Official website for Quota product can be accessed from
Domain Name “quota.wearetrying.info” [1]. Anonymously
accessible landing page UI is showed to the user. Users can
login to their Quota account using Google and Facebook
login buttons [9]. Page is indexed with Open Graph Protocol
for better view in Facebook and Google posts [15]. After the

login responsive admins’ dashboard UI is loaded where all
functions for admin users resides. Unauthorized access to
this content will result a redirect to landing page with a
warning message.

VI. SYSTEM TESTING AND ANALYSIS
Unit tests are written for each units and tested along the

development. After each iteration functional tests conducted
to ensure the correct functionality of the system. For both
above, PHPUnit is used with Symfony2 test cases. Then
system is tested for integration and user acceptance after
system is transferred to AWS EC2 instance [13]. Currently
the system is at alpha release. More than 25 real clients and 3
admin users have the benefit of the system and they support
the product user acceptance tests by giving feedbacks.
Important factor for testing was emulating the system time
which is called Clock Mocking. Since the system is sensitive
to the time Symfony2 clock mocking is used [16].

Figure 10 shows the test results by PHPUnit and
important code fragment used for clock mocking. That is
important because there were no working examples found for
this task and a discussion was opened for the topic on
StackOverflow [17].

Fig. 10. (Top) Test results and (Bottom) code working code template for
ClockMocking

C:\wamp\www\quota_new\Quota>bin\phpunit -c app

PHPUnit 4.8.26 by Sebastian Bergmann and
contributors.
............

Time: 6.74 seconds

OK (12 tests, 21 assertions)

use \Symfony\Bridge\PhpUnit\ClockMock;

public function setUp()
{
 $kernel = static::createKernel();
 $kernel->boot();
 ClockMock::register(__CLASS__);
 }

public function test()
{

 ClockMock::withClockMock(strtotime(‘DATE’));

//Time sensitive tests here
 ClockMock::withClockMock(false);
}

78

VII. CONCLUSION AND FUTURE WORK
Quota system was able to successfully achieve its

requirements. In short, system is capable of measuring,
persisting and controlling the Wi-Fi usage in a reliable and
flexible way. Final product need to have more features than
expected to handle unexpected user actions. (E.g. opening two
instances of the application, automated bill calculation)

The future plan is to implement the client app to Android
and other platforms. That improvement is a must to survive and
distribute the product globally. Communication between
Windows UI and Service should be using a Transmission
Control Protocol (TCP) connection. An authorization header
should be web requests. Package types can be generalized
using a Quota based system. Languages, regional settings are
to be generalized. Automated billing system can be
implemented as well for the ease of Quota admin users.

REFERENCES
[1] J. Jayakody, "Quota | Wi-Fi data reselling system," TRiNE, 20 06 2016.

[Online]. Available: http://quota.wearetrying.info. [Accessed 20 06 2016].
[2] e. admin, "DD-WRT," embeDD GmbH, [Online]. Available:

http://www.dd-wrt.com/site/index. [Accessed 19 06 2016].
[3] Gargoyle, "Gargoyle Router Management Utility," Eric Bishop, [Online].

Available: http://www.gargoyle-router.com/. [Accessed 19 06 2016].
[4] C. Hoffman, "Monitor Bandwidth," How To Greek, [Online]. Available:

http://www.howtogeek.com/222740/how-to-the-monitor-the-bandwidth-
and-data-usage-of-individual-devices-on-your-network/. [Accessed 19 06
2016].

[5] MSDN, "Introduction to Windows Service Applications," Microsoft,
[Online]. Available: https://msdn.microsoft.com/en-
us/library/d56de412(v=vs.110).aspx. [Accessed 20 04 2015].

[6] MSDN, "Native Wi-Fi," Microsoft, [Online]. Available:
https://msdn.microsoft.com/en-
us/library/windows/desktop/aa816369(v=vs.85).aspx. [Accessed 19 06
2016].

[7] MSDN, "Native Wi-Fi Structures," Microsoft, [Online]. Available:
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms706851(v=vs.85).aspx. [Accessed 05 04
2016].

[8] MSDN, "OneClick deploy," [Online]. Available:
https://msdn.microsoft.com/en-us/library/t71a733d.aspx. [Accessed 02 06
2016].

[9] Facebook, "Facebook Login," [Online]. Available:
https://developers.facebook.com/docs/facebook-login/web. [Accessed 14
05 2016].

[10] D. orm, "Doctrine ORM documentation," Doctrine, [Online]. Available:
http://doctrine-orm.readthedocs.io/projects/doctrine-
orm/en/latest/reference/dql-doctrine-query-language.html. [Accessed 03 05
2016].

[11] Hardware.Info, "Getting Started With HWIOAuthBundle,"
Hardware.Info, [Online]. Available:
https://github.com/hwi/HWIOAuthBundle/blob/0.4/Resources/doc/index.
md. [Accessed 20 05 2016].

[12] VisualStudio, "Testing Tools and Services," Microsoft, [Online].
Available: https://www.visualstudio.com/en-us/features/testing-tools-
vs.aspx. [Accessed 05 06 2016].

[13] Amazon, "Amazon Web Services EC2," Amazon , 08 03 2016. [Online].
Available: https://aws.amazon.com/ec2/. [Accessed 14 03 2016].

[14] R. S. Corporation, "Rational Unified Process: Overview," Rational
Software Corporation, [Online]. Available:
http://sce.uhcl.edu/helm/rationalunifiedprocess/.

[15] O. source, "The Open Graph protocol," Facebook, [Online]. Available:
http://ogp.me/. [Accessed 20 06 2016].

[16] Symfony, "Clock mocking and time sensitive tests," Symfony, [Online].
Available: http://symfony.com/blog/new-in-symfony-2-8-clock-mocking-
and-time-sensitive-tests. [Accessed 05 06 2016].

[17] J. J. (Trine), "Stackoverflow questions," Stackoverflow, [Online].
Available: http://stackoverflow.com/questions/37509491/symfony2-
phpunit-clock-mocking-not-working. [Accessed 20 06 2016].

[18] S. Bergmann, "PHPUnit Manual," Sebastian Bergmann, 05 06 2016.
[Online]. Available: https://phpunit.de/manual/current/en/phpunit-
book.html. [Accessed 05 06 2016].

