

73

PropNets Visualizer: A web based tool to visualize

information propagation in networks

G. V. M. P. A. Fernando
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka

pubudu.12@cse.mrt.ac.lk

Abstract - Data visualization and analysis has become vital in

both knowledge discovery and presenting and explaining that

knowledge to others. As such, the goal of this project was to

implement a web based tool for the researchers studying

propagation of information using network-based models. The tool

was designed with ease of use and extensibility in mind and as

such, it is a simple yet powerful tool which allows researchers to

generate dynamic visualizations of network flow data they are

working with. It was developed as a Polymer project with the

intention of publishing it as a reusable web component. The end

result of this is a simple but powerful visualization tool for

researchers and an easy to integrate web component for the

developers of geographic information systems (GIS).

Keywords – Data visualization; Web component; GIS; Flow

networks

I. INTRODUCTION

In recent times, data visualization has gathered increased

popularity as an effective means of extracting and conveying

information from large datasets. There are many forms of data

visualization such as charts, graphs, timelines, infographics and

map visualizations. As computers grew in processing power

and over the years, the sophistication of these visualizations

have also grown accordingly as developers were able to develop

more complex visualization libraries and programs.

This paper explains the research and implementation of a web

based tool for visualization of information/disease propagation

in networks. The motivation for the project was the lack of a

simple and intuitive tool for the use of researchers studying

propagation of information and disease in network based

models. The main purpose of the tool is to aid researchers in

studying propagation of information, disease etc. using network

based models. The spread of news, ideas and contagious

diseases within a population is influenced by the level of

interaction among individuals. Epidemiologists and scientists

researching information diffusion within populations use

network-based models to understand the rate and nature of

propagation of diseases and information. Network

visualizations of disease propagation particularly when overlaid

on a map provide the ability to simulate scenarios and identify

vulnerable regions, areas that serve as reservoirs of disease

vectors etc.

The project itself was developed as a Google Polymer app [1],

using Yeoman [2] to scaffold it. The core libraries used were

D3 [3], ShapefileJS [4], jQuery [5], and Google Maps API [6].

II. LITERATURE REVIEW

When it comes to geographic data visualization, there is a

number of concepts such as projections, Chloropeth Maps, use

of colours, data formats to be considered.

Generally, a computer projects on a 2D plane. This gives rise to

the problem of mapping the points on a 3D sphere, to the 2D

plane. Many methods have devised by mathematicians and

cartographers that can be categorized into 3 main families of

projections [7]. First, a cylindrical projection is obtained by

wrapping a cylinder around a globe which represents the Earth

and projecting the image of the globe to the cylindrical surface.

The map projection can then be obtained by unwrapping this

cylindrical projection. Conic projections can be produced by

projecting the globe onto a cone placed over the globe. Finally,

Azimuthal projections can be produced by projecting the globe

onto a plane [7].

In Chloropeth Maps, the data is visualized using colour
intensities. Various intensities of a colour can be used to
represent different ranges of the data. A geographic area can
be assigned a particular intensity depending on the quantity
that needs to be represented by that area. [8]

When using colours to encode quantitative data, the use of

colours with different hues should be avoided as this leads to

problems when ordering them from least to greatest. Different

hues should be used when separating items on the map into

different groups [8]. Color Brewer project [9] contains an open

source set of palettes of different hues and intensities which can

be used in visualizations.

When we consider the data formats the main source of maps
required for the tool are Shape files, which is a popular
geospatial vector data format for geographical information
systems. Shape files store geometries of features as shapes
comprising of sets of vector coordinates [10].

One of the most popular choices for data visualization is the D3

library. It is written in JavaScript and provides a vast array of

visualization options. For visualizing maps, D3 has support for

74

12 types of map projections belonging to all 3 of the projection

families mentioned above [11]. There are many visualization

libraries based on D3.With advancements made in the web

technologies, there are many app, services and libraries

providing the capability to visualize data overlaid on maps.

III. SYSTEM MODELS

A. System Requirement

There were five main functionalities required of the tool. Map

upload, data upload, rendering the visualization, visualization

options, visualization playback. The user should be given the

option to upload the dataset to be visualized and a Shape file

corresponding to the data being visualized. The user should be

able to feed both, the network layout and the network flow data

required for the visualization. Control over the styling and other

options and parameters related to the visualization should be

available for the user. After the necessary parameters are set and

the data is provided, the user should be able to playback the

dynamic visualization.

Fig. 1. Main usecase diagram

As shown in Fig. 1, there are 3 key use cases in the tool. Setting

up the visualization includes all the necessary steps needed to

get a minimal visualization out of the tool. These steps are the

feeding of the 3 key data files into the tool: the Shape file, the

network layout and the network flow data. Set visualization

options use case deals with all the visual and animation

parameters of the visualization. This use case is optional since

the minimal visualization will consist of default visualization

options. However, it gives great flexibility to the users in

customizing the visualization to fit to their needs. Play

visualization use case is a vital use case since this is the use case

which will render the visualization, using all of the data and

parameters set by the other use cases.

When considering the non-functional requirements, usability is

the main focus for this tool. It should be easy to learn and use

without minimal or no documentation of the tool. The user

should also be able to fully grasp the tool and make use of it

within a very short period of time, just by trying out the various

features provided.

The tool is expected to visualize large volumes of flow data of

networks up to ~3000 nodes. Therefore, it should be scalable

and should have the capacity to handle the data without

crashing the app or the browser. It should also be responsive

regardless of the amount of data it handles. Standard operations

such as visualization playback, panning, zooming and styling

should function with minimal lag in the visualization.

Apart from the above, the tool should also be extensible,

allowing more features to be added easily, in the future;

especially the addition of visualization options. There were

design constraints imposed by a stakeholder, LIRNEasia, as

well. The expectations were that the tool be web based and use

the D3 library for visualizing the data. They also expected

Shape files to be the primary source of maps for the tool and

Google Maps to be the secondary source.

B. System Design

The logical view of the main architecture of the tool is shown

in Fig. 2. It follows a component based architecture,

considering the extensibility requirement imposed by the client.

The tool can be divided in to three distinct layers. The view

layer contains all the presentation components of the tool. It is

mainly driven by the visualization engine and will render the

visualization data provided by the visualization engine. It also

provides the UI needed for the File Handler layer.

Fig. 2. Logical view

The map, network and flow data needed for the visualization

engine is provided by the file handling layer. This layer makes

use of the ShapefileJS library [4] to parse the Shape file and the

75

parsing process is managed by the Shape File Decoder

component. CSV parser handles the parsing of the network and

flow data files. It makes use of the parsing function provided in

D3 [3, p. 3] to accomplish this. The File Input Handler controls

the file input components in the view layer and reads and directs

the different input files to their appropriate components for

parsing.

The main layer of the tool is the visualization engine. It

manages all the parsed data and renders visualizations based on

that data. If the user has enabled the Google Maps overlay, it

will make use of the Google Maps API as well and make

requests to the Google Maps server accordingly. The

Visualization Manager manages the visualizations by utilizing

the 3rd party libraries D3, jQuery and Google Maps. All the

visualization options are also handled through the Visualization

Manager.

Fig. 3, shows an overview of the main sequence of actions that

takes place when a visualization is being rendered. The

sequence of actions in order are: feed Shape file, feed network

and flow data, generate visualization. Here, the visualizations

returned both when a Shape file is uploaded and when the CSV

files are uploaded. This is because the basic map is rendered on

the browser after the Shape file is fed into the tool. However,

visualizations cannot take place when either or both of the 2

CSV files containing the visualization data are missing.

Fig. 3. Sequence diagram

IV. SYSTEM IMPLEMENTATION

C. Implementation Procedure

Fig. 4, shows the flow of activities that take place when

visualizing a set of data.

Fig. 4. Basic flow of activities

The development of the tool was broken down into two

development iterations. The first iteration concentrated on

adding all the basic functionality needed for the tool. This

mainly included the file input mechanism, Shape file decoding

process, CSV file parsing and rendering the Shape file map.

During the second iteration, all the visualization options were

added, including the Google Map overlay option. The tool was

tested and built during the transition phase and it was deployed

to Github pages. It is available at http://pubudu91.github.io.

The focus was on making the tool an independent web

component adhering to the web component specification of

W3C [12, 13, 14]. Publishing it as a web component would

enable developers interested in the tool to incorporate it to their

web apps easily. However, given the time constraints for the

project, it was decided to develop the tool incorporating the

functionalities required along with room to transform it into a

web component standards compliant component. Given this

goal, it was decided to develop the tool as a Google Polymer

app in order to ensure a smooth transition of the tool from a

standalone web app to a web component in future development.

.

Polymer is a library developed on top of the web

components standards with the aim of making it easier for

developers to build great reusable components for the modern

web [15]. Given below is a logical view of Polymer.

Yeoman was used as a scaffolding tool and the Yeoman

generator for Polymer [16] was used to scaffold the app.

Yeoman scaffolds the app, complete with a build configuration

and pulls in any package manager dependencies that is required

for the project [2]. For polymer, the build system provided is

Gulp [17] and the package manager provided is Bower [18].

For implementing the visualization engine, it was decided to

use D3 [3, p. 3], a powerful and flexible JavaScript library

dedicated for allowing developers to create stunning

visualizations. Although this was a design constraint imposed

by the client, it didn’t cause any problems since D3 would have

been selected even if there was not any constraint.

Since ease of use was a major concern, it was decided to use

ShapfileJS [4] to decode the Shape file to GeoJSON, although

it would have considerable simplified the development of the

tool if the user was prompted to convert the Shape file to

TopoJSON [19] prior to feeding it to the tool. TopoJSON is an

extension to GeoJSON, which encodes topology. Since

TopoJSON stores geometries as line segments called arcs,

instead of as a collection of discrete points, the resulting

TopoJSON file is considerably smaller (80+ % reduction in size

is possible) [19]. However, currently there are no client side

JavaScript libraries which are capable of converting Shape files

Upload
Shape file

Upload
network
data file

Upload
flow data

file

Set
visualizati
on options

Run
visualizati

on

76

to TopoJSON. Therefore, it was decided to go ahead with

converting Shape files to GeoJSON format in order to preserve

simplicity of the app.

Parsing of the CSV files was made easy by the CSV file

parsing method provided in D3 itself. The implemented parser

only had to prepare and format the data returned by the method

to the format required by the visualization engine. For the

Google Maps overlay, the custom overlay option available in

the Google Maps API was used. This makes use of the overlay

layer in the Google Maps by appending an SVG tag to it and

drawing the Shape file map inside it.

D. Materials

Random data was generated using Mockaroo [20], an online

tool for generating random data. The data were generated for

the two CSV files required: the network layout file and the flow

data file. The CSV file specification for the two files: Network

layout file for location1, location2, weight and Flow data file

for source, source_latitude, source_longitude, destination,

destination_latitude, destination_longitude, timestamp,

source_infected, destination_infected. For the flow data, for

frequent testing, a file with 100 records was used while for

testing the performance, a file with 1000 records was used.

E. The Algorithm

Fig. 5, shows algorithm of: the visualize function which handles

the animating of the visualization. The function calls made are

to other functions defined in the source file and they are for

accomplishing the tasks indicated by their names.

function visualize(flowdata, csvdata,

g,baseMapColour) {

g.removeAllLines()

baseTime = flowdata[0].timestamp

maxTime = lastRecordOf(flowdata)

maxWeight = getMaxWeight()

gradientMapper = getGradientMapperFunction([0,

maxWeight], colourGradient)

addMapLegend()

for each element x in flowdata {

 relativeTime = x.timestamp - baseTime

 src = getLocationObjectByName(x.source)

 dest = getLocationObjectByName(x.destination)

 connectLocations(src, dest, relativeTime /

(maxTime - baseTime) * totalDuration)

 if (x.source_infected)

 colour = gradientMapper(weight(x.source,

x.destination))

 else

 colour = baseMapColour

 animateRegionColouring(x.source, colour,

relativeTime, maxTime, baseTime)

 if (x.destination_infected)

 colour = gradientMapper(weight(x.source,

x.destination))

 else

 colour = baseMapColour

 animateRegionColouring(x.destination, colour,

relativeTime, maxTime, baseTime)

}

}

Fig. 5. Algorithm for the animation of the visualization

This function proceeds with a visualization if all the necessary

data has been set. It first removes any remaining components

from a previous visualization if they are present in the SVG [21]

element and resets the values to the default values. Then it keeps

track of the timestamps of the first and the last records of the

flow data set. The timestamp of the first record is used as the

base time relative to which all the time durations are calculated

for the various visualization options. The relative time for a

particular record x is computed as t(x) = (time of occurrence of

x – base time).

The maximum weight between any given two nodes in the

network layout is needed to calculate the quantitative range of

sizes depicted by a single colour in the gradient. This is

calculated by dividing the maximum weight by 9 (the number

of different intensities in the colour gradient). This is vital in

order to create the legend for the visualization and to decide the

colour for a particular region in the map, based on the weight of

the infection in that particular region.

The getGradientMapperFunction() function returns a

gradient mapper based on the range provided and the colour

gradient. Then, this function is used to calculate the appropriate

colour for each region by passing the weight of each region to

this gradient mapper function. The

animateRegionColouring() function handles the animation of

colour change of a region.

The call to the connectLocations() function handles the

animation of the propagation between 2 regions. This is

achieved using a delay calculated using the relative times based

on the base time and the total duration the user wishes the

animation to last. If the time of occurrence of the record x is

given by t(x), the delay for a record x can be calculated as

follows.

𝑑𝑒𝑙𝑎𝑦 =
𝑡(𝑥) − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒

𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
 × 𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Where, Start time is the time of occurrence of the first record

in the data set; End time is the time of occurrence of the last

record in the data set and Total duration is the User specified

duration of the animation

F. Main Interfaces

The interface given in Fig. 6 shows the data file input tab of the

menu; Fig. 7, shows the visualization options tab of the menu.

Fig. 8, shows an instance in time when running the visualization

with the Google Maps overlay enabled.

V. SYSTEM TESTING AND ANALYSIS

During development, each of the features was tested using the

test material mentioned in section 4-B on Google Chrome

browser. During the transition phase, unit testing and automated

77

end to end testing was carried out on Firefox browser. Several

techniques were considered for methodical testing of the tool.

Unit testing was done using QUnit. Tests were written only for

the maximum weight returning function mentioned in section

4-C. Unit test coverage is low because the tool was designed in

the component based approach and as such, it does not provide

much public interfaces. For end – end testing, NightwatchJS

was used. It is a JavaScript library which makes use of Selenium

to automate the testing. The basic flow of activities which takes

place from the start of page load to visualization was tested

using this approach. Considering the results of these tests, it can

be concluded that the behaviour of the tool is as expected.

Fig. 6. The interface of the data files menu tab

Fig. 7. The interface of the visualization options menu tab

Fig.8. The interface during the visualization with Google Maps overlay
enabled

For performance testing, the time taken for the visualization

to playback after clicking the visualize button was recorded for

flow data of varying sizes. Performance is a concern for the tool

since it is expected to deal with large sets of data. After

initiating the visualization, there tends to be a small lag while

all the computations take place prior to the visualization. For

smaller test data, with 100 rows of data, the lag was about ~3

seconds. But for the data file with 1000 rows of data, the lag

was unacceptable (~30 seconds). However, the tool was capable

of handling the visualizations without crashing the browser,

even for the 1000 record input file.

The tool was tested for security using OWASP ZAP [22], a web

application security tester. Security concerns are minimal for

this app since all the processing take place on the client side.

Furthermore, the tool does not require any sort of user details

for it to function. Once the app is loaded, there is no interaction

with the server. When a set of attacks were mounted on the app

using OWASP ZAP, apart from 3 minor warnings, there were

no security issues detected.

VI. CONCLUSION AND FUTURE WORK

This paper describes the design and implementation details of

PropNets Visualizer: a web based tool for visualizing

propagation of information/disease in network based models.

The tool allows researchers studying propagation of news,

information, disease etc. an easy to use, intuitive, simple tool to

visualize the network flow data in a dynamic manner. This

enables the researchers to identify any patterns, recognize

vulnerable regions which act as reservoirs of disease vectors.

The tool allows the user to upload a map (in the form of a Shape

file), network model data and flow data and visualize the

dynamic flow of the data, overlaid on the map. It provides a

variety of visualization options and parameters to customize the

visualization as the user sees fit. An optional Google Maps layer

can be overlaid should the user wish to do so. The tool was

developed using Google Polymer, with the aim of developing it

78

into a reusable web component. For data visualization, the D3

library was used.

The tool can be extended in many ways, such as refining the

functionality of the Google Maps overlay option; Option to

overlay several Shape files (i.e: add a road map Shape file on

top of the administrative boundaries map); Reduce the latency

experienced while waiting for the visualization playback to

begin and provide better support for large data sets; A

mechanism to play, pause and seek the animation; Further

refine the UI and add more visualization options; Re-evaluating

the code and refactoring it to get rid of any bad coding practices

and transform it to adhere to the web components specification;

Break down the main JS library of the app into separate logical

source code files and make use of RequireJS to handle the JS

file and module loading; Try and incorporate Mapshaper [23]

to the tool. Mapshaper provides a lot more options for handling

Shape files than the library we are currently using for reading

Shape files. And the author of the library claims that it is

capable of handling Shape files as large as 1GB. The tool has

the potential to keep evolving with time into a more powerful

visualization tool for researchers studying propagation of

information and diseases.

REFERENCES

[1] “Welcome - Polymer 1.0.” [Online]. Available: https://www.polymer-
project.org/1.0/. [Accessed: 20-Oct-2015].

[2] “The web’s scaffolding tool for modern webapps | Yeoman.” [Online].
Available: http://yeoman.io/. [Accessed: 18-Sep-2015].

[3] “D3.js - Data-Driven Documents.” [Online]. Available: http://d3js.org/.
[Accessed: 20-Oct-2015].

[4] “calvinmetcalf/shapefile-js,” GitHub. [Online]. Available:
https://github.com/calvinmetcalf/shapefile-js. [Accessed: 20-Oct-2015].

[5] “jQuery.” [Online]. Available: https://jquery.com/. [Accessed: 20-Oct-
2015].

[6] “Google Maps APIs for Web,” Google Developers. [Online]. Available:
https://developers.google.com/maps/web/. [Accessed: 20-Oct-2015].

[7] “The Three Main Families of Map Projections - MATLAB & Simulink -
MathWorks India.” [Online]. Available:
http://in.mathworks.com/help/map/the-three-main-families-of-map-
projections.html. [Accessed: 17-Sep-2015].

[8] S. Few, “Introduction to geographical data visualization,” Vis. Bus. Intell.
Newsl., pp. 1–11, 2009.

[9] “ColorBrewer: Color Advice for Maps.” [Online]. Available:
http://colorbrewer2.org/#. [Accessed: 27-Oct-2015].

[10] “ESRI Shapefile Technical Description.” Environmental Systems
Research Institute (ESRI), Jul-1998.

[11] “Geo Projections · mbostock/d3 Wiki.” [Online]. Available:
https://github.com/mbostock/d3/wiki/Geo-Projections. [Accessed: 17-
Sep-2015].

[12] “Shadow DOM.” [Online]. Available:
http://w3c.github.io/webcomponents/spec/shadow/. [Accessed: 18-Sep-
2015].

[13] “Custom Elements.” [Online]. Available:
http://w3c.github.io/webcomponents/spec/custom/. [Accessed: 18-Sep-
2015].

[14] “HTML Imports.” [Online]. Available:
http://w3c.github.io/webcomponents/spec/imports/. [Accessed: 18-Sep-
2015].

[15] “What is Polymer? - Polymer 1.0.” [Online]. Available:
https://www.polymer-project.org/1.0/docs/start/what-is-polymer.html.
[Accessed: 18-Sep-2015].

[16] “yeoman/generator-polymer,” GitHub. [Online]. Available:
https://github.com/yeoman/generator-polymer. [Accessed: 26-Oct-
2015].

[17] “gulp.js - the streaming build system.” [Online]. Available:
http://gulpjs.com/. [Accessed: 26-Oct-2015].

[18] “Bower.” [Online]. Available: http://bower.io/. [Accessed: 26-Oct-2015].

[19] “mbostock/topojson,” GitHub. [Online]. Available:
https://github.com/mbostock/topojson. [Accessed: 18-Sep-2015].

[20] “Mockaroo - Random Data Generator | CSV / JSON / SQL / Excel.”
[Online]. Available: https://www.mockaroo.com/. [Accessed: 26-Oct-
2015].

[21] “W3C SVG Working Group.” [Online]. Available:
http://www.w3.org/Graphics/SVG/. [Accessed: 27-Oct-2015].

[22] “OWASP Zed Attack Proxy Project - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.
[Accessed: 26-Oct-2015].

[23] “mbloch/mapshaper.” [Online]. Available:
https://github.com/mbloch/mapshaper. [Accessed: 18-Sep-2015].

