

67

Fill in the Blanks
A Touch Data Gathering Game to Improve UI Designs

Lochana Ranaweera

Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka

lochana.12@cse.mrt.ac.lk

Abstract — With the increasing number of utilities provided by

touchscreen devices, the process of designing user interfaces is of

utmost importance. In the search for UI design decisions, it is

necessary to have access to current data related to user behaviour

relating to touchscreen inputs. As such, the technique of

crowdsourcing has been used to create a game to collect data

related to drag and drop, rotate, pinch zoom in and out gestures

in the project discussed in this paper. The major design decisions

encountered in the project were creating an intriguing gameplay

that involves all the touch gestures mentioned above and devising

a mechanism to collect and store data related to such movements.

The final outcome of the project is a game designed for Android

devices that can be distributed via the Google Play Store, which

will collect and transfer data to a remote location to be analyzed

by UI designers.

Keywords— User Interface Design; Crowdsourcing; User

Interface Optimization; Touch Input; Unity 2D Development

I. INTRODUCTION

With the advent of touchscreens and large surfaces
becoming a standard part of user interfaces and the growingly
competitive world of User Experience (UX) and User Interface
(UI) design, having the right data can make or break a great UI
or UX. Therefore, it is of great importance that a careful study
of standard touch gestures is carried out prior to UI design so
that the designers can eliminate wastage of resources like time,
money and the risk of designing for a product that nobody will
use. This paper introduces a game that would serve as a
computational model of user behaviour relating to touch screen
inputs thereby enabling designers and engineers to improve
usability of UI. This game is deployed in Android Play Store
under the name “Fill in the Blanks” [1]. It allows for
simultaneous data collection from multiple users whilst enabling
users to engage in an intriguing gameplay that is fun with both
visual and audio feedback. The paper discusses how Fill in the
Blanks has been designed to collect touch data and the
techniques that could be adopted to create a captivating
gameplay for a “game with a purpose”.

Given the need for collecting data on behaviour relating to
touch inputs of many users including both novice and expert
users, a technique of crowdsourcing was recommended [2].
When an attractive game is made publicly available for a large

community, a model can be built to gather touch screen data to
improve UI designs.

The system was created to be utilized as a computational
model to collect data relating to touch gestures of users.
Notwithstanding the above concern, the game was developed
with the aim of enabling users to engage in an intriguing
gameplay that is fun with both visual and audio feedback. A
captivating gameplay will only make it possible to reach out to
the masses in order to collect a considerable volume of touch
data as such.

As for the basic development approach, Fill in the Blanks
has different shapes of holes present in the surface of the game
world. To score, the player has to scale, rotate, drag and drop
objects that correspond to those voids, latching it there with an
attractive animation. The gameplay allows logging of data from
every position of the screen. Whenever the player touches the
screen, the game logs the positions and duration of each touch
on the screen differentiating by the input method. The data
collected as such is stored in the persistent data path allocated
for the app on the phone. This data is transmitted to remote
server location once the user connects to a Wi-Fi network with
the game being played at least once after installation and the
application started.

II. LITERATURE REVIEW

Multiple research projects have been carried out all around
the world with the aid of crowdsourcing. The interests of these
projects span almost every aspect of human life such as
healthcare, automobile industry, psychology, social media,
environmental preservation and even space exploration. Today,
there are millions of smartphone users all around the world
spending millions of minutes per day playing games like Clash
of Clans. Therefore, the potential of mobile technology to gather
data presents researchers with an incredible opportunity to
process far more data than ever before.

An interesting example of an existing crowdsourcing project
that utilizes mobile technology to reach the masses is a game
called “GeneGame” [3]. The data collected from this game goes
to a cancer research project carried out by Cancer Research UK
[4]. By playing the game the users had made a difference in the
search for cures for cancer as the scientists have been able to
bring down significantly the time spent on analyzing the data if

68

not for the game. Compared to GeneGame which is focused on
gathering data for cancer research, Fill in the Blanks on the other
hand, seeks to gather data that could be used by Big Data
analysts with the aim of improving user interface design of
mobile devices.

When it comes to systems similar to Fill in the Blanks, an
interesting reference is the game “Hit It!”[5]. It is an Android
game challenging the users to display quick reflexes. The game
has over 100,000 downloads on the Play Store and is for Android
devices with a version 1.6 or higher. The level design is as such
the user has to touch each circle that appears on the screen as
fast as possible to beat all levels. Faster the movement, higher
the score will be. While users play the game where they hit the
screen and how fast they are measured. By combining this
information with the position and size of the circles it is
estimated how easy each screen position is to touch. Based on
this data user’s performance with different button sizes and
positions is predicted. According to the developers, the model
thus produced is used to improve user interfaces of smartphones.
While Fill in the Blanks focuses specifically on obtaining data
relating to user gestures of scale, rotate, drag and drop, Hit It!
simply is to collect data on how often a particular location in the
screen is being touched.

Considering the potential of the technique of crowdsourcing,
which gather large amounts of data for research purposes, the
development of Fill in the Blanks was justified. The game would
be utilized as a computational model to collect data relating to
touch gestures of users which can be further analyzed by Big
Data experts with the aim of improving user interface design of
mobile devices.

III. SYSTEM MODELS

A. System Requirement

As for specific requirements, Fill in the Blanks had to be
created as a standalone application allowing for offline usage.
The gameplay had to be enjoyable with the player being able to
perform gestures as required to play the game without
frustration. As of now, the player is able to pause the game
whenever they wish and resume from that point on. The game
automatically pauses when the user leaves the application to
another from the android system. Upon completion, the player
can view the score and see if there is further time remaining. The
menus had to be designed in such a way that a player can
navigate between screens without confusion also enabling them
to quit the application properly as necessary. Also to learn how
to play Fill in the Blanks, it was decided to include a tutorial
level. The tutorial level will take the player through a series of
tasks which will provide a quick understanding of how the game
can be played. The player can go through the tutorial level even
at a later time or can choose not go through it at all.

As shown in Fig. 1, the use cases were identified based on
three users; the Player, Game Engine and Remote Server.
Accordingly, the main use case of the system is when the Player
interacts with the game. The precondition of this use case is that
Fill in the Blanks has been launched by clicking on the
application icon and the Player has selected play icon from the
main menu. Assuming the Player has been able to load the game
and it comprises of different shapes of holes and objects present

on the surface of the game world, the Player should be able to
scale, rotate, drag and drop objects corresponding to the rightly
shaped hole in order to score. Once done so, the object snaps on
to the hole if it has the same size and the alignment as the hole
and both fades away with a whirling animation adding the
remaining game time to the score. Alternatively, the Player is
able to pause the game whenever he wishes to and resume from
that point on.

Fig. 1: Use Case Diagram

 In terms of non-functional requirements adhered, the user
can install the game straight off the play store as for any other
android game and play the game without having to sign in to any
accounts unnecessarily. Both the application and the level
launches within 10 seconds. The game was to feature simple
attractive user interfaces, which is captured using the unique
“paper-like” theme adopted. To imply that the game is
responsive to all of the players’ gestures, the game objects
comprise of colour changing animations. Regarding accuracy,
the game had to detect gestures with maximum accuracy
possible and log the touch inputs along with the gestures
accurately. The logged data is only accessible by authorized
personnel at the backend to ensure security. The device battery
could not be drained at an unacceptable rate. Lagging could not
be intolerable, holding a minimum of 30 frames per second.

B. System Design

Fill in the Blanks was developed using Unity 3D which is a
powerful cross-platform game engine [6]. Therefore, the system
architecture is a derivation of the domain-specific architecture
adopted by the Unity3D game engine. As such, when explaining
the architecture of the game, the top level functional components
present can be identified as Game Engine, Data Manager,
Simulation and the Object System. The component responsible
for presenting the game to the player and receiving player inputs
is the Game Engine. This includes the generation of graphics,
and audio feedback to the player. The Simulation is responsible
for updating the state of the virtual game world in response to
player inputs and the rules of the game and virtual world. The
Data Manager retrieves game data from the file system and
manages storage and retrieval of game state to save/load game
functionality. In Unity3D; a game is a collection of Scenes and
a Scene is a collection of GameObjects [7]. A GameObject

69

could be a character, an environment, or a special effect [8]. An
Object System, as such is responsible for maintaining the state
information describing all objects in the game world.

Fig. 2: Class Diagram

The Class diagram utilized during the development of Fill in
the Blanks is shown in Fig. 2. The Object and Hole classes both
extend the MonoBehaviour class, making them game objects
according to Unity3D development. Therefore they have
variables named position which stores the positions of the
objects in the Unity game engine world. They both also have
Colliders attached; these catch events such as coming into
contact with other Colliders, when collisions end, etc. [9]. These
events are handled according to game logic and update the
relevant variables in Score(int score) and Behavior(String log)
classes. The TouchController class handles all touch events
and also handles the in game logging. The TouchController
class also handles all the view controls such as Pinch Zooming
and Pinch Rotating.

As shown in Fig. 3, the main sequence diagram of the game

refers to the use case of interacting with the game. The

touchGesture() method could be any touch input made by the

user at the touch screen. For example; it could be clicking the

start button on the game menu which would cause the game

engine to exit from that menu scene and enter the main game

scene. It could be a touch input of scaling, rotating or pinch

zooming performed on a GameObject in the game world. As

such, independent of the Scene the game is in, the above

sequence of inputs and outputs would be seen.

Fig. 3: Main Sequence Diagram

C. Database Design

The backend of the system hosted at a remote server

location, includes a database to contain the login details related

to administrators to enable secure login, and touch data sent by

the mobile devices. Since the system requirements did not

include analysis of data collected from users which is stored at

the backend database, the database design was kept simple to

consist of user login data and touch log to simply store the data

being transferred from the mobile devices.

The database schema is supported by MySQL has two
tables, namely ‘login’and ‘touchlog’. The login table includes
three columns to have the auto generated identifier which is the
primary key, the name of the administrator which of the type
varchar and the corresponding hashed password. The touchlog
table has four columns, the auto generated event identifier which
is the primary key, the event time (float), the type of the event
(varchar), X axis position on the screen (float) and the Y axis
position of the screen (float). Since the database is simply for
storing the data, and no foreign key constraints exist, a
normalization of the schema was not considered necessary at the
present requirements context.

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure

Several technologies, tools, resources and strategies were

applied in developing the system, Fill in the Blanks. The game

was mainly developed as a standalone 2D game application

using the Unity 3D editor, which is a free game

engine/development tool, in conjunction with Mono Develop

(the default IDE that is shipped with Unity) which has C# as the

language of development. The backend of the system, which

includes the functionality required by the administrators who

70

are authorized to access the touch data, was developed using

NetBeans IDE as a PHP solution and Selenium Web Driver was

used during testing. The Unity manual was referred to during

development and also it was useful in learning about new

features in Unity 5 as an upgrade guide. For the errors and

anomalies encountered during development the unity question

and answer forums were referred to. As for the relational

database management system required at the backend MySQL

was used. Apart from that, in building the view layer of the

backend solution, the technologies HTML, CSS and JavaScript

and the Bootstrap framework were used. For the graphic

elements and other visual content required for the game, a photo

editing software was used. In order to process the mp3 music

files required to create the audio content of the game an audio

trimming tool was made use of.

B. Algorithms

As for the algorithmic solutions generated during the
development, the touch handling code can be stated as the most
important of them. Since a user can make movements using
his/her fingers that correspond to multiple different touch
gestures, in the touch handling code the gestures had to be
identified uniquely. In this section of the paper, the pinch zoom
code, a section of the touch controller logic recognized as the
toughest implementation is explained. The criticality of the
algorithms used in the pinch zoom code arises due to the fact
when the game is playing the user has to feel that scaling
operations are responsive despite the fact that calculations and
updates are performed frame-wise.

As shown in Fig. 4, the pinch zoom algorithm uses two
Boolean variables. The variable isSelected which is used to
check whether is object is about to be modified with the touch
control and the variable isGonnaDrag which is used to know
whether the object is eligible for drag and drop movement. The
variable isSelected is set true whenever the object is touched
and set false whenever the finger is removed. The variable
isGonnaDrag is set true whenever the object is touched and set
to false whenever two fingers are detected at the object. Every
time the game engine updates the frame, for loop is executed.
This is practically happening inside the Update function of the
game engine [10]. The pinch zoom action starts if there are two
fingers on the screen (obtained from the Input.touches array
list) and the object has been touched, meaning isSelected has
been set to true [11].

Since the object cannot be eligible for dragging when it is
being scaled and rotated, isGonnaDrag will be set to false at
this point. Thereafter both the touches (touch_1 and touch_2)
are stored using the array Input.touches. Next using 2D vector
objects called Vector2 the positions of each touch in the
previous frame is calculated [12]. In this calculation
deltaPosition is a 2D vector that represents the difference
between the touch position recorded on the most recent update
and that recorded in the previous update [13]. Next a float
variable called prevTouchDeltaMag is declared. From that
point, the magnitude of the vector (the distance) between the
touches in previous frame, prevTouchDeltaMag, is calculated
by obtaining the magnitude of the vector difference for touch_1
and touch_2’s previous positions.

private bool isSelected = false; 1
private bool isGonnaDrag = false; 2
 3
//If the user has touched the GUI element 4
 isSelected = true; 5
 isGonnaDrag = true; 6
 colour = yellow; 7
//If the user has touched GUI element and is 8
holding down the mouse 9
if (isGonnaDrag && time held > 1 second) 10

colour = gold; 11
isSelected = false; 12

//If the user has stopped touching the GUI element 13
 isSelected = false; 14
 isGonnaDrag = false; 15
 colour = white; 16
 17
for each Frame_Update 18
if (number of fingers at the screen == 2 && 19
isSelected) 20
{ 21
isGonnaDrag = false; 22
colour = cyan; 23
touchZero = Input.GetTouch(0); 24
touchOne = Input.GetTouch(1); 25
Vector2 touchZeroPrevPos = touchZero.position - 26
touchZero.deltaPosition; 27
Vector2 touchOnePrevPos = touchOne.position - 28
touchOne.deltaPosition; 29
float prevTouchDeltaMag = (touchZeroPrevPos - 30
touchOnePrevPos).magnitude; 31
float touchDeltaMag = (touchZero.position - 32
touchOne.position).magnitude; 33
float deltaMagnitudeDiff = touchDeltaMag - 34
prevTouchDeltaMag; 35
 36
//Gradully change scale of the object from its 37
original value in a linear interplative manner 38
during the time for a frame 39
} 40

Fig. 4: Pinch Zoom Algorigthm

Similarly, the magnitude of the vector difference for
touch_1 and touch_2’s current frame positions is calculated
into a newly declared float variable called
touchDeltaMag. Then a float variable called
deltaMagnitudeDiff is found as to be the difference in the
distances between each frame (two touches), which is
prevTouchDeltaMag subtracted by touchDeltaMag. With
this the scale of the object being touched can be adjusted by
gradually changing the scale from its original value to the final
scale which is clamped between 0.3 and 1.5 units (minimum
and maximum size to which the object can be zoomed in or
zoomed out) in a linear interpolative manner during the time for
a frame. The algorithm adopts linear interpolation technique so
that objects will not appear suddenly zoomed outside or zoomed
inside in consecutive frames in a way that the player’s eyes
cannot notice the change [14].

 In the algorithm for the ease of use of the gamer, several
colour transitions are used. Whenever a shape is touched it will
be changing the overlay colour to yellow, and whenever it is
held for more than one second it will change to gold colour to
indicate that the object is now eligible for dragging. Similarly
once the object is ready to be scaled (pinch zoom) it will be
having cyan as the overlay colour so that the player gets visual
feedback on what he’s doing at the moment.

71

C. Main Interfaces

1) Android Game

Fig 5: Main menu

As shown in Fig. 5, the main menu of the game comprises

of a dynamic display of square and triangular shapes which later

appears in the game world created in a random manner and

made to float around. A separate audio track is too included for

this scene, which can be turned off with by clicking the sound

button at the bottom left corner.

Fig. 6: Screenshot from the Tutorial Level

Fig. 6, shows a screenshot of the tutorial level. It too

includes its own audio track. The hints for the players appear

for some time and fade away or the player can keep moving

forward up to the hint on which he/she needs to be clarified.

Fig. 7, is a screenshot from the game arena once the player

decides to move on to the actual game. The game arena consists

of shapes and holes that have to be eliminated by placing the

shapes on the correct holes to scores. Negative marks will be

allocated for wrong matches. For the right matches, the shape

and object will disappear with a swirling animation once done

so, adding the remaining game time to the score. There is a

separate audio track which can be muted, and a pause button

which pause the game. Fig. 8, gives a snapshot of the game once

the game time has come to end.

Fig. 7: Game Arena

Fig. 8: Game Over Panel

2) The Backend
At the backend of the system, once the administrator logs in

to the system securely, the touch data log will be available to be
viewed by the administrator as shown in Fig. 9.

Fig. 9: Touch Event Log as shown in the Backend

V. SYSTEM TESTING AND ANALYSIS

The majority of tests were focused on UI functionality as

this is a game. When the game was built using the Unity 3D

72

Editor, the game was played in an Android device per each

build using Unity Remote application that can sends the visual

output from Unity editor to a connected device’s screen and live

inputs are sent back to the running project in Unity [15]. Each

UI components in this game was tested and ensured that the UI

(Scene to Scene) navigation is seamless and UI is of acceptable

scale. This was again tested during alpha testing stage, where a

selected number of alpha testers were instructed to play the

game and report any and all bugs discovered. Also they were

recommended to use a log cat by setting the filter rule for log

tag using the game’s packaging bundle name [16]. During this

process, the game was installed in different devices with

different screen sizes to see if each UI component assembles in

the right manner.

Performance testing aspect of the game was carried out

using Unity Profiler tool. The tool when utilized along with

Unity Remote helps record performance data for the device

when the game is running on it [17]. The tests were realized

using a smartphone with a comparatively less amount of RAM

(512 MB), and no performance constraints were overridden

during testing. The apk generated was less than 75 MB in size

(nearing 32 MB actually) thereby the game does not overrule

any memory constraints as 75MB is the maximum size for an

external application. The game did not crash in all times it was

launched during testing and development. However, when the

player wants to quit a game, the quit button on the pause menu

can be clicked. In this case, the game can be continued back

from where it was, so the game has to be restarted. If the game

is stopped in the middle of playing without the player doing so;

for e.g.: battery drain, the touch log will not get updated as it is

done only when the game has completely finished with a win or

a game over situation.

VI. CONCLUSION AND FUTURE WORK

In a time where many of the day today utilities are delivered

to the human kind via touchscreen devices, it is significant to

have access to the right data relating the User Interface (UI).

Therefore, in order to generalize how majority of users prefer

the UI elements to respond to their touch we need a large data

set. This paper has presented an Android game named “Fill in

the Blanks”, with functionalities to collect gesture data and

transfer them for crowdsourcing by UI designers. This game is

provided with different shapes of holes where the player has to

scale, rotate, drag and drop objects that correspond to those

voids, in order to score. This Android game can be distributed

among the vast community of Android users via the Google

Play Store.

The research can be further expanded by implementing the

system in multiple device platforms such as Windows, iOS and

even online platforms such as Facebook. The touch data

collected by the system can be analysed in an organized manner

by getting the help of Big Data experts, to seek for new

correlations that exist between the user behaviour by device

screen position, timing and many other factors.

Although the game is developed with a scientific purpose,

to reach out to the masses it is vital that the game has a

captivating gameplay. As such, having an intriguing game play

may seem to be a good enough reason for a game to become

popular, having attractive graphic elements and especially

catchy yet not frustrating tunes can also make a huge difference.

This was one such observation derived out of implementing Fill

in the Blanks.

The touch gesture data collected in this game is sufficient

for obtaining UI design ideas for normal touchscreen device.

However, at present with the concept of 3D touch introduced

by Apple Inc. [18], the way a user interacts with a touchscreen

device will change immensely. Therefore it is no longer simply

tapping, swiping, or pinching that will make a device work but

there’ll be an entirely new field of touch gestures such as the

concept of “pressure-touch”. A game like Fill in The Blanks

that has added functionality to support such touch gestures, will

surely be an ideal solution.

REFERENCES

[1] Play.google.com, ‘Fill in the Blanks’, 2016. [Online] Available:
https://play.google.com/store/apps/details?id=com.lochanar.FITB

[2] Howe, J. and Robinson, M. (2006). The Rise of Crowdsourcing. Wired.
[Online]. Available: http://www.wired.com/2006/06/crowds

[3] Wired.co.uk, ‘Smartphone game ‘GeneGame’ to crowdsouce cancer
research’, 2013. [Online]. Available:
http://www.wired.co.uk/news/archive/2013-07/19/genegame-app-
cancer-research

[4] Cancer Research UK. (2002). Nature Cell Biology, 4(3), pp.E45-E45.

[5] Google Play Store, ‘Hit It!’, 2015.[Online]. Available:
https://play.google.com/store/apps/details?id=net.nhenze.game.button2

[6] Unity 3D, ‘Unity Pro and Unity Personal Software License Agreement
5.X’, 2015. [Online]. Available: https://unity3d.com/legal/eula

[7] Unity 3D, ‘Creating Scenes’’, 2015. [Online]. Available:
http://docs.unity3d.com/Manual/CreatingScenes.html

[8] Unity 3D, ‘GameObject’, 2015. [Online]. Available:
http://docs.unity3d.com/ScriptReference/GameObject.html

[9] Unity 3D, ‘Collider’, 2015. [Online]. Available:
http://docs.unity3d.com/ScriptReference/Collider.html

[10] Unity 3D, ‘Monobehaviour.Update’, 2015. [Online]. Available:
http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html

[11] Unity 3D, ‘Input-touches’, 2015. [Online]. Available:
http://docs.unity3d.com/ScriptReference/Input-touches.html

[12] Unity 3D, ‘Vector2’, 2015. [Online]. Available:
http://docs.unity3d.com/ScriptReference/Vector2.html

[13] Unity 3D, ‘Touch-deltaPosition’, 2015. [Online]. Available:
http://docs.unity3d.com/ScriptReference/Touch-deltaPosition.html

[14] Unity 3D, ‘Linear Interpolation’, 2015. [Online]. Available:
https://unity3d.com/learn/tutorials/modules/beginner/scripting/linear-
interpolation

[15] Unity 3D, ‘Unity Remote 4’, 2015. [Online]. Available:
http://docs.unity3d.com/Manual/UnityRemote4.html

[16] Android Developers, ‘logcat’, 2015. [Online]. Available:
http://developer.android.com/tools/help/logcat.html

[17] Unity Documentation, ‘Profiler’, 2015. [Online]. Available:
http://docs.unity3d.com/Manual/Profiler.html

[18] Apple, ‘3D Touch. The next generation of Multi-Touch’, 2015. [Online].
Available: http://www.apple.com/iphone-6s/3d-touch/

http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/ScriptReference/Input-touches.html
http://docs.unity3d.com/ScriptReference/Touch-deltaPosition.html
https://unity3d.com/learn/tutorials/modules/beginner/scripting/linear-interpolation
https://unity3d.com/learn/tutorials/modules/beginner/scripting/linear-interpolation
http://docs.unity3d.com/Manual/UnityRemote4.html
http://developer.android.com/tools/help/logcat.html

