
5

Graph Search Centered Solution for Contact

Information Retrieval
A value-added alternative for built-in People application of Android devices

Arumapperuma A. A. G. C. K.

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

charith.11@cse.mrt.ac.lk

Abstract—Mobile Computing industry is a rapidly growing

software engineering field where mobile application market

accounts for a huge share. There are numerous software

solutions introduced to mobile devices over the past decade. But,

industry has not been able to improve one of the fundamental

features of mobile phones, the “Address Book”, to provide

complete user satisfaction. This paper introduces a graph based

contact information storage and searching solution as a value-

added contact information management system. Core concept of

this solution is modelling mobile phone user contact details as a

graph and traversing the graph to find people. The solution

represents people in graph vertices while storing “is a contact of”

relationships in directed edges of the graph. The searching

algorithm is developed by implementing a depth limited breadth

first search while ensuring privacy of contact information. The

outcome of this solution is a cloud based hybrid mobile

application that can be used to replace the default “People”

application of Android devices while ensuring the portability of

the system to other mobile, desktop and web platforms.

Keywords—mobile computing; graph search; social graph;

Android; mobile application; address book

I. INTRODUCTION

Mobile Computing is one of the most dynamic industries of
the world. It has grown in an exponential rate over the past
decade. Statistics show that mobile phone subscribers by the
end of year 2014 was 6.95 billion which is more than double
the value in 2007. It is 119.9% of population in developed
countries and 91.1% in developing countries. The mobile
broadband subscription statistics are showing more exponential
growth over the past decade [1]. These statistics undoubtedly
indicate the global shift towards mobile technologies; mobile
devices such as mobile phones and tablets are getting closer
and closer to being a human need.

Growth in mobile device usage has introduced a new means
for business and personal interactions. It in return introduced
many opportunities for software industry to build mobile
solutions. But, in general, mobile devices contain low
processing power, low memory and low battery power which
causes mobile applications to be limited in their functionality.
In a computer science perspective, these are a few problems
that were addressed very lightly due to the enormous

performance that traditional computer systems provide. Many
computer science solutions were introduced over the past years
for these problems. And today, mobile devices are almost
identically powerful as traditional computers while mobile
applications are powered by various computer science
solutions that perform better even on low performing hardware.

Even though today’s mobile devices are rich in features,
where you can browse internet, shop, handle money, etc.,
initially their primary task was personal long distance
communication. Today, “call” has become yet another feature
of phones. Similar to “call” feature, there are other means of
communication such as “SMS”, “MMS”, etc. The common
feature for all these means of communication is the “Contacts
List” or “Address Book”.

The mobile phone has evolved rapidly over time. Means of
communication are also evolving in a similar rate. Yet, the
common element of all these means, “Address Book” has not
been improved in a similar manner. We can see almost
identical functionalities in “Address Book” from the latest
flagship smartphone as well as from a mobile phone from year
2000.

The lack of functionality in “Address Book” can be
identified in various real life situations. One of the most
encountered problems is the unavailability to perform contact
information search beyond locally stored data. For instance,
consider when there is a need to communicate with a person
via call or SMS. If there is no contact information present in
the phone’s local contacts storage, it is impossible to continue
communication without manually collecting necessary contact
information from a 3

rd
 party. Also, recognizing an unknown

caller is yet another common issue in today’s mobile phones.

The solution presented in this paper addresses the first
problem described above through an Android application. The
system can easily address the second problem described above
even though it is not implemented in the system. The solution
is developed in a way that it can be easily implemented into
other mobile phone platforms, web and desktop applications.

II. RELATED WORK AND TECHNOLOGIES

The solution for contact information retrieval is build using
crowdsourcing, cloud computing technologies, mobile

6

computing technologies and graph based data representation
and searching. These research areas are extremely popular and
active nowadays due to the importance of those to the vast
mobile computing industry.

A. Crowdsourcing

In software development, crowdsourcing can be considered
as the most efficient method for collecting large amount of
data. Wikipedia (https://en.wikipedia.org/), a free encyclopedia
written collaboratively by the people who use it, is one of the
most popular systems that uses crowdsourcing for data
gathering. But, crowdsourced data cannot be used directly
since it lacks validity of data. Thus, various data mining
techniques are used to yield useful information from
crowdsourced data [2].

B. Cloud Computing

Cloud computing is yet another rapidly growing computer
science study which has proven excellent outcomes in
developed products and its user acceptance. Similar to mobile
applications, cloud applications are becoming more popular
among community since they provide on demand services.
Today, almost all the desktop applications (programs) are
available as cloud applications or similar cloud applications are
developed to accomplish the same task. For example,
Microsoft Corporation provides Microsoft Word, a graphical
word processing program as a desktop application as well as a
cloud application (https://office.live.com/start/Word.aspx), and
Google has developed a similar cloud application, Google
Docs (https://docs.google.com), to accomplish the same task.

Cloud Computing can be categorized into three
fundamental models [3],

 Software as a Service (SaaS)

 Platform as a Service (PaaS)

 Infrastructure as a Service (IaaS)

Considering the nature of this solution, PaaS model, which
provides fundamental building blocks to develop cloud
applications and systems can be used to develop the solution
due to the features and flexibility that PaaS systems provide.

There are various PaaS service providers available today
including Google App Engine, Microsoft Azure and Amazon
Web Services (AWS) [4]. The services they provide vary in
features and pricing. For instance, Google App Engine
provides the most essential features free of charge while
providing advanced features as add-ons with pay per usage
plans [5].

C. Mobile Computing

Mobile Computing has become one of the largest industries
with the invention of smartphone. Today, Apple Inc., Samsung
Electronics, Microsoft Corporation are holding the larger

market share of mobile devices with their powerful hardware
and software. Android, iOS and Windows Mobile operating
systems are extremely competitive with their software to
provide best user experience. The Android market is the largest
of all due to its flexibility [6]. Android application
development is an extremely vigorous topic in mobile
computing.

There are three types of mobile applications [7],

 Native Apps

 Web Apps

 Hybrid Apps

Native apps are completely run on the device as a
standalone program. Web apps are truly websites which users
can access by using device web browser. Hybrid apps are a
combination of above types, where it provides services through
a web based system to be accessed by the mobile application.

The solution described here is a hybrid application, where
system logic is distributed on both web server and mobile
device. Necessary computational power, memory and
communication bandwidth are considered when distributing the
logic, so that the user experiences a flawless system with
minimum data connectivity usage.

D. Graph Based Data Representaion and Searching

Graph study is a vast field in computer science. Graphs
play an important role in social network analysis, data mining,
image segmentation, clustering, image capturing, networking,
etc. Graph based data representation is massively used to
manage large structured data repositories [8]. As an example,
Facebook (https://www.facebook.com/), an online social
networking service, uses graph based data structure to store all
the data available in the system like people, posts, pages,
groups, etc. [9].

Graphs consist of two basic elements, vertices and edges.
Various combinations of these elements can generate different
types of graphs like trees, directed graphs, complete graphs,
bipartite graphs, etc. Social Graphs are undirected graphs at its
very basic level, where people are represented by vertices, and
connections between people are represented by edges [10].
Such graphs can be further improved to represent more
meaningful information by adding various properties to edges
like adding a weight to represent connection strengths between
people, or adding directional property to edge to represent
connection type (is friend of, is parent of, etc.).

Even though graphs are logically viewed easily with
connected set of points, its implementation is considerably
complex. There are two graph representations are used in
general. [11]

 Adjacency Matrix

 Adjacency List

7

Adjacency Matrix uses a 𝑛 × 𝑛 matrix, where 𝑛 = |V| of
graph G = (V, E). Adjacency matrix representation is preferred
when the graph is dense, i.e. the number of edges |E| is close to
the number of vertices squared, |V|

2
, or if one must be able to

quickly look up if there is an edge connecting two vertices.

Adjacency List uses only the amount of storage that is
necessary to store edges. Thus, adjacency lists are generally
preferred to represent sparse graphs which contains relatively
few edges.

Graph searching is also a huge computer science problem
where many approaches have been taken to find a fast and
memory efficient algorithm. The most basic algorithms
available are Depth First Search (DFS) and Breadth First
Search (BFS). More complex graphs can be traversed using
advanced algorithms like A*, Hill climbing, etc.

III. DESIGN AND IMPLEMENTATION

A. System Design

The developed contacts manager application (Address
Book) is primarily a hybrid mobile application. Its main
functionality is divided into two sections as client logic and
backend logic. Client logic contains functionalities to collect
and display data, and handle user interactions. Backend logic
contains functionalities to handle user request such as add,
delete, change privacy (update) and search. Each section is
designed using layered architecture. The system uses cloud
endpoints to communicate through a REST layer.

The main information stored in the system are contact
details which are represented by a directed graph. The contacts

graph contains people as vertices, and connection between two
people as edges. Vertices are flexible entities that provides
developer to store any information about the person
represented by the vertex. Edges are restricted to hold two
properties. Edge direction represents “is a contact of”
relationship between two vertices and “connection privacy”
edge property holds information about how the connection
between two people should be visible to others in the system.

B. Graph Representation

The graph is represented as an adjacency list. The
information stored in the system do not pose a complete graph.
It is possible to see complete sub-graphs in the system when it
represents a small group of known people (e.g. immediate
family members), but the overall graph contains a large amount
of pairs of vertices that are not connected, i.e. the people
represented by such vertices do not know each other or has no
records of contact information on their mobile device. In this
scenario where the graph can be identified as a sparse graph,
adjacency lists are preferred for representing the graph in the
system due to the use of least amount of memory.

The adjacency list representation of this system is different
to the general representation. General adjacency list uses a list
of linked lists as shown in Fig. 1 (b). But, this system uses a list
of maps instead of linked list. The map is better suited in this
scenario since it provides faster indexing of the graph. The key
of each map represents the name in which the contact holder
refers to the second party. I.e. if person A has person B stored
in his phone contact list as “b” regardless of what B’s real
name is, the edge connecting A and B will be directed towards
B and the edge is labeled as “b”. This method provides the
system the ability to efficiently find a name out of all the
immediate relative nodes of a node.

C. Graph Search

The searching algorithm used in this system is based on
breadth first search (BFS). The search is limited to two levels
in depth. The searching algorithm will first search all the
neighbor vertices of the user who is performing the search. If

Fig. 2. System Architecture. System is divided into two sections as client

application (client logic) and cloud application (backend logic). Each

section is further layered into different layers to improve maintainability.

Fig. 3. Graph model of the system. (a) Contacts Graph; each vertex

represents a person and each edge represents availability of a connection
between two people. (b) Representation of contacts graph as a

“Adjacency List” in the system. The system uses a different approach

than the regular “Adjacency List” representation where, rather than using

a list of “Linked Lists”, the system uses a list of “Maps” for efficient

indexing.

Fig. 2. Representation of graphs. (a) Directed graph. (b) Adjacency List

representation. (c) Adjacency Matrix representation.

Fig. 1. Representation of graphs. (a) Directed graph. (b) Adjacency List

representation. (c) Adjacency Matrix representation.

8

there are no vertices found, the search will continue to the next
level, where all neighbors of immediate neighbors of the user is
searched. Searching algorithm is stopped at two levels due to
the complexity, low performance and privacy.

Consider the example in Fig. 3 (a) and the scenario where
Annie Barsky wants to search George Tart. Annie has three
people in her contact list, Mickey, Younne and Curt. Each of
these first level contacts has different people in their contact
lists. Annie has two paths to find George, through Mickey and
through Younne. But, Mickey has stored Goerge as Goe in his
contact list. So Annie cannot see Goerge through Mickey if she
search for “George”. But, she can see Goerge through Younne.
In case Annie searched for Goerge by “Goe” she will see him
though Mickey but not through Younne. Finally, she will
receive all the details about Goerge Tart since there is at least
one path available for Annie to find Goerge.

D. Privacy

Contact details are extremely sensitive information.
Meanwhile this application provides a computer science
solution for mobile computing industry, it poses the threat to
expose sensitive contact details to undesired parties.

The system is designed to overcome this issue. The solution
is implemented by including an extra property to graph edges,
privacy, where it act as a global override for all search queries.
When an edge is marked as private, graph search cannot go
through the edge. This property will be set by the user for his
contact list when he synchronize it with the system. So, the
system provides complete control to the user to ensure privacy
of his friends, family, etc. Also system has included with a
functionality for user to set his privacy level.

In the example given in the previous section where Annie
Barsky wants to search George Tart, consider Younne has
marked Goerge as private in his contact list. In case when
Annie searches by “Goerge”, the path through Mickey is
hidden since the search query is different and the path though
Younne is hidden since it has been blocked by Younne.

But, with this extra privacy setting, a new issue arises since
the system cannot deliver requested results even when the
details are available. To overcome this and to give an
immediate communication path to users to contact required
people, a notification system is introduced to the system. A
user (P1) can search for a person (P2), if P2 is available but
hidden to P1, P1 will not be presented with contact information
of P2 but will get the opportunity to request contact details
through the system. The system will notify P2 about the request
through a system notification and an SMS. The notification
will include information about P1, so that P2 can contact P1.
This allows users to use the system without any privacy
concerns since it provides them to control their own privacy
with maximum flexibility.

The system also incorporates a complete transaction log,
which records all the actions carried out by users, including,
adding, deleting and updating contact information of their
contacts. Also, the system log records all the search queries to
track any illegitimate or immoral activities, to improve system
privacy and support legal concerns.

E. SMS Notification System

The SMS based notification system facilitates users to
reach others with minimum delay. There can be situations
where a system user (P1) cannot connect to the system due to
unavailability of an internet connection or a device issue. In
such situations, and when another user (P2) requests contact
details of P1, the SMS based notification system guarantees on
time delivery of the search request to P1. P1 has the flexibility
to contact P2 manually using the contact details of P2 which is
sent through the SMS notification.

Also, there can be situations where the contact details
available in the system belongs to people who do not use the
system. Such situations can occur when a system user uploads
contact details of the people available in his address book, and
those people are not using the mobile application (due to the
unawareness of the system, unavailability of a smartphone,
etc.). Such people must be aware of the information gathered
by the system about them. This feature is discussed under
future work.

F. Mobile Application

The mobile application of the system is an Android
application that uses cloud application’s web services to handle
user actions and queries. Mobile application contains
functionalities such as, read phone’s contact list, send
synchronize requests, read user inputs, send search requests,
and manage local database to store application configuration
information.

The mobile application is built using up-to-date Android
standards and features to provide best user experience. The
primary user interface is inspired by latest Google cards layout
[12]. Dynamic lists, tabular pages and toggle buttons are
heavily used in the application while minimizing menus and
textual inputs to allow fast user interaction.

An SQLite database is used to store application’s internal
data, including synchronized users, new users, privacy settings
and user account information and settings.

Fig. 4. Mobile application user interface. (a) Application home.

Displays contacts stored in mobile phone’s local storage. (b)

Dynamically filterred contacts list. (c) Privacy management screen.

9

G. Cloud Application

The cloud application of the system is developed using
Google App Engine, a Platform as a Service (PaaS) [13].
Google App Engine provides various features to build cloud
mobile applications. Portability to various mobile platforms
and programming languages are some of the major features of
Google App Engine (GAE).

The system uses GAE Datastore to store graph data and
Memcache service to store graph as an adjacency list to
improve performance. Data are stored as Java Database
Objects (JDO) to ensure that the system can be maintained and
extended easily [14].

IV. RESULTS AND FUTURE WORK

Developed Android application successfully executes its
intended task accurately. But, the application has shown some
performance issues that can be fixed with minor
implementation changes.

This solution is a gateway for contact information
management applications to identify user requirements and
adapt. Developing a social graph using contact information
present in all mobile phones will make every person in the
world available as a digital entity. The uses of such a data
repository is enormous.

The system has shown the potential of graph data
structures. It can be adapted to represent any relationship
among infinitely large amount of entities.

The mobile application has shown various future
improvements that can be applied to improve usage and
performance of the system. The main improvement that needs
to be done is implementing the application into other mobile
platforms. Since users act as both information providers and
consumers, it is essential to reach a large user base to ensure
validity and availability of information. Developing the system
to other mobile platforms will be helpful to reach this goal.

Another mandatory improvement is handling new contact
information. An SMS verification system could help in this
scenario by notifying the people who are not using the mobile
application when a new entry for his phone number is added to
the system. Until such people allow (by following the given
instructions in the SMS) their information to be visible in the
system, the information will be set as private. Search queries
will not return contact details of them directly which will in
return result sending an SMS notification to that person about
the search query as mentioned previously.

Even without the above mentioned functionality the current
system holds basic yet functional privacy handling mechanism.
But, in order to release the mobile application as a marketable
product, a better and highly secure privacy mechanism must be
implemented.

The authentication mechanism used in the current system is
developed only for testing purposes. A secure authentication
system must be implemented prior to the release of the product.
Google App Engine provides supports to OAuth 2.0 and it
provides support to authenticate with Google id [15]. Such
features can be used to implement the authentication system.

As an additional feature, system can be easily updated to
identify unknown callers. Even though there are some
applications available to accomplish this task, a complete
“Address Book” application has not been introduced yet.

The final outcome of the product would be a value-added
contact management application for mobile, desktop and web
users that allows them to easily interact with people they know
in physical world. The final graph of this system will be a
phone number based global social graph where every member
represents one or more clusters of the whole system, where
each cluster represent a real life social group.

REFERENCES

[1] International Telecommunication Union. “Key ICT indicators for

developed and developing countries and the world (totals and
penetration rates).” Available: http://www.itu.int/en/ITU-
D/Statistics/Documents/statistics/2015/ITU_Key_2005-
2015_ICT_data.xls

[2] G. Barbier, R. Zafarani, H. Gao, G. Fung, and H. Liu, “Maximizing
benefits from crowdsourced data,” Computational and Mathematical
Organization Theory, vol. 18, pp. 257-279, 2012.

[3] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
Special Publication 800-145, National Institute of Standards and
Technology, Gaithersburg, Maryland, 2011.

[4] C. Burns, “10 most powerful PaaS companies,” Network World, 04-Jun-
2014. [Online]. Available:
http://www.networkworld.com/article/2288002/cloud-computing/10-
most-powerful-paas-companies.html. [Accessed: 25-Jul-2015].

[5] “App Engine Pricing,” Google Developers. [Online]. Available:
https://cloud.google.com/appengine/pricing. [Accessed: 25-Jul-2015].

[6] “IDC: Smartphone OS Market Share,” www.idc.com. [Online].
Available: http://www.idc.com/prodserv/smartphone-os-market-
share.jsp. [Accessed: 25-Jul-2015].

[7] S. N. Ali, “Types of Apps - Develop Application for Buisiness,”
www.socialhunt.net. [Online]. Available:
http://www.socialhunt.net/blog/types-of-mobile-app/. [Accessed: 25-Jul-
2015].

[8] J. A. Bondy and U. Murthy, Graph Theory with Applications, New
York: Elsevier, 1976.

[9] “Under the Hood: The natural language interface of Graph Search,”
Facebook Engineering. [Online]. Available:
https://www.facebook.com/notes/facebook-engineering/under-the-hood-
the-natural-language-interface-of-graph-search/10151432733048920.
[Accessed: 25-Jul-2015].

[10] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The Anatomy of
the Facebook Social Graph,” arXiv:1111.4503 [physics], Nov. 2011.

[11] S. G. Shirinivas, S. Vetrivel, and N. M. Elango, “Applications of Graph
Theory in Computer Science – An Overview,” International Journal of
Engineering Science and Technology, vol. 2(9), pp. 4610-4621, 2010.

[12] “Cards - Components,” Google design guidelines. [Online]. Available:
https://www.google.com/design/spec/components/cards.html#.
[Accessed: 10-Sep-2015].

[13] “App Engine - Run your applications on a fully-managed Platform-as-a-
Service (PaaS) using built-in services,” Google Cloud Platform.
[Online]. Available: https://cloud.google.com/appengine/. [Accessed:
10-Sep-2015].

[14] “Java Data Objects (JDO),” Oracle.com. [Online]. Available:
http://www.oracle.com/technetwork/java/index-jsp-135919.html.
[Accessed: 10- Sep- 2015].

[15] “Using OAuth 2.0 to Access Google APIs,” Google Developers.
[Online]. Available:
https://developers.google.com/identity/protocols/OAuth2. [Accessed:
10-Sep-2015

