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ABSTRACT 

 
Identifying error-prone code snippets and potential vulnerabilities in the early stages of the 

development process allows reducing the considerable amount of time & the cost of the software 

project. But the process of ensuring the reliability of software projects has become a significant 

challenge due to the high complexity & the scalability of modern software projects. Also, the 

dynamic nature of modern frameworks & programming languages becomes a barrier to consistency. 

Manual code reviews/automated code analysis tools are obsolete due to time constraints & lack of 

adaptability for new programming languages & frameworks.  

Nalyzer project aims to build a Machine Learning (ML) model to identify error-prone code snippets 

and potential vulnerabilities in the source code. And introduce a self-sustainable approach to adopt 

future programming languages & framework changes. 

We used Convolutional Neural Network (CNN) deep learning algorithm to build an ML model for 

classifying buggy & non-buggy code snippets from source code. And introduce a maven customized 

build plugin to push source code to ML model & get prediction as a step in the Continuous 

Integration/Continuous Delivery (CI/CD) pipeline. Then the generated Nalyzer analysis result was 

published on the interactive dashboard inside the project directory. Interactive dashboard facilitated 

to get feedback from developers to improve ML model accuracy & future adaptations. 

We evaluate the ML model in terms of F-measure. The evaluation results demonstrated the 

compatibility of ML techniques in the source code analysis paradigm with a significant score. And 

the interactive dashboard makes sure of the self-sustainability of the ML model through a 

Community-Driven approach. 

Nalyzer project proves that the ML approach is an alternative for overcoming the limitations of 

manual code reviews and automated code analysis tools.   

 

Key Words: Machine Learning (ML), Neural Network, Convolutional Neural Network (CNN), 

Source Code Analysis 
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