

NALYZER: AI BASED COMMUNITY-DRIVEN SOURCE CODE

ANALYSIS TOOL

Denuwan Himanga Hettiarachchi

(199327M)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2021

NALYZER: AI BASED COMMUNITY-DRIVEN SOURCE CODE

ANALYSIS TOOL

Denuwan Himanga Hettiarachchi

(199327M)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master

 Of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2021

i

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without

acknowledgment any material previously submitted for a Degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it does not

contain any material previously published or written by another person except where the

acknowledgment is made in the text. Also, I hereby grant to the University of Moratuwa the non-

exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic

or other media.

I retain the right to use this content in whole or part in future works (such as articles or books).

Signature ………………………….. Date:

The above candidate has carried out research for the dissertation under my supervision.

Name of Supervisor: Dr. Indika Perera

 15-11-2021

Signature ………………………….. Date: ………………..

ii

ABSTRACT

Identifying error-prone code snippets and potential vulnerabilities in the early stages of the

development process allows reducing the considerable amount of time & the cost of the software

project. But the process of ensuring the reliability of software projects has become a significant

challenge due to the high complexity & the scalability of modern software projects. Also, the

dynamic nature of modern frameworks & programming languages becomes a barrier to consistency.

Manual code reviews/automated code analysis tools are obsolete due to time constraints & lack of

adaptability for new programming languages & frameworks.

Nalyzer project aims to build a Machine Learning (ML) model to identify error-prone code snippets

and potential vulnerabilities in the source code. And introduce a self-sustainable approach to adopt

future programming languages & framework changes.

We used Convolutional Neural Network (CNN) deep learning algorithm to build an ML model for

classifying buggy & non-buggy code snippets from source code. And introduce a maven customized

build plugin to push source code to ML model & get prediction as a step in the Continuous

Integration/Continuous Delivery (CI/CD) pipeline. Then the generated Nalyzer analysis result was

published on the interactive dashboard inside the project directory. Interactive dashboard facilitated

to get feedback from developers to improve ML model accuracy & future adaptations.

We evaluate the ML model in terms of F-measure. The evaluation results demonstrated the

compatibility of ML techniques in the source code analysis paradigm with a significant score. And

the interactive dashboard makes sure of the self-sustainability of the ML model through a

Community-Driven approach.

Nalyzer project proves that the ML approach is an alternative for overcoming the limitations of

manual code reviews and automated code analysis tools.

Key Words: Machine Learning (ML), Neural Network, Convolutional Neural Network (CNN),

Source Code Analysis

iii

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude to my supervisor Dr.Indika

Perera for all guidance & advice provided through this journey.

And also I would like to thank industry experts, who shared their experiences and

thoughts during the literature review and background studies. Their contribution adds

value to this project to achieve the end goals in a more practical manner.

Also I would like to thank Kirill Eremenko, Hadelin de Ponteves for their great content

on Udemy platform. Their amazing tutorials help me to clear my path of

implementation.

Finally yet importantly, I want to mention the role of my parents in my journey. They

add unconditional support to manage my career & studies in a free mindset.

iv

TABLE OF CONTENTS

DECLARATION OF THE CANDIDATE & SUPERVISOR i

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vi

1. INTRODUCTION 1

1.1. Background Context & Motivation 1

1.2. Research Problem Definition 2

1.3. Research Objectives 3

1.4. Scope of the Research 4

2. BACKGROUND AND LITERATURE REVIEW 5

2.1. A Survey of Unit Testing Practices 7

2.2. Junit: Unit Testing and Coding In Tandem 12

2.3. The Art of Unit Testing (2nd Edition) 17

2.4. Improving the Bug Tracking System 21

2.5. Building Useful Program Analysis Tool Using an Extensible Java compiler

 26

2.6. Cute: A Concolic Unit Testing Engine for C 30

2.7. A Comparison Of Bug-finding Tools for Java 35

2.8. Pragmatic Unit Testing In Java 8 with JUnit 40

2.9. BP Neural Network-based Effective Fault Localization 45

3. METHODOLOGY 50

3.1. Data Gathering 52

3.1.1. Customized maven plugin 53

3.1.2. Customized PWD plugin 54

3.1.3. Java Parser 56

3.1.4. Syntax Tokenizer Mechanism 57

3.1.5. Summary of the Training Data 57

3.2. Build Neural Network Model 59

v

3.2.1. Convolution Neural Networks (CNN) 59

3.2.2. Implementation of CNN 61

3.2.3. Hardware Implementation 62

3.2.4. Access to Build Model 62

3.3. The Nalyzer Analysis Approach 63

3.3.1. Nalyzer Maven plugin 63

3.3.2. Interactive Dashboard 65

4. RESULTS & DISCUSSION 67

4.1. Machine Learning Performance Measure Mechanisms 67

4.2. Precision/Recall/F-Measure & Confusion Matrix 68

4.3. Nalyzer Model Evaluation 69

4.3.1. Build Confusion Matrix 72

4.3.2. Precision Calculation 75

4.3.3. Recall Calculation 75

4.3.4. F1-Score Calculation 75

4.4. Discussion 76

5. SUMMARY AND CONCLUSIONS 79

REFERENCES 82

vi

LIST OF FIGURES

Figure 1: Cost per defect analysis in SDLC ... 1

Figure 2: Survey finding of unit testing practices .. 8

Figure 3: JUnit test setup & test cases ... 14

Figure 4: An example of a test-code-coverage report in TeamCity with NCover 20

Figure 5: The decision tree used to get the full picture of the situation 24

Figure 6: CUTE generates input against C code .. 32

Figure 7: The BP neural network used in the research method 47

Figure 9: High-Level Architecture Diagram .. 51

Figure 10: Difference between dense connectivity and sparse connectivity 60

Figure 11: Nalyzer user interactive dashboard... 66

Figure 12: Nalyzer feedback window .. 66

Figure 13: Overall evaluation result ... 76

LIST OF TABLES

Table 1: Conclusions of the survey (Definitions of Unit Test paradigm) 9

Table 2: Finding of analysis tools .. 37

Table 3: Each tool generated warnings .. 38

Table 4: Maven command for run NalyzerDK .. 53

Table 5: NalyzerDK options ... 53

Table 6: Syntax extraction summary (Process of AST to 1D array).......................... 56

Table 7: Identified violations in each repo ... 58

Table 8: Structure of neural network ... 61

Table 9: Command use for run Nalyzer Maven plugin ... 63

Table 10: JSON formated Nalyzer result ... 64

Table 11: ML model evaluation metrics .. 67

Table 12: ML model evaluation matrix & terms ... 68

Table 13: Overall Evaluation Data Extraction Summary .. 71

Table 14: Apache/hbase - Confusion matrix .. 72

Table 15: Apache/incubator-pinot - Confusion matrix .. 72

Table 16: Apache/hudi - Confusion matrix .. 72

Table 17: Apache/ignite - Confusion matrix .. 73

Table 18: Apache/zookeeper - Confusion matrix .. 73

Table 19: Spring-projects/spring-data-rest - Confusion matrix 73

Table 20: Spring-projects/spring-ws - Confusion matrix... 73

Table 21: Oracle/helidon - Confusion matrix .. 74

Table 22: Oracle/opengrok - Confusion matrix ... 74

Table 23: AWS/aws-sdk-java- Confusion matrix .. 74

file:///C:/Users/Tharka%20Nirmani/Desktop/Research/NALYZER%20-%20AI%20BASED%20COMMUNITY-DRIVEN%20SOURCE%20CODE%20ANALYSIS%20TOOL.docx%23_Toc69165663

vii

LIST OF EQUATIONS

Equation 1: Process within the CNN filter system... 61

Equation 2: Define F1-score .. 69

Equation 3: Precision Calculation .. 75

Equation 4: Recall Calculation .. 75

Equation 5: F1-Score Calculation .. 75

