QUEUED TRANSACTION PROCESSING WITH
WEB SERVICE RELIABLE MESSAGING

A.C. SURIARACHCHI

This Dissertation was submitted to the Department of Computer Science and Engineering of the
University of Moratuwa in partial fulfillment of the requirements for the Degree of MSc in

Computer Science specializing in Software Architecture

Department of Computer Science and Engineering
University of Moratuwa
February 201 0

96424

ABSTRACT

With the popularity of the distributed business applications, the application data is distributed in various physical
storages. However most of the business transactions require to update data stored in more than one storage. hence

updating two data storages reliably is a common problem for most of the distributed business applications.

Queued transaction processing is a concept widely used to achieve such a processing model using intermediate
queues to transfer messages reliably. In such a system at the client side, both updating the client storage and writing
the message to be sent to the client side message queue happens in the same distributed transaction. Similarly at the
server side reading the message from the server side queue and updating the sever storage happens in the same
distributed transaction. Bur such a system may have interoperability problems if client and server use different types
of technologies.

Web services are used to communicate among the heterogeneous systems by passing SOAP messages using
standard transport mechanisms like http. Web services can reliably communicate by using WS-Reliable messaging
specification(WS-RM). WS-RM uses concepts of Reliable messaging source (RMS) and Reliable messaging
destination (RMD) between which it guarantees reliable massage delivery.

By combining these two concepts, we- introduce an approach to solve the -above, mentioned problem in an
interoperable manner: using: WS-RM _..,to. communicate between nodes. while keeping RMS and RMD as
intermediate storages. In-our model reliable message delivery happens in three phases. First both updating
application client storage and writing message to the RMS happens in the same distributed transaction. Then WS-
RM protocol reliably transfers the message to RMD at the server side . Finally- at the server reading the message
from the RMD and updating the server storage happens in the same distributed transaction. The middleware
software entity that we developed to encapsulate this approach is called Mercury which implements WS-RM

protocol.

DECLARATION

“The work included in thiv report was done hy me, and only by me, and the work has
not been submitted for any other academic qualification at any institution "

Nume: A.C. Suriaruchchi (088254P)
Date: 2010.02 26

b

"I certify that the declaration above by the candidate is true to the best of my knowledge
and that this dissertation is acceptable Jor evaluation for the Degree of M.Se in
Computer Science specializing in Software Architecture™

e

UOM Verified Signature

ACKNOWLEDGMENTS

I wish to sincerely thank my supervisors Mr. Paul Fremantle and Dr., Sanjiva Weerawarana for
providing me the research idea and supervision of my work continuously, They provided me
necessary guidance, various levels of requirements and encouragement to fulfill my objective,
I would also like to thank Dr Srinath Perera who reviewed my work and provided me
valuable feedback. I am also grateful to Prof. Gihan Dias and Dr Sanath Jayasena who worked
as the course coordinators, and provided valuable feed back at various levels of the project. |
would like to extend my thank to all the academic staff of the University of Moratuwa for the

great work they did for us during the course of study.

No student can survive in a university without the help of their fellow students to discuss
ideas, share opinions, and to make time spent in the lab and all round enjoyable experience. |
would be grateful for all M.Sc 08 colleagues for the corporation given to the successful

completion of my project involvements.

I must also be grateful to my parents and brothers for the encouragement they provided to
follow the Msc. I wish to express my gratitude to all my colleagues at WS02 who have

enormously helped to learn a lot about web services and distributed systems.

- i -

TABLE OF CONTENTS

DECLARATION L...oumiimiiiriimccs e iees s s sesssess st as st et ense st es s s e ssesssos s e i
L s e OO it
ACKNOWLEDGMENTS ..ottt etiess e eesees e sees e e s s st et ee oo iii
PRBLE OF CONTEINTS ..o iiviiisss ssiesssitsnssrsiobiasivisnsiinistsmsth oo 184 o5 mmdsos¥ i esersesmssomsssperssnms iv
LIST OF FIGUREScoviviiiviiintiriniesssmiisss s ess sttt e esseeene e ss st s et ees s et vi
LIST OF ABBREVIATIONSooccoiiiiiiisie e seesecreaescor s ereses s s eesessos s essesss oo viii
Chapter 1 INMOQUCHIONcc.eoiiiiii ettt et er s ereses e s eese s emssoee s et oo s eeeeee e eesa 1
1.1 BACKETOUNottt sess et s seesseesse s s saee s s s s s et s beee et s eee e e 1
1.2 ABSIACE PLOBIGIN ..o ivsiviioresisansmmsossinomsimmsessasaptossassassssssssssses bossssosnmesens emeronssssarmssmesonentessesmm 2
T3 IR O AU wcoox ez ctinsscomassossis seestits ot o 5o i omi e S oo 56 adoe smae s e e e 3
L R BRI WA, i ot et 55 o i o s e e e e s e 3
L5 EXPECIEA TESULL. ..ottt e et ees e e ee e s os e es e s st sos 3
Chapter 2 LIErature REVIEWiiviureoiiesiorossesseesseeessaesssssesessseses st os s eeeeessees oo ees oo +
2.1 Web Service SIANAATAScovevvrivueeririceeseseceeise oot sessees e ssesses e es s s st st oo 5
L SBOAP.....c.iiversisiversinrsaassssbesssmmsassssensssysismssorasssssismstss s ssemessssssesti saseasecsstieasnsestivasessesmmss 5

2. 1.2 WE-AAAIESSING.......ooooneeerrietrrriivisniieassssstisen e secssessesssssess reseesssessmssosssessessesssssssssoseses 5

2.1.3 WS-Reliable MESSAZING.ccviroieinerieaieecriess e eesee et se s e seescess e s ssos s oo se o 6

2.2 Transactions and messaging SANAATAS .y .vewrereiisionis i rerseesmossessesssressssssessssssesessessessessens 9
b0 A0 [B . ANIPOEE Nse— . e s s 9

2.2.2 X/Open distributed transaction SANAATdS.,............ccccoverrvsrereeeseserosssoscoeoeeoses o 10

B BT e scmwamunom uosimsnme 5 s s 4.5 e i 5 865 g e A 11

2.3 WS-Transactions..........o.ccuerreenveeeesseoeennnne o 4408003 830w A TR 58 V5w ok ¥ i i sV S 13
2.3.1 \?\J’S-C(;nt;-rdinatit:on...................................= ... 13

2.3.2 WS-AtOMIC ITANSACHONSc.cvvivoririreiarisisionsiosrssesseessessssssessesssessssssstssss s eeseoss e sossens 15

2.3.3 WS-BUSSINESSACHVILY ..vovurireiiicieereiisoreeeseeceseeseessresesresssss e oo 15

2.4 Queued Transaction PrOCESSINEocrvuirriuiirisissieomieesseessssseonsessssssssssasssssesosesesseoseesseess 16
2.5 Different types of reliable Web SEIVICES.......civivirvrivreirecereereessessessess o ses e es s, 16

2.5.1 Using Message Oriented Middleware for Reliable Web Services Messaging. 16

2.5.2 Three facets of REHSBILEE ...u.iuviv i aistesies ciuisms siscarmsenseasioniismsemsessensestsosrsemsesstens 17
2.5.3 Reliable messaging fOr WED SEIVICESvvvumresmeiemserssieossosnessesssessesonssesssosssesssenss 17
T EABERIBIIIIE 30055 50250 s M i P05 0 S 5 Rl 18
2.6 Transactions and MESSAZINGvivvuerreeriunseesienmeosmenserosnsonssosssssesssssiessessessess o seseoe e 20
2.6.1 MQ Integrating TraNSACHONSvvevveieseesseessioeseeoseeseeesseesssssssssssesesssesees oo 20
2.6.2 Message delivery transactions ..o ueseeeieocneeenesseesseossessesosssess e es oo 20
2.6.3 Message processing tranSactionseweeuereivuiressessessesnseomssesseassosserseessesssesssenss 21
2.6.4 Full messaging [ranSCHONS.veeveeremressestsos s ieseesesssessemssess s s oo seseeeee oo 22

2.7 Middleware mediated transactionsuee.n.
2.7.1 D-spherec.cuu..e. Vi i e shea s semns s sas s e e s SOOI e 23
Chapter 3 Methodology o BTV oo « e P
3.1 Previous Solution.................... B Ly R LT U B
3.2 PO SOUIION o v s 0845 ki o 5595 250 mstin slism e gt b ol s s SRRREY.(|
3.3 Alternative SOIUHIONScoocvvvviveriiiri ittt ee e eaans RS o e Al T ren 27

3.3.1 Integrate WS-RM protocol with the client storage and server storage by taking
them as RMS and RMD...........occovmnniniiiiinnns O e ST 5 e T S S ey S 27

3.3.2 Use the same transaction to update both application level storages and WS-RM
SLOTages....ccceueen... T NPT TIP I e i g P e g sl oM sty s s s e vorrerrienns 28

3.4 Solution Architecture........ooovvvveiriireirinncen, R R T eV £l SR 65 b e st o Fle e s L ST A
3.4.1 State machine model.........cccoervmreceeerenneee A 5 AT b R4 TN o s ..

3.4.2 Run time Architectureo.ocoveereevevecerenns PSPPSRI ol eras ot e i i b b .36

3.4.3 Storage APTcocvvviivvvceirieiiena,

3.4.4 Other issues and SOIUHONSccovveeirieeiiiririsiiine e seemeees e esneenneens s 45
Chapter 4 Use case scenarios............. g L s ol oo RS e s e s prean LT T 46
4.1 INMemOTryocovvvurivrrermirrenerearns i o8 T suiasesbidslans
4.1.1 In Only invocation............c.ccesverivinan, S O R R LTI iy i s e ey 47

4.1.2 In Out Invocation.......... a0 Sk 8 hiaaRE e ik adsas s ¥ TR 53 i g e 48

4.1.3 Fault Handling0 0. Qr.vloratuwa.,.. DL QKA. ..crriicissiineren s 49

4.2 Persistence s 3% 4..... et GELL S N, G) e g TR Pt st b 49

4ITTA iiviianarenns R R T, e e S e e SR, /]
4.3.1 In Only TAVOCAION oo S R e Py e pans e 39
Chapter 5 Observations & Results.........c............ R R SR I RS f A e R
Chapter 6 Conclusion & Future Work g e .59
REFERENCESconmimmmmmannin

LIST OF FIGURES

Figure 1-1 Abstract Problem......cc.vvriiiiiii s s 2

Figure 2-1 Reliable Messaging Model........o.ccmiiini i 7

Figure 2-2 Reliable Messaging Protocol........cuimcscmmmiii s 7

Figure 2-3 COOrdinator STAlESe vt ssessseesssss s sssssssess s onas 9

Figure 2-4 Participant STAIEScco..iiiiiimviinii st st s s 10

Figure 2-5 X/Open Distributed Transaction Standards. ..., 11

BAgure 2-0 TT X OIVBIVIBW ..., 0nevimmiioms o5 5505008y s cos Samms o s A oA R SRy o gy e « Sami S5t 12

Figure 2-7 WS Coordination FrameworK ... e 14

Figure 2-8 Queued Transaction PrOCESSINGccccniviiimiiniiiiiimcirn s 16

Figure 2-9 MQ Integrating Transactions...........ccouiieiinnninesiniaeae s s 20

Figure 2-10 Message Delivery Transactions............cooccvviimiiniissimomeomonmins 21

Figure 2-11 Message Processing Transactions ... sassenines e 22

Figure 2-12 Application WithoUt D-SPHETEovvrroessesssesisssesssssmsssrsssssesssossesseessenecssacsn 23/"“‘?%
Figure 2-13 Application With D-SPREreccoveerirrecasremmisvseessesnsessionssseseosssesiosreisses 73 |
Figiire 2- 14 D-Sphere ATCRITEEIIEE: c..s5sres consisth suseordiasensesyin s sssmsnnasnsass sos sibaransdbasdambithss sisviisve 24

Fipute 31 PreaOus- BOIIIE oo ot uoisii s s i sasosi o3 500 00 90 1 SN 5o 5 e 25 .

Figiaie 322 PHOPOREH SBIUMEIOM ... cov.paitviv sy sovsnessaginds osssnyiss st e hasagyssjoiguiasisgaissmismiansissinnes G

Figure 3-3 Integrate Persistence Storage with RM Storages ..o veviveniiniieie s, 27
Figure 3-4 Using the same Transactionieecn o 5ot e s TS 28
Fipine 35 BN N QB MBS . ousss coninshon i) ssnokien sus hmsass 4335 5 HEmT AT s cab B EEUHTS £ AR =D T3 EFAmRY 29
Figure 3-6 RMSSeqUence SLAtes.......cvieerimeerieciiiisiii st s nissss ssesn o 30
Figure 3-7 RMSSequence State Machine ... 31
Figure 3-8 RMDSequence EVEDLS... ... coineissssssssesssnsssssssaasans 31
Figure 3-9 RMDSequence States ... 32
Figure 3-10 RMDSequence State Machine...........cocoviniiiinnncninnnnnn Wi D9
Figure 3-11 InvokerBuffer EVEOLSccoceeciiiveciinirtirre i s s 34
Figuee 3- 12 ThvOKCrBURTEr SHIIEE 51 v, i iiionivivhn sesmssicanaitun coisusvin s assiiss iasoondias (dinssiinsionamdinssn s a5
Figure 3-13 InvokerBuffer State Machinec..ecrmeisnisersermenssnmsensesemsessasesassassnssssssssssnns 35
Figoie 314 TaOnly MESSapes RTINS ... monmvissiisisie vavisisisis eisisisss e v issrinsisss sorkmeiases 36
Figure 3-15 InOut Messages RUNIMEcoocoo et i e 38
Figuie:3- 16 Fault Handling RIOIIE ..o o ssisssismssisesmnsssasnes s mmasssesspasomsasmyesis sposssas 39
FIgure 3-17 Sorage APL......cciiiiriirmreesiesemenianses e see et smeasssessssss sssoss sassssssanssssnssbssstasssns 40
Figure 3-18 InMemory Implementation ... 1
Figure 3-19 Persistence: IMplementation..,......vuuessarsissssssspssnsseassansrsssnssunssrasssnsassisnns sessasasasson 42
Figure 3-20 Database DeSIZN.......... v msmisnmeinesmssmsnsansssnmsimposssssassase ssasss snsesesiasssnsasnstssire 4

Figure 4-1 InMemory Invocation

BN TR F DL, ... vosciivinorssiniivamsiviasssimmsnnisssarssmnes cosisonsos smsinators sussarassoenien fhus sxvass iiss oin 47
Figure 4-3 InMemory In OQut CHEnl..........ouuimiiiiiii s 48
Figure 4-4 SendAsynchornousMessage Method ..., 48
Figure 4-5 Fault Message RECEIVET .coiooiiiii e rece st er e e s s 49
Figure 4-6 Using Persistence SIOTABEoc.eovverivreerieiinii it e it ns st st ssssnssssssnns 49
Figure 4-7 Persistence Storage COnfiguration ... s 50
Figure 4-8 Persistence In Only Clent.........cccovii e 50
Figure 4-9 Persistence In Only MessageReceiver ..o 51
Figure 4-10 Persistence Callback Handler Methods...........coocciiiniiniccn e 52
Figure 4-11 JTA INVOCATIONcccciitiriir it irccriereen et crre e reeraesneer s eesseasseerseestessseessesans smnes 92

Figure 4-12 JTA Storage ConfIguration o ... bbb it sidsins i it b D9
Figure 4-13 Atomikos JTA Connection Manager........ v venienrsvsesvsseesssessessseesseseensessessssaess 54
Fiore 414 FLA TR ORLY ClERE i ouwissimsioaios conninisiineisdsamiimississiis i s ssnsfaies e veinns sasivannsns 55
FHOUTe 4=15 TrvOKEEWIOTRET iy conas dors suosssnisn rsssinsants sbuvsansss 14 5saaudtsans 1504w mns s Sryasiss s sy asts s ves O

- yii -

LIST OF ABBREVIATIONS

WS Web Service

WS-RM Web Service Reliable Messaging
RMS Reliable Messaging Source
RMD Reliable Messaging Destination
2pC Two Phase Commit

JTA Java Transaction API

JTS Java Transaction Service

SOAP Simple Object Access Protocol
RPC Remote Procedure Calls

MOM Message Oriented Middleware

- viii -

Chapter 1

Introduction

1.1 Background

Updating two data storages reliably is a widely researched area in distributed computing. Most
of the existing solutions follows a queued transactidn processing model. In such a model first
client writes the message stored in its persistence storage to the request queue within a
distributed transaction and server reads the request from the request queue within another
distributed transaction. If there is a rcspons.c to be sent, server writes the response to response
queue within the same transaction it read th€ message and finally client reads the response
from the response queue within another distributed transaction. Thys processing model can
operate even with the presence of the node failures due to recovery nature of the distributed
transactions, However these systems may not properly inter-operate due to use of many

proprietary messaging protocols,

Web services are used to communicate among the heterogeneous systems by passing SOAP
messages using standard transport mechanisms like http. Web services can reliably
communicate by using WS-Reliable messaging specification(WS-RM). WS-RM introduces
concepts of Reliable messaging source (RMS) and Reliable messaging destination (RMD)
between which it guarantees reliable message delivery. As a result of this both RMS and
RMD can be considered as intermediate queues by using a persistence storage to implement

them.

An inter operable reliable message transferring system can be made by combining above two
concepts where client writes messages from the persistence storage 10 RMS within a
distributed transaction and server writes the messages from RMD to persistence storage within
a distributed transaction. Reliable communication between RMS and RMD is guaranteed by
WS-RM.

1.2 Abstract Problem

| Persistence Persistence
storage Storage

Network

» \\ P

Client Node

Figure 1-1 Abstract Problem

This project focus on updating client persistence storage and server persistence storage
reliably by sending a message in a system shown in Fig 1-1. Assume there are two nodes
called client node and server node with persistence storages, connected through a network,
How to guarantee both client side and server side storage updates by sending a message from

client node to server node with the presence of failures in an inter operable manner?

Message provides the necessary information to update the server persistence storage. The term
reliably refers to the exactly one delivery. This means there can be no message losses or
duplicate messages. Failures can either be network or node failures, For this work web
services and standards are being used as the means of achieving interoPerability. Further it is
assumed that although it is possible to have network and node failures they recover in finite

time and there are no persistence storage failures.

The main goal of this project is to implement a web service reliable messaging middleware
which can generally be used in such a situation. Writing a WS-RM implementation [rom the
scratch means a lot of work. Therefore this project aims to re-engineer the existing WSO2

Mercury to solve the above mentioned problem.

WSO02 Mercury is a WS-RM implementation written on top of Axis2 by using a state machine
model. However WSO2 Mercury keeps the state of the WS-RM communication in an in
memory object model. It achieves the persistence by saving this in memory object model to a

persistence storage. Although WSO2 Mercury has successfully implemented (he state

o

machine model, its' in memory model described above does not allow it to support user

initiated transactions.

Therefore the main objective of this project can be narrowed down to re engineer the existing
WSO02 Mercury code to come up with a storage API which support user level transactions.
However some of the WS-RM usage scenarios do not require user level transactions and
hence it is enough to have an in memory storage model. Therefore above storage API should

support simple in memory implementations as well.

1.3 Method of study

Implementing a new storage API directly with the WSO2 Mercury can be complex. Further in
such an attempt main focus may not be in the storage APl design. Therefore this project first
designs the storage AP1 within a simulator. Again the simulator which is used at the time of
designing Mercury state machine model can be used for that. Then the new storage APl can
be implemented in an in memory model with the simulator and can be transferred to the actual
Mercury implementation with the necessary refactoring of the Mercury. Finally the storage
API can be implemented with a persistence storage and can be tested [or distributed

transaction scenarios,
1.4 Previous work

As given in the background section this problem has been solved by using intermediate
queues. But this project aims to do that using web services and related standards to achieve

interoperability.

Apache Sandesha2 which is another WS-RM. specification implementation uses such a
transactional data store model. However Apache Sandesha2 does not use a state machine

model and further a transactional storage to support even an in memory model as well.

.

1.5 Expected result

In summary this project aims to come up with a storage API with the necessary WSO2
Mercury runtime architecture which supports both user level transactions and simple in
memory implementations. To prove this point it expects to have at least two storage APl
implementations one for simple memory implementation and other for a transactional
permanent storage implementation. Further it aims to provide necessary usage scenarios

which uses the distributed transactions to achieve end to end reliability.

Chapter 2

Literature Review

Literature review of this projects spans across many areas. One of the obvious areas is the web
services standards and related specifications. Web scrvit::cs primarily use SOAP[3] as the
messaging format. WS-Addressing[10] provides a way to address end point references in a
transport independent way. WS—Reliable messaging specification[8] uses WS-Addressing[10]

to correlate the request and response messages.

e

There are some set of standard protocols and standards to generally support transactions and
messaging. 2PC[7] is the widely used protocol to achieve distribult:trtransacti(m& X/Open
promotes standards for many protocols to improve the interoperability, X/Open distributed
transaction specification[11] standardize the use of 2PC protocol. JTA/JITS[12]]13] provide

java specific APIs for distributed transactions.

WS5-Transaction specifications which includes WS-Coordination[4], WS-
AtomicTransactions|5) and WS-BussinessActivity[6] provides means to achieve distributed

transactions using 2PC protocol in an inter-operable way.
Queued transaction processing is used for processing a transaction between a client and an
application server asynchronously in a distributed transaction processing environment having

at least one transaction queue manager,

IBM has done some work[14] related to this area. This includes their classification of varios
ways to integrate the web services and transactions. Httpr is an effort to build a reliable

protocol on top of Http.

Finally there have been many researches for message oriented and object oriented
transactions. [urther these researches have been extended to middleware mediated

transactions[15] which combines the above two concepts to achieve better transaction support.
2.1 Web service standards

2.1.1 SOAP

Simple Object Access Protocol (SOAP)(3] is a protocol to exchange information in a
decentralized, distributed environments developed by Microsoft and IBM. SOAP can support
to enable remote procedure calls (RPC) over HI'TP using XML. SOAP protocol specification

mainly consists of three parts.
i. SOAP Envelope

SOAP envelope describes what is in the message and how to process it. A SOAP envelope has
a required body part which is used to send the actual message, and header parts which can be

used to provide the soap envelope processing instructions,
2. Set of encoding rules

There are a set of encoding rules which specify how to encode application-defined data types
in to XML format. This is important since SOAP provides an inter operable XML based

messaging format,

3. Convention to represent remote procedure calls and responses

SOAP defines a way to encode a RPC invocation request and the response into a SOAP

— & : « . . Ny,
envelope. This is used in RPC type service invocations,

2.1.2 WS-Addressing

Web services can be accessed by sending SOAP messages to their respective endpoints.
However the endpoint details may depend on the transport protocol. And also there are some
information required by the messaging systems in order to dispatch messages to

corresponding processes and correlate them.

Web Services Addressing (WS-Addressing)[10] defines two inter operable constructs that
convey information that is typically provided by transport protocols and messaging systems.
These constructs normalize this underlying information into a uniform format that can be

processed independently of transport or application.

1. Endpoint references

A Web service endpoint is an entity where Web service messages can be targeted. Endpoint
references convey the information needed to identify/reference a Web service endpoint.
Endpoint references are suitable for conveying the information needed to access a Web
service endpoint, but are also used to provide addresses for individual messages sent to and

from Web services.
2. message information headers

This defines a family of message information headers that allows uniform addressing of
messages independent of underlying transport. These message information headers convey
end-to-end message characteristics including addressing for source and destination endpoints

as well as message identity.

WS-Reliable messaging uses WS-addressing headers to specify endpoint addresses and

convey message related information,

2.1.3 WS-Reliable messaging
Reliable message delivery is a common concept in message oriented communication.

WS5-ReliableMessaging specification[8] (WS-RM) describes a protocol that allows messages
to be delivered reliably between distributed applicatigns in the presence of network failures.
The protocol is described in this specification in a transport-independent manner allowing it to
be implemented using different network technologies. To support inter operable Web services,
a SOAP binding is defined within this specification.

The protocol defined in this specification depends upon other Web services specifications for
the identification of service endpoint addresses and policies. This prot%ol does not talk about
the delivery guarantees and persistence. However WS-RM implementations can provide

persistence and delivery guarantees using the available protocol constructs.

WS-Reliable messaging is based on a reliable message model which is given below.

Initial Sender Ultimate Receiver

Application Application
Source Destination

Send Deliver

T L TR D

RM Source RM Destination
Transmit

Figure 2-1 Reliable Messaging Model

Following diagram shows the entities and events in a simple reliable message exchange. First,
the Application Source sends a message for reliable delivery. The Reliable Messaging (RM)
Source accepts the message and Transmits it one or more times. After receiving the message,
the RM Destination acknowledges it. Finally, the RM Destination delivers the message to the

Application Destination.

Fdpe Reliable Messaging Protocol SR
Moo

Establish Protocol Preconditions

CreateSequence() o

Sequence(Identifier = http://fabrikam123.com/abc, MessageNumber = 1)

Sequence(Identifier = http://fabrikam123.com/abc, MessageNumber = Fi5 o M
FA

Sequence(identifier = http://fabrikam123.com/abc, MessageNumber = 3, LastMessage) ,_

AcknowledgementRange = 1...3)

TerminateSequence (Identifier = http://fabrikam123.com/abc) !
-

Figure 2-2 Reliable Messaging Protocol

Following steps illustrates a typical set of messages passed in one RM sequence and how it

provides fault tolerance. It uses a acknowledgment based retransmission similar to TCP,

1.

10.

11.

12.

The protocol preconditions are established. These include policy exchange, endpoint
resolution, establishing trust.

The RM Source requests creation of a new Sequence.

The RM Destination creates a Sequence by returning a globally unique identifier.

The RM Source begins sending messages beginning with MessageNumber 1. In the
figure the RM Source sends 3 messages.

Since the 3rd message is the last in this exchange, the RM Source includes a
<LastMessage> token.

The 2nd message is lost in transit.

The RM Destination acknowledges receipt of message numbers 1 and 3 in response to
the RM Source's <[.astMessage> token.

The RM Source retransmits the 2nd message. This is a new message on the
underlying transport, but since it has the same sequence identifier and message
number so the RM Destination can recognize it as equivalent to the earlier message,
in case both are received.

The RM Source includes an <AckRequested> element so the RM Destination will
expedite an acknowledgment.

The RM Destination receives the second transmission of the message with
MessageNumber 2 and acknowledges receipt of I:;essage numbers 1, 2, and 3 which
carried the <LastMessage> token.

The RM Source receives this acknowlgdgment and sends a TerminateSequence
message to the RM Destination indicating that the sequence is completed and reclaims
any resources associated with the Sequence. ;
The RM Destination receives the TerminateSequence message indieating that the RM
Source will not be sending any more messages, and reclaims any resources associated

with the Sequence.

2.2 Transactions and messaging standards

221 2PC

Two phase commit protocol[7] is a protocol to support transactions in a distributed
environment. In a distributed environment there are multiple participants. These multiple
participants update multiple data sources. Two phase commit protocol ensure either these

participants commit or abort atomically.

Two phase commit protocol is executed by a process called the coordinator process and other
participant processes, As the name suggests two phase commit protocol has two phases called
prepare phase and commit phase. Both of these participants’ life cycles has been defined by

the state transfer diagrams.

gl i
) <= and ... and YesN

) iy

/"_ e
(Forgouen\,

Figure 2-3 Coordinator States

Initial
T
Preparel/Yesl \,\Pmpareb‘NaI

e % \
74

Prepared
b

“xﬁ_,_.-r
Commitl/Ackl " kb
g /{-’

o~

.,

k}@i@

Commitl/Ackl

Figure 2-4 Participant States

Before the commit process starts, both coordinator and participants processes are at the initial
state. Commit process starts when the initiator sends the commit message to the coordinator.
Getting the commit message coordinator sends the prepare message to all the participants and
moves to the prepared state and waits until all the responses come. When a participant
receives a prepare message from the coordinator it senas the response as 'yes' and moves (o
prepared state if it is prepared to commit or sends the response as 'no' and moves to aborted
state if it is not prepared to commit. Here if a participant sends a 'yes' response it can't later
say it is not prepared to commit. Once all the participants sends their responses coordinator
can decide cither to commit the transaction or abeort it. If there is at least one 'no’ response
coordinator have to decide to abort the transactions. After that coordinatomtells its participants
either to abort or commit and then moves to either commit or abort state. Once the participants
gets the global commit or abort message from the coordinator it moves to the corresponding

state and sends the acknowledgment back to the coordinator.
2.2.2 X/Open distributed transaction standards

X/Open is a independent, worldwide, open systems organization which supports
implementation of open systems. In the context of the distributed transactions, X/Open has
standardize the interface between the Transaction Manager and the Resource Manager in

order to make them as open systems[11].

X/Open distributed transaction processing (DTP) model assumes three software components.

-10 -

Application Program (AP)

(2) AP defines
transaction
botindaries

(1) AP uses
resources from
a set of RMs

. through the

TX interface
Resotrce = = Transaction
Managers | [F[—— Manager

®RMs) [(™)

(3) TM and RMs exchange transaction information

Figure 2-5 X/Open Distributed Transaction Standards

Application program specify the transaction boundaries and specifies the actions that
constitute the transaction. Resource managers provides the resources which application
program updates during a transaction, Transaction manager is the main component which
assigns identifiers to transactions, monitor their progress and do the transaction completion or

failure recovery.

Out of these interactions X/Open specification introduces a standard interface to communicate
between the Transaction manager and the Resource managers. These interfaces are specified

in C programming language,
223 JTA

Java transaction API specification[12] provides a set of java interfaces to support distributed
transactions. It specifies the local Java interfaces between a transaction manager and the
parties involved in a distributed transaction syst&m. Following diagram shows the interfaces it

defines and the relevant areas of those specifications. —

211 -

JTA
TransactionManager

EIB- ™ el |
Application JDF_}C‘ e
g f" . I,.';. f A o i
// dervel P
’./ // \.\‘
/ s A
e S
/ " " g Resource
!/ Application
/ 7 Transaction Manager
.' e Manager v ‘.
./(________ ‘\ I
g \
ITA 7/ Low-level Y JTA
UserTransaction Act . '
& " Tr"’_“";“?."’“_”" X AResource
Service
' lmplementation
{for example, ITS)
lIlbDU[}d X | [{_ju{b(‘,und Ix
Protocol specific Communication Resource Protocal specific
Manager (CRM)

Figure 2-6 JTA Overview

N,
UserTransaction interface provides the application the ability to control the transaction
boundaries programmatically. The application can obtain user transaction and use begin and

commit method to demarcate the transactions.

Transaction manager interface allows applicatign server to control transaction boundaries.

Transaction Manager allows users to begin and commit transactions associated with a thread.
-

Transaction interface allows operations to be performed on the transaction associated with

target object. This interface can be used to

1. Enlist the transactional resources in use by the application
2. Register for transaction synchronization callbacks

3. Commit or rollback the transaction

XAResource Interface provides a java mapping of the industry standard XA interface based
on the X/Open Specification. This interface defines the contracts between the Resource
Manager and the Transaction Manager in a distributed transaction processing (DTP)

environment.

JTA specification defines five players which are involved in a distributed transaction services.
Each of these players contribute to the distributed transaction processing system by

implementing different sets of transaction AP1 and functionalities.

1. A transaction Manger provides the services and management functions required to
support transaction demarcation, transactional resource management, synchronization,
and transaction context propagation,

2. A application server provides the infrastructure required to support the application run
time environment which includes transaction state management.

A resource manager provides the application access to resources,

4, User application which uses the transaction provided by the application server.
5. A comnmunication resource manager supports transaction context propagatio
access to the transaction service for incoming and outgoing requests. o h
Z LIBRARY =
2.3 WS-Transactions \‘«Es

% J

| F s o 4
! #

WS-Transactions defined in three specifications, WS-Coordination defines a LMn,_..-
framework to coordinate web services activities among different web services using different

types of coordinating protocols.
2.3.1 WS-Coordination

WS-Coordination[4] describes an extensible framework for providing protocols that
coordinate the actions of distributed applications. Such coordination protocols are used to
support a number of applications, including those that need to reach consistent agreement on

the outcome of distributed activities.
-
The framework defined in this specification enables an application service Lo create a context

needed to propagate an activity to other services and to register for coordination protocols.
The framework enables usage of existing proprietary transaction processing systems while

providing an inter operable mechanism to communicate.

The following diagram shows typical usage scenario of the WS-Coordination specification to

coordinate the activities among different web services.

1. CreateCC Type Q 4. Register Passing Y and App
Retums Ca Returning Ya

' Registration
Servica

RSb

Retuming Cb

(1)
()
o
=
[
&
o
[}
&}
2
(]
2
G
i

Coordinator A

*‘Protocol
- Service
Yb

Figure 2-7 WS Coordination Framework

1. Appl sends a CreateCoordinationContext for coordination type Q, getting back a
Context Ca that contains the activity identifier Al, the coordination type Q and an
Endpoint Reference to CoordinatorA's Registration service Rsa.

2. Appl then sends an application message to App2 containing the Context Ca.

3. App2 prefers CoordinatorB, so it uses CreateCoordinationContext with Ca as an input
to interpose CoordinatorB. CoordinatorB creates its own CoordinationContext Cb that
contains the same activity identifier and coordination type as Ca but with its own
Registration service RSbh.

4. App2 determines the coordination protocols supported by the coordination type Q and
then Registers for a coordination protocal Y at CoordinatorB, exchanging Endpoint
References for App2 and the protocol service Yb. This forms a logical connection
between these Endpoint References that the protocol Y can use. >

5. This registration causes CoordinatorB to forward the registration onto CoordinatorA's
Registration service RSa, exchanging Endpoint References for Yb and the protocol
service Ya. This forms a logical connection between these Endpoint References that

the protocol Y can use.

-14 -

2.3.2 WS-Atomic transactions

WS-Atomic transactions specification[5] defines an atomic transaction coordination type that
can be used with the WS-Coordination specification, This specification describes such

coordination type protocols which can be used with the short lived atomic transactions.
Completion

This protocol is used to communicate between the initiator and the coordinator. Initiator starts
the commitment processing by sending a commit message, After that coordinator starts the

volatile 2PC and proceed to durable 2PC. Then the final result is send to the initiator.
Two phase commit protocol

Two phase commit protocol is used to perform the atomic transaction among the participators.
This protocol ensures all the participators comes to a final decision. There are two variations

of this protocol.
1. Volatile two phase commit

Used with the participators who use the volatile resources such as memory cache.
2. Durable two phase commit

Use with the participators use the durable resources such as databases.

2.3.3 WS-BussinessActivity

.,
Similar to WS-Atomic transactions specification this specification also defines coordination
types and protocols to be used with WS-Coordination specification. These coordination types
typically has to be used with the long running fransactions. There are two coordination types

and protocols has defined in this specification, .
Coordination types o

There are two coordination types have delined with this specification called atomic outcome
and mixed outcome, In the atomic outcome coordination type all the participators either end
up with end state or compensated state while in the mixed outcome mode participators and be
end up within any state .

Coordination protocols

There are two types of coordination protocols defined with this specification called
BusinessAgreementWithParticipantCompletion and

BusinessAgreementWithCoordinatorCompletion. The former protocol initiation starts by the

participant while for the latter it is started by the coordinator.

2.4 Queued Transaction processing

Receive Request

Begin TX

Transaction 1 ResvurceAdapter)

1 Commit TX Dequeuc

Begin Global TX
Bl.;,m TX
Enquens
Transaction 3

Remrn Result Commit Global TX

Dequene
Commit TX

User Application

Figure 2-8 Queued Transaction Processing

Queued transaction processing is used to process transactions in a distributed environment
asynchronously. This happens within three transaction boundaries. Firstly user application
creates the request message and enqueues the request message to request queue within a
transaction, After that server dequeues the message, process it and enqueues the response to
response queue within another transaction. Finally user gpplication dequeues the message

from the response queue,

2.5 Different types of reliable web services

2.5.1 Using Message Oriented Middleware for Reliable Web Services
Messaging.

Web services are applications that are described., published and accessed over the web using
open XML standards. Different Message Oriented Middleware can be used with web
services. Reliable communication is one of the most important aspects of any application.

There are five ways that an web service can use MOM.
1. Messaging Middleware Reliability

Messaging middleware is specialized software that accepts messages from sending processes
and delivers them to receiving processes. The two principle styles for MOM is centralized and

distributed,

-16 -

2. Aspects of reliability

The main aspect of the reliability is to tolerate the network failures. MOM can tolerate the
network failures by repeatedly sending the message until it is acknowledged by the receivers
component. In addition to acknowledged delivery, ordered delivery is another aspect of
reliable messaging. Further important aspect of reliability is the integration of a message
delivery in a larger processing context. Therefore a MOM should be able to group a message

with other messages and other process activities.
2.5.2 Three facets of Reliability
1. Middleware endpoint to endpoint reliability

A message once delivered from an application to the messaging middleware, is guaranteed to

be available for consumption by the receiving process.
2. Application to middleware reliability

The middleware's messaging API, supports reliability properties such as message delivery

guarantees, message persistence and transactional messaging.
3. Application to application reliability

Sending and receiving applications engage in transactional business processes that rely on
application-to-middleware reliability and middleware endpoint-to-endpoint reliability.

e
./_‘.\‘l:
i

& F

2.5.3 Reliable messaging for web services \

This describes five different ways in which a web service can use the MOM for a‘reliable

communication, 5

1. SOAP (with or without a reliability protocol like WS-ReliableMessaging) is used with
an unreliable transport (like Http); reliability mechanisms are implemented on the
application/SOAP messaging layer.

2. AReliable transport like HTTPR is used for SOAP messaging

3. A Reliable, proprictary middleware system like IBM Websphere MQ is used for
SOAP messaging.

4. A Reliable messaging standard like JMS is used for SOAP messaging. A JMS
implementation is required

5. A Reliable proprietary middleware system like IBM Webpshere MQ is directly used
independent of SOAP

217 -

2.5.4 Assessment

Middleware endpoint to endpoint reliability

The middleware endpoint mediation essentially refers to the idea that messages are stored

locally on the sender and receiver sides before and after they are being sent.

1. Option 1 does not provide this reliability since HI'TP is not reliable. HTTP does not
provide the status of the message on a connection failure. Therefore either SOAP
messaging layer or application layer should provide the reliability.

2. SOAP over HTTPR provides the middleware endpoint to endpoint reliability. HITPR
persists the messages at the sender and receiver sides,

3. SOAP over MQ also provides the middleware endpoint to endpoint reliability. The
middleware endpoints are message queue managers provided by the messaging
middleware product. Unlike in the HTTPR case here the message delivery pattern is
asynchronous.

4. SOAP over JMS requires a JMS implementation. Depending on the JMS
implementation it provides the reliability.

5. This option also supports the reliability since underline MOM is reliable. Adapters
must be used at the each side to send and receive XML messages at each side.

Application to Middleware reliability .

Application to middleware reliability refers to the reliability features provided by the

middleware’s application to endpoint interface. This includes message delivery guarantees,

fault tolerant invocation, the ability to atomically group messaging operations with other

application actions.

L.

[

When using SOAP over HTTP the reliability mechanisms fray be implemented as
part of the application. Application can transactionally coordinate with the message
store to guarantee the reliability.

For options 2 — 4 applications can't communicate lranéactionally with MOM message
store without using the MOM specific APIs.

For last option application to middleware reliability relates to the direct use of the

underlying middleware's API and its reliability features,

-18 -

Application to application reliability

LIBRARY =
UIBVERSTY GHIBRATUW A, SR LANKA
MORATUWA

Application to application reliability can be achieved in two ways.

1.

In direct transaction processing, an agreement protocol is used to directly include one
application's transaction processing as parl of another application's transaction
process. Here both applications interact with the same global transaction.

In Queued transaction processing two intermediate data stores can be used for sending
and receiving messages. There are three transactions involve in communication
between two applications. First transaction commits the message to sending data
store. Then the receiving application reads the message from there and commit back
to the second storage. Finally original sending application reads the response message

from the second storage,

5.

2.6 Transactions and messaging

Messaging can be integrated with the object transactions in different ways. This paper[16]

pointed out such for patterns possibly used.
2.6.1 MQ Integrating Transactions

MQ Integrating transactions do the reading messages from the queue, updating the distributed
object and writing the response message back to the queue in the same transaction. But this

transaction corresponds only a part of the global transaction.

local OutputQueue

Figure 2-9 MQ Integrating Transactions

2.6.2 Message delivery transactions .

Message delivery transactions integrates the message delivery model into distributed
transactions, It allows clients to send the messages asynchronously while doing the other
distributed object transactions. Message delivery failures can be observed and abort the
transaction accordingly. If there are messages a]rcaay sent then compensation messages can

be send. -

)=

sel of message recipients set of message reqpents

| T [, 1
tx chent 1x senver abyects tx chem tx server obyects
f 1 | | |
o0 02 Q3 04 0s o1 02 03 04 0s
| | i I | I m1 | | | |
I | i 1 I = = I I I
I = 1 I *—mr | I I
i 1(4 nd i I [— > ' !
I m T — I ' | r 1 - |
[[S [iz I sl [
I I 1 v I (il I I I I
L | | J -l 1 | | | -
- | 1 | | - | | | |
I I i i I 1 I | I |
I T L I I I T Ll I |
I I | — I 1 I [pam— |
| | r— I 1. I ad— I
e — I I re T 1 I |
I i I I 1 I I I I
| /'<l| ! : | l—m—’l‘ | | [
i el 1 I I me2 [» I I
I | Th— I i I | I I
[| s | O me 1 =] > |
I I | I 1 L I | | I
I I 1 I 4 [I I I I
Message Delivery Transaction Standard OTS Transaction

Figure 2-10 Message Delivery Transactions

2.6.3 Message processing transactions

Message processing transactions integrates the message processing model to the distributed
object transactions. This enables the asynchronous request processing between transactional

distributed objects. The transaction is not committed until the response is received.

o client tx server ohjects

02

=

I
[
[
F

:r*f"““g

A

m1 result

B 0 W

L

Message Processing Transaction

Figure 2-11 Message Processing Transactions

2.6.4 Full messaging transactions

Full messaging transactions refers to the system which has both the message delivery

transactions as well as the message processing transactions.

2.7 Middleware mediated transactions

There are two widely used transaction processing systems called. Object oriented transactions
and message oriented transactions. Object oriented transactions happegs in a synchronous
blocking way . Further object oriented transactions uses 2PC protocol to achieve the atomicity
of the transactions. In message oriented transactions only enqueuing and dequeuing messages
are done transactionally. Therefore message oriented transactions does not preserve the

atomicity.

Middleware mediation transactions[15] suggest a way to provide the end to end transactions
while keeping the advantages of the message mediation transactions. It provides some end to

end checking at the middleware layer.

2.7.1 D-sphere

D-sphere[17] is one of the implementations of the middleware mediation transactions. D-
sphere provides the end to end reliability by providing an middleware to the user which
manages the end to end transactions. Following figures show how it works with and without

D-sphere.

D-Sphere

Figure 2-13 Application With D-sphere

-

D-sphere architecture supports above requirements by providing a middleware layer 1o users

which manage transactions internally.

Message Sender,
Transactional Client

DS begin
DS _commit
DS _abort

readMessage
sendMessage 8

D-Sphere API

D-Sphere Management

invodation § = .
h [existing base services]

Transactional Resource:

Figure 2-14 D-sphere Architecture

<5 =

Chapter 3

Methodelgggy

3.1 Previous So‘ﬁiﬂion

ES
e == ___\'Qif
Persistence //[Pmmﬂmwe
Storage | et) ’ T4fcommi§// H_‘ftcrfage/
S \'Qcommu / ==
Client Program 1 Ry Server Program l

Figure 3-1 Previous Solution

_25 -

-

Fig 3-1 shows the probable way of solving the above problem with the original WSO2
Mercury implementation. First the client program has to read its' persistence storage within a
transaction, build the message in memory and commit the transaction. Then it gives the
message to RMClient which again has to start a transaction and commit the message to RMS.
Once the message stored at RMS it reliably transterred to the RMD by the WS-RM protocol.
Al the server side RMReceiver receives the message within a transaction from the RMD,
build the message in memory and commit the transaction. Finally server program commits the

message to server persistence storage within a transaction,

This model reliably operates with the presence of network failures since WS-RM protocol can
handle it using retransmissions and acknowledgements. But if the client node fails after first
transaction being committed to the client storage and before RMClient commiit it to the RMS
then the message can be lost. Same failure can occur at the server side as well. On the other
hand if the first transaction commits after the second transaction there can be duplicated

messages.

3.2 Proposed Solution

e | - S
! Persislence /._/; Persisten
Storage h ‘ T4/"' l Slorage
b e _I{ | R T
| \ L /
) ’ Client Program | Server Program |
Connit '

Figure 3-2 Proposed Solution

Fig 3-2 shows the proposed solution with the distributed transaction support to address the
node failure scenarios. Unlike in the previous case now client uses a distributed transaction to
update both client storage and RMS storage. Client only commits to the transaction manger
and if client node fails when this commit happens, the recovery process of the 2PC ensures the
atomicity of the transaction, Similar process happens at the RMReceiver as well. At the server
side server program transaction has to participate the distributed transaction started by the

RMReceiver and again node failure handle by the recovery process of the 2PC protocol.

226 -

3.3 Alternative Solutions

3.3.1 Integrate WS-RM protocol with the client storage and server storage
by taking them as RMS and RMD

Persistence Persistence
Storage L owshm L Storage

Mo K R

Figure 3-3 Integrate Persistence Storage with RM Storages

Fig 3-3 shows a possible solution for this problem in a specific way to a given problem. For
this solution distributed transactions are nol required since RM protocol tightly integrated to
the client and server storages. But the advantages of this type of approach is less since it does
not try to solve the problem in a generalized way. The focus of this project is to come up with

a middleware which provides the WS-RM functionalily to any application.

-27-

3.3.2 Use the same transaction to update both application level storages
and WS-RM storages

- -
Persistence / Persistence
Storage T/ Storage
e - ‘\I1 y h - =4
", : '/.’

Client Program ‘ Server Program ‘
T 4,0

Figure 3-4 Using the same Transaction

Fig 3-4 shows a special case of using same transaction to update both application level
storages and the WS-RM storages. In order to use this scenario WS-RM storages should be
there with the same appésié?lion storages, Therefore this may not be useful when integrating
message receive functiéi}iélity with different storages and different application servers.
Although this functionality can be provided with the proposed storage API based Mercury

implementation, this project only focus on the distributed transaction based solution,

==

3.4 Solution Architecture

3.4.1 State machine model

WS02 Mercury is based on a state machine model where the state is kept in objects called
RMSSequence, RMDSequence and InvokerBuffer. This state machine model is based on the
fact that various external events change the state of each object, Further a set of workers
namely RMSSequenceWorker, RMDSequenceWorker and InvokerBufferWorker performs set
of actions based on the state of the object. It does not assume any order of the events. If a WS-
RM message get lost while transmitting through the network, only the event which would
have occurred get lost while system state remains same. Therefore system operates in the

previous state which causes the retransmission of lost message hence achieving reliability.

RMSSequence

LA
[= i |

ERR— W RMSSequence g AR
| [+
‘_:J
.
Figure 3-5 RMSSeq.
Fig 3-5 shows the possible events that would change . tate. These events
namely create sequence response receive (CRR), last m) 'R). application
message receive (AMR) and receive acknowledgement for ai. ’ lﬁf 5% N her cause by

7
the application client or network message reception. RMSSeq, X W 's on four

factors called sequence started (SS), message in the buffer (MIB), L _74)’ ‘LMR)

and terminate message send (TMS). These four factors create possibi 6/) Jnly
7

seven states are valid as shown in the Fig 3-6. {,.(

229 .

F i 3 > R e s pry

[l Sl = § ez 50 : i i
—{— ey iy ! ~H—

= & & t

L& L H i

8 a 1 4

G i 8

1) 1 2 1

3 1 } 1}

B * % 4

[t s}

] f S 4

§ ¢ 1]

1 0 i 1

L] i i)

1 ' {

43 i)

4 4 s 4

L] 1 1

Figure 3-6 RM.

N

£3
; Ve ? T o
Fig 3-7 shows the complete state transition diagram . \ﬁp : Jbo * and events
which change those states. 13 to'@,}
A /7
£

/(JO

-30 -

,/. e ..-.l-‘\\ LMH

LMR -

I

‘ ——
7)
3% ;

——AMR(SC—® RMDSequence | ¢ MASS—

Figure 3-8 RMDSequence Events

-31-

Fig 3-8 shows the possible events that would change the RMDSequence state. These events
namely application message receive completing the sequence (AMR(SC)), application
message recelve without completing the sequence (AMR(SNC)), last message receive
completing the sequence (LMR(SC)), last message receive without completing the sequence
(LMR(SNC)) and terminate message receive (TMR) would cause by the message receive
from the network. RMDSequence state depends on four factors called first message receive
(FMR), last message receive (I.LMR), every message has received (EMR) and terminate
message receive (TMR). These four factors forms possible sixteen states but only five states

are valid as shown in the Fig 3-9.

Py = g - > —— LT T E—— e o
| | 1 |
bl e n i 8 =1
4
e a o “
W o L% I
-y i —n
W A L W
.

Fa 0 o Fl
7 o T T
o - £ "
tf T v v
) b Fan 2
A I W 1
_9: 3 3 IL
T b

o 4 34 " 4
o t T B] ¥

! 4
“ Py e +
L ko) L% T
.
- - - -
e
4 0 4 4
T L T T
e,

+ " I’ A
1] v 1
1 1 1 1

Figure 3-9 RMDSequence States

Fig 3-10 shows the complete state transition diagram with the set of valid states and events

which change those states.

.30 -

Ao LMR(SNC) " L. T—

/ “‘ Y-~ TAMR(SNC)
0000] F o
AMR(SNC) _g'@cj LMR(SNC)
\———b 1000 |
! ‘ _ “//
| !
G AMRSE—
LMR(EC)
111
" 10—
_H A
Figure 3-10 RMDSequence State Machine
-
.

- A%

InvokerBuffer

Figure 3-11 InvokerBuffer Kvents

Fig 3-11 shows the possible events that would change the InvokerBuffer state. These events
namely last message receive (LMR), application message receive (AMR) and send all
available messages to application (SAM) can cause by the messages receive through the
network or the invoker which sends the message to application layer, InvokerBuffer state
depends on three factors namely messages in the buffer (MIB), last messag® received (LMR)
and every message send (EMS). These three factors forms possible eight states but only four

states are valid as shown in the g 3-12,

P
.

Figure 3-12 InvokerBuffer States

Fig 3-13 shows the complete state transition diagram with the set of possible states and events

which change those states.

Figure 3-13 InvokerBuffer State Machine

3.4.2 Run time Architecture

WSO02 Mercury is a WS-RM implementation written on top of Apache Axis2. Apache Axis2
provides a set of extension points called handlers. These handlers forms the Axis2 Engine
execution chain and can be deployed as modules. Therefore WS(O2 Mercury in other words is
an Axis2 module. A typical Axis2 message send starts with the application client which
calls the service client. Then the message is passed through the Axis2 Engine handlers and
finally is sent to the network using the transport sender. At the server side message is received
by the transport receiver. After that it invokes the Axis2 Engine where message is passed
through a set of handlers and finally receives at the message receiver which invokes the

application at the server side.

WS02 Mercury consists mainly of two handlers called MercuryOutHandler and
MercurylnHandler which are used at out and in flows respectively, and a set of workers called
RMSSequenceWorker, RMDSequenceWorker and InvokerBufferWorker which read the

respective storages and perform the appropriate action based on the state,

Next set of scenarios shows the runtime architecture necessarily with the persistence storage
which uses transactions to read/update storage. Although in memory storage does not support

transactions it is also has the same runtime architecture,

In Only Messages

E B r) MercuryQutHandler) > }," MercuryinHandier ‘;ﬁ{—; @
5 A 0 5
S ! i 5
2 | I | b

| Messsns vomed
g won 4 8

! Ams | [MESems] | | [AMD | [invoker Bufter
Woster | :
I- \v'
{ Memwyinander 7 | | { MemuyOutHandier (<

Figure 3-14 In Only Messages Runtime

Fig 3-14 shows the runtime execution for an in only message scenario. Mercury receives the
message from the Application client at the MercuryOutHandler, creates a sequence if it
already not there and stored the message in the RMS, RMSSequenceWorker picks this
message and invokes the MessageWorker. MessageWorker sends this message through the

rest of the handlers and finally the message being sent to the network through transport

.36 -

-,

sender. At the server side transport receiver gets this message and invokes the Axis2 Engine.
Mercury receives the message at the MercurylnHandler which updates the RMD and stores
the message in the InvokerBuffer. Then InvokerBufferWorker picks this message from the
invokerBuffer and invokes the rest of the handlers so that ultimately message receives at the

application at the server side.

Reliability of the WS-RM protocol is achieved by retransmissions and acknowledgments as in
any other reliable protocol. A separate worker called RMDSequenceWorker is used to send
acknowledgments back to the client side. Upon receiving an acknowledgment client side
updates its' state as message has successfully send. As shown in the [igure,
RMDSequenceWorker reads the RMD state and sends an acknowledgment message using
MessageWorker which generally is used to send any message. At the client side Mercury

picks this message using the MercuryInHandler and it updates the RMS.

Although it is not shown in the diagram RMSSequenceWorker sends the create sequence
message when establishing the sequence and sends the lerminate sequence message 1O
terminate the sequence. Similarly RMDSequenceWorker sends the create sequence response

message according to the state of the RMD.

How this architecture supports user transactions? As it is shown in the Fig 3-14 it does not
keep anything in memory. Any event reads and updates the storages using a transaction which
is at the serializable isolation level. Therefore any update is not visible to other threads or

workers until the transaction commits successfully. %

In Out Messages

£ m}__LMgmmm 2 |2 P MecuyinHander T} :>L—-.” Eg
5 ||A 4 ﬂ L
S | 5
£ —L, E———
- % 4 . (]
l:’> | HMD [|!m(ﬂﬂ' Bul‘l‘el' ‘;
A l
S
| | |
o S
¥
Invoker Buffer| | RAMD i
: [rsree] _—
3":5 L _II o
E | 4 i J‘-a’
= | _ _ v
i GRS ST (R Q=T

Figure 3-15 InOut Messages Runtime

Fig 3-15 shows the run time architecture for an in out scenario. The response path is similar to
request path where the message receiver at the servgr side initiates the response message flow
and it is ultimately received by the Axis2 callback. This axis callback is registered by the

application client when sending the message.

-38-

Fault Handling

. 55 S MercuyOurandes 59 Mecuyinrander 5 Sl s
& e o e [S— —i _r__.___.. . — a
(] | £ [2
S | ' 5
Z | P 3
1% Vo L L iL 3
L — [RMDF‘ | [Invoker Buffer —
A |
i

[|

U

Callback Handler

O ————"

|

Figure 3-16 Fault Handling Runtime

Fig 3-16 shows the run time architecture for fault handling. In a fault scenario message
receiver throws an Axiskault which Mercury takes as ah application fault, This exception is
captured at the InvokerBufferWorker level and it first roll backs the original transaction used
to invoke the application. After that InvokerBufferWoker starts another transaction and sends
the message using fault out flow. Client side scenario is similar except the message is received

e

at the in fault flow.

-39 .

3.4.3 Storage API

RMSSequenceManager

RMDSequenceManager

DTO

L

Transaction

InvokerBufferManager

Storage Manager

Figure 3-17 Storage API

Storage APl mainly consists of a set of Manager interfaces namely RMSSequenceManager,
RMDSequenceManager and InvokerBufferManager, Diata transfer classes, Transaction
interface to handle transactions and a top level StorageManager Interface which provides the
access to other interfaces. StorageManager Inlcrf:-fcc provides the methods to get transactions
and manager objects which provides the methods to manage respective storages. Before
accessing the manager obijects, the accessing thread should start a transaction by getting a

transaction from the storage. -

This storage API provides the explicit support to implement in memory and persistence
storages in different ways. For an in memory storage, there is one set of manager objects for
each sequence. The manager object for a particular sequence can be found using the
parameters being passed to manager object access method, On the other hand for an
persistence storage there can be one set of manager object for each sequence. In this case the
correct storage dto object for a particular sequence is determined by the parameters passed to

storage dio access method in the manager interface.

=40 -

InMemory Implementation

c

N

3]

| [E e [

InMemory RMDSequenceManager "EZ

- Q

RMDSequenceManagerMap Z

2

= =

‘ inMemory Inv ok erBufferManager

ImvokerBufferMapJ

InMemory StorageManager
Y

Figure 3-18 InMemory Implementation

Fig 3-18 shows the in memory storage design for Mercury, In memory storage keeps a
separale sequence manager object for each sequence and it keeps these objects in three hash
maps called iSKRMchucnchanﬂgchap. sequencel DRMDSequenceMangerMap,
sequencelDInvokerBufferMap. A sequence manager object has a lock and@ another object to
keep the details for the sequence manager object. Any sequence manager object can be
retrieved from hash tables giving the key as the parameter. But before accessing the sequence
manager object the corresponding transaction has to acquire the lock for that object,
Synchronization

lor proper state machine execution only one thread can update the sequence at a given time.
Hence it is required to synchronize the state machine or sequence manager objects, Two phase
locking is used to synchronize the sequence manager objects where a transaction acquires the
locks when accessing objects and releases them upon a commit or a rollback. A transaction
always acquires sequence managers in the order of RMDSequenceManager,

InvokerButferManager and RMSSequenceManager to avoid deadlocks.

-4] -

Persistence Implementation

T

eManag

"
-

Mapper

PersistenceRMDSequenceManager
Persistencelnv okerBuffertManager

Persistenc eRMS Sequerx

8’

PersistenceStorageManager

Figure 3-19 Persistence Implementation

Fig 3-19 shows the important components of the persistence storage, It has a conncctiérj
manager which is ‘used to create either normal database connections or xaConnections to
database. There are two types of transactions called JD}}C'I'ransaclions and JTAThransaction,
A JDBCTransaction contains a normal database connection where as a JTATransaction
contains an xaConnections. Once a thread requests a transaction persistence storage access the
connection manager and creates the requested type transaction. Unlike in the in memory
model, persistence storage manager keeps onctsel of sequence manager objects for all
sequences. All sequence managers use a set of helper classes called tablémappers to create sql
Queries for dto objects and to create dto objects from result set objects. Sequence manager

objects gets the connection object to use from the thread local.

Synchronization
Again for proper state machine execution only one thread hence a transaction can update the
sequence state. This can be achieved by setting the isolation level of the transactions to

TRANSACTION_SERIALIZABLE: . This isolation level can leads to deadlocks.

First there can be deadlocks due to different order of table access. This has been solved by
always accessing the RMDSequenceManager related tables first, then InvokerBufferManager
related tables and finally RMSSequenceManager related tables. One transaction may nol

acquire all sequence manager objects but if it requires it has to access in the given order,

-42.

-

At TRANSACTION_SERIALIZABLE isolation level a transaction has to acquire a writer
lock (an exclusive lock) to update a table. A writer lock can only be acquired after all the
other transactions release the reader lock at a commit or a rollback. This gives another type of
dead lock if two transactions iry to read and update a table concurrently. Since both can not
release the reader lock until write. This problem can only be solved by acquiring an exclusive
lock at a read. An exclusive lock can be acquired at the read time by using 'select for update’

statement.

Mercury persistence storage uses above two techniques to achieve synchronization avoiding

deadlocks. It has been tested with an embedded Derby database with row level locking,

-43 .

Database design

s

RMS SEQUERCE T

-ID_C . leng
SEQUEMCEID_C - string
-SEQUEMCE_QFFER_C . string
~STATE_C - int

RMS _AXE 2 INFO_T
~-0_C long
SERVICE_NAME C ' string
-CURPEMT_HANDLER_MDEZ_C : int
~CURREMT_PHASE_ND Ex_C im

-ACKES_TO_C - string 1 -IS_SERVER_SIDE_C : int
~LAST_MESSAGE_NUMBER_C : lang T—|~SCAF_NAMESPACE_URI_C - stnng
START_TIME C . lang -4DDRESSINC_NAMESPACE_URI_C : string
-EMD _TIME_C - long ~TRANSPORT_IN_NAME_C - string
-LAST_ACCESSED_TIME_C - long -TRAMSPORT_OUT _MAME_C - int
-RETRANSMIT_TIME C Iong -15_LiSE_SEPERATE _LISTNER_C |t
-TIMEOUT_TIME_C . Ieng ~TIME_OUT_IN_MILISECONDS_C . long
~IS_AMONYM OUS_C - int \;RMS_;EQUENCEJB_C long
-LAST_CREATE_SEQUENCE_RESPONSE_MESSAGE SENT_TIME_C * long
-LAST_ACKNOWLED GMENT_SENT_TIME_C - long
-CREATE_SEQUENCE MESSACELD © . string o
-MESSACE_NCEIMEER_(inng ___RMD_AXIS2_INFO_T
-END _POINT_ADDRESS C : string -ILL long
-MEF_C string -SERVICE_MAME.C . string
~MAXIMUM_RETRANSMIT_TIME_C long -CURRENT_HANDLER_INDEX_C - int
~EXPOTEMTIAL_BACK_OFF . . int ~CURRENT_PHASEINDEX_C int
~CREATE_SEQUENCE_RETRANSMIT. COUNT.C - int -I5_SERVER_SIDE_C - imt
-KEY_C : string -SOAP_NAMESPACE URI_C - string
~TO_ADDRESS_C string -ADORESSING_NAMESPACE_URI_C string
~TRANSPORT_IM_MAME_C - string
1 ~TRANSPORT_OUT_NAME_C - string
-15_USE SEPERATE_LISTNER_C im
~TIME_OUT JM_MILISECONDS C long
-RMD_SEQUENCE_ID_C ' lang
1
)l i
- _) _RMDSEQUENCET]
RM5_MESSAGE T 5L i

-ID.C leng

-MESSACE_NUMBER_C : tong
=IS_LAST_MESSACE T - imt
-SOAP_ENVELOPE_C : string
-IS_SEND_C - int
~RElS_MESSAGE_ID_C : string
-RELATES_TO_MESSACE JD_C string
-REPLY_TO.C string
~CALL_BACK_CLASS_WAME_C string
-ACTION_C string
-OPERATION_ACTION_C - strirg
-SERVICE_NAME_C - string
-RMS_SEQUENCED C lang
-LAST_MESSACE SEMT_TIME C . long
-RETRAMSMIT_COUNT_C - lang

SEQUENCE_ID_C * niring
SEQUENCE_OFFER_C siring

=STATEC imt

~ACKS TO_C - string

-LAST_MESSACE_MUMBFR_C * leng

-START_TIMEC string

~END_TIME_C . long

-LAST_ACCESSED, MIME_C - lohg

-RETRAMSMIT_TIME_C : long

“TIMEQUT_TIME_C : lang

=S ANONYMOUS_C inr
—LA':T_CPEATF,_SEQUENLE_PESPUNSE_MFJMGE_SENT_TIME__C long
-SELF_ACKS TO_FPR_ID _C srihg

~LAST_ACE MO LED CMEMT_SENT_TIME_C long
-CREATE_SEQUENCEMESSACE JD_C string

-FLOW_C * int L
-OPERATION_NAME_C string [1
~OPERATION_NAME_SPACE.C | string '
INVOKER_BUFFER_MESSAGE T L
TNVOKER_BUFFER T i :.[:A.CE-P%II n—— SEQUENCE_RECEWVED _NUMBER. T
[- E -MESSAGE. ML L long -
=10_C bon i -ID_C - lon
-STZTFJ_ 'gln'. '<r'_"\‘F"_ET\"f,.EL'_"FE""' strifg -NUMBERE Inrg
~LAST_MESSAGE_C long "'r‘l':l—_fl":l'f[&h;m ';’El_ -RELATES_TO_MESSAGE_ID_C * String
~LAST_MESSACE_TO_APPLICATION_C - fong e s -RMD_SEQUENCE_ID_C long
~LAST_ACCESS_TIMEC - long _Mé{',i_é_-m"._””‘:‘rm L
SEQUENCE_ID_C string S o
-ACKS TO_C * string 9 et S
TIME.QUT TIME.C fong 'flif;_"-gola‘t- L g
-IS_ANONYMOUS_C int TRV
-mﬁ?; SEQUENCE 1D long ~INVOKER_BUFFERD_C : long { | BUFFER_RECEIVED NUMBER.T
- - -OPERATI OM_NAME_C string IDC long
— -OPERATION_NAME SPACE C - string -NUMEER_C long
-RELATES TC C . sifng ‘ e
~INTERNAL_BUF c
Bl INTERNAL_BUFFER_{D_C - long

Figure 3-20 Database Design

Fig 3-20 shows the underline database design fc

r persistence storage. It contains a separate set

of tables for each sequence manager in order to avoid deadlocks by accessing them in a clear

order always.

-44 -

3.4.4 Other issues and solutions
Starting the terminated sequences at the client side

Client node can fail while sending a sequence of messages. Therefore for application client
there is no way to know whether it properly terminated the sequence or not if the client node
fails just after sending the all the messages (this case happens only when there is no explicit
last message but application client sends a terminate message to Mercury). As a solution to
this problem Mercury sends an explicit terminate signal for all the sequences that has not been
terminated. If the application client has not send all the messages then it can start a new

sequence and send the remaining messages.

For in out client scenarios once the client node fails, addressing dispatch information stored at
configuration context also get lost. And also there is no axis2 service to receive the Messages

as well.

In order to solve the above two issues Mercury uses a deplovment life cycle listener to
terminate the non terminated sequences, to add the axis2 service and to register dispatch

information in order to dispatch sequences.
Distributed transaction recovery

Two phase commit (2PC) protocol guarantees the atomicity of a global transaction even when
node fails. 2PC protocol has a recovery phase to recover from the node failures if the
coordinator or any other node fails within the commit pfrase. Therefore in order to guarantees
the atomicity of the global transaction the XA implementations should properly support the
recovery phase, However it seems some database XA drivers have problems with the recovery

.

phase.

Chapter 4

Use case scenarios

Mercury can be used to invoke services using both ir% only and in out message exchange
patterns (MEP). Although this research work focus on user level transaction support it is
designed in a way that it can be used with simple inmemory implementations as well.
Following use case scenarios are used to demonstrate how to use Mercury with different
storage implementation types, WS-RM 1.0 dcscrib:cs an addressing based dual channel mode
to send and receive messages. Therefore for all use case scenarios given here uses addressing
based dual channel mode. There is another specification describes anr‘f)‘iggyback message
based system which uses http back channel to receive messages. Mercury supports the latter

kind of invocations only with the in memory implementations.

- 46 -

4.1 InMemory

]

Ciient Program J Server Program

P

Figure 4-1 InMemory Invocation

InMemory invocation is the most simple way of using Mercury. It does not requires to do
anything other than the engaging the Mercury module as in any other module engagement,
Mercury uses in memory implementation as the default storage. Messages can be send
through a tep monitor and start and stop channels in order 1o prove the reliability with the

presence of network failures.

4.1.1 In Only invocation

ContigurationContext configurationContesT =
ConfigurationContextFactory. Createlonsigurari snionTextF romF: leSystemi
AXIS2_REPOSITORY_LOCATION, AXIS2_CLIENT_CONFI ILEY;
seryiceClient serviceClient = new ServiceClient{configurationContast, nlly;
serviceClent. setTargetEPR (new Endpoi rrtReference{"l';tla:,-f,*Iﬂ(\ﬂhost:8983;'“1's;_’,fser\r'icw/lnﬂer!m‘ylnService“));
service(hent.getﬂnmons{).semctiun("urn:Innemur‘ylnﬂperation“);
serviceClienk. engageNodule("Sercury™y;
serviceCTient.getlptions(). setUseSeparatelistaner(true);
serviceClient.getOptions(). setProperty(HercuryClientConstants. INTERNAL_KEY, “keyl™);
for Cint 1 = 1; 1 < 20; 144} {)
serviceClient. firedndForget (getTesTOME lement(13);
try {
Thread. sTeap(1000%;
} catch (InterruptedException e) {
} ' .
MercuryClient mercuryClient = new MercuryCQlient(service(lient):
sercuryClient, terminateSeguence ("keyl™);

Figure 4-2 In Only Client

It uses a service client object to invoke the service. First it creates a configuration context
pointing to an repository location. Then it sets the endpoint reference and soap action
associated with the operation as in any Axis2 client invocation. After that it engage Mercury
module in order to make this connection reliable. Here InMemoryInService should also have
engaged the Mercury module. It sets the useSeperateListner parameter to make this a dual
channel invocation. Mercury uses the internal key parameter to distinguish messages
belonging to different sequences. After setting all the necessary parameters it sends 20

messages and finally terminate the sequence by invoking the terminate sequence method,

-47 -

4.1.2 In Out Invocation

ConfigurationContext configurationContest =
Confiqurat1UnCcntextFactOFy.crearaton‘?gu"at:on(ontextFrowF??eSystew{
AXIS2 _REPOSITORY_LOCATION, ANIS2_CLIENT _COWFIG_FELE);
ServiceClient serviceClient = new ServiceClient(configurationContext, aull):
servicelltent, setTargetEFR (new Enup01ntFefnrvnue("httn:,ancﬂIhﬁst:Bﬁsaﬁd\is?xﬁprv:ces;Inﬁnﬁor}inuutSPrvicw“));
corV!LEC‘19nt.getﬂnt1Dnsﬁj,ﬁoth_t1un(“urn:lnﬂenuryinﬂutnpvrleUH”);
serw1cai11ent.g9tﬂut1ans[},setUzeSeparatsl1?tenerflrue]:

EPrv1cEC11ent.getu;rltn5LJ.qetPrUpertv(Mercuryfl1unt(onstants,SEG!EN[E_GFFFH. Constants. YALUE _TRUEY;
seryiceClvent.engagedodul e ("Mercury™);

for (int 1 = 1; 1 < 20; 142} {
sendAsynchornousiessage(serviceClent, 1, "Reyi"),
ry {

Thread. s1eep(1000};
} catch (InterruptedException e) {
¥
}

HercuryClient mercuryCTient = new HercuryClient({sarviceCliant);
nercuryClient, terminateSeqguence{"Keyl™);

Figure 4-3 InMemory In Out Client

WS-RM supports in out invocations by establishing two RM sequences for in and out
message sequences. For incoming sequence an sequence identifier can be offered when
sending the createSequence message for out sequence. In this sample client it sets the
sequence offer to ask Mercury to send a sequence offer with the createSeqence message.
Unlike in the in only scenario it does an asynchronous in out invocation using the

sendAsynchronousMessage method.

private void sendAsyncharnaushessage(ServiceClient seriicallrent, int 1, String key) throws AxisFault {
serv1cec119nt.getﬂptinns(j,setpropert}:M=rCLry(]TPntEonstants.INTERMAl_kEr, key):
Ax1sCallback axisCallback = new AxisCallback() {
pubTic vold onMescage(MessageContext meglontext) { u
SysStem. sut. printin(ot the message =ws " + msgcontexc.getEnve]ope(}.getBady().getFirstE]enent(
}

public void gnFault{MessageContext msglontext) { -
System,pet. printin{"Got the fault -=» " 4 msg(nntext.getEnve10pe(),getﬂody()‘getFau]t().getDetaﬁT(]};

¥

public vold onError(Exception o) {
e.printStackTracef);
} 3

pubtic woid onComplere() {
} e
h

serv1ce(l1ent.sendRece:veNnnB1ock1ng(gerTest0uE!ement(key + 741+ "), ansCaliback);
}

Figure 4-4 SendAsynchornousMessage Method

It sets an Axis Call back object to receive the messages and do an asynchronous invocation so

that it can send the out messages without waiting for the incoming sequence.

_48 -

4.1.3 Fault Handling

public class InMenoryFaultMessageRece1ver extends AbstractInfutMessageRecetver {

public void TnvokeBusinessLogic(Messaged ontext nMessage, MessageConText OutMessage)

throws sxisFault {

System.nu!.print1n{"5enﬂing the fauli nessage™)
Axi1sFault axisFault = new AxisFaulT (“lestError nessage™):
axisFauTt.:EtDetd11(getTestDNE1ementf'rMessage.qetEnve‘Opeff.getBody().gEtFirStE1enent()‘get*ext(}));

throw axisFault;

13

private OMElement getTestOME]lement(String text)
OMFactory amFactory = nvhbsrractFaTrory.getf#factory[};
OMMamespace omNamespace = uuF:cturv.:'eat&[MNamespaue{“http:,f»ﬁuz,urufteﬁul“,“nsl“);
OMETement omElement = anactnrp:crearp1HE1ement["lesterurEiement",jmﬂamaspace):

onElement, setText (“Reply *
return omElenent;

+ test);

Figure 4-5 Fault Message Receiver

Fault scenarios has been implemented by using a message receiver which always sends an

AxisFault. Mercury

sends application level exceptions reliably by using the response message

sequence. When an application exception receives at the InvokerWorker it rollbacks the

transaction used to invoke the business logic and starts a new transaction to send the fault

message.

4.2 Persistence

APPLIGATION
CLIENT

T t/commit

F Client Program j

——

7 3
LA RM Client f

L e e —

-

’LRMD[

o ‘.'_ﬁ_

[+

N APPLICATION
_ SERVER
T4-'commi/1, e

l Server Program J]

B

| P

Y

<3

Ol EX

1 AM Receiver

=

— —

S —

Figure 4-6 Using Persistence Storage

Fig 4-6 shows a sample persistence slorage usage to transfer set of messages stored at the

APPLICATION_CLIENT storage to APPLICATION SERVER

storage. This configuration

works even with the presence of node failures (i.e. start and stop client or server) but there can

be message losses if the node fails at the

-d4g .

stages where message only resides in memory.

-

In order to use a persistence storage it has to be configured at the axis2.xml file both at the

server and client side. We use Apache Derby as the underlying database.

paraeter nares"sion

FUTEonTIg nare="%
“paraneter nanp-="
P Emeter s
<parameter nane-’
<paraneter nane-

</mdy]eConTig:

merClass " org. wen? seroury storage. iept . persis tence PPr'si"-h!nu-Smr.w'h-.man" Spdarameter >

SEring s Jdbe tderby hore,'ant | a/nsc, PraJect/nercmy,/ rodules ‘dema, perst stemcesclien t/database MERCUNY _DE< Jparane ters
U apache .derby . jobc Febeddedie i ver - Jpar et

' >/ par ame ter
b, passvord < parane ters

Figure 4-7 Persistence Storage Configuration

4.2.1 In Only Invocation

Configurationfontext configurationContext =
ConfigurationiontextFactary. rrearalonts QUrATTanCantextF ronfy) eSystenf
AXIS}.’_R[I‘O)IJM}_I.O(J”M, AXINZ_CLIENT_CONFIG_FILE);
ServiceClient serviceClient = new serviceClient(confiaurstionContext, nully;
serw‘:e(‘l'-ent.se‘:TargetEPR(new Eﬂdpo‘ntRefEl’EnLE("hltj',l:/'_."|D\'_alftQ§{:3033-"3.\"?.‘2-"52I’\"i(i!sz'P?l"sistEtKE]rlSEI'\'ICe"):;
serviceClient. get0ptions (). seTtActi (UurniPersistence Infiperarion”);
set’\r"cechpr'r.engagﬂudu?e["‘ler(urg 2 B
ser\r‘cechent.gewptinns:).se'tLrseSeparateUstens'(true);
ser\r‘ceE]lentAqetUntmrs,’).se‘tPronertvaercuryU1e-m’.orstan‘_s..IMEH'MJ._A'EF, “kevl™);

Connection connection = ge'tDa‘cabaseConnchon();

Statement statesent = connection. createstatement (d;
String sqlstring = “select ID_C froo TEST_SEND_GATA T whern IS_SEND (=0
ResulT5eT resultset = s‘tatement,e:eru‘[eﬂuery(sulStr1ngj=;
L st<Long> messageNumbers = new ArravlisteLong-();
while (resultSet.next()) {
nessageNnbers. 2dd(resul tSet. gatlong("}0 €)3;

}
resultSet.closef):

for (long messagelD : ressageNumbers) {

String gueryString = "select * from TEST SE ND DATAT where [D C=" + messagell:

resultier - Statement. evecuteuery{querystring);

1F (resulTSet. next()) i
STring message = resultiet, getString({"4rss AGE (M9
String updateString = “update IEST SEMD DATA_T set 15 SENG (el whore 1D (=" 4+ wessagelD;
statsment, executellpdare (updatestring);
Systen. out, prirtin"Sesting ressage ¥ 4 mescagelD);
try { .

Thread. sleep! 10007, Ny

} catch (InterruptedException e) {

serviceCTient. A reAndForget(getTastOMETenent (message)};

H

Statement.close();
tonnection.closa();

Mercury(l1ent mercuryCitent = new MercuryClient{serviceClient);
l!rcury(hent.tarmnateSequence(“keyl“}; e

Figure 4-8 Persistence In Only Client -,

As shown in the Fig 4-8 first it reads available message numbers to be send within a separate
database connection. Then for each and every message it gets the message from the database
record and updates message as send. Since we have not set the auto commit to false,
executelipdate statement commit the transaction automatically. After that as in the in memory
case it sends the message. If the client node fails while it sleeps then this message get lost at

the client side,

protected void invokeBus) nessLogicMessageCantext messageContext) throws AxisFault {
String message = nessage(unteut,getEnuempe().getBndy().getF'irstE1ement().getText(};
System.put.printin{"Gut the S03p Bessage ==> “ 4+ nessage):

try {
Statement statement = cConnection.r reatesxtatement();
5tring insertQuery = ™insert iafo TEST_RECEIVE DAYA T (MESSAGE_C) values ('™ + message + "*1v;
statement.execute(insertuery, Starement. RETLAN_CENERATED_KF¥S);

statement.close();
connection.close();

} catch (SOLException &) {
B.printStackTrace();
}

Figure 4-9 Persistence In Only MessageReceiver

At the message receiver it saves the message to APPLICATION_SERVER database within a
transaction. Before sending this message InvokerWorker reads the message from the RMD
and starts a transaction but commit it after invoking the business logic. Therefore duplicate

message can result if server node fail before invokerWorker commits the transaction.
4.2.2 In Out Invocation and Fault Handling

Both In Out and Fault handling clients are almost equal to the in memory cases but they read
the messages from the database and update before sending them as given in the in only case,
The only difference is that persistence invocations uses concrete AxisCallback class to receive
the messages. This is useful when a client node restart while transmitting a sequence of
messages. Then Mercury can create an instance of callbat'k and register it at the Axisoperation

callback receiver.,

pubTic vold onMessage(MessageContext msglontexty {
String message = msglomtext.getEnvelope().geTBody(}. gatF1 rstElement (), getText();
System ot printin{™0M Element ==> * 4+ message);

378 The psrsnsy

Ldate

tonnect1on connection = getDatabaseConnection();
try {
Statement starement = COnnection. createStatenent();
String insertQuery = “insert into TEST_RECEIVE_DATA_T (MESSAGE_C) values ('™ + message + “')™;

statement, executelinsertluery, Statement.,RETUAN GENERATED KEYS);

statement.close();
connection. close();

} cateh (SQLException e) {
g.printStackTrace();
}

3

puhlic vold onFault(MessageContext msgContext) {

ITrIng mEssage = nsgCuntext.getEnve1ope(j.getBudy(),getFault().QetDEta11().petF1rstE]enent(J.getTExt():
System. sl printin("09 flement ==» " + message);

Connection connection = getDatabaselonnection();

try {
STatement Starement = connection. createStaterent();
String nsertfuery = “insert inte TEST_RECETVE_DATA_T (MESSAGE_L) values {*" + message + "*)1™;
statement,execute(InsertQuery, Statement. RETUAN_GENERATED KEYS);

statement.close();
connection.close();

} catch (SOLException e} {
e.printStackTrace();
1

Figure 4-10 Persistence Callback Handler Methods

4.3 JTA

& . =
APPLI&:AT!ON ' APPLICATION
CLIENT SERVER
S N Y
.\Ti T/

Client Program

WSRM -

Figure 4-11 JTA Invocation

Fig 4-11 shows a sample JTA usage with Mercury to reliably transfer a set of messages stored
at the APPLICATION_CLIENT to APLICATION_SERVER database. This configuration
does not loose or send duplicate messages due to recovery nature of the distributed

transactions. Here we use the Apache Derby as the underlying database and the Atomikos

=52

opensource library to provide the JTA functionality. The persistence storage with the jta

connection manager have to be configured both at the client and server axis2.xml files.

<parameter nane-"Hercerylse 1TATEARSac Hon ™ true< paraneters

<paranefer name- s roragetanagerol ass -org . wso? | eercur y.storage, 1mpl . persistence. Persistenc EStoragemeananer < par ane ter
<noduleCanrig nane="Moreury™
“parareter nane 3

Lis bring > jdbe dery | /home/ami 1a/msc/projec t/rercury,/modules /dero,/ jta /<l 1ent/database /NERCURY _DB- /paraneters
driver 4wy, apache. derby ., jdbc. EnbeddedDri ver < /parame ter -

LU e ane Yer s

password™s < ‘parape ters

ta. cannection. namager. elass™=1k_ac.w L nsc.dena. e1ient . 1ta. atoni kosITACORNEC U onSanager < /parane ter-

rtes
T1Ver"-org. apache derty . Jobe . EnbeddedlaDatasource- /POty

atabaseNase™: /home/asila/msc/project /rercury /modules/deno, jta/client/database, MERCURY _DE< ‘property

‘pararcter nane
<paraneter name

<property nhame-
</pararelers
</moduleConfige

Figure 4-12 JTA Storage Configuration

For jta connections application client program supposed to provide a JTAConnectionManager
which is used to get the transaction manager and connection objects. InvokerWorker use
MercuryUseJTATransaction property to decide whether to start a JTA transaction or not

before invoking the business logic.

public ¢lass aromtkos]TAConnectiondanager inpiements JTaConnectionManager {

private static Log Jog = LogFactary.gerLDg{Atnn1iusJTAConnect1nnManager.c]assJ;

private String dbDriver = null;
private Properties properties = null;
private AtomikosDataSourceBean dataSourceBean = nyli:

public void 1nit(OMET ement JtaPropertiestlement) throws StorageException {

OMETement omElement = 1l |
String propertyName = 4
this.properties = new Properties(y:
for (Iterator<OMElement> iter = JrafropertiesElement. getChiTdETements(); 1ter,hasNext(l;) {
omElement = iter.next();
propertyNamne = gmklenent.getATtributeValuenew OName (™™, “"name"));
i (propertyNape. equals(Constants. DE_IRIVER) {
this.dbbriver = onElement. getTest();
} alse {
properties.putipropertyNane, onflenent,getText(})

¥

this.datasourceBean = new ArtomikosDatasourceBean()
this.dataSuurceBean.setdr1queRe>uur:Pﬂan&{“ﬂertur}ﬂala&nnrgv“k
this.dataSourceBenn,59L>aDataSau—cef'assNanp(thriver;;
this.dataSOUFCEEean,SetYaDranftres{rhis.prunPrtiesj
this.dataSourceBean. setMaxPoolSize(s);

}
public Connection getNewlonnection(} throws Storage€xception {

try {
Connection connection = this.dataSourceBean.gettonnect10n():
retwn connection;
} catch (SQLException ey {
log.error(“Can not create the Atorikas connection™, el;
throw new StorageException("Can not create the Atomikos connection”, e);

1]
}
public TransactionManager getTransactionManager() throws StorageException {
try {
UserTransactionManager userTransactionManager = new UserTransactionManager();
userTransactionManager. init(y;
return userTransactionManager;
} catch (SystemException e) {
throw new StorageException{"Can not init the Iransa tion manager™);
¥
}

Figure 4-13 Atomikos JTA Connection Manager

e

4.3.1 In Only Invocation

ConfigurationConText configurattontontext =

canfigurarionCentrytFactary, r FEITECONTIguraT on ontaxrE ramk i Tefystom

AXIS2 REPOSYTORY_LDCATION, AXIE2_CLIENT (OMNEIC FHIEY:

serviceClient serviceClient = new serviceChiert{configurationtontest, nuelly;
SErviceClient. setTargetEPR (new I:nd:.-:nn‘:Refererce("'lrL!p:,'-'Inmimsr::}bsa_ AX T2 services/ ITALlnServioe™));
SEF\'}CEC\1Er1L.gﬂt0utIDrs().5EtAc'_|Jr|["|jrri:}'lJ.Infiu{{ralm.r b H
Servicel1ent. engageMocul e[tercury™);
semceﬂ1errt.getUpmun:().setuseSeparareL‘.stener[tme);
sernr_e(]1ent,ue‘tﬂntwr-sf).setPrupertw'kercuryC]!enrfc-nst_mrs,I.WEH.WL_.KH‘. “keyl™);
sermceChent.uatnrmors().sethpert_v(Mercu\.U1ent|:cn'.'r_ants.L€E JTA_TRANSACTION, Constarts. VALLE TRUE):

ERE n,

AtonikosDataSourceBean dataSourceBean = new AtomikosDataSourceBeant);

dataspurceBean. setlntqueresgurceNase “ApplicationC] 1enthnurce”);

dataSourceBean. setXabataSourcec) assMase ("org. apache. derby ., johe -Erbeidediibatatource™);

Properties properties = new Properties();

properttes. put(“databaseNape®, ‘hore/amla nscsproject ‘mercury/rodules/dern; jtasclient /database SAPPE TCATION CLIENT™S;
dataSourceBean.;et\capropert-es(p'u:arﬂns):

ctnf'igura:wn(antem:,setPruperty("A:mhcatinn(hnntﬁnur'm", dataSourceBean);

Connect on conhection = petlatabaseConnectign();

Statement statement = ConnecTion. createStatenent();
String salSteing = “select [D € From TEST SEND DATA T where IS SIND (a0
ResultSet resultSet = statement. exacuteQuery(sqlString);
List<long> nessageMumbers = new Arravlist<long=(3;
while (resultSet.next(}} {
messagelurbers, add(resul tSet.gerlong("I

resultSet.close();
statesent.closel):
cannection. close():

UserTransactiohNanager dserTransactionManager = g
for (long messagelD : nessagelumbers] [
try {

userTransactiondanager = mew UserTransactionManager(l;
userTransactionManager, 1rit(y;
userTransac:mnrlmauer.begm{):

cohnrection = dataSourceBean, getConnaction();
Statement = connection.createStatenent();
String queryString < "select * frow TEST SEMD DATA | where ID =" 4 pessageld;
FESUTTSET m STALEMBAT. executeduery(queryString:
i (resultSet.naxt()) {

5Tring messige = rRsuTTSet, getString! "MISSAGE ()

String updateString = "update TEST SEMD BATA_T set {5 _SEND ('51 where [0_(=" + messagell;

STatement. executelpdate{updatestring);

Systen.out, orintIn("Sending nessage - + #essagelD);

try {

Thread. s7eep(1000);
} catch (InterruptedExceptinn e) {
}

servicell1ent. f1reandForget (getTestOME ement (nessage)d;

resulTSet. close();

statement.close();

conrection. close(); =

userTransacTionNanager. comn1t();
} catch (Exception a) {

e.printStackTrazef);

i
}

1T (messageNumbers,size(} » 0} 4§
ser'\ncethent.getnptwns().setProperty[Her:uryChent(unstan\:s,IJSE,JHJMMHIN. Constants, VALLE_FALSE);
Mercury(Tient mercurvClient = hiw MercuryClient{servicel] ent);

MErCUryCl1ent. terminateSequence(“heyi=y;

].

Figure 4-14 JTA In Only Client

First it sets the USE_JTA_TRANSACTION property to true in order to indicate application
client going to perform a jta transaction. When the Mercury sees this property it invokes the
AtomikosJTAConnectionManager class to obtain the JTA connection resource. Then it
creates an AtomikosDataSourceBean to get the JTA conmnection resource,
AtomikosDataSourceBean automatically enlist the connection to distributed transaction. After

that it reads the available message numbers to send using a normal database connection, Next

-

it starts sending messages one by one. Unlike in a normal persistence scenario now it starts a
distributed transaction using UserTransactionManager. After updating the client database and
sending message to Mercury it closes the connection and commit the distributed transaction.

Hence it reliably transfer messages stored at APPLICATION_CLIENT database to RMS.

1T {isUselTATransaction) {

2By B Fa Try
transactionManager = storageManager. getTransacttonManager(};
transactionManager.beginf};
}

Transaction = storageuanager.uetTransactmnOsUseJTATransactwn);
InvokerBufrerdanager invokerBufferManager = sturageﬂanager‘getInmkerBufferhanager(sequenceID):
InvokerButferDto invokerBufferlto = nvokerBufferdanager. getinvokerBufterdto(sequencelD}:
try {
tf [(invokerBufferDto. getState(} |e InvokerBuffer, STATF_011) &%
(invokerBufferDto. petstate() = In'u'okerBuTfur,STJ'ITE_TERmNMEIJ)j 1{
T ((System.currentTimeWi]l1s() - tnvokerBufferito. getlastaccessTine()) < inyokerBufferito. gerTimeout Timel)) |
InvokerBuffer 1nvokerBuffer w
new InvpkerBuffer{invokerBufterDto, rad5aquencefto, 1nvokerBufferdarager, configurationContext);
1sPendingMessagesEaists = invokerBuffer, doArtions(};
} else {
1sPendingMessagesExists false;
Svstem.put.printin({"Setting *INVOKER BUFFERY state as terminated since the seguence is Himen out);
invokerButferito, setState(InvokerButrer. STATE TF ANINATER)

y else {
15PendingMessagesExists = false:

Transaction.coamit();
if (1sUselTATransaction) {
TransactionManager. conmtil;

Figure 4-15 InvokerWorker

If the user has set the MercuryUseJTATransaction property at the axis2.xml then
InvokerWorker checks for this and start a distributed transaction before invoking the business
logic and commit it if there is no exception. At the message receiver it gets a connection from
the AtomikosDataSourceBean in order 1o enlist the transaction with the distributed transaction
started at the InvokerWorker. In out and fault handling scenarios are almost same as

corresponding persistence case while having above changes to support jta.

Chapter 5

Observations & Results

A WS-RM implementation can be used in diffcrcngways with the different types of storages.
The reliability and fault tolerance achieved varies according to the type of storage being used.
Rest of the chapter describes some of the observations made with the different scenarios

mentioned in the earlier chapter, ?

Any reliable messaging framework downgrades the performance of sending messages. In

other words reliability is inversely proportional to the performance. In WS-RM this is mainly
e

because initial sequence creation and acknowledgement messages. Further it takes time to

store the message to the persistence storage in the case of persistence and jta scenarios.

In memory model provides the weakest form of reliability. It provides the reliability for
network failures but can't survive with the node failures. If the node fails it loses all the

messages and sequence state and hence fail to recover.

Persistence model provides better reliability than in memory model. It provides the reliability
for network failures. Since it persists sequence state and messages received it can restart RM
sequences after a node fail. For this project work we tested this model by sending 20 messages
while stopping and starting the client node and server node. Although it can recover sequences

we observe some messages has lost. The number of messages at the

57 .

APPLICATION_SERVER database was less than 20 for in only case. IFurther number of
reply messages were also less than 20 in APPLICATION SERVER for in out case.

Persistence storage with JTA support provides the hest reliability. First it provides reliability
for network failures. Further JTA support provides the reliability for node failures without
losing any message. For this project work we tested the JTA support by sending 20 messages
while stopping and starting the client node and server node. But there were no message loses

either at the APPLICATION_SERVER database or APPLICATION_CLIENT database.

Chapter 6

Conclusion & Future Work

This thesis describes a queued transaction processiEg based solution using web service
reliable messaging in order to guarantee the client side and server side persistence storage
updates, It achieves this goal by re engineering the WS02 mercury with a storage based API
Hence this project presents a storage API based WS-RM implementation which can support
distributed transactions. It provides a set of use case scenarios to describe the way to use the
new Mercury Implementation and prove its point in reliability. Sample scenarios uses Apache
Derby as the database for its persistence storage and Atomikos as the Tﬂwra.ry to provide the

JTA support,

The reliability of Mercury is handled by using a state machine model, Although there is a state
machine for WS-RM 1.1 specification there is no such a model for WS-RM 1.0 specilication.
Therefore the state machine model described here which is independent of the implementation

can be used for any WS-RM 1.0 specification implementation.

The storage API developed provides explicit support for both in memory and persistence
storage implementations. This storage APl which is independent of implementation logic can

also be used with any WS-RM implementation,

-59 .

There are some problems with the 2PC recovery with the Apache Derby XA driver and other
commonly used opensource database XA drivers, However investigating deeply into these
problems and finding out XA drivers that properly support 2PC recovery, goes beyond the

scope of this work and we kept it as a possible future work.

Further research can be done to integrate the WS-RM transactions with the application
servers. This allows application developers to integrate Enterprise Java Bean Objects

transactions with the WS-RM transactions.

This thesis concentrates only on supporting distributed transactions on a WS-RM
implementation. But a WS-RM implementation should address a lot of features with different
aspects. Hence we kept adding new features such as implementing WS-RM 1.1 support, use
single threaded invocations for synchronous communication, WS-RM level error handling and

Secure Reliable Messaging as another possible future work.

- 60 -

(1]

(2]

(3]
[4]

(51

(7]

(8]

[10]
(11]
[12]
[13]
(14]

[15]

(16}

[17]

(18]

REFERENCES

] Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems: Principles and
Paradigms. New jersey U.S.A : Prentice Hall, Inc, 2002

Philip A. Bernstein and Eric Newcomer, Principles of Transaction Processing. San
Francisco, CA : Morgan Kaufmann Publishes Inc, 1997. pp 101-116

Don Box et al. “Simple Ohject Access Protocol (SOAP) 1.1" W3C Note 08 May 2000.

Luis Felipe Cabrera et al. “Web Services Coordination (WS-Coordination)” August
2005

Luis Felipe Cabrera et al. “Web Services Atomic Transaction (WS-
AtomicTransaction)” August 2005

Luis Felipe Cabrera et al. “Web Services Business Activity Framework (WS-
BusinessActivity)” August 2005

Jens Lechtenb orger “2-PHASE COMMIT PROTOCOL” University of M unster,
Germany.

Ruslan Bilorusets et al, “Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)” February.

Paul Fremantle et al. “Web Services Reliable Messaging (WS-1 ReliableMessaging)
Version 1.1" 14 June 2047,

Don Box et al. “Web Services Addressing (WSAddressing)” Augest 2004.
“Distributed Transaction Processing: The XA Specification” X/Open Company Ltd,
“Java Transaction AP1 (JTA)” Sun Microsystems Inc.

“Java Transaction Services (JTS)” Sun Microsystems Inc.

Stefan Tai, Thomas A. Mikalsen, Isabelles Rouvellou “Using Message-oriented
Middleware for Reliable Web Services Messaging”™ IBM T.J. Watson Research Center,
Hawthorne, New York, USA

Christoph Liebig and Stefan Tai "Middleware Mediated Transactions” Darmstadt
University of Technology, Darmstadt, Germany IBM T.J. Watson Research Center,
New York, U.S.A., 2001

Stefan Tai and Isabelle Rouvellou "Strategies for Integrating Messaging and Distributed
Object Transactions” IBM T.J. Watson Research Center, New Ygrk, USA, 2000

Stefan Tai, Thomas A. Mikalsen, Isabelle Rouvellou, Stanley M. Sutton Jr.
"Dependency-Spheres: A Global Transaction Context for Distributed Objects and
Messages" IBM T.J. Watson Research Center, New York, U.S.A., 2001

Stefan Tai, Alexander Totok, Thomas Mikalsen, Isabelle Rouvellou "Message Queuing
Patterns for Middleware-Mediated Transactions” IBM TJ. Watson Research Center,
New York, USA Courant Institute of Mathematical Scignces. New York University,
New York, USA, 2002

