
QUEUED TRANSACTION PROCESSING WITH

WEB SERVICE RELIABLE MESSAGING

A.C. SURIARACHCHI

This Dissertation was submitted to the Department of Computer Science and Engineering of the

University of Moratuwa in partial fulfillment of the requirements for the Degree of MSc in

Computer Science specializing in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa

February 201 0

96424

ABSTRACT

With the popularity of the distributed business applications, the application data is distributed in various physical

storages. However most of the business transactions require to update data stored in more than one storage. hence

updating two data storages reliably is a common problem for most of the distributed business applications.

Queued transaction processing is a concept widely used to achieve such a processing model using intermediate

queues to transfer messages reliably. In such a system at the client side, both updating the client storage and writing

the message to be sent to the client side message queue happens in the same distributed transaction. Similarly at the

server side reading the message from the server side queue and updating the sever storage happens in the same

distributed transaction. Bur such a system may have interoperability problems if client and server use different types

of technologies.

Web services are used to communicate among the heterogeneous systems by passing SOAP messages using

standard transport mechanisms like http. Web services can reliably communicate by using WS-Reliable messaging

specification(WS-RM). WS-RM uses concepts of Reliable messaging source (RMS) and Reliable messaging

destination (RMD) between which it guarantees reliable massage delivery.

By combining these two concepts, we introduce an approach to solve the above mentioned problem in an

interoperable manner using WS-RM ..,to communicate between nodes while keeping RMS and RMD as

intermediate storages. In our model reliable message delivery happens in three phases. First both updating

application client storage and writing message to the RMS happens in the same distributed transaction. Then WS-

RM protocol reliably transfers the message to RMD at the server side . Finally- at the server reading the message

from the RMD and updating the server storage happens in the same distributed transaction. The middleware

software entity that we developed to encapsulate this approach is called Mercury which implements WS-RM

protocol.

DECLARATION

"The work included in thi.s report was done by me, and only by me, and the work has
not been submitted for any other academic qualification at any institution"

____ __ QJ ~{J>~J~L ___ ___________________ __
Name: A.C. Suriarachchi (08H254P)
Date: 2010.02.26

....

"I certify that the declaration above by Lite candidate is true to the best of my knowledge
and that this dissertation is acceptable for evaluation for the Degree of M.Sc in
Computer Science specializing in Software Architecture"

.......

- i -

ACKNOWLEDGMENTS

I wish to sincerely thank my supervisors Mr. Paul Fremantle and Dr. Sanjiva Weerawarana for

providing me the research idea and supervision of my work continuously. They provided me

necessary guidance, various levels of requirements and encouragement to fulfill my objective.

I would also like to thank Dr Sri nath Perera who reviewed my work and provided me

valuable feedback. I am also grateful to Prof. Gihan Oias and Dr Sanath Jayasena who worked

as the course coordinators, and provided valuable feed hack at various levels of the pr~jecl. I

would like to extend my thank to all the academic staff of the University of Moratuwa for the

great work they did for us during the course of study.

No student can survive in a university without the help of their fellow students to discuss

ideas, share opinions, and to make time spent in the lab and all round enjoyable experience. T

would be grateful for all M.Sc 08 colleagues for the corporation given to the successful

completion of my project involvements.

I must also be grateful to my parents and brothers for the encouragement they provided to

follow the Msc. I wish to express my gratitude to all my colleagues at WS02 who have

enormously helped to learn a lot about web services and distributed systems .

..,

~

- iii -

TABLE OF CONTENTS

DECLARJ\ TION i

ABSTRACT ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vi

LIST OF ABBREYIATIONS ... viii

Chapter I Introduction ... I

1.1 Background ... I

1.2 Abstract Problen1 .. 2

1.3 Method of study .. 3

1.4 Previous work 3

1.5 Expected rcsu It. , .. 3

Chapter 2 Literature Review .. 4

2.1 Web service standards .. 5

2.1.1 SOAP .. 5

2.1.2 WS-Addressing ... 5

2.1.3 WS-Reliable messaging .. 6

2.2 Transactions and messaging standards ... 9

2.2.1 2PC ... 9 ...
2.2. 2 X/ Open distributed transaction standards ... I 0

2.2.3 JTA ... 11

2.3 WS-Transactions ... 13

2.3.1 WS-Coordination .. 13
<

2.3.2 WS-Atorrlic transactions ... 15

2.3.3 WS-BussinessActivity .. ~ 15

2.4 Queued Transaction processing .. 16

2.5 Different types of reliable web services .. 16

2.5.1 Using Message Oriented Middlt.!warc for Reliable Web Services Messaging 16

2.5.2 Three facets of Reliability .. 17

2.5.3 Reliable messaging for web services .. I?

2.5.4 Assessn1ent ... 18

2.6 Transactions and messaging ... 20

2.6.1 MQ Integrating Transactions .. 20

2.6.2 Message delivery transactions .. 20

2.6.3 Message processing transactions .. 21

2.6.4 Full messaging transactions .. 22

-IV-

2.7 Middleware mediated transactions ... 22

2. 7.1 D-sphere ... 23

Chapter 3 Methodology ... 25

3.1 Previous Solution .. 25

3.2 Proposed Solution ... 26

3.3 Alternative Solutions .. 27

3.3.1 Integrate WS-RM protocol with the client storage and server storage hy taking
then1 as RMS and RMD ... 27

3.3.2 Use the same transaction to update both application level storages and WS-RM
storages .. 28

3.4 Solution Architecture .. 29

3.4.1 State n1achine model ... 29

3.4.2 Run time Architecture .. 36

3.4.3 Storage API 40

3.4.4 Other issues and solutions .. 45

Chapter 4 Use case scenarios ... 46

4.llnMernory ... 47

4.l.l ln Only invocation .. 47

4.1.2 In Out lnvocation .. 48

4.1.3 Fault Ilandling .. 49

4.2 Persistence .. 49

4.2.lln Only Invocation "! : .. 50

4.2.2 In Out Invocation and Fault Handling .. 51

4.3 JTA .. , .. 52

4.3.1 In Only Invocation .. 55

Chapter 5 Observations & Results • ... 57

Chapter 6 Conclusion & Future Work ... 59 -.
REFERENCES .. 61

- v -

LIST OF FIGURES

Figure 1-1 Abstract Proble1n .. 2

'figure 2-1 Reliable Messaging Model 7

Figure 2-2 Reliable Messaging Protocol .. 7

Figure 2-3 Coordinator States .. 9

figure 2-4 Participant States 10

Figure 2-5 X/Open Distributed Transaction Standards .. II

figure 2-6 JTA Overview .. 12

Figure 2-7 WS Coordination Framework .. 14

Figure 2-8 Queued Transaction Processing ... 16

Figure 2-9 MQ Integrating Transactions .. 20

Figure 2-10 Message Delivery Transactions .. 21

Figure 2-11 Message Processing Transactions 22

Figure 2- 12 Application Without 0 -sphcrc 23.

Figure 2-13 Application With D-sphcrc 23

Figure 2-14 0 -sphere Architecture 24

Figure 3-1 Previous Solution ... 25

Figure 3-2 Proposed Solution .. 26

Figure 3-3 Integrate Persistence Storage with RM Storages ... 27

Figure 3-4 Using the same Transaction ... 28 ..,
figure 3-5 RMSSequence Events .. 29

Figure 3-6 RMSSequence State~ 30

Figure 3-7 RMSSequence State Machine .. 31

Figure 3-8 RMDSequence Events .. 31 .
Figure 3-9 RMDSequence States ... 32

Figure 3-10 RMDSequence State Machine .. -:-:~ 33

Figure 3- 11 InvokerBuffer Events ... 34

Figure 3-12 Invoker Buffer States 35

Figure 3-13 Invoker Buffer State Machine .. : 35

rigure 3-14 InOnly Messages Runtime 36

Figure 3-15 InOut Messages Runtime ... 38

Figure 3-16 Fault Handling Runtime ... 39

Figure 3-17 Storage API .. 40

Hgure 3-18 lnMemory Implementation .. 41

Figure 3-19 Persistence Implementation .. 42

Figure 3-20 Database Design ... 44

Figure 4-1 InMen1ory Invocation ... 47

-vi -

Figure 4-2 In Only Client ... 47

Figure 4-3 TnMen1ory In Out Client. .. 48

Figure 4-4 SendAsynchornousMessagc Method ... 48

Figure 4-5 Fault Message Receiver ... 49

Figure 4-6 Using Persistence Storage 49

Figure 4-7 Persistence Storage Configuration ... 50

Figure 4-8 Persistence In Only Client .. 50

Figure 4-9 Persistence In Only McssagcRcceivcr ... 51

Figure 4-10 Persistence Callback llandlcr Methods .. 52

Figure 4-11 JT A Invocation ... 52

Figure 4-12 JT A Storage Configuration .. 53

Figure 4-13 Atomikos JT A Connection Manager .. 54

Figure 4-14 JT A In On I y Client ... 55

Figure 4-15 InvokerWorker ... 56

...

'"10o;

- vii -

ws

WS-RM

RMS

RMD

2PC

JTA

JTS

SOAP

RPC

MOM

LIST OF ABBREVIATIONS

Web Service

Web Service Reliable Messaging

Reliable Messaging Source

Reliable Messaging Destination

Two Phase Commit

Java Transaction API

Java Transaction Service

Simple Object Access Protocol

Remote Procedure Calls

Message Oriented Middlcwan.:

- viii -

...

"""'

Chapter 1
Introduction

1.1 Background

Updating two data storages reliably is a widely researched area in distributed computing. Most

of the existing solutions follows a queued transacti~n processing model. In such a model first

client writes the message stored in its persistence storage to the request queue within a

distributed transaction and server reads the request from the request queue within another

distributed transaction. If there i~ a re~ponse to be sent, server writes the response to response

queue within the same transaction it read the message and finally client reads the response

from the response queue within another distributed transaction. TQLs processing model can

operate even with the presence of the node failures due to recovery nature of the distributed

transactions. However these systems may not properly inter-operate due to use of many

proprietary messaging protocols.

Web services are used to communicate among the heterogeneous systems by passing SOAP

messages using standard transport mechanisms like http. Web services can reliably

communicate by using WS-Reliable messaging specification(WS-RM). WS-RM introduces

concepts of Reliable messaging source (RMS) and Reliable messaging destination (RMD)

between which it guarantees reliable me~sage delivery. As a result of this both RMS and

RMD can be considered as intermediate queue~ by using a persistence storage to implement

them.

- 1 -

An inter operable reliable message transferring system can be made by combining above two

concepts where client writes messages from the persistence storage to RMS within a

distributed transaction and server writes the messages from RMD to persistence storage within

a distributed transaction. Reliable conununication between RMS and RMD is guaranteed by

WS-RM.

1.2 Abstract Problem

r==~----~~~
Persistence

storage

-----·- ____ . ./

Client Node

Figure 1-1 Abstract Problem

,..---
'-·-----

-~
_ ... - ·· -

Persistence

Storage
...... ____ _

SeNer Node

This project focus on updating client persistence storage and server persistence storage

reliably by sending a message in a systt!m shown in Pig 1-l. Assume there are two nodes

called client node and server nodt! with persistence storages, connected through a network.

How to guarantee both client side and server side Mo'rage updates by sending a message from

client node to server node with the presence of failures in an inter operable manner?

Message provides the necessary information to update the server persistence storage. The term

reliably refers to the exactly one delivery. This means there can be no message losses or .
duplicate messages. Failures can either be network or node failures. For this work web

services and standards arc being ust:d as the means of achieving inter~rability. Further it is

assumed that although it is possible to have network and node failures they recover in finite

time and there arc no persistence storage failures.

The main goal of this project is to implement a web service reliable messaging middlcware

which can generally be used in such a situation. Writing a WS-RM implementation from the

scratch means a lot of work. Therefore this project aims to re-engineer the existing WS02

Mercury to solve the above mentioned problem.

WS02 Mercury is a WS-RM implementation written on top of Axis2 by using a state machine

model. However WS02 Mercury keeps the state of the WS-RM communication in an in

memory object model. It achievt:s the persistence by saving this in memory object model to a

persistence storage. Although WS02 Mercury has successfully implemented the state

-2-

machine model. its' in memory model described above does not allow it to support user

initiated transactions.

Therefore the main objective of this project can be narrowed down tore engineer the existing

WS02 Mercury code to come up with a storage API which support user level transactions.

However some of the WS-RM usage scenarios do not require user level transactions and

hence it is enough to have an in memory storage model. Therefore above storage API should

support simple in memory implementations as well.

1.3 Method of study

Implementing a new storage API directly with the WS02 Mercury can be complex. Further in

such an attempt main focus may not be in the storage API design. Therefore this project first

designs the storage API within a simulator. Again the simulator which is used at the time of

designing Mercury state machine model can be used for that. Then the new storage API can

be implemented in an in memory model with the simulator and can be transferred to the actual

Mercury implementation with the necessary refactoring or the Mercury. Finally the storage

API can be implemented with a persistence storage and can be tested for distributed

transaction scenarios.

1.4 Previous work

As given in the background section this problem has been solved by using intenncdiate

queues. But this project aims to do that using web serviC'es and related standards to achieve

interoperability.

Apache Sandesha2 which is another WS-RM specification implementation uses such a

transactional data store model. However Apache Sandesha2 does not use a state machine
c

model and further a transactional storage to support even an in memory model as well .
.,..

1.5 Expected result

In summary this project aims to come up with a storage API ·with the necessary WS02

Mercury runtime architecture which supports both user level transactions and simple in

memory implementations. To prove this point it expects to have at least two storage API

implementations one for simple memory implementation and other for a transactional

permanent storage implementation. r:urther it aims to provide necessary usage scenarios

which uses the distributed transactions to achieve end to end reliability.

- 3 -

Chapter 2

Literature Review

Literature review of this projects spans across many areas. One of the obvious areas is the web ...
services standards and related specifications. Web services primarily use SOAP[3] as the

messaging format. WS-Addressing[I 01 provides a way to address end point references in a

transport independent way. WS Reliable messaging specification[8] uses WS-Addrcssingf 10]

to correlate the request and response messages.

There are some set of standard protocols and standards to generally support transactions and
-...

messaging. 2PC[7] is the widely used protocol to achieve distributed transactions. X/Opcn

promotes standards for many protocols to improve the interoperability. X/Open distributed

transactio n specificatio n[l l] s tandardi;o; the use of 2PC protocol. JTN JTS[l 2Jl l 3] provide

java specific APls for distributed transactions.

WS-Transaction specifications which includes WS-Coordination[4]. WS-

AtomicTransactions[5] and WS-BussinessActivity[6] provides means to achieve distributed

transactions using 2PC' protocol in an inter-operable way.

Queued transaction processing is used for processing a transaction between a client and an

application server asynchronously in a distributed transaction processing environment having

at least one transaction queue manager.

- 4-

IBM has done some work[14] related to this area. This includes their classification of varios

ways to integrate the web services and transactions. llttpr is an effort to build a reliable

protocol on top of Http.

Finally there have been many researches for message oriented and object oriented

transactions. Further these researches have been extended to middleware mediated

transactions[IS] which combines the above two concepts to achieve better transaction support.

2.1 Web service standards

2.1.1 SOAP

Simple Object Access Protocol (SOAP)[3] is a protocol to exchange information in a

decentralized, distributed environments developt!d by Microsoft and IBM. SOAP can support

to enable remote procedure calls (RPC) over llTfP using XML. SOAP protocol specification

mainly consists of three parts.

1. SOAP Envelope

SOAP envelope describes what is in the m<.:ssagc and how to process it. A SOAP envelope has

a required body part which is used to send the actual message, and header parts which can be

used to provide the soap envelope processing instructions.

2. Set of encoding rules

There are a set of encoding rules which specify how to encode application-defined data types

in to XML fom1at. This is important since SOAP provides an inter operable XML based

messaging format.

3. Convention to represent remote procedure calls and responses

SOAP defines a way to encode a RPC invocation request and the response into a SOAP

envelope. This is used in RPC type service invocations.
~

2.1.2 WS-Addressing

Web services can be accessed by sending SOAP messages to· their respective endpoints.

However the endpoint details may depend on the transport protocol. And also there are some

infonnation required by the messaging systems in order to dispatch messages to

corresponding processes and correlate them.

Web Services Addressing (WS-Addressing)[IO] defines two inter operable constructs that

convey information that is typically provided by transport protocols and messaging systems.

These constructs normalite this underlying information into a unifonn format that can be

processed independently of transport or application.

- 5 -

1. Endpoint references

A Web service endpoint is an entity wh<.!re Web service messages can be targeted. Endpoint

references convey the information needed to identify/reference a Web service endpoint.

Endpoint references are suitable for conveyi ng the information needed to access a Web

service endpoint, but are also used to provide addresses for individual messages sent to and

from Web services.

2. message information headers

This defines a famjly of message information headers that allows uniform addressing of

messages independent of underlying transport. These message information headers convey

end-to-end message characteristics including addressing for source and destination endpoints

as well as message identity.

WS-Reliable messaging uses WS-addressing headers to specify endpoint addresses and

convey message related information.

2.1.3 WS-Reliable messaging

Reliable message delivery is a common concept in message oriented communication.

WS-ReliableMessaging spccification[8] (WS-RM) describes a protocol that allows messages

to be delivered reliably betwet:n distributed applicat~ns in the presence of network failures.

The protocol is described in this specification in a transport-independent manner allowing it to

be implemented using different network technologies. To support inter operable Web services,

a SOAP binding is defined within this specification.

The protocol defined in this specification depends upon other Web services specifications for

the identification of service endpoint addresses and policies. This protocol does not talk about
~

the delivery guarantees and persistence. However WS-RM implementations can provide

persistence and delivery guarantees using the available protocol constructs.

WS-Reliable messaging is based on a rcliabl<.! message model which is given below.

- 6 -

====--- --- --

Acknowledge

Figure 2-1 Reliable Messaging Model

Following diagram shows the entities and events in a simple reliable message exchange. First,

the Application Source sends a message for reliable delivery. The Reliable Messaging (RM)

Source accepts the message and Transmits it one or more times. After receiving the message,

the RM Destination acknowledges it. Finally, the RM Destination delivers the message to the

Application Destination.

Reliable Messaging Protocol

Establish Protocol Precon'tlitions

CreateSequence()

Endpoint
B

~ ___ _E!:_e~t!~9.U.!~c_:~e_:P2'2.s~(1d_:!.!t!fi_:r_ =_h~tf:~~a~r~k~~ 1]~-=.o!"IaE:._) ________ _

j Sequence(Identifier= http://fabrikam123.coni'/abc, MessageNumber = 1) .._

Sequence(Identifier= http://fabrikam123.com/a.bc, MessageNumber = 2~ X

Sequence(Identifier= http://fabrikam123.com/abc, MessageNumber = 3, LastMessage)

l. ___ _:;~q~~n_:e,l'=.k~~w1e_?~e~_:~ J. ~~_!i~e.!.: ~t_!p..:_lif~b_!l~a!" .2 P.:.c~~~!~!... ______ _ ! AcknowledgementRange : 1, 3)
: Sequence(Identifier = http://fabrikam123.co' n/abc, MessageNumber = 2, AckRequested ,. :

l. ___ _:;~q~~n~e.i'=.~~w_!c_9~e~!~ J. ~~_!l~e! _: ~t_!P_:I_~f~b_:l~a!"'_2~3.:.c~~/~~!... ______ _
~ AcknowledgementRange : 1 ... 3)

: TerminateSequence (Identifier : http://fabrikam1 23.com/abc) .._

Figure 2-2 Reliable Messaging Protocol

- 7 -

Following steps illustrates a typical set of messages passed in one RM sequence and how it

provides fault tolerance. It uses a acknowledgment based retransmission similar to TCP.

1. The protocol preconditions arc established. These include policy exchange, endpoint

resolution, establishing trust.

2. The RM Source requests creation or a new Sequence.

3. The RM Destination creates a Sequence by returning a globally unique identifier.

4. The RM Source begins sending me~sagcs beginning with McssageNumbcr 1. In the

figure the RM Source sends 3 messages.

5. Since the 3rd message is the last in this exchange, the RM Source includes a

<LastMessage> token.

6. The 2nd message is lost in transit.

7. The RM Destination acknowledges receipt of message numbers 1 and 3 in response to

the RM Source's <LastMessage> token.

8. The RM Source retransmits the 2nd message. This is a new message on the

underlying transport, but since it has the same sequence identifier and message

number so the RM Destination can recognize it as equivalent to the earlier message,

in case both are received.

9. The RM Source includes an <AckRcqucstcd> clement so the RM Destination will

expedite an acknowledgment.

10. The RM Destination receives the second transmission of the message with ..,
MessageNumber 2 and acknowledges receipt of message numbers 1, 2, and 3 which

carried the <LastMessage> token.

11. The RM Source receives this acknowledgment and sends a TerminatcScquence

message to the RM Destination indicating that the sequence is completed and reclaims
<

any resources associated with the Sequence.
1

12. The RM Destination receives the TerminateSequence message indiceting that the RM

Source will not be sending any more messages, and reclaims any resources associated

with the Sequence.

- 8 -

2.2 Transactions and messaging standards

2.2.1 2PC

Two phase commit protocol[7] is a protocol to support transactions in a distributed

environment. In a distributed environment there arc multiple participants. These multiple

participants update multiple data sources. Two phase conunit protocol ensure either these

participants corrunit or abort atomically.

Two phase commit protocol is executed by a process called the coordinator process and other

participant processes. As the name suggests two phase commit protocol has two phases called

prepare phase and conunit phase. Both of these participants' life cycles has been defined by

the state transfer diagrams.

Figure 2-3 Coordinator States

-9 -

Figure 2-4 Pat1icipant States

Before the commit process starts, both coordinator and participants processes are at the initial

state. Commit process starts when the initiator sends the commit message to the coordinator.

Getting the commit message coordinator sends the prepare message to all the participants and

moves to the prepared state and waits until all the responses come. When a participant ..,
receives a prepare message from the coordinator it sends the response as 'yes' and moves to

prepared state if it is prepared to commit or sends the response as 'no' and moves to aborted

state if it is not prepared to commit. I Iere if a participant sends a 'yes' response it can't later

say it is not prepared to commit. Once all the participants sends their responses coordinator
c

can decide either to commit the transaction or abort it. If there is at least one 'no' response

coordinator have to decide to abort the transactions. After that coordinatOl"tells its participants

either to abort or commit and then moves to either commit or abort state. Once the participants

gets the global commit or abort message from the coordinator it moves to the corresponding

state and sends the acknowledgment back to the coordinator.

2.2.2 X/Open distributed transaction standards

X/Open is a independent, worldwide, open systems organization which supports

implementation of open systems. In the context of the distributed transactions, X/Opcn has

standardize the interface between the Transaction Manager and the Resource Manager in

order to make them as open systems[II].

X/Open distributed transaction processing (DTP) model assumes three software components.

- 10-

Resource
Managers

(RMs)

Figure 2-5 X/Open Distributed Transaction Standards

Application program specify the transaction boundaries and ~pecifies the actions that
constitute the transaction. Resource managers provides the resources which application
program updates during a transaction. Transaction manager is the main component which
assigns identifiers to transactions, monitor their progress and do the transaction completion or
failure recovery.

Out of these interactions X/Open specification introduces a standard interface to communicate
between the Transaction manager and the Resource managers. These interfaces arc specified
in C programming language.

">
2.2.3 JTA

Java transaction API specification[12] provides a set of java interfaces to support distributed
transactions. It specifics the local Java interfaces between a transaction manager and the
parties involved in a distributed transaction system. Following diagram shows the interfaces it
defines and the relevant areas of those specifications.

- 11 -

JTA
Tt un~actt ontvl atmg~:r

- - - - ·--._
EJB __.. -,,,\ .-·

/
.t·~ /(1 A.ppl icatit)ll

Servt>r

, -

/-:. JDBC, JIVlS

~·~'\
I

I
I

I

Transaction

\
Resource '
t\ Ia nn~er

i Application (

-----·Y 1\ lana~cr , ,
1/ r - - ~)\~~~-~~ - - -Tr----'~_\ _ __ _

JT.-\
JTA

U<..crT rans:lctton

Inbound 1.\

Prmocol c;pec tfi(

Trnnsncttun
~en 1 Ct'

l mplementmton
(tlx example. JT'))

J

Commun~e-.HJon R<.':-ourcc
l\lnt'k1gc 1 ((Rl\ 1 1

Figure 2-6 JT A Overview

...

.XARe:.our•e

Outbound tx

Protocol ~pcctlic

UserTransaction interface provides the application the ability to control the transaction

boundaries programmatically. The application can obtain user transaction and use begin and

commit method to demarcate the transactions.

Transaction manager interface allows applicatiQn server to control transaction boundaries.

Transaction Manager allows users to begin and conmlit transactions associated with a thread.
~

Transaction interface allows operations to be performed on the transaction associated with

target object. This interface can be used to

1. Enlist the transactional resources in use by the application

2. Register for transaction synchronization callbacks

3. Commit or rollback the transaction

XAResource Interface provides a java mapping of the industry standard XA interface based

on the X/Open Specification. This interface defines the contracts between the Resource

Manager and the Transaction Manager in a distributed transaction processing (DTP)

environment.

- 12 -

JTA specification defines five players which are involved in a distributed transaction services.

Each of these players contribute to the distributed transaction processing system by

implementing different sets of transaction API and functionalities.

1. A transaction Manger provides the services and management functions required to

support transaction demarcation, transactional resource management, synchroni7ation,

and transaction context propagation.

2. A application server provides the infrastructure required to support the application run

time environment which includes transaction state management.

3. A resource manager provides the application access to resources.

4. User application which uses the transaction provided by the application server.

5. A conununication resource managl!r supports transaction context propagati<3
/

access to the transaction service for incoming and outgoing requests.

2.3 WS-Transactions

WS-Transactions defined in three specifications. WS-Coordination defines a coninmn

framework to coordinate web services activities among different web services using different

types of coordinating protocols.

2.3.1 WS-Coordination
..,

WS-Coordination[4] describes an extensible framework for providing protocols that

coordinate the actions of distributed applications. Such coordination protocols are used to

support a number of applications, including thosl! tJ'lat need to reach consistent agreement on

the outcome of distributed activities.
~

The framework defined in this spl!cification enables an application service to create a context

needed to propagate an activity to othl!r sl!rvici.!s and to register for coordination protocols.

The framework enables usage of existing proprietary transaction processing systems while

providing an inter operable mechanism to conununicate.

The following diagram shows typical usage scenario of the WS-Coordination specification to

coordinate the activities among different web services.

- 13 -

Figure 2-7 WS Coordination Framework

1. Appl sends a CreateCoordinationC'ontext for coordi nation type Q, getting back a

Context Ca that contains the activity identifier A I, the coordination type Q and an

Endpoint Reference to Coordinator A's Registration service Rsa.

2. Appl then sends an application message to App2 containing the Context Ca.

3. App2 prefers CoordinatorS, so it uses CreateCoordinationContext with Ca as an input

to interpose CoordinatorS. CoordinatorS creatil,S its own CoordinationContext Cb that

contains the same activity identifier and coordination type as Ca but with its own

Registration service RSb.

4. App2 determines the coordination protocols supported by the coordination type Q and

then Registers for a coordination protocol Y at CoordinatorS, exchanging Endpoint

References for App2 and the protocol service Yb. This forms a logical connection -between these Endpoint Refcrcnct:s that the protocol Y can use.

5. This registration causes CoordinatorB to forward the registration onto CoordinatorA's

Registration service RSa, exchanging Endpoint References for Yb and the protocol

service Ya. This forms a logical connection between these Endpoint References that

the protocol Y can usc.

- 14 -

2.3.2 WS-Atomic transactions

WS-Atomic transactions specification[5) defines an atomic transaction coordination type that

can be used with the WS-Coordination speci11cation. This specification describes such

coordination type protocols which can be used with the short lived atomic transactions.

Completion

This protocol is used to communicate between the initiator and the coordinator. Initiator starts

the com£TUtmcnt processing by sending a corrunit message. After that coordinator starts the

volatile 2PC and proceed to durable 2PC. Then the final result is send to the initiator.

Two phase commit protocol

Two phase commit protocol is used to perform the atomic transaction among the participators.

This protocol ensures all the participators comes to a final decision. There are two variations

of this protocol.

1. Volatile two phase commit

Used with the participators who usc the volatile resources such as memory cache.

2. Durable two phase commit

Use with the participators use the durable resources such as databases.

2.3.3 WS-BussinessActivity
...

SirrUlar to WS-Atomic transactions specification this specification also defines coordination

types and protocols to be used with WS~Coordination specification. These coordination types

typically has to be used with the long running transactions. There are two coordination types

and protocols has defined in this specification.

Coordination types
~

There are two coordination types have defined with this specification called atomic outcome

and mixed outcome. In the atomic outcome coordination type all the participators either end

up with end state or compensated state while in the mixed outcome mode participators and be

end up within any state .

Coordination protocols

There are two types of coordination protocols deftncd with this specification called

BusinessAgreementWithParticipantCompletion and

BusincssAgreementWithCoordinatorCompletion. The former protocol initiation starb b} the

participant while for the latter it is started by the coordinator.

- 15 -

2.4 Queued Transaction processing

Figure 2-8 Queued T ransaction Processing

Queued transaction processing is used to process transactions in a distributed environment
asynchronously. This happens within three transaction boundaries. Firstly user application
creates the request message and enqueues the request message to request queue within a
transaction. After that s~.:rver dequeues the message, process it and enqueues the response to
response queue within another transaction. Pinally user .qpplication dequeues the message
from the response queue.

2.5 Different types of reliable web s~rvices

2.5.1 Using Message Oriented Middleware for Reliable W,_eb Services
Messaging.

Web services are applications that are described, published and accessed over the web using
open XML standards. Different Message Oriented Middleware can be used with web
services. Reliable communication is one of the most important aspects of any application.
'I here arc five ways that an web s~o:rvice can use MOM.

1. Messaging Middlcware Reliability

Messaging middlcware is specialized software that accepts messages from sending processes
and delivers them to receiving processes. The two principle styles for MOM is centraliLed and
distributed.

- 16 -

2. Aspects of reliability

The main aspect of the reliability is to tolerate the network fai lures. MOM can tolerate the

network failures by repeatedly sending the message until it is acknowledged by the receivers

component. In addition to acknowledged delivery, ordered delivery is another aspect of

reliable messaging. Further important aspect of reliability is the integration of a message

delivery in a larger processing context. Therefore a MOM should be able to group a message

with other messages and other process activities.

2.5.2 Three facets of Reliability

I. Middleware endpoint to endpoint reliability

A message once delivered from an application to the messaging middleware, is guaranteed to

be available for consumption by the receiving process.

2. Application to m.iddleware reliability

The middleware's messaging API, supports reliability properties such as message delivery

guarantees, message persistence and transactional messaging.

3. Application to application reliability

Sending and receiving applications engage in transactional business processes that rely on

..,

2.5.3 Reliable messaging for web services

This describes five different ways in which a web service can use the MOM for a reliable

communication.

1. SOAP (with or without a reliability protocol like WS-ReliableMessagjng) is used with

an unreliable transport (like ll ttp); reliability mechanisms are implemented on the

application/SOAP messaging layer.

2. A Reliable transport like HTTPR is used for SOAP messaging

3. A Reliable, proprietary middleware system like IBM Websphere MQ is used for

SOAP messaging.

4. A Reliable messaging standard Like JMS is used for SOAP messaging. A JMS

implementation is required

5. A Reliable proprietary middlewarc ~y~tem like IBM Webpshere MQ is directly used

independent of SOAP

- 17-

2.5.4 Assessment

Middleware endpoint to endpoint reliability

The middleware endpoint mediation essentially refers to the idea that messages arc stored

locally on the sender and receiver sides before and after they are being sent.

1. Option 1 does not provide thb reliability since HTTP is not reliable. HTJ'P docs not

provide the status of the message on a connection failure. Therefore either SOAP

messaging layer or application layer should provide the reliability.

2. SOAP over HTTPR provides the middleware endpoint to endpoint reliability. H"ITPR

persists the messages at the sender and receiver sides.

3. SOAP over MQ also provides the middleware endpoint to endpoint reliability. The

middleware endpoints are message queue managers provided by the messaging

middleware product. Unlike in the liiTPR case here the message delivery pattern is

asynchronous.

4. SOAP over JMS requires a JMS implementation. Depending on the JMS

implementation it provides the reliability.

5. This option also supports the reliability since underline MOM is reliable. Adapters

must be used at the each side to send and receive XML messages at each side.

Application to Middleware rel iability ..,

Application to middleware reliability refers to the reliability features provided by the

middleware's application to endpoint interface. This includes message delivery guarantees,

fault tolerant invocation, the ability to atomically group messaging operations with other

application actions.

1. When using SOAP over HTTP the reliability mechanisms ifnly be implemented as

part of the application. Application can transactionally coordinate with the message

store to guarantee the reliability.

2. For options 2 - 4 applications can't conununicate transactionally with MOM message

store without using the MOM specific APls.

3. For last option application to middlcware reliability relates to the direct use of the

underlying middleware's API and its reliability features.

- 18 -

Application to application reliability
LIBRARY

OfaR\lUWA, SRI lANKA
MORATUWA

Application to application reliability can be achieved in two ways.

1. In direct transaction processing, an agreement protocol is used to directly include one

application's transaction processing as part of another application's transaction

process. Here both applications interact with the same global transaction.

2. In Queued transaction processing two intermediate data stores can be used for sending

and receiving messages. There arc three transactions involve in communication

between two applications. Hrst transaction conunits the message to sending data

store. Then the receiving application reads the message from there and commit back

to the second storage. Finall> original sending application reads the response message

from the second storage.

..,

-....

g r~24
- 19-

~

2.6 Transactions and messaging

Messaging can be integrated with the object transactions in different ways. This paperl l6 j

pointed out such for patterns possibly used.

2.6.1 MQ Integrating Transactions

MQ Integrating transactions do the reading messages from the queue, updating the distributed

object and writing the response message back to the queue in the same transaction. But this

transaction corresponds only a part of the global transaction.

01

local OutputQueue 03

Figure 2-9 MQ Integrating Transactions

2.6.2 Message delivery transactions ...

Message delivery transactions integrates the message delivery model into distributed

transactions. It allows clients to send the messages asynchronously while doing the other

distributed object transactions. Message delivery failures can be observed and abort the

transaction accordingly. If there arc messages already sent then compensation messages can

be send. ---

-20-

~

set of message recopoents

tx cloent

11
tx server objects

0 0000
01 02 03 04 OS
I I I I
I I I I

1~1 I-- ~ - -...-l I
I m1 I I
I I I
t I I

t4----r----;r4

~ ,:
m2 :-----t-_J I I

I I I
I I .
I I

Message Delivery TransactiOn

tx client
r-1

0
01

I m1
r::----

m1

m

sot of message recopoerts

tx server objects

0 A c,·" o·.·" v · _.t

02 03 04 0~

Standard OTS Transaction

Figure 2-10 Message Delivery Transactions

2.6.3 Message processing transactions

Message processing transactions integrates the message processing model to the distributed

object transactions. This enables the asynchronous request processing between transactional

distributed objects. The transaction is not committed until tQ,e response is received.

-....

- 21 -

' .

tx client tx server objects

II

01 02 03 04
I I I I
I I I I
I m1 I I I
I I I I
I I I .. I
I~ I I I
I I I I
I I ... I I
I~ I I I
I I I I
I I I I
I I I I
I m1 result I I I I t
I I I I

Message Processing Transaction

Figure 2-11 Message Processing Transactions

2.6.4 Full messaging transactions

Full messaging transactions refers to the system which has both the message delivery

transactions as well as the message processing transactions.

2. 7 Middleware mediated transactions

There are two widely used transaction processing systems called. Object oriented transactions

and message oriented transactions. Object oricntl.!d Lransactions happe.Q.s in a synchronous

blocking way . Further object oriented transactions uses 2PC protocol to achieve the atomicity

of the transactions. In message oriented transactions only enqueuing and dequeuing messages

are done transactionally. Therefore message oriented Lransac.tions does not preserve the

atomicity.

Middleware mediation transactions[15] suggest a way to provide the end to end transactions

while keeping the advantages of the message mediation transactions. It provides some end to

end checking at the middleware layer.

-22-

1\ ..

2. 7.1 D-sphere

D-sphere[17] is one of the implementations of the mlddlcware mediation transactions. D­

sphere provides the end to end reliability by providing an rnlddleware to the user which

manages the end to end transactions. rollowing figures show how it works with and without

D-sphere.

Figure 2-12 Applicati on Without D-sphere

Figure 2-13 Application With D-sphere

-23-

' ..

D-sphere architecture supports above requirements by providing a middleware layer to users

which manage transactions internally.

Message Sender,
Transactional Client

Transactional Resource

Message Receiver

Figure 2-14 D-sphere Architecture

-~

-24-

'\
~

Chapter 3

Methodology

3.1 Previous Solution

--_-_-~:.>

Persistence
Storage

T1 commit
' '

Client Program

AM Client

12 COiPitill

..,

~

RMS RMD

Figure 3-1 Previous Solution

-25-

T41commlt

I Se!Ver Pr:ram

[____:F :-

~fl""ll

' ...

Fig 3-1 shows the probable way of solving the above problem with the original WS02

Mercury implementation. Pirst the client program has to read its' persistence storage within a

transaction, build the message in memory and commit the transaction. Then it gives the

message to RMClient which again has to start a transaction and commit the message to RMS.

Once the message stored at RMS it reliably transferred to the RMD by the WS-RM protocol.

At the server side RMReceiver receives the message within a transaction from the RMD,

build the message in memory and commit the transaction. Hnally server program commits the

message to server persistence storage within a trano;action.

This model reliably operates with the pre~en<.:e of network failures since WS-RM protocol can

handle it using retransmissions and acknowledgement~. But if the client node fails after first

transaction being committed to the client storage and before RMClient commit it to the RMS

then the message can be lost. Same failu re can occur at the server side as well. On the other

hand if the first transaction commits after the second transaction there can be duplicated

messages.

3.2 Proposed Solution

(:-_- - ·~-~.~

Persistence
Storage

_,

Client Program
Commit :_ __ --r-----'

,,

/,c;~~:;;1
T4 1 J I --- - --, I

,....------"--,
... SeNer PrograM

AM ReceNer

..._...

Figure 3-2 Proposed Solution .

rig 3-2 shows the proposed solution with the distributed transaction support to address the

node failure scenarios. Unlike in the previous case now client uses a distributed transaction to

update both client storage and RMS storage. Client only corrunits to the transaction manger

and if client node fails when this conunit happens, the recovery process of the 2PC ensures the

atomicity of the transaction. Similar process happens at the RMReceiver as well. At the server

side server program transaction has to participate the distributed transaction started by the

RMReceiver and again node failure handle by the recovery process of the 2PC protocol.

. 26.

' ...

3.3 Alternative Solutions

3.3.1 Integrate WS-RM protocol with the client storage and server storage

by taking them as RMS and RMD

c-------~
------ -- ------ I
Persistence

Storage

RMS

, _____ - --· -- - --___ /

.-1 WSRM ---.. _
'-...J

--.
_ ;""

~--~-~-··----
\ •'-. _______ ___ , __ .. /

Persistence
Storage

RMD

'-.. / ... ___ __ . __ - --· ... ----·

Figure 3-3 Integrate Persistence Storage with RM Storages

Fig 3-3 shows a possible solution for this problem in a spccil1c way to a given problem. For

this solution distributed transactions arc not required since RM protocol tightly integrated to

the client and server storages. But the advantages of this type of approach is less since it does

not try to solve the problem in a gcncrali7cd way. Tl'le focus of this project is to come up with

a middleware which provides the WS-RM functionality to any application.

~

-27-

' ..

3.3.2 Use the same transaction to update both application level storages

and WS-RM storages

, -- -
Persistence

Storage
T1

T2 1

Client Program Server Program

RM Client RM Recetver

...
2

Figure 3-4 Usi ng the same Transaction

:--;~;stste~~e:]
Storage

"' lot ·-

Fig 3-4 shows a special case of using same transaction to update both application level

storages and the WS-RM storages. In order to use this scenario WS-RM storages should be

there with the same application storages. Therefore this may not be useful when integrating

message receive functionality with different storages and different application servers.

Although this functionality can be provided with the proposed storage API based Mercury

implementation, this project only focus on the distributed transaction based solution.

-.....

-28-

' .

3.4 Solution Architecture

3.4.1 State machine model

WS02 Mercury is based on a state machine model where the state is kept in objects called

RMSScquence, RMDSequence and InvokerBuffer. This state machine model is based on the

fact that various external events change the state of each object. Further a set of workers

namely RMSSequenceWorker, RMDSequenceWorker and InvokerBufferWorker performs set

of actions based on the state of the object. It docs not assume any order of the events. If a WS­

RM message get lost while transmining through the network, only the event which would

have occurred get lost while system <;tate remains same. Therefore system operates in the

previous state which causes the retransmission of lost message hence achieving reliability.

RMSSequence

-~ _,,
/'

.................

I I

CHH ~; RMSSequence :.;~ AMR
\.__ _,/

" ~-

~
~

....J

~

Figure 3-5 RMSSeq,

Fig 3-5 shows the possible events that would change , tate. These events

namely create sequence response rcceivt! (CRR), last 111 1.::> ~R), application

mt!ssage receive (AMR) and receive acknowledgement for at. · V '?~ her cause by
o"~

the application client or network message reception. RMSSet.. 't).if' '<; on four

factors called sequence started (SS), message in the buffer (MIB), 1. r{f. 1.c-/'~ 'LMR)

and terminate message send (TMS). l hcsc four factors create possib1 ~ 1nly

seven states are valid as shown in the Fig 3-6. -'G (J

. 29-

MIB

('

0

Figure 3-6 RNa-.

f-ig 3-7 shows the complete stale tran~ition diagram ..

which change those states.

-30-

..,

1:>
'--{ 1io ()' . and events

. 'l~J#
£ .'1~~ /hi)

/t-

...
"' .

------··-1 LMR

11,.-

\.. 01 10 "··)

1100 ") - ~~.
'\

...... _ - /--- """
[1011 .I
"......_ .. ________ /

A

t J l ~ -·10 ,_,

r - .. '-- 10

1

G~~~;~) - j

Figure 3-7 RMSSequence State Machine

IYJ 'o o'"'

-~ ~../ ;h· (\
i,e f)VJ h

F::> .. (]

)...j

....

i .
,..-~ -- --- ------

/'"
/ '

tr
-....

AMR£SA'J ~ : RMDSequence :: 41111 LMR(SG)
\ I

'·~----- ---<
I •

i
f/!.

~
~~

1
"-'
I

\,

Figure 3-8 R:viOSequence Events

- 31 -

~

r

rig 3-8 shows the possible events that would change the RMDSequence state. These events

namely application message receive completing the sequence (/\MR(SC)), application

message receive without completing the sequl.!nce (AMR(SNC)), last message receive

completing the sequence (LMR(SC')), last message rl.!ceive without completing the sequence

(LMR(SNC')) and term.inate message recci ve (TMR) would cause by the message rl.!cl.!ivc

from the network. RMDSequl.!nce state depends on four factors called ftrst message receive

(I MR), last message receive (LMR). every message has received (EMR) and terminate

message receive (TMR). These four factors forms possible sixteen states but only five states

are valid as shown in the Fig 3-9.

"

......

Figure 3-9 RMDSequence States

Fig 3-10 shows the complete state transition diagram with the set of valid states and events

which change those states.

- 32-

~ .

/-~--- ------ LMR(SNC) f .---~
. 0000 "'\ / -- AMR{$NC)

"· / ~· 1100 \

-H -- - -~ AMR(SNC) / __ I).R(S1~) LMR~SNC) "- j

.... 1000 '

" /

AMRffiB

LMB!SC)

/---- ---- -

. 1111 ""'

TN1R
"-._,_ I

- --I - --- -·- ' /' '
/ 1110 / ,_

'"·-. ,-- -- .

Figure 3-10 RMDSequence State Machine

....

~,

- 33 -

I nvokerB uffer

:'
I

./
)./

,
~

~------ -- - - - ----.............

,/ "'-.
I \

LM n IIIJJ : 1 nvokerBuffer :,

·"·- / ··-·------ - - -\
\

\
((l

~ \
\

Figure 3-11 [nvokerBuffer li:vents

\ ·,

' ·,

Fig 3-11 shows the possible events that would change the lnvokerBuffer state. These events

namely Last message receive (LMR), application message receive (AMR) and send all

available messages to application (SAM) can cause by the messages receive through the .
network or the invoker which sends the message to application layer. InvokerBuffer state

depends on three factors namely messages in the buffer (MID), last message received (LMR)

and every message send (EMS). These three factors forms possible eight states but only four

slates are valid as shown in the Pig 3- 12.

- 34-

:>

Figur·e 3-12 lnvokerBuffer States

Fig 3-13 shows the complete state transition diagram with the set of possible states and events

which change tho:.c states.

o _______ ------"
w 100)

' .--""' -... __ _

SAM
ANtlR

//
i

_ ___..-- _, - ------.

\.. ______ _
000 ,.)

__

... --- -~ /'/' ,_, .::.:.:.:,~

I Mn llllr { 110 \
'""-- _/

.... __ ... _- __ .,..,

...

.
/- -----:: .. -- - --.. '\

I. 011 :
. J
"'-.._ _/

..... .. __ . -· - --

Figure 3-13 lnvokerBuffer State Machine

- 35-

3.4.2 Run time Architecture

WS02 Mercury is a WS-RM implementation written on top of Apache Axis2. Apache Axis2

provides a set of extension points calkd handlers. These handlers fonns the Axis2 Engine

execution chain and can be deployed as modules. Therefore WS02 Mercury in other words is

an Axis2 module. A typical Axis2 message send starts with the application client which

calls the service client. Then the message is passed through the Axis2 Engine handlers and

finally is sent to the network using the transport sender. At the server side message is received

by the transport receiver. After that it invokes the Axis2 Engine where message is passed

through a set of handlers and finall) receives at the message receiver which invokes the

application at the server side.

WS02 Mercury consists mainly of two handlers called MercuryOutllandler and

MercurylnHandler which are used at out and in t1ows respectively, and a set of workers called

RMSSequenceWorker, RMDSequenceWorker and lnvokerBufferWorker which read the

respective storages and perform the appropriatl..! action based on the state.

Next set of scenarios shows the runtime architecture necessarily with the persistence storage

which uses transactions to read/update storage. Although in memory storage does not support

transactions it is also has the same runtime arc hi lecture.

In Only Messages

...-----.._
/___/1 ~ .. ']ij1

__ MeiCUJYOUtHandl~.

l(ij
!.2
~ ~ I

< ~>

Mercurylnhandler '};j ~

r_l ._,
·I RMD I ltnvoker Bufferl

l I
:.,........,......,.~-:-:-:::---~""'

.._ __ lr- - I

v
MercuryOutHandler ~ ~ / { MercurylnHandler

'\.._., ~< <
Figure 3-14 In Only Messages Runtime

:s
~
(/)

c
Q
(ij
0 a
<

Fig 3-14 shows the runtime execution for an in only message scenario. Mercury receives the

message from the Application client at the MercuryOutllandler, creates a sequence if it

already not there and stored the message in the RMS. RMSSequenceWorker picks this

message and invokes the MessagcWorkcr. MessagcWorker sends this message through the

rest of the handlers and finally the message being sent to the network through transport

- 36-

sender. At the server side transport receiver gets this message and invokes the Axis2 Engine.

Mercury receives the message at the Mercurylnllandler which updates the RMD and stores

the message in the In vokcrBuffer. Then InvokerHul'fcrWorker picks this message from the

lnvokerBuffer and invokes the rest of the handlers so that ultimately message receives at the

application at the server side.

Reliability of the WS-RM protocol is achieved by retransmissions and acknowledgments as in

any other reliable protocol. A separate worker called RMDSequenceWorker is used to send

acknowledgments back to the client side. Upon receiving an acknowledgment client side

updates its' state as message has succes5full} send. As shown in the figure,

RMDSequenceWorker reads the RMD state and sends an acknowledgment message using

MessageWorker which generally is used to send any message. At the client side Mt:rcury

picks this message using the Mcrcurylnllandlt!r and it updates the Rl\1S.

Although it is not shown in tht! diagram RMSSequenceWorker sends the create sequence

message when establishing the sequl!ncc and sends the terminate sequence message to

terminate the sequence. Similarly RMOScquenccWorker sends the create sequence responsl!

message according to the state of the RMD.

llow this architecture supports usl!r transactions? 1\.s it is shown in the Fig 3-14 it does not

keep anything in memory. Any ewnt read<; and updates the storages using a transaction which

is at the serializable isolation level. Therefore any update is not visible to other threads or

workers until the transaction commits successfully. ..,

-....

- 37 -

In Out Messages

-~
0
c:
0
-~

.s-1
0.
0.
<t:

1 _l_ MorwryOutHandler

" ' I~

V PJIIiiJIPWiat!lj

~

-~·
SEt.WtiN- ''1

i\

!Invoker Buffer! [AMD J
?\ f'

2 } MercurytnH<lndlor

-=-1 ·-~--
v .v -

RMD 1 :Invoker Buffer I
n ~

' ¢

<.)
\·

RMS

{\

v
<... \I I({ MercuryOJIHandler

t
~- ~I

Figure 3-15 lnOut Messages Runtime

5
'iii
~

"9:
<

Fig 3-15 shows the run time architecture for an in out scenario. The response path is similar to

request path where the message receiver at the ser~r side initiates the response message now

and it is ultimately received by the Axis2 callback. This axis callback is registered by the

application client when sending the message.

...,.

- 38 -

Fault Handling

c:
0 ·a
.~

8:
<1:

~

~
:f
-"

~
'ffi
()

')
/

L\
) MercuryOUIHandler j
.h -·-

J 'J
~-~

RMS I :;-... t-i~~~-~"".: ~~:~:.tP~ f-1

~

\ -i'.J· J'~.Pt
'r'

[Invoker Buffer! [RMD
~ <",)r

I I

MefturytnH.indler <~

)_}. __ M~curylnHandler

fl r ~ f
I RMD jjlnvoker Butler j

ti

,.
·J

-1 RMS
\

I

a;
(!

~
8
·~
(.)

~
<!

v '- v
CJ: ~uryOutH&lldl&l {~.~

Figure 3-16 Fault Handling Runtime

Hg 3-16 shows the run time architecture for fault handling. In a fault scenario message

receiver throws an AxisFault which Mercury takes as a'h application fault This exception is

captured at the lnvokerBufferWorker level and it lirst roll backs the original transaction used

to invoke the application. After that Invokcrl3ufferWokcr starts another transaction and sends

the message using fault out flow. Client side scenario is similar except the message is received

at the in fault flow.

-...

- 39-

3.4.3 Storage API

RM SSequenceM anager

RMDSequenceM anager

I nvokerB ufferManager

Figure 3-17 Storage API

~
c:
0
u
co
(j)
c:
ro
"-
I-

Storage Manager

Storage API mainly consists of a set of Manager interfaces namely RMSSequenceManager,
RMDSequenceManager and InvokerBufferManager, D"ata transfer classes, Transaction
interface to handle transactions and a top level StorageManager Interface which provides the
access to other interfaces. StorageManager Intt:rface provides tht: methods to get transactions
and manager objects which provides the methods to manage respective storages. Before
accessing the manager objects, the accessing thread should start a transaction by getting a
transaction from the storage.

~

This storage API provides the explicit support to implement in memory and persistence
storages in different ways. For an in memory storage. there is one set of manager objects for
each sequence. The manager object for a particular sequence can be found using the
parameters being passed to manager object access method. On the other hand for an
persistence storage there can be one set of manager object for each sequence. In this cast: the
correct storage dto object for a particular sequence is determined by the parameters passed to
storage dto access method in the manager interface.

-40-

lnMemory Implementation

j f.ft\.1:~ ~>et..luen::,E,
L---------~----~

I nMemocy RMSSequenceManager

RMSSequenceManagerMap

I k] 1... t ~-~ f)~>.aqJHr •r p

I nMemory AM DSequence tiAanager

RMDSequenceManagerMap

[t(II llv--~.~~suf:eJ l
lnMemorylnvokerBufferManager

lnv ok. erB u ff e rM ap

c
0

t5
C'Cl

~
c
0
E
Q)

~ c

I nMemory StorageManager
..,

Figure 3-18 lnMemory Implementation

Fig 3-18 shows the in memory storage design for Mercury. In memory storage keeps a
separate sequence manager object for each sequence and it keeps these objects in three hash .
maps called iSKRMSequenceManagerMap. sequenceiDRMDSequenceMangerMap,
sequenceiDinvokerBufferMap. A sequence manager object has a lock amJ another object to
keep the details for the sequence manager object. Any sequence manager object can be
retrieved from hash tables giving the key as the parameter. But before accessing the sequence
manager object the corresponding transaction has to acquire the lock for that object.

Synchronization

For proper state machine cxecution only om.: thread can update the sequence at a given time.
Hencc it is required to synchroni;.c the state machine or sequence manager objects. Two phase
locking is used to synchronize the sequence manager objects when; a transaction acquires the
locks when accessing objccts and releases them upon a conunit or a rollback. A transaction
always acquires sequence managers in the order of RMDSequenccManager,
lnvokerBufferManager and RMSSequenceManagcr to avoid deadlocks.

- 41 -

Persistence Implementation

Com1ectionManager

.... .._

~ ~ CD
~ ~ c c c: ~ cc ('\j ~ ~

~ oQ) ~ e g d> c
~ Q> 92 .:J ::::; ...J co g @" \.. ,
Q)

(/) (/)
~ U) 0

~ ~ E: a: a: Q} (J) Q,) 0 u 0 c::
as c: Q)

<1.1 -- (/)
~ I/' ·-
t:! cr. ~

1.-. Q) ~ ~ Cl. a_ a_ Maooe

Pers i stenceStorageM anager

Figure 3-19 Persistence Implementation

Fig 3-19 shows the important components of the persistence storage. It has a connection

manager which is used to create either normal database connections or xaConnections to
...

database. There are two types of transactions called JDBCTransactions and JTAThransaction.

A JDBCTransaction contains a normal database connection where as a JTATransaction

contains an xaConnections. Once a thread requests a transaction persistence storage access the

connection manager and creates the requested type transaction. Unlike in the in memory .
model, persistence storage manager keeps one set of sequence manager objects for all

sequences. All sequence managers usc a set of helper classes called table-n1appers to create sql

queries for dto objects and to create dto objects from result set objects. Sequence manager

objects gets the connection object to usc from the thread local.

Synchronization

Again for proper state machine execution only one thread hence a transaction can update the

sequence state. This can be achieved by setting the isolation level of the transactions to

TRANSACTION_SERIALIZABLI: . This i!-.olation level can leads to deadlocks.

First there can be deadlocks due to different order of table access. This has been solved by

always accessing the RMDSequenceManager related tables fust, then InvokerBufferManagcr

related tables and finally RMSSequenceManager related tables. One transaction may not

acquire all sequence manager objects but if it requires it has to access in the given order.

-42-

At TRANSACTION_SERIALIZAHLE isolation kvd a transaction has to acquire a writer

lock (an exclusive lock) to update a tabh.:. i\ writer lock can only be acquired after all the

other transactions release the reader lock at a conunit or a rollback. This gives another type of

dead lock if two transactions try to read and update a table concurrently. Since both can not

release the reader lock until write. This problem can only be solved by acquiring an exclusive

lock at a read. An exclusive lock can be acquired at the read time by using 'select for update'

statement.

Mercury persistence storage usel> above two techniques to achieve synchroni.lation avoiding

deadlocks. It has been tested with an embedded Derby database with row level locking .

..,

-....

-43-

Data base design
~--- . RlwS_aQUEMT 1
ID_C long
SEQUENCEID_C stnng
SEQUENCE_OFFER._C strmg

·ST.ATLC ont

RMS.AX IS UNFO. T
·ID_C long
· SERVICE_NAME....C · strong
·CURRENT.JiANDLER..JNDE;<._C. lnt
-CURRENT...PrlASE..JNDEX.....C ont
- IS_SERVER._SIDE.....C ont

·ACKS_TO_C stn ng
-lA~T..J.IESS..<>.CE...NLT•IBER.....C: long
STAPT_TII~E_C long

-END_TIME_C long

f-------......,..-f·SOAP ...NAMESPACE...URI_C stnng
-ADORESSINC.J'IAMESPACE_URI .. C stnng
• TRAI~SPOIIT _IN_NAME....C strong
-TRANSPORT _OUT NAM E....C · lnt

·lAST .. ACCESSED_llME.....C long
·RETRANSMIT_TIME....C long
TIMEOUT_TIME_C long

·IUNOI'J)MOUS_C 1r11

·lAST .. CREATE_SEQUEl'ICf....RESPO'HE... ~lfSSA CE...Sfll. 1_ TIME .. C • loog
·lAST...AC'"Y.NCNv'UDCI~ENT .SENT_TIME...C long
-C~oE_SEQIJENCUIESSACE....JD_C str:ng
· "'ESSACE_NUM8ER.....C !ong
·fND..J'CWIT...ADDRESS_C: StMg
.. N er _c string
·N'IXIMU~LRETRANSMIO_TIME_C lon;
·EXP01ENTI>L2.AO:_O~FJ. ont
·CRE.OTE_SEQUENC!::...JlETIIANSM IT _(OU" T _C ont
Y.ELC stnng J • TO...ADDRESS_C srrong

R~I S_~IESSAGL T
·ID_C · long
· M ESSACE...NUM BER.C. long
- I S_lAST _MESSACE.....C int
·SOAP...fNVELOPE_C st ring
· IS....SUJD. C ont
-.0.-JS_fl!ESSACE.....ID_C: string
·RElA TES_TO J•l ESSACEJ D_C strong
·REri...Y_TO_C stnng
·CALL.8Acr~_CLASS..)MME.....C · Stnng
- .ACTION_C stnng
·OPEPATIOI'J...ACTION_c · string
·SERVI CE_NA.:.I E.....C strong
-PMS3EQUENCE..JO_C long
-lAST..J.IESSACE...SENT_7 ,ME...C : long
·IIETRAIJSMIT_COUNT_C: tong
·FLOW_(• lnt

•OI'tAA f'ON_•IAME...C stnng
·OPEPATo OI'UIAI~E...SP.ACE_C st i ng

INVOKEfCBUff£1\... T
-IO_C long
$TATE_C ont
lAST.J.!ESSACE....C long

·lAST.J.!ESSACE.....TO...APPUCATION_C
·LAST...ACCESS_TIMf.....C long
SEQUEN CE...IO_C strong

-ACKLTO_C stn ng
TIME_OUT_TIM E....C long

· IS...ANONYMOUS_C int
-RMD_SEQU ENCE....ID_C · lOng

tong

r IWOk£R_8U
.. r r .r1
M£SSA~f- h\1.' 8

-scAr ...f~••aor
·15_SENC•_C ont
S£RI/1 Cf....NA~IL

·ACfiON .. C son
1 ,-MESSACE_IO_C ; nnng

t--:- ·TO_C SHtrog
l -REPLY_TO ... C· Strong

-~10'¥\'_C. lnt
· I NVOt: £1\...BUH ERjO _C long
·OPfPA 1'1 O'II_N AI.IE....C strong
·OP~PATI O"' N-.ME...SPACE....C
· R~lATES IO_C str1 nq
·IS_loi,ST_ME'SSACE....C lnt
L_

strtng

Figure 3-20 Database Design

-IS_USE....SEPERATE...LSHJER.....C l ru
-Tlt•IE.....O!JT J II_MILISECOIJDS _C 10'10
-RMS3EQUENCE..JD_C long

1 BUFFER.REO:MD _NUMOCR_T
-ro_c long
-t~UMBEP_C long
-I NTEPNAL_BU~FER._ID_C : long

hg 3-20 shows the underline database design f'or persistence storage. It contains a separate set

of tables for each sequence manager in order to avoid deadlocks by accessing them in a clear

order always.

- 44 -

3.4.4 Other issues and solutions

Starting the terminated sequences at the client side

Client node can fail while sending a :-.e<.juence of messages. Therefore for application client

there is no way to know whether it properly tenninated the sequence or not if the client node

fails just after sending the all the mes!>ages (this case happens only when there is no explicit

last message but application client semh a terminate message to Mercury). As a solution to

this problem Mercury sends an explicit terminate signal for all the sequences that has not been

terminated. If the application client has not send all the messages then it can start a new

sequence and send the remaining messages.

For in out client scenarios once the client node fails, addressing dispatch information stored at

configuration context also get lost. And also there is no axis2 service to receive the messages

as well.

In order to solve the above two issues Mercury uses a deployment life cycle listener to

terminate the non terminated sequences, to add the axis2 service and to register dispatch

information in order to dispatch sequences.

Distributed transaction recovery

Two phase conunit (2PC) protocol guarantee!> the atomicity of a global transaction even when

node fails. 2PC protocol has a recovery phase to recover from the node failures if the

coordinator or any other node fails within the commit prtase. Therefore in order to guarantees

the atomicity of the global transaction the XA implementations should properly support the

recovery phase. However it seems some database X/\ drivers have problems with the recovery

phase.

..,..,

-45-

Chapter 4

Use case scenarios

Mercury can be used to invoke services using both in only and in out message exchange ...
patterns (MEP). Although this research work focus on user level transaction support it is

designed in a way that it can be used with simple inmemory implementations as well.

Following use case scenarios arc used to demonstrate how to use Mercury with different

storage implementation types. WS-RM 1.0 ck~cribes an addressing based dual channel mode .
to send and receive messages. Therefore for all use case scenarios given here uses addressing

based dual channel mode. There i~ another specification describes an piggyback message

based system which uses http back channel to rcct.:i ve messages. Mercury supports the latter

kind of invocations only with the in memory implementations.

- 46-

4.1 lnMemory

Client Program Server Program

Figure 4-1 lnMemory Invocation

InMemory invocation is the most simple way of using Mercury. It does not requires to do

anything other than the engaging the Mercury module as in any other module engagement.

Mercury uses in memory implenH.:ntalion as the default storage. Messages can be send

through a tcp monitor and start and stop channels in order to prove the reliability with the

presence of network failures.

4.1.11n Only invocation

Conf1gurat1 onContext con t igurat ionContett -
Con f1gurat1onConteJtFact ory. createConflguratlonContextFroMF 11eSyste•(

AXI52..}l'EPOSlTORY_tOCA110\, .lX1S2_Cllf.\T_COo\Fl f(_JHE) ;
Serv1ceCl1 ent serv1ceCl1ent = ne~ Service< ,en-(ront1 ~~rat l onConteJt , null) ;
serv1 ceCl 1 ent . secTargetEPR(new Enapo1 ntRefer ence("ht tp: ; 1 local host :8\l88i a'O s2; senrices/ ln'1Prory TnSPr .. H'e")) ;
serv1 ceC 1 ent. getOpn ors() . setAct l on("um: ln~cr-u!yln0pPrat1on") ;
serv1 ceCl1 en): . engageMoaul e("::l!r·cun ");
servlceC11ent. get0ptiors() .setUseSeparatellstene trt~) ;
servl ceCl 1 em: . getOpn ons() . set Property(Herw ry(ll en': Constants.I~TERY~LJD, "1-e)•l");
for (int 1 c 1; 1 < 20; 1++) {

}

serv1 ceCl 1 ent. fl reA.ndForgPt(getTestONE1e•ert(1)) ;
try {

Th read.sleep(1000) ;
} catch (InterruptedExcept1on e) (
}

•

~ercuryC11 ent ~ercuryC l1 ent- new Me rcu ryC11ent(s~rv1ceC 1l ent) :
•ercuryC11 ent .terll1nateSequencP("I\P)1") ;

Figure 4-2 In Only Client

-.....

It uses a service client object to invoke the service. First it creates a configuration context

pointing to an repository location. Then it sets the endpoint reference and soap action

associated with the operation as in any J\xis2 client invocation. After that it engage Mercury

module in order to make this connt:ction reliable. Here InMemorylnService should also have

engaged the Mercury module. lr set!> the u~eSepcrateListner parameter to make this a dual

channel invocation. Mercury uses the internal key parameter to distinguish messages

belonging to different sequences. After setting all the necessary parameters it ~ends 20

messages and finally terminate the sequence by invoking the temunate sequence method.

-47-

4.1.2 In Out Invocation

Conflgurati onContext conflguratlonContext •
Cont i guran onContextFanory. crear:eConf1 guratl onCom:extFro.wF1 JeSyste•(

AXlS2_REPOSl70RY_LOCAT10N, 4XJS2 CLllNT CO\~JC_flLE);
ServiceCll ent: serv1ceCl1ent • new Serv1ceC'ien1:(conf1guratlonContext, null);
serv1 ceCll ent: . setTargetEPR(new EM POl ntR~ference("http:ftloc-a I hOst :ll038/ol•ls2; <;Pr'vlces; lnMer.or) I nOut'\Prv1 ce"));
serv1 ceCl i ent: . getOptl ons (). se-tAct 1 on("UI n: l11'1~nur)' IIIOUtllrwr·dtwn");
se r v1ceCl ient.get0Ptlons().setUseSeparatPl1~t~nP r (true);

serv1 ceCl1 ent. get0Pt1 on;() . setPrope rtY(Mercury, 11 entCn~ta.nts. SEQUEI!tC[OfFER. Constants. VAWE_TRl!£);
serv1ceCl1ent.engageNodule("'lerc.ury");
for (int 1 = 1; 1 < 20; 1++) {

}

sendAsyncl10rnousNessage(senl1ceC11Pn't, , , "~evl") ;
try {

Threa.il. sleeo(lOOO);
} catch (Inter ruptedExcept1on e) {
}

Nercury(l1 ent •ercury(lient a neo.. Mereu r(l i ent(ser~l ceCl 1 ent):
•ercury(11 ent. t:er•1 nateSequence("lie) 1'') ;

Figure 4-3 InMemory In Out Client

WS-RM supports in out invocations hy establishing two RM sequences for in and out

message sequences. For incoming sequence an sequence identifier can be offered when

sending the createSequence message for out sequence. In this sample client it sets the

sequence offer to ask Mercury to send a sequence offer with the createSeqence message.

Unlike in the in only scenario it docs an asynchronous in out invocation usi ng the

sendAsynchronousMessage method.

pr111ate \Oid sendAsynchornous~es<age(Ser~1ceC1ant serv~cec11en~ , 1nt 1, Stn ng key) thro~os A:.osFault {
serv1ceC11 ent:. getOptlons(). setPropercy(No.rcury01 entConstants. IAITER\Al..XEY, key);
Ax1sCallback ax1sCa1lback • new A>lsCallback() {

};

public vo1d onMessage(MessageContert •sgContert) { ..,
Systea . out. pnr.t ln("1;ot the lt!'<:<;agp -> " + ISgContert. getEn~elope(). getBody(). getFHstEl e1ent(

} I?" LIBRARY
public vo1d onFau l t (MessageCor,tert ••g<,onte>.1:) { \~ -,

Systea. out. pnntl n('"Co t the fault , " + •sgCo~tert . getEnvelope(). getBody(). getFault().getOetall()); *
} . . . ~~~LA~ b.
public vo1d onErro r (Except1on e) {

e.pn ntStackTrace();

publi c void onCo•plete()

-....
servi ceCt 1 ent. sendReceweNonBl otk1 ng(getTestOI!E 1 e~ent (key + " " + ; + " "), aw1 sCallback);

Figure 4-4 SendAsynchornousMessage Method

It sets an Axis Call back object to receive the messages and do an asynchronous invocation so

that it can send the out messages without waiting for the incoming sequence.

- 48 -
I

4.1.3 Fault Handling

public class InMe11oryFaultMessageRece1ver P\ll'nds Abst ractin0utMessageRece1ver {

publ ic void 1nvokeBus1nessLog1c(Messagecontext 1nMessage, Messagecontext outMessage)
thro"s AxlsFault (

Systel'll. out. pn ntln(""Sencllng lh•• f,1u ll Ml':'.~<liJP "');
Ax1sFau11: ax1sFault • new AxisFault("J~stfrr-or ressai)P");
axisFault . setDeta11(getTestO~Ele~ent(1 n Messaoe . getEnvelope() . getBody().getF1 rstE1ellent().getText()));
throw ax1sFault;

pn vate OMEle~ent gPtTestONEle~tPrt (StrH.g tl'xt)i:
ONFact ory 011Factory • Ot•.ObstractFanory. ~!!!CNI'actor_,();

}

OMNauspace o1Na1espace • ONF actory.: •eateOHN .. aespace("'http :, '~>~o2. org/tecpt" , "nsl ");
Q!jEJ e11ent oaEl eaent c o11Factory. c r~ati'JNEl ene' ,t ,, "lr•stErrurEle•ent•·, oaiJa•espace);
011Ele3ent.setText("Ut>pl) • + te•t);
retum oaEle11ert;

Figure 4-5 Fault Message Receiver

Fault scenarios has been implem~ntcd by ustng a message receiver which always sends an

AxisFault. Mercury sends application ll!vel exceptions reliably by using the response message

sequence. When an application exception receives at the InvokerWorker it rollbacks the

transaction used to invoke the business logic and starts a new transaction to send the fault

message.

4.2 Persistence

APPLICATiON
CLIENT r-~- --:-.::>

·· - -· - - - ---~1 comm1t
"

RM Client

...

Figure 4-6 Using Persistence Storage

c:.-_-- - :-:.:->
APPLIC'A TION

SERVER ___ ,

RM Rece1ver -.....

Fig 4-6 shows a sample persistence storage u~age to transfer set of messages stored at the

APPLICATTON_CL IENT storage to APPLICA'fJON_SERVER storage. This configuration

works even with the presence of node failures (i.e. start and stop client or server) but there can

be message losses if the node fails at the stages where message only resides in memor).

- -+9 -

In order to use a persistence storage it has to be configured at the axis2.xml file both at the

server and client side. We usc Apache Derby as the underlying database.

<:ll.Y.li'Pter MJJll'•'"~tor~M,lf'\.-.qf"I-ClM.~">OtU ,W)o> . • f"f """ \IUJ i iUe hrl1,fll't 'l\lt"fK'1" PM \1'\lenU!~ hlrd(JC"tPrlflager<(pdl"aJCtL-'f >
aoe1u1econno n.are ... ~C'rr.ur)'">

<.p¥cneter nane-'·(21:1. COI"'IW'c t1o:•o;tr1oa .. ,. Jdbc: cttrby: thOf'e/ aru l &'•st;rw ·oJtt<Vnert~.ry, roctules, dewo/ pers-1 st~nc.e,tc 11 en t/ CI.lt.abase/ I'U.MCUHV Ot: IIWI'"M~tttr>
<P• .neter l\dlll"•"dh.llrlwr"'>Or'Q.dP.Xht•.dt....-tr) Jcllc f"•bl•!ll:lrcJo, '"t•t ·<,TJ.r•~c..,.~
<Piii"Meter nane."'C:b.llwr··'"(/pllraneter
<pill"aneter na~~e .. •a,,p.s.h()ri:l''.>-c;/p-lf'"MPttr">

<lnuduleConfi(l>

Figure 4-7 Persistence Storage Configuration

4.2.1 In Only Invocation

<onr• gurat 1o1Conett ccn r· yura""t ' 'nCo'lte>:.t
Conflouran cnCcntPr~ac r• ''Y· -,,..rP(~~'Qur•! 11)n(lJr.t~•rF ,,. ,, IP";Ystt.w(

AJ1152....RCP011CIIf) .LOCATIO>., 4tiS1_U ILV7.(G.V"JILC):
Serv·ceClJent servtceClie·1: • new Ser .. Ht<lltnt(co,tto'-ri~ton<or.t~•t, null) ;
strv· ceClt ent. snTargn£PR(new £ndpa• ntYeftrtnce("ht tp: /.'lo< ~lh<Kt :8ll88fouis2;,..,., 1 <estPers .. ten<:elnSI>r\tCe"):;
serv· cent ent. getOonors~). Sel:Acr1 on("urn; rerststf'•~<elr'l!>rr4tlon") ;
serv• ceC11 Pnt . e,ga)eNodul e("'leretw-) • j;
strv·cec I 1 ent. get0)t1 ons:) . set:UseSeparauL IHent'(lru•) ;
serv1ce(l1 ent .oetO)ttons:) . setProoerwCNercury(lt e·ot :or stan~ ./MEH\H..AEl', "~eYl") ;

<onntct1 on connect 1 on = gt'tDanbase<onntt t1 on():

StateMent stateaent • connee1:1 on. c reateStateaent ();
Str1 ng sql Str1 n~ • "sele< I ID_C lror T(~ l..Sl~D 04 I~ I ''"''' " IS.J,l \O_t•O";
ResultSet resultSet ~ stateaent. executeQuery(sql Strlng);
L 1 st<Long:. oessageNuabers = new ArrayL' st<Long· ();
111111e {resultSet.ne>t()) {

oessaQeNJabers . add(resul tSet. get long (" JO C"));

}
resu1 t SH. close() ;

for (long aessageio : oessageNuobtrs) {
Str ing QJerVStnno- "sel~ct • fro" TE~T \1).0 DATA 1 •her~ 10 C•" • oessageiC:
r~sultS~t • snte•ent.~xccuteQucry(queryStnrg);
1 r (resultSet. 1ex: ()' {

Stnng aessoge = resu1tSet .gotStrtng(''IC~~Hl.(");
Stnng JpdateStnng • "urd>t., ILST <;r!>().04U_1 vt 1:.. ~L,I•.t• l ~~·~r~ IC>_t •" + ressageiD;
state1e1t. erec~ceUpdate(uodateStrt no);
Sy~e•.out. pnrtln("'S('n•hnq l"t'S~t ·• • ·~•~agOP);
tr)• {

Thread. sJ2op:lOOO); "'>
} catdl (InterruptedExceptton e) {
}

servlCeClt•rt. t1 ·eAncForgtt{getT.,;t0~£1et~nt (re~•aot));

statuent. close();
comecnon.cl ose();

~trcury(llent •ercury(hent • ,_ Nercury(htnt{Str.tct(11tnt) ;
aercuryC11ent. tero'"aaSequencec·~~} 1");

Figure 4-8 Persistence In Only Client -.....

As shown in the Fig 4-8 first it reads available message numbers to be send within a separate

database connection. Then for each and every message it gets .the message from the database

record and updates message as send. Since we have not set the auto conunit to false,

executeUpdate statement conunit the transaction automatically. After that as in the in memory

case it sends the message. If the client node fails while it sleeps then this message get lost at

the client side.

-50-

protected vo1d invokeBus1nessLog1c(MessageCont~~t ~essageContext) throws Ax 1sFaul t {
Str1 ng ~essage = ~essageContext.gatEnve l ope().getBody().getF irstElement() .getText();
Syst em.oot. pri ntln("Go t the 'ioap l t"•<>.JCJI' ••> "+ ~essage) ;

.:!

connect1on connect1on = oet DatabaseConnect1on() ;
try {

Statement state~ent = connectlon.c reateState~ent();
Stn ng 1 nsertQuery • "ln'>l't't 111to 11·.\l....RHI: IV[J!,l,TA_T C':ES'>,l,GE_C) 11alues C'" + ~essage + .. ,) " ;
state~ent.execute(lnsertQuery, State~enr. RFTLRN_CfhERAT[D~EYS);

state~ent .close() ;

connect1on . close() ;

} catch (SQLExcept1on e)
e.prlntStackTrace();

}

Figure 4-9 Persistence In Only MessageReceiver

At the message receiver it saves the message to APPLICATION_SERVER database within a

transaction. Before sending this message lnvokcrWorker reads the message from the RMD

and starts a transaction but commit it after invoking the business logic. Therefore duplicate

message can result if server node fail before invoker Worker conunits the transaction.

4.2.2 In Out Invocation and Fault Handling

Both In Out and Fault handling clients areal mo~t equal to the in memory cases but they read

the messages from the database and update ocfore sending them as given in the in only case.

The only difference is that persistence invocations uses concrete AxisCallback class to receive

the messages. This is useful when a client node restart while transmitting a sequence of ..,
messages. Then Mercury can create an instance of callback and register it at the Axisoperation

callback receiver.

-....

- 51 -

publi c void onMessage(MessageContext •sgContP<t) (
String ~essaoe • msgContext.getEnvelope().get8ody() .getF1r$t(lement() .getText ();
System.out. pnntl n(""O'I f lPn:ent ••" ·· ~ ~essagt>);

}

Connection connect1on - getOatabaseConnectlon() ;
try {

Stateaent statement • connect1on.createStateeent();
Stn ng 1nsertQuery • ''inser t Hlto lf '>r H~Cf IV[.J>ATA T ('IESSACL() values ('" + •essage + "')";
statement.execute(lnsertQuery, State~ent. HCTUH~ CE~RATED ~~YS);

stateeent.close();
connectlon.close() ;

) catch (SQLException e)
e. pnnt Stacf.Trace();

pu!Jllc void onFault(MessageCcnten •sgCor.text) {
Stnng Fessage : esgCor.text. getEnvel o~~O. g.,tBody(). Q!?tFiiult() . get0eta11 () . getFl rstEl ~•ent(). geHert();
Systu.out. pnntln("G1 E ll' .. l'nt ••> • • •essage):

Connectlon connectlon • getDatabaseCon~ectlon();
try {

Stateaent statenent • connectlon.createSta~eeent();
Stnng insertQuery ~ "insert 1nto H'iT FlfCri~E_OAT~ T (~SAC.(_() ~alues ('" + •essage + "')":
state•ent. execute (lnsertQuery, StatP•ent. HHIIR'r_~.~R1TED /IEY:5);

stateeent . close();
connectl on.close();

} catch (SQLExceptl on e)
e.prlntStackTrace();

Figure 4-10 Per·sistence Call back Handler Methods

4.3 JTA

,--- - ---~

~P-PLICA. TIO~l
CliENT J

--·-- - - - -- "" T1

I
01ent Program --·-. Comm - ...---.......J TM

AM Ghent

.., c:::.--_-_----=->
APPLICATION

SERVER
/ _.,

Tj- ---- - - -j-

Sen~er Program

._.
RM Receiver

Figure 4- L1 JTA Invocation

Fig 4-1 1 shows a sample JT A usage with Mercury to reliably transfer a set of messages stored

at the APPLICATION_CUI:.NT to APLICATION_SERVER database. This configuration

does not loose or send duplicate messages due to recovery nature of the distributed

transactions. Here we use the Apache Derby as the underlying database and the Atomikos

-52-

opensource library to provide the JT 1\ functionality. The persistence storage with the jta

connection manager have to be configured both at the client and server axis2.xml files.

<Pilriln.P ter narJeo-""l"l:,rcvr-;·L~C" lTATr ..,...,r t1 on"'> trtJP cltJ.,vam> trr>
<Parane ter nOICie-· ""~ttWit!JI'It<'n.tiJN"'{ 1 :K..;...,oro . W'\nJ . ,.......c.1ry . " rnr~o, 1 q.l pt"r't < tf!nct. rers1 ~tPnceStoragPftP.lnager<f1:1ar Meter>
<nodul econ rt g nane,;er<ttr')'">

<Parill4!t..- nane• "d!l. <UM« ti<XlS II' lnQ">!db<:dorby / hO .. / Mil.Vn><l !l<'ojoctr •el"(li'J'/ Codulu/ duo/jt;Vc11ent/dat-/ IIER!UllJJ8· / ...,._t..->
<Par .me tor, •• "db.~~ I ver '"><lrg . apiKhe. derbY. Jdb<. Eobe\ltle~Dr 1 ver</Par a.• t er >
<.Par.111Ctl5" nane-~db.u~r"'~aneter>
<paraJJetcr nan~--db . pa.'i~"">-</paranrtrr>

<par-ar.e:ter nanta .. j ta .C'onnN"t1nn r ,-il\.\l}"r clntt~l~ .~ . ,..· t .w\t dPfto .C"11foft• Jta Aton1~0s1TA(ottnf'l(tfon~</para~rtW>
<P~Mtter nane--Jta. proprrt1ts"">

<property nc:me='"Gtt.C:n \'ft"""?orQ.apache ,drrby] db<. lDbf'dd~UDit~oorce·, Pf"'OPtf"tr>
<pl"op..-ty n-·"datab-.,\lr•">;"-f U 1 t"- I'<CIPI'O)t< t r.,-xw Y 'IIOdu1tS/ - / j laiC I ltnl/ dat.lbose('IERCUIY .J)I</tln>Pef'ty

</P4"Mele->
<IIOdUt«onntl>

Figure 4-12 J TA Storage Configuration

For jta connections application clil.!nt program supposed to provide a JT AConnectionManager

which is used to get the transaction manager and connection objects. InvokerWorker use

MercuryUseJTA Transaction property to decide whether to start a JT A transaction or not

before invoking the business logic.

...

--.

- 53-

}

publfc class At OIIlkosJTAConnectlonManager 1rp l er~nl ~ JToConnectlonNanager {

private static Log l og • LogFactory.{letLoll(l\io~HosJTA<onnectJonManager.class);

private String db0r1ver • null ;
private Propert ies properties • null ;
private AtomlkosDataSourceBean dataSourceCeilll • null:

public vm d 1nlt(OHE1 ement)taPropertl esEl e11ent) throws StorageExcepti on {

OMEle~ent onEle•ent •
String propertyNa•e • 11 ;

this .properties a new PropertieS();
for (Iterator<OHEle•ent> Iter • jtaProoertleSE1e•ent.getCh1ldEle~ents (); l te r.has~ext();) {

o•Element = lter.next();

}

propertyHau • 01Ele1ent. QetAtt r1 buteVal ~e(ne11 Q~a~e('"o , "nure"));
1 r (propert)l)la•e.equals(Constants.I!8..JlRH'fR)) {

this.dbDrher • o•El~•~nt.getTe•t ');
} else {

}
properties.put(propertyHuP 0 o•El ~ne•:t. getTe•tO);

th1s . dataSourcetlean • new AtOili<Ost•ataSourc!'Be.J~():
thl S.dataSourceCean o setUrl q•JeResrur· e'l'1t(0'.~<oro ur")Pdld\otu-ce");
this . dataSourceEean. setXaOataSou ~ r · assN~ne(dbOr ner);
this. dataSourceCean. setxaPropert· 1 (thls .pr OJJI'rt1e">);
th1s. dataSourceBean.setMa•PoolS1Zeo'S ;

publ1c Connect1on oetNewConnect lon() lhro\\5 StorageExceptlon {

try {
Connecti on connect! on • th1 s. !lataSourcei!P.Ul. getConnect1 on();
r e turn connection;

} catch (SQLExcept1 on e) {
log.er ro r ("Cdn not create the- AIOI"I~O\ connecl1on", e);
throw ne\11 StoraoeExceptl on("CcUI r10t creitll' the Alu11111w., <onnection", e);

public TransactionManager cetTransactlon~anager() throws StorageException {
try {

userTransact1 onNanager userTrans~ct1 oto~lcmager - new UserTransacti oniCanager();
userTransactlonNanager.lnlt();
return userTransact1onManager;

} catch (Syste•Exceptlon e) {

}
throw ne~a~ StorageExceptlon ("C.u• n<Jl lllil the Tr·ans~ tJOn nan.-u)er");

Figure 4-13 Atomikos JTA Connection Manager

-~

-54-

4.3.1 In Only Invocation

Conflourat1 on:om:e>et ccnf1 our an on~ontext
Cnnfl Juratl on((lntPY"tFactnry. c rPATP(flnfJ r)Ju·:nlon ·nr'ltPxrFrnMf J J~~Y~tP.w(

AXIS2...RFPOS1TORY WCATJO>;, Af!S7 CIIF.\11 ((.l\~/C 1-/U);
Scrvicc<llent serv1ceCllcnt - n~w Serv1CeCllel t(conflgu"at10n(onte·t, null) :
SE rVl ceCl i ent . seHarget£PR(new (ndP01 ntRefererte(., l tp !//liiC ,,, ho>;t :8~Sij_- oLXl!>l/-.·nl(~S/ JT ~lr.Servl ce"));
serv1eeCl1 en~. getOpt:lors() . setACtl Jn("ur u : JUluOpt·r "'""'");
serv1 ceC 11 ent. engageMoOul e('·,ercur")'") ;
servi ceC11 ent. oetOpnors(). setUseSeparateL 1 stener(tn•P) :
serv1 ceCl1 ent . getOonons(). setProperty(Herc~ry(l ant Constant . IWER.YAl..AH, "ke~ !");
serV1ceC11ent. getOOtlors().setProperty(Mercur)/(11fntC• n1tants. LSC. JTA 1Hi<\ISACTIO.\, Constarts. VAllE TRUE);

Atooi kosOataSourceBean dataSourceBe.,, • ,_ A too• ko$0•taSJurceBean();
oausourceBea.1. setlkllq~eResource~a.e("Appll(olll c-uc 1 H!nt~o~r (P");
dataSourceBea1. set)(al)ataSourceCl as;Haee("ot·Q. dll~<hP.tkr b)'.)ll!Jc .frtlr<Sdt·<JUOataSoU<·ce");
Propert•es onoernes • new Properties();

Propert· es. Put("datallasl'\a.>e". " /hO!»'./oll"l la.'r:<< 1pr UJI'< t '~•:-cuq' nKIUII'> lllt•ro 'j t.l·cltent!datah4Se/.tP!'LICUID'I (llf'IT");
d•uSourceBea• . setXaPrcpertl es(p,opertl es);
cen~gura::1 ont:o•lten. setProperty{ .. .\J'Ittl lc.1ttt1n(l trht'S():wcc•, d.ltaSo~.~ceGe3.n):

<cnnect'on co~n~cnon • getDatabaseOIY'eCtl en();

Stateoent s':ateaent • connectt on. createSratuent ():
Str1ng SQIStnnJ s "SP.lect ID C lr011 Tl~T .SE'D OAH T •hc~e I~ ~1'\0 <·~·;
RtsultStt resJltSet. snte•ent ... ocJteQuer~(SQIStr·ng);
Ll st<Lono> •••s•geNu•bers • new Arrallt st<Lo"~>O:
..tnle (resultSet .ne~()) {

oessa9eNuabers. ado(resullSet . g-tlong("IO < ";),

}
resul tSet. close() ;
State• ent. cl ose() ;
connect1 on. close() ;

UserTra.nsactl onNanage - userTransocti onManager
ror (long •essageiD : messageNu•Uers) {

try {

userTransani on~anager • now UserTr•nsaction~anagtr();
userTransactlonManager. i r1 t (~;
userTransac:1 onKanager. beg1n();

ccnrect1 on • dataSourceBean. getConnect1 on();
stateoent = connectt on. createStatete•tO;
String QueryS:nng = "sele<t • rrua TCST Sl'-~ OAU 1 ·.flt'rp 10 c.·+ ressageiD;
resul tSet • ~ateoent. e~ecuTPQu•ry(q Jpry<;tnng);
1 f (resultSet.n~xt()) {

Stnng oess•ge • res~ It Set. gttStrt og("':f.$S~•J..< "):
Strtng updateStrtng = "IJIIO~te l[~l .SE,ll D~TA.I >et IS ~e.:>.<~ "'"''" 10_(•" + 1essageiD;
statenent. erecuteiJpdate(upda.te~trl no);
Systea.out. onntln("Scnchng r.essa~ .. • oes~ge:O);
try {

"'lore ad. sleeo(!OOO):
} catch (lntPr'UPtedErcPpt·on o) {
}

<er 1 ceCil eot. fl reAncrorget(getTtstt~lleotnt (•t~~3ge));

resul tSet. close();
stateoent . cl oseo;
ccnrect1on. close():
userTransac: •on~anaqer. ccu1 t():

} catch (Exception •) {
e.pn ntSt:ackT,a:e();

tr (aessageNuobe rs . Stze() > 0) {

-......

serv1 ceC11ent. getOptl ons() . setProperty(Her:uryCil entconstants. USE..JTA_TIIA.\ISACTION, Constants . \'AWEJAlSE) ;
Me rcu ry(llent me rcury(l ient • new "ercury(l1ent(serv1CeC11ent);
•Prcur)/(11 ent . ter•• natPSPqu• ncP(' ~Pyl ");

Figure 4-14 JTA In Only Client

first it sets the USE_JTA_TRANSACTION property to true in order to indicate application

client going to perform a jta transaction. When the Mercury sees this property it invokes the

Atom.ikosJT AConnectionManager class to obtain the JT A connection resource. Then it

creates Atomi kosDa1aSourccBean resource. an the to JTA get connection

Atom.ikosDataSourceBean automatically enlist the connection to distributed transaction. After

that it reads the available message nurnhcrs to send using a normal database connection. Next

-55-

it starts sending messages one by one. llnlikc in a normal persistence scenario now it starts a

distributed transaction using UserTransactionManager. After updating the client database and

sending message to Mercury it closes the connection and commit the distributed transaction.

Hence it reliably transfer messages stored at APPr J(' A TTON_CLIENT database to RMS.

1 r (tsUseJTATransactl on) {

transact! onNanager = storageNanager. getTra~sactl onManag~r();
transacti onNanager . begin();

transacn on • storageManaoer. get TransactlM(lsUseJTATr&nsactlon);
InvokerBuffer~anager •nvo~erBufferHaoagtr • storagt~an<~tr. gttinvol erBuffer~arager(seq"enceiO);
InvokerBuffer)to 1 nvokerBufferOto • lnvO~~r6uffer~ tnager. get!nvo~erButter(.to(sequenceiD);
try {

tr ((lnYO<.e rBufferOto.getState() !• ln•o•~rBuffer.SUT£.011 M
(lnvoi<.erBufferDto.Ge'Stat e() !• Invokereutrer.STHLTE!I'lto.I7ED)) {

H ((5Yste•. currEntTI•P¥>111 s() - • nvo~ erBuffe•Oto. ;l•tlastAccessTI•e()) < r 'OkerBuf"fer(}(o. getTlleout" e[:) {
!1voJ<er8uffer lnvokerBufter •

new InvokerBuffer(l nvoterBufftrDto. r•oSequenceDto . 1 nvokerBuffer~aoager, conflg~rahonConte•t);
1 sPendlngMessagesEilsU • 101101 er1 utter. ~oAt uons();

} else {
1sPend1ngMessagesE•1sts • fal se;

}

Syste• .oot.pnntln("S~tttt•<J ·t~\U>lR . BtiH~r 't4te ·•~ t~r.,1nat~d Since lh<' s"~'t1!nce ts til"@d out");
t 1YOI<er8uffer0to. setState(In~nkerSuf~tr. ST41~ . lfR•J11~1FD);

} else {

}
•sPenjlngMessagesExlsts • false;

transact1 on . co111 tO ;
if (1SUselTATransact 10n) {

transact1 onManager. coom1 t () ;

Figure 4-15 lnvokerWorker

If the user has set the MercuryUseJT /\Transaction property at the axis2.xm1 then

lnvokerWorker checks for this and start a distributed transaction before invoking the business

logic and commit it if there is no exception. At the message receiver it gets a connection from ...
the AtomikosDataSourceBean in order to enlist the transaction with the distributed transaction

started at the TnvokerWorker. In out and fault handling scenarios are almost same as

corresponding persistence case while having above changes to support jta.

-~

-56-

Chapter 5

Observations & Results

A WS-RM implementation can be used in different ways with the different types of !>torages
The reliability and fault tolerance achieved varies according to the type of storage being used.

Rest of the chapter describes some of the observations made with the different scenarios

mentioned in the earlier chapter.

Any reliable messaging framework downgrades the performance of sending messages. In

other words reliability is invcr!>ely proportional to the performance. In WS-RM this is mainly
-~

because initial sequence creation and acknowkdgement messages. Further it takes time to

store the message to the persistence storage in tht! case of persistence and jta scenarios.

In memory model provides the weakest form of reliability. It provides the reliability for

network failures but can't survive with the node failures. If the node fails it loses all the

messages and sequence state and hence fail to recover.

Persistence model provides better reliability than in memory model. It provides the reliability

for network failures. Since it persists sequence state and messages received it can restart RM

sequences after a node fail. For this pn~ject work we tested this model by sending 20 messages

while stopping and starting the client node and server node. Although it can recover sequences

we observe some messages has lost. The number of messages at the

-57-

APPLICATION_SERVER databast! was less than 20 for in only case. Further number of

reply messages were also less than 20 in 1\PPLIC/\TION_SERVER for in out case.

Persistence storage with JT 1\ support provides the best reliability. first it provides reliability

for network failures. Furtht!r JT/\ support provides the reliability for node failures without

losing any message. For this project work we teMed the JTA support by sending 20 messages

while stopping and starting the client node and server node. But there were no message loses

either at the APPLICATION_SERVI ~R database or /\PPLICATION_CLIENT database .

...

........

-58 -

Chapter 6

Conclusion & Future Work

This thesis describes a queued tran!.action processing based solution using web service

" reliable messaging in order to guarantee the client side and server side persistence storage

updates. It achieves this goal by re engineering the WS02 mercury with a storage based API.

Hence this project presents a storage API based WS-RM implementation which can support

distributed transactions. It provide!. a set of use case scenarios to describe the way to use the

new Mercury Implementation and prove its point in reliability. Sample scenarios uses Apache

Derby as the database for its persistence storage and Atomikos as the Trbrary to provide the

JT A support.

The reliability of Mercury is handled by using a state machine model. Although there is a state

machine for WS-RM 1.1 specification there is no such a model for WS-RM 1.0 specification.

Therefore the state machine model described here which is independent of the implementation

can be used for any WS-RM 1.0 specification implementation.

The storage API developed provides explicit support for both in memory and persistence

storage implementations. This storagl.! API which is independent of implementation logic can

also be used with any WS-RM implcmemation.

- 59 -

There are some problems with the 2PC recovery with the Apache Derby XA driver and other

commonly used opcnsource database XA drivers. However investigating deeply into these

problems and finding out XA drivers that properly support 2PC recovery, goes beyond the

scope of this work and we kept it as a possible future work.

Further research can be done to integratt.: the WS-RM transactions with the application

servers. This allows application dcvclopt.:r!> to integrate Enterprise Java Bean Objects

transactions with the WS-RM transactions.

This thesis concentrates only on supporting distributed transactions on a WS-RM

implementation. But a WS-RM implementation should address a lot of features with different

aspects. Hence we kept adding new features such as implementing WS-RM 1.1 support, usc

single threaded invocations for synchronous communication, WS-RM level error handling and

Secure Reliable Messaging as another possible future work.

..,

--.

-60-

REFERENCES

[1]] Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems: Principles and
Paradigms. New jersey U.S.A : Prenticl.! llall, inc, 2002

[2] Philip A. Bernstein and Eric Newcomer, Principles of Transaction Processing. San
Francisco, CA: Morgan Kaufmann Publishes Inc, 1997. pp 101-116

[3] Don Box et al. ''Simple Object Access Protocol (SOAP) 1.1" W3C Note 08 May 2000.

[4] Luis Felipe Cabrera et al. "Web Services Coordination (WS-Coordination)" August
2005

[5] Luis Felipe Cabrera et al. "Web Services Atomic Transaction (WS­
AtornicTransaction)" August 2005

[6] Luis Felipe Cabrera et al. "Web Services Business Activity Framework (WS­
BusinessActivity)" August 2(X)5

[7] Jens Lechte nb orger "2-PIIASE COMMri PROTOCOL" University of M"unster,
Germany.

[8] Ruslan Bilorusets et al. "W!.!b S!.!rvices Reliable Messaging Protocol (WS­
Re liableMessaging)" February.

[9] Paul Fremantle et al. "Web Servict.:s Rdiable Messaging (WS-1 ReliableMessaging)
Version 1.1" 14 June 2007.

[10] Don Box et al. "Web Servict.:s Addrt.:ssing (WSAddressing)" Augest 2004.

[11] "Distributed Transaction Proct.:ssi ng: The XA Specification" X/Open Company Ltd.

[12] "Java Transaction API (JTA)" Sun Microsystcms lnc.

[13] "Java Transaction Services (JTS)" Sun Microsystems Inc.

[14] Stefan Tai, Thomas A. Mikalscn, Isabelle-. Rouvellou "Using Message-oriented
Middleware for Reliable Web Services Messaging" IBM T.J. Watson Research Center,
Hawthorne, New York, USA

[15] Christoph Liebig and Stefan Tai "Middlcware Mediated Transactions" Dannstadt
University of Technology, Darmstadt, Gennany IBM T.J. Watson Research Center,
New York, U.S.A., 2001

[16] Stefan Tai and Isabelle Rouvellou "Strategies for Integrating Messaging and Distributed
Object Transactions" IBM 'I .J . Watson Research Center, New Y-Qfk, USA, 2000

[17] Stefan Tai, Thomas A. Mikalsen, Isabelle Rouvellou, Stanley M. Sutton Jr.

[18]

"Dependency-Spheres: A Global Transaction Context for Distributed Objects and
Messages" IBM T.J. Watson Research Center, New York, U.S.A., 2001

- 61 -

'-"''' . .,

