
PERFORMANCE EVALUAT ION OF A WEB BASED SYSTEM

CASE STUDY: LAMP BASED LEARNORG MOODLE

Sulochana Jayashamalee Suoriyaarachchi

This dissertation was submitted to the Department of Computer Science and Engineering of

the University of Moratuwa in partial fulfillment of the requirements/or the Degree of Master of Science

in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2010

96423

Abstract
Web based applications are widely deployed around the world for everyday activities of an average

person ranging from simple entertainment to complex social, economic, political, educational and

scientific tasks. LAMP that abbreviates the combination of Linux, Apache, My SQL and PHP is a popular

set of technologies on which most of the web applications are deployed. Although LAMP based web

applications arc deployed in millions, the question is whether the intended purposes of these applications

are fulfilled satisfactorily from the end user's point of view. The response time and the server resource

utilization are the most noteworthy yardsticks using which performance is quantified

This study proposes a proper performance evaluation procedure and recommends an appropriate set of

tools and techniques that can be used for the same. The typical method of evaluating performance is to

monitor only the server side resource utilization. Many popular tools report the server resource utilization

as average values over a period of few minutes whereas most of the user interactions span only for a few

seconds. These average values may indicate that the servers are functioning smoothly, while the users

may be suffering from poor response from the server. In contrast, this study proposes that while

the response time at the user's end is being monitored, the server resources must also be tracked and

analyzed.

The case study of LeamOrg- Moodle is used to exemplify the proposed procedure and how the same can

be extended. The popular Belief of network always being the bottleneck was not supported by the

empirical results of the study. The results obtained for the •'system under study revealed that the memory

can also be a resource bottleneck.

DECLARATION

The work included in this report was done by me, and only by me, and the work has not

been submitted for any other academic qualification at any institution.

Candidate: S. J Sooriyaarachchi Signature:

Date: .. 9. ~ ./ P.~./J.. 9!.~ ~:

I certify that the declaration above by the candidate is true to the best of my ! .. :now/edge
'

and that this report is acceptable for evaluation for the M.Sc Research Project ...

Supervisor: Vishaka Nanayakkara Signature:

.
Date: . ~. /.::~ / -~'.? ·~~?

Acknowledgement

I would like to thank the Department of Computer Science and Engineering of the

University of Moratuwa for giving me the opportunity to conduct this research and

granting me the necessary funds and resources.

My supervisor, Ms. Vishaka Nanayakkara should be thanked for her untiring efforts in

going through my work and guiding me throughout the project.

I would like to extend my thanks to Mr. Shantha Fernando for proposing this useful

project idea and for his initial guidance given specially in defining the scope. I am

grateful to Mr. Shantha Fernando for his initiation and commitment in implementing the

e-leaming system at the University of Moratuwa, which became the case system in this

research.

l would like to thank Dr. Chandana Gamage for motivating me to publish a part of this

work at an international conference and Prof. Gihan Dias for pursuing me to complete

this work.

A special thank should be extended to my fiance, Nalin for bearing with me in stressful
....

situations and encouraging me during the research. l would like to thank my family

members for all the support given throughout the research. I would like to thank all my

friends, especially Sarves for all the support and for encouraging me.

~:."'

II

Table of Contents

Introduction .. 1
1.1 Background ... I
1.2 Case Study .. I
1.3 Research Problem ... 2
1.4 Scope ... 3
1.5 Thesis Outline ... 3

2 Literature Revie\v .. 4
2.1 Moodie' ... 4
2.2 Web User Satisfaction ... 4
2.3 Performance Tuning and Capacity Planning .. 5
2.4 Web Application Architecture .. 7
2.5 LAMP ... 9

2.5.1 Apache Web Server ... I 0
2.5.2 PHP .. 12
2.5.3 MySQL .. 13

2.6 Perfonnance Parameters ... 14
2.7 Workload Characterization ... 14
2.8 Workload Generation .. 16
2.9 Workload Parameters .. 16
2.10 Performance Monitoring ... 17
2.11 Experimental Design ... 17
2.12 Evaluation Techniques .. 18

3 Methodology ... "\ ... 19
3.1 Workload Identification .. 19

3.1.1 Survey .. l9
3.1.2 LogAnalysis .. 21

3.2 System Identification .. 21
3.3 System Monitoring .. 22
3.4 Performance Testing ~ .. 23

4 System Identification ... 25
4.1 Design .. :-, 25
4.2 Users ... 26
4.3 Deployment ... 29
4.4 Process .. 32
4.5 Conclusion ... : .. 33

5 Workload ... 35
5.1 Workload Characterization ... 35
5.2 Tools and Techniques ... 36

5.2.1 Extracting Sessions from Logs: ... 36
5.2.2 Workload Characteristics from Logs ... 37
5.2.3 Recording and Replaying Sample Session .. 38
5.2.4 Tools for regenerating HTTP workloads ... 39
5.2.5 HTTPerf and Workload Recorder ... 39

5.3 Conclusion 41

Ill

6 Experimental Design ... 43
6.1 Outputs from the Experiments .. 43
6.2 Workload Configuration ... 47
6.3 Conclusions ... 51

7 Performance Tests and Results .. 52
7.1 Case 1- Background Processes and Load ... 52
7.2 Case 2- Requesting a Static Page .. 55
7.3 Case 3- Requesting the Moodle Front Page .. 56
7.4 Case 4- Session to Login and Open the Course .. 62
7.5 Case 5- Quiz Session .. 63
7.6 Case 6- File Upload/Download Capability ... 67

8 Analysis and Discussion .. 72
8.1 Analysis of the Methodology .. 72
8.2 Analysis of the Test Results .. 73

9 Conclusion ... 74
9.1 Research Outcomes ... 74
9.2 Recommendations and Further Research 75

References 76
Appendix .. 79

...

lV

List of Figures

Figure 2-1: Canonical Web architecture .. 7
Figure 2-2: Typical N-tier model... 8
Figure 2-3: 4+ 1 model view by Philippe ... 9
Figure 2-4: Apache multi-threaded architecture .. 10
Figure 2-5: Queuing network model of3-tiered Web service architecture 13
Figure 3-1: Mapping of survey goals and questions .. 21
Figure 4-l: A Moodie course page .. 25
Figure 4-2: User perception on page load time ... 26
Figure 4-3: User behaviour- Quiz submission in Moodie .. 27
Figure 4-4: User behaviour- Waiting for interaction .. 27
Figure 4-5: System Implementation- Connectivity .. 30
Figure 4-6: Response time of common set of operations .. 31
Figure 5-l: File types requested .. 3 7
Figure 5-2: Bandwidth usage by file types .. 37
Figure 5-3: A sample httperf command ... 1(40

F~gure 5-4: A sample session_ file ····:···r ·.40
Figure 5-5. Workload recordmg scnpt 41
Figure 5-6: Sequence of interactions in a quiz session .. \ .. 41
Figure 6-1: Round Robin Database structure .. 45
Figure 6-2: Variation of the connection time with the number of connections with hog
option ... 49
Figure 6-3: Connection time and the number for c®nection errors with the number of
concurrent connections when the hog option is disabled .. 50
Figure 7-1: Resource utilization at the background load ... 53
Figure 7-2: Static page requested I 000 times simultaneously ... 55
Figure 7-3: Recorded session for requesting the Moodie front page 56
Figure 7-4: Resource utilization at requesting the Moodie front page 56
Figure 7-5: Resource utilization at 1000 simuitaneous users requesting Moodie front page
... 51
Figure 7-6: Httperf output for 1000 simultaneous sessions requesting for Moodie front
page .. 59
Figure 7-7: Memory utilization with 100 sessions requesting Moodie front page 60
Figure 7-8: Session to login and open the course page _. .. 61
Figure 7-9: Memory utilization at 100 sessions that login and view a course page 62
Figure 7-10: httperf output for 100 sessions that login and open a course page 63
Figure 7-11: Two levels of quiz sessions .. 65
Figure 7-12: memory utilization during quiz sessions .. 65
Figure 7-13: Memory utilization at quiz session run as 5, 10, 15, 20, 25, and 30
simultaneous users ... 66
Figure 7-14: Memory utilization when quiz session is applied as 5, 10, 15, 20, 25 and 30
simultaneous users with resetting .. 67

v

Figure 7-15: Memory utilization when the large file was requested without resetting the
cache 68
Figure 7-16: Memory utilization in requesting the large file with cache clearing 69
Figure 7-17: Memory utilization when 3500 small files were requested 70
Figure 7-18: Sequence of interactions of a file uploading session 70
Figure 7-19: Memory utilization when the large file was uploaded to Moodie 71

...

VI

List of Tables

Table 4-1: Ranking of activities in Moodie by how frequently those are used 28
Table 4-2: Ranking of operation in Moodie by time consumption 29
Table 4-3: Sigle user file uploads .. 32
Table 6-1: Resource monitoring parameters and their meanings 43
Table 6-2: workload configuration for case ! .. 48
Table 6-3: Observations for case 3 .. 49
Table 7-1: Response time with the number of concurrent sessions 59
Table 7-2: Response times for requesting the large file .. 67
Table 7-3: Response times for requesting the large file with cache clearing 68
Table 7-4: Response time when 3500 small files were requested 69

...

Vll

AB

CMS

CORBA

CPU
DAV

DNS
ITP
HTML
HITP
LO

ID
!MAP
LAMP

LDAP

MIB
MIME

MOODLE -

MRTG

ODBC
PDF

PHP
POP

RRD
RTT
SLA

SNMP

SQL
sur
TCP

WSLT

List of Abbreviations

Apache Benchmark

Content Management System

Common Object Request Broker Architecture

Central Processing Unit

Distributed Authoring and Versioning

Domain Name Service

File Transfer Protocol

Hypertext Markup Language

Hypertext Transfer Protocol

Input Output

Identifier

Internet Message Access Protocol

Linux+Apache+MySQL+PHP (or Perl or Python ...)

Lightweight Directory Access Protocol

Management Information Base

Multipurpose Internet Mail Extensions

Modular Object Oriented Learning Environment

Multi Router Traffic Grapher

Open Database Connectivity
Portable Document Format ..,

Hypertext Preprocessor scripting language

Post Office Protocol

Round Robin Database

Round Trip Time

Service Level Agreement •

Simple Network Management Protocol

Structured Query Language

System under Test

Transmission Control Protocol

Web Server Load Tool

VII I

1 Introduction

1.1 Background

World Wide Web is no longer a read-only system for the users. Presently, it is a read­

write system with user interactions.

Almost all day-to-day activities of an average person ranging from simple entertainment

to complex social, economic, political, educational and scientific tasks are expected to be

enhanced, enabled and expanded using the web. Various e-disciplines such as e­

commerce, e-governance, e-learning and e-channelling have become buzz words in the

society.

Among these, e-Learning is of prime importance in all aspects of formal and informal

education. Not only the educational institutions such as schools and universities, but also

the other institutions in the industry rely on e-leaming over the web as a promising

mechanism for training and education.

Although the applications are deployed over the web in large numbers, it is questionable

that their intended purposes or Service Level Agreements (SLA) are met satisfactorily .
...

The performance of such systems in tern1s of responsiveness, availability and reliability

as well as the resource utilization has not received comparable attention in contrast to

their wide deployment.

Hence, this study focuses on the performance of a web based system, which is based on a

set of popular technologies. Therefore, the outcomes of the study will be applicable for

many such applications based on similar technologies.

1.2 Case Study

Moodie is a popular open source Content Management System (CMS). LearnOrg-Moodle

in the University of Moratuwa, Sri Lanka is a Moodie instance running on Apache on

Linux with MySQL as its backend. ln other words, LeamOrg-Moodle is a LAMP based

system similar to millions of such systems deployed worldwide.

LAMP refers to the web development and deployment platform which comprises Linux,

Apache, MySQL and PHP. Though ''P" can refer to other server side scripting languages

such as Perl or Python, here it refers to PHP due to the simple reason that Moodie

application is developed in PHP.

LeamOrg-Moodle is crucial in the Blended Mode Education System practised in the

Faculty of Engineering of the University of Moratuwa. It hosts a number of courses

offered by the faculty especially for the first year students. The system provides dynamic

content and interactive services to a user base of over 3000 students and about 200 staff

members. High demand for scaling the system in an environment where the resources are

limited implies that there should be optimal capacity planning. Furthermore, in the

existing system there had been user complaints about system's responsiveness and

unavailability with simultaneous user access. Recently another Moodie system was

introduced to the system, which is referred to as Mihindu-Moodle, to handle first year

students' requirements. This system caters to around I 000 users.

It is required to find out the acceptable responsiveness and the system's limits at

overloading conditions in order to quantitatively and qualitatively determine actual

resource requirements of the system. ...

To generalize the problem, the objective here is to extract facts about the performance of

a web application based on a systematic performance evaluation.

1.3 Research Problem

Performance analysis of the systems was not a prime focus of the system administrators

in the university due to various reasons such as the small scale of the systems, the lack of

staff and cost of analysis.

Whenever a performance issue is reported the administrators would monitor servers using

typical tools such as top and MRTG and analyze various logs. Until the time of this

research, the server administrators of the university were not well aware of the tools and

techniques, which would be better suited for performance monitoring and what aspects

should be monitored.

Hence, this study seeks answers to the following research questions:

2

Question 1. What is the proper approach of performance evaluation of a web

application?

Question 2. What tools and techniques are appropriate for the selected approach?

Question 3. What aspects affect the perfonnance of LAMP based web applications?

1.4 Scope

The study identifies the workload patterns on the system mentioned in section 1.2,

evaluates the performance of the existing system by applying identified types of

workload, identifies the performance bottlenecks, proposes enhancements to eliminate the

bottlenecks, and gives recommendations for growth of the system.

The outcome of this work is based on the system performance metrics such as response

time and resource utilization.

The qualitative factors such as the look-and-feel and the navigating efficiency of the

Moodie application were not considered.

Moodie application was viewed from the point of view of resource consumption and

interactions with the rest of the architectural components in the LAMP platform. Hence

most of the business logic of Moodie was assumed to be a black box.

Similarly all the architectural components of the system were viewed in terms of the

service rates and capacities so that the aspects such as security were not considered.

1.5 Thesis Outline

This thesis is structured as follows: Chapter 2 describes the literature related to the

underlying concepts and technologies. Chapter 3 explains the methodology followed in

conducting the research. Chapter 4 describes the system under study in detail based on the

findings of the system identification. Chapter 5 describes the workload characteristics,

and the tools and techniques for applying the workload on the system. Chapter 6 explains

the experimental design. Chapter 7 illustrates the results of the performance tests. Chapter

8 gives an analysis and a discussion of the results given in Chapter 7. Finally. Chapter 9

concludes the thesis by summarising the findings and giving recommendations.

3

2 Literature Review

2.1 Moodie

MOODLE, which stands for Modular Object Oriented Distributed Learning Environment,

originated with the objective of incorporating pedagogical features missing in then­

existed learning environments in 1998. Moodie is based on social constructivist

pedagogy.

According to Moodle philosophy, constructivism is the point of view, which advocates

the philosophy of people actively constructing new knowledge as they interact with their

environment [1]. Social Constructivism extends this idea to a group of people

collaboratively creating a small culture of shared artefacts with shared meaning.

Moodie brings this pedagogy on to the web, which generates a huge amount of user

interaction with the system via activities such as forums, wikis, quizzes, assignments, and

chats. Hence web user satisfaction is of prime importance in the case of learning through

Moodle.

...
2.2 Web User Satisfaction

Much research has been conducted in the area of web user satisfaction often based on e­

commerce sites. Gehrke and Turban present five determinants of user satisfaction

regarding e-commerce sites [2]. These five determinants are page loading speed, business

contents, navigation efficiency, security and marketing/customer focus, in the order of

importance respectively. Page load speed, delay, response time and such speed related

parameters are highlighted in several studies with respect to user satisfaction. The delay

experienced by web users is elaborated in [3]. According to this study, a web experience

consists of several episodes and each episode consists of wait experiences and

interactions. As far as wait experiences are concerned duration of the wait, uncertainty of

waiting times, information provided to the user about the wait, the point at which the wait

occurs within an episode and the waiting time with respect to the user-expectation are

important aspects. The study shows that more than the absolute waiting time the user

4

perception of waiting with respect to his expectation has larger impact. Further the

uncertainty of the waiting time is an important factor rather than waiting time itself [3).

Hence, the simple assumption that "faster is better" in providing quality of service in web

based systems is not logical. In order to engineer a web based system, there should be an

SLA that satisfies the user and also that is feasible for the system to maintain. SLA should

promise specific and quantifiable parameters of Quality of Service. Quality of service will

be represented in terms of parameters that a user can feel and that make sense for decision

makers in administering the system. In order to make sure the user satisfaction is met by

adhering to the SLA, the parameter values specified in the SLA should be related to users'

expenence.

2.3 Performance Tuning and Capacity Planning

Achieving user satisfaction has always been a challenge with the technical issues arising

from lager demand and limited resources. Therefore, performance tuning and capacity

planning are important missions to meet these challenges in any system. Interactive web

applications are no exception.
...

Systems need to be fine tuned to provide the agreed level of service. Capacity planning

should also be done such that SLA of the system is met. According to [4] typical

questions that arise in capacity planning are;

l. What are the maximum load levels that •the system will be able to handle in the

production environment?

2. What would the average response time, throughput and resource utilization be under

the expected workload?

3. How would performance change if load is increased? Does the system scale?

4. Which components have the largest effect on the overall system performance and are

they potential bottlenecks?

5. What hardware and software resources are needed to guarantee that SLAs are met?

5

Furthermore according to [4] approaches to seek answers for above questions are often

ad-hoc, experts' opinion or rules of thumb. Often a rule of thumb for perfonnance gain

has been the over-provision of resources which leads the institutions nowhere. But the

systematic approach will be to do a performance analysis and based on that form the

predictions.

Performance evaluation involves multi-disciplinary skills such as mathematical,

statistical, analytical, communication and data representational skills.

Systematic approach of performance evaluation involves the following steps [5):

• Stating goals and defining the system boundaries

• Identifying services and outcomes of the system

• Selecting performance metric

• Listing parameters

• Selecting factors to study

• Selecting evaluation technique

• Selecting workload ...

• Designing experiments

• Analyzing and Interpreting Data

• Presenting results

• Repeating

As per above process, the evaluator needs a thorough understanding about the system

throughout the process. The following sections are dedicated to give an insight into the

technologies and concepts related to the system under study, which basically is a LAMP

based system providing dynamic and interactive web experience for e-leaming.

6

2.4 Web Application Architecture

Web applications are typically multi-tier, often 3-tier consisting of a front-end web server

layer, an application server layer, and a back-end database layer. The front-end layer

accepts client HTTP requests and serves content from the file system and those generated

by application server as shown in Figure 2-1.

Page
Request

Web Browser

File System

Figure 2-1: Canonical Web architecture (7)

The application server layer handles the business logic and computes the information

needed for constructing the requested pages. The back-end database layer stores the

necessary data for generating dynamic content. There is no one-to-one mapping between

the multi-tier logical layers and physical architebtures [6).

According to [7] there are significant architectural differences owing to different

mechanisms that tie the elements shown in Figure 2-1 together. Some examples for

architectural decisions are:

• How to preserve the user's session where the communication from the browser to

the web server is generally stateless

• Placement of the application's business logic: models such as the accordingly thin

client model, the fat client/thin server model and ·models where it is distributed arc

available. However, most systems today tend to push business logic to the server

side.

• Whether the communication from the logic to the data should be stateless or

stateful

7

• Method of connecting to the application's persistence data: how the illusion of

objects is given to the user while data continues to live in relational tables,

whether the connection from the system's business logic to its data is manifested

via a mechanism such as JDBC or via messaging.

Presentation End User's System

GUI
(WTWL.. V'o'ond~fom._ ek)

Phv•• allr on ll'oe cuenre medline

... 1_...,,.,, ... ,\l ..
-•• ... CLtnt
.. 41>tk

The Web
Distributed Logie

Needed to connect to the
Stmt·Srded ItS Ptoxy Yytr on tne nnoer to

Presentation (\IBScnpt. JScnrt . Web Forms,
Send tnd Rec.l~ requeSls Client Interface

Logic Tier C#, VB NET. etc) (WondowH!ned forms
a cu~tom apphc.tron, or

Producong: HTML, XML. anythrng else the chent

OHTML, ~L. etc Proxy Tier ''- able to drsp~y)

(SOAP, CORBA. RMI.
DCOM, ere.)

Business Objects and Rules ~~

Business Tier Data M~ipulahon and Ttiin~l'orm'ltion into lnf'ormaloon

~
fi

Could be d811gned on 1 st•eful mtnner r·

Data Access ln~trf'aces Wllh the Dat~bau (::!
7

Tier
Handlta ttl Data 110

Mada to scale, usualy stat a less

Data Tier
SlO~of?

Query & storage ophiTilzatoon
Ptrf'otmanct (mcle•ing, etc)

Figure 2-2: Typical N-tier model (81

A typical N-tier architecture is described in [8] as shown in Figure 2-2. As per [8] the .
presentation logic tier provides end user with the interface to the application by

transforming the output of the business tier into a usable and readable format. The proxy

tier facilitates the distributed computing by acting on behalf of the distributed logic layer.

The data access tier is a reusable interface to the database which does not contain

business rules or data manipulation logics.

As far as hardware technologies, software technologies and interactions among

components are concerned web based systems are increasingly becoming complex. When

understanding such complicated systems viewing them from a single view point is not

sufficient. A 4+ 1 model is given in [7] that can be used to understand web applications.

8

.,,
•••••

Design View

....
• I

• ••••
. . Implementation

- - View
Clu~es, lnt«lr.es,
Collaboraticm

Uu
Cnes i·· .. ~ . -- Corrponents

••• ••
Use Case View ••• .., .

Process View

AclilleCiuns

.,.
Deployment

View
~

Figure 2-3: 4+1 model view by Philippe (7]

The design view as shown in Figure 2-3 captures the functional requirements of the

system or the services provided to the end user. The process view encompasses threads

and processes that form concurrency and synchronization mechanisms of the system. This

view captures mostly the performance and the scalability aspects. The implementation

view addresses the configuration management of the system while the deployment view

encompasses system's hardware topology and installation of components. The use case

view encompasses the behaviour of the system as see"n by the end users [7].

Modelling 3-tier web applications is also advantageous in aspects such as capacity

planning, overload control, performance management, and resource provisioning [9].

Study presented in [9] proposes such a model using queuing network theory. The

researchers also have built a test bed to measure the model parameters, based on industry

server components and TPC-W benchmark.

2.5 LAMP

LAMP architecture can also be considered as 3-tier where Apache acts as the front-end

web server or the 1st tier, PHP engine acts as the 2"d tier, and the MySQL database acts as

the 3rd tier.

Apache as the 151 tier performs three basic functionalities: (I) Receives requests from the

clients, serve for static web requests (2) At the same time forwards complex dynamic

9

content requests to the 2nd tier (3) Receives responses from the 2nd tier and sends them

back to the clients [9].

PHP engine forms the 2"d tier which carries all the business logic and performs functions

such as: (1) Receiving requests from the web server (2) Looking up information in the

database or 3rd tier (3) Processing the information (4) Passing the processed information

back to the web server [9].

MySQL forms the third tier, which basically keeps web site's information stored [9].

''Even though LAMP is a very popular architecture there has been little work to

characterize and benchmark the architecture, especially at an application level, but there

has been a substantial amount of work done to analyse the performance of some other

web applications" [1 0].

2.5.1 Apache Web Server

Modem web servers such as Apache are capable of operating in both multi-threaded and

multi-process modes. In multi threaded mode Apache is structured as a pool of worker

threads to handle HTIP requests. A worker threaq processes the request until it completes

and then accepts a new request. In the thread pool model, the threads are pre-created at

the start up [9].

HTTP

Nhl~ooofl

ApcKh& II'Od,..Jk Tomall

Figure 2-4: Apache multi-threaded architecture [9)

10

As shown in Figure 2-4, the Apache server's multi-threaded architecture is modelled as a

multi-station queuing centre where each station represents a worker thread. The requests

are waiting at the TCP accept queue until it is assigned to a worker thread. The requests

processed at the Apache server are then forwarded to the middle tier which in this case is

a Tomcat Server [9]. But the model can be used for the LAMP environment by replacing

Tomcat server by PHP engine.

There are two series of Apache servers which difTer in capability and architecture, namely

Apache 1.3 series and Apache 2.0 series.

Apache 1.3: This is a process based server, which forks several child processes at start up

to achieve stability. This has performance penalty due to cost of process creation and

context switching. Since the processes are isolated they cannot share code, data or system

resources.

Apache 2.0: This series has major improvements over the former. The followings are

some important ones.

• Ability to be configured as process based, thread based or mixture of two models.

Inception of threads are advantageous over processes due to the fact that they arc
...

lightweight, they can share code, data and resources, and increased scalability of

the server. Compared to process based model the disadvantage here is if a thread

misbehaves it can corrupt data or code of other threads.

• Support for many protocols such as FTP, POP3, etc other than HTML. Thus

supports for dynamic content generation and authentication.

Regardless of the version, the modularity of Apache is an important feature, that is

Apache comes with a number of modules bundled with the server as well as a number of

third party modules arc available. The user can easily enable or disable the modules

according to the requirements.

Authentication modules allow authentication against backend database as well as against

plain text files. There are modules for access control and secure data communication as

well.

II

Performance and scalability are achieved via important modules that control throttling.

Throttling is the slowing down of content-delivery based on some criteria such as type of

the file, client IP address and bandwidth limits. Furthermore, load-balancing can be

achieved by modules such as mod_rewrite and reverse proxy so that load is distributed

among several backend servers. Reverse proxy is a web server placed in front of other

servers to offload certain tasks from backend servers. Seamless redirection of HTTP

requests can be done targeting at under-utilized servers. This provides fine grain, per

request load balancing. Furthermore, mod_ backhand allows seamless redirection.

Modules such as mod_dellate and several other filtering modules allow compression of

content thus saving bandwidth.

Publishing or simply managing and uploading content is provided by protocols such as

DAY (Distributed Authoring and Versioning).Virtual hosting allows for hosting many

sites in single server [11].

2.5.2 PHP

PHP is a server side, cross platform, HTML embedded scripting language. The engine
...

that runs PHP is the middleware that generates dynamic contents in the 3-tier LAMP

applications.

PHP' s modular design provides modules for; Database connectivity for popular databases

such as Oracle, MS-SQL server, ODBC interface, MySQL, mSQL, PostgreSQL and so

on, XML support, File transfer (eg: FTP), HTTP, Directory support (eg: LDAP), Mail

support (eg: IMAP, POP3), PDF document generation, CORBA, SNMP ... etc.

Here the focus is more on PHP's interaction with MySQL database and Apache web

server.

PHP acts as a module in Apache server itself and shares the same process address space

of the web server. Hence doesn't have any inter-process communication overhead with

the server. Disadvantage of this architecture is in the situations when the web server is the

bottleneck there is no chance to offioad PHP middle tier into a separate machine.

12

Performance and scalability are achieved via important modules that control throttling.

Throttling is the slowing down of content-delivery based on some criteria such as type of

the file, client IP address and bandwidth limits. Furthermore, load-balancing can be

achieved by modules such as mod_rewrite and reverse proxy so that load is distributed

among several backend servers. Reverse proxy is a web server placed in front of other

servers to offload certain tasks from backend servers. Seamless redirection of HTTP

requests can be done targeting at under-utilized servers. This provides fine grain, per

request load balancing. Furthermore, mod_ backhand allows seamless redirection.

Modules such as mod_deflate and several other filtering modules allow compression of

content thus saving bandwidth.

Publishing or simply managing and uploading content is provided by protocols such as

DAY (Distributed Authoring and Yersioning).Yirtual hosting allows for hosting many

sites in single server [11].

2.5.2 PHP

PHP is a server side, cross platform, HTML embedded scripting language. The engine
...

that runs PHP is the middleware that generates dynamic contents in the 3-tier LAMP

applications.

PHP's modular design provides modules for; Database connectivity for popular databases

such as Oracle, MS-SQL server, ODBC interface:, MySQL, mSQL, PostgreSQL and so

on, XML support, File transfer (cg: FTP), HTTP, Directory support (eg: LDAP), Mail

support (cg: IMAP, POP3), PDF document generation, CORBA, SNMP ... etc.

Here the focus is more on PHP's interaction with MySQL database and Apache web

server.

PHP acts as a module in Apache server itself and shares the same process address space

of the web server. Hence doesn't have any inter-process communication overhead with

the server. Disadvantage of this architecture is in the situations when the web server is the

bottleneck there is no chance to offload PHP middle tier into a separate machine.

12

Whenever HTTP server comes across a PUP tag the PHP interpreter module is invoked.

PHP scripts are then taken over by the interpreter module and executed.

PHP uses native code database driver, but the database interface is considered to be ad

hoc.

2.5.3 MySQL

MySQL is also a multi-threaded server where a thread cache is used instead of thread

pool model. Threads in a thread cache are managed in dynamic fashion and they are not

pre-created at start up. When the number of threads needed to serve the requests exceeds

the thread cache size new threads will be created. However, only the number of threads

equal to the thread cache size is reused and maintained alive [9].

In [9] MySQL database server is modeled as a multi stationed queuing centre which is

load-dependent, but for the simplification the number of stations is considered to be the

averaged number of worker threads at a run.

Clients
(EBs)

N

Web
s~er

Dsl3b3se

Figure 2-5: Queuing network model of 3-tiered Web service architecture [9)

Overall model for the 3-tier architecture proposed in [9] is a closed queuing network as

shown in Figure 2-5, where N is the number of clients accessing the site, MWS, MAS and

MDS are the number of worker threads at the web server, the application server and the

database server respectively. Moreover, the average service times at each tier DWS, DAS

and DDS are also model parameters. Other than that think time, Z is also considered in

13

the model. Think time is defined in [12) as the time between displaying the requested

results and issuing of a new request.

2.6 Performance Parameters

Many studies focus on time-related parameters such as response time, delay and page

load time. Throughput is another widely used performance parameter. According to [12)

response time is the speed of service from user's point of view whereas the throughput is

that from system's point of view. System capacity is also a commonly evaluated

parameter. In addition, access failures and error rates are also considered. A

comprehensive set of parameters are presented in (13) : Total number of HTTP requests,

HTTP requests per second, Number of good HTTP responses (200 OK), Number of bad

HTTP responses (non-200 OK), Total HTML received (MB), Average HTML traffic

[Mbit/s], Minimum HTTP response time [ms], Maximum HTTP response time [ms] ,

Minimum number of HTTP connections, Maximum number of HTTP connections,

Update SQL queries per second, Non-update SQL queries per second, Total SQL queries

per second.

However, Andreolini et al. highlights the importa'rice of considering granularity level of

performance evaluation so that the performance parameters must be selected accordingly

[6). Granularity levels given in the study are system level, node level, hardware resource

level, software component level, process level, and function level listed in the order of .
varying from coarse-grain to fine-grain respectively.

2. 7 Workload Characterization

Workload provides a compact description of the load by means of quantitative and

qualitative parameters and functions [14).

Choice of workload model to test an e-commerce site is a problem by itself [6). This

observation will not change much regarding e-learning sites.

Typical web browsing workload model is oriented to define the number and the size of

embedded objects and think time [6).

14

TPC-W is identified as the only complete benchmarking model available for e-commerce

sites in several studies including [6]. There are little or no similar studies and

benchmarking standards found regarding e-learning sites. Nevertheless, the work in e­

commerce will give an idea as to how a workload model can be selected for an e-leaming

site. Moreover Andreolini et al. in [6] explains a TPC-W such as workload model which

incorporates two scenarios, namely browsing and buying as well as the percentages of

static and dynamic content.

In order to characterize the workload it is essential to capture user behaviour. Kotsis and

Tafemer in [12] capture user behaviour using log files and summarize the behaviour as

sequence of user requests and the think times between requests. There are some

interactions specified in the TPC-W benchmark specification [15].

Web interaction of users is often viewed in terms of sessions. A session is the period

during which a user is active on Internet followed by a silent period as considered in [16].

According to [17] a session contains temporally and logically related request sequences

from the same client. As claimed in [18] session consists of interdependent requests,

hence the session based synthetic workload must reflect inter-request dependencies.

There is a separate area of research called Web Osage Mining, which is the process of

analysing web browsing behaviour. It is a three-phase process comprising: data

preparation, pattern discovery and pattern analysis [19]. Data in this case is contained in

the access logs. Logs record the web accesses sequentially according to timestamps . .
There are many technical issues involved in data preparation phase. User identification,

session identification, caching issue, and page-view identification are major issues that

must be addressed during the data preparation phase. Users are typically identified by

means of unique IP addresses in Web access. Sessions are usually separated by setting a

threshold value for the time duration between consecutive accesses [19]. However,

threshold based mechanisms are error prone and clustering techniques are applied instead.

A. Bianco et.al suggests a 3-step algorithm derived using clustering methods [16]. Hence,

threshold based methods and clustering techniques can be considered as two of several

methods found in literature for identifying sessions.

15

2.8 Workload Generation

Emulation is an important aspect in perfonnance evaluation, capacity planning and

workload characterization. Emulators are supposed to mimic realistic workload (20].

Client emulators are used to generate workload according to the workload model derived

at the phase of workload characterization.

The benchmarking tools provide for generating workload by setting values for workload

parameters. There are in-built benchmarking tools coming with LAMP software bundle

for example AB (Apache Benchmark) tool in Apache server [21]. HTTPerf is another

well-known tool for workload generation which can run a web session (22]. AutoBench is

a tool which is implemented as a wrapper based on HTIPerf for automating the execution

of HTTPerf. This tool has the capacity to repeatedly execute HTTPerf and get statistics in

the form of a spreadsheet.

2.9 Workload Parameters

In [23), some workload parameters that are used to monitor the response time are the

number of clients, page type (static, cgi), pages f>er connection, n!w drop rate, http

version(l.O, 1.1) , RTT(ms), connections per sec, SYN drop rate and how long to run the

workload. It will be beneficial to look at workload parameters of available workload

generators. Simic et al. in [13] mentions about a workload generator for web servers

called Web Server Load Tool (WSLT) which is said to simulate real user behaviour. The

paper also lists few parameters found in WSLT such as increment step in terms of the

number of connections, polling interval, maximum number of connections, time to run,

and the number of browsers. The paper also mentions another commercial application

used for database server benchmarking Quest Software's Benchmark Factory for

Databases.

When issuing HTTP workload on a web server it is important to consider HTTP's

interaction with TCP. For example, Heidemann in [24] shows that the interaction between

TCP slow-start implementation and the HTTP's MIME data transfer mechanism in a

16

particular experimental set up has caused server to wait for a long delay till an

acknowledgement comes from the client.

2.10 Performance Monitoring

Monitoring is identified in (5] as the first and a key step in performance evaluation.

Monitoring can be categorized as passive and active. Monitoring a system while it is

being subjected to a synthetic workload is referred to as active monitoring. If the

monitoring is done while real load is in progress without applying monitor's own load it

is referred to as passive monitoring.

Olshefski et al. explains several monitoring mechanisms that can be used to monitor

response time as perceived by the clients: 1. Periodically measuring the response time by

means of geographically distributed set of monitors, 2. Instrumenting existing web pages

with client side scripting which is a 'post-connection' approach, 3. Tracking the servicing

of requests at the server, 4. Reconstructing response time using network packet traces

[23].

Other than monitoring the responses, the server side resource monitoring is also ...
important. SNMP (Simple Network Monitoring Protocol) is a popular application

protocol for polling servers for various counters that record resource utilizations such as

memory available, swap space, and CPU time of users and system. This information is

available in MIB (Management Information Ba~s) [25].

2.11 Experimental Design

There are two well accepted experimental models in web application benchmarking:

virtual client testing model and the record-replay authoring model (18].

Proper experimental design should be devised such that maximum information can be

gathered on the minimum number of experiments. It is essential to separate effects of

factors from those of random variations.

17

The following terminology is important in systematic experiment design as given in (5].

• Response variable: outcome of experiment

• Factors: variables that affect the response variable. Also called predictor variables or

predictors

• Levels: values that a factor can take, also called treatment

• Primary factors: factors selected for getting quantified

• Secondary factors: factors that are not selected for getting quantified

• Replications: the number of repetitions of experiments.

• Experimental unit: any entity used for an experiment

Designing an experiment involves specifying the number of experiments, deciding the

factor-level combination for each experiment and selecting the number of replications.

Simple, full factorial and fractional factorial are three major types of experimental design.

One factor is varied at a time in the simple design whereas all the combinations of all the

levels of factors are considered in the full factorial design. Only a set of factors is

considered in the fractional factorial design. A special case of fractional factorial design

with two levels from each factor is denoted as 2"r where n is the number of factors and r
...

is the number of replication [5].

2.12 Evaluation Techniques
~

There are three main techniques for performance evaluation: analytical modelling,

simulation and measurement. Analytical modelling can be used at any stage of a project,

with a lesser amount of time, without the need for tools and instruments than analysts, but

the achievable accuracy is low due to assumptions and simplifications. The evaluations

done with analytical models must be verified by simulations or measurements. Simulation

can also be used at any stage of the project, with heavy use of computer languages and

tools, and can achieve moderate accuracy. This needs verification by measurement or

analytical modelling. Measurement can be used only after the post-prototype stage, with

heavy use of instrumentation, however the accuracy can vary. Results should be verified

by analytical modelling or simulation (5].

18

--UNIVERSITY Of~TUWA, SRI LANKA
MORATUWA

3 Methodology

The research methodology consists of identifying the system and workload, selecting and

configuring testing tools, designing experiments to evaluate resource utilization at

identified types of workloads, performing experiments and gathering data, and finally

analysing and presenting data in order to draw conclusions as to how well the system

performs at normal and peak loads and its scalability.

3.1 Workload Identification

The complaint which was heard unofficially from time to time about this system was that

it takes a long time to load pages.

Poor page load times were experienced especially in instances where 100 students were

sitting for an online quiz. ln addition to this delay, during quizzes, database errors were

experienced at the point of which fina l submissions were made by around 100 concurrent

users.

Apart from complaints an important question asked by decision makers and users is that ..,
how many users the system can handle concurrently in different situations such as

interactive tasks such as quizzes.

These abstract ideas had to be converted into test cases with quantifiable observations.

The test cases so derived are given in Chapter'?.

A survey was used to capture workload characteristics from users' point of view whereas

system logs were analysed to capture system workload characteristics.

3.1.1 Survey

A survey questionnaire was distributed among 130 students selected from different

batches who were frequent users of LeamOrg-Moodle. This survey aimed at capturing

user perception and user behaviour regarding the usage of Moodie. Another objective was

to have a quantitative and qualitative evidence of the above mentioned complaints. The

perception and behaviour vary according to the level of familiarity of the user with the

19

9 G ~~3

system. The performance may vary due to different access technologies, and hardware

and software in client computer. Hence the survey comprised of questions to achieve the

following goals and the sub goals:

G l). To gather demographic information of sample population

a. Familiarity with Moodie

b. Frequency of usage

c. What activities in Moodie are used

G2). To identify access technologies and client side technologies

a. Type of connection

b. Type of browser

c. Other applications in the machine

d. Hardware details of the cl ient machine

G3). To get user perception about responsiveness of the Moodie

a. Uncertainty of delay
...

b. Acceptable delay

c. Waiting times while working with Moodie

G4). To gather user complaints

a. Errors in connecting to Moodie

G5). To capture user behaviour when working with Moodie

a. Submission pattern of online quizzes

b. Behaviour at non responsive pages

20

Survey questionnaire is attached in Appendix. Relevance of questions with respect to

survey goals is as follows:

S®G
SGS

88®8

00

B®B
Figure 3-1: Mapping of survey goals and questions

Results of the survey are analysed under the System Identification in Chapter 4.

3.1.2 Log Analysis ...
LAMP systems keep records of workload traces from the point at which a request appears

at the web server and until the response gets back to the client. Httpd access logs and

mysqld query logs are two such examples. Moodie records user related details such as

requested URLs and time of request in its mdl:_log table. The httpd access logs were

analysed and the results are elaborated in Chapter 5.

'
3.2 System Identification

System identification phase aimed at finding out system parameters.

LearnOrg-Moodle runs on a mediwn sized LAN consisting of several dedicated servers

such as DNS, Proxy, and a number of intermediate networking devices. It was required to

limit the scope of the system by defining a boundary which includes most important

components only. The contribution of the network nodes to the overall response time in

accessing Moodie was analysed by undertaking a preliminary test as follows. Moodie was

21

accessed from one of the LANs within the depat1ment network and the packets of the

communication were captured at the client machine. By considering the protocol of the

packets and the timestamps, the communications were broken down to several steps.

This study resulted in removing DNS lookup and the propagation delay over network

from the response time due to their negligible effect. Hence the system was confmed to

the LAMP based server machine and this will be referred hereafter as the SUT (System

under Test).

The following steps were carried out to investigate further into the SUT.

• Defining the system boundaries

• Identifying services and outcomes of the system

• Selecting performance metric

• Listing parameters

• Selecting factors to study

3.3 System Monitoring

There are two types of monitoring involved in this study. One is the resource monitoring
...

of the server and the other is the monitoring of the communication between server and the

client.

In order to identify the loading condition in terms of resource utilization of the web

server, there had to be a monitoring mechanism. Initially, to address this requirement

MRTG [26] was used by configuring it to monitor resources. It was observed that MRTG

can show readings averaged for periods of 5 minutes and the expected granularity level

for monitoring resources according to the user interactions was required to be finer than

what MRTG could offer. Therefore RRDtool [27] was selected· as the resource monitor.

Both MRTG and RRDtool use SNMP as the underlying protocol to get the information

related to system resources such as CPU, memory and VO. Read only access to SNMP

MIBs is sufficient and also advisable for security reasons. Though SNMP is not advisable

to be enabled in an operational server for security reasons, here the server is monitored by

isolating it from the operational environment. Therefore it does not make a huge security

22

issue. However the newer versions of SNMP come with data encryption and other

security enhancements so that it will be harmless to use the method mentioned here on the

operational system as well.

The workload generating tool mentioned in Chapter 5 provides facilities to record the

parameters such as response time and content of the replies involved with the

communication between the server and the test system.

The resource utilization and the communication had to be synchronized so that the

changes in the server resource utilizations can be explained with respect to changes made

in the applied workloads by the test system. Resources were monitored remotely from the

same client that monitored the response times. Therefore the timestamp of the client was

used for both types of readings.

3.4 Performance Testing

Throughout the design and implementation of performance experiments a test bed which

mimics the actual system was used. This environment was implemented on a set of

machines to which all administrative privileges were available .
...

The technique devised for performance testing was to replay the recorded workload traces

in controlled manner. This can be considered as a simulation technique. The workJoad

was recorded such that it exercises different types of workload that were identified at the

workload characterization phase.

A separate test environment was implemented with a test-server and a test-client-system.

Test-server was installed in a low-end machine but with the operating system and

software as similar as possible to the operational Moodie server. This was to design

experiments without jeopardizing the operational system.

Test-server has the following system specifications:

Processor: Intel P4 2.8 GHz, Cache 1024 KB

RAM: 512MB

Linux: version 2.6.9-5.ELsmp

Moodie: version 1.8+ (a copy of the Mihindu Moodie)

23

Test-client-system was installed with needed tools for workload recording, replaying and

monitoring. This system facilitated development of test scripts. Workload recording was

done using a Perl script that was written with the Perl modules available at CPAN

repository as discussed in Chapter 5. Workloads were replayed changing parameters such

as number of sessions and rate using a command line tool called HIT Perf and tills is also

discussed in Chapter 5. Resource monitoring was done using SNMP. SUT was polled

from the Test-client-system and the MIB values were stored in a RRD (Round Robin

Database) as discussed in Chapter 6. RRDToo\ was found out be a flexible tool for

manipulating tills database and it provided facilities to graph MIB values related to

resources ofSUT such as CPU, memory and 1/0.

This test environment was used as the prototype throughout the study and the results

being analyzed in Chapter 6 onwards pertain to this test environment, not to the

operational environment.

...

24

4 System Identification

This chapter gives the details of the actual operational system from which the decisions

are taken with regard to the parameters of importance for the implementation of the test

environment.

In order to identify parameters that affect performance from the time user sends a request

to the SUT till the response appears at the interface to the client, the system is viewed in

the following viewpoints in this chapter: design, deployment, implementation, process

and users. These views are in accordance with the 4+ 1 model discussed in Chapter 2.

4.1 Design

Moodie which is designed based on constructivism provides tools for peer interaction and

collaboration such as forums, wikis and chats. It provides an academic environment that

can hold many courses and materials in different formats including video. One

particularly important activity in Moodie is online quiz. Further the online assignment

submission is a widely used facility. ...

The users need to get authenticated in order to access the materials and to participate in

activities. Authentication is done mainly against an external database.

Given in Figure 4-1 is a course page of a subject offered over the Moodie:

A<t~~
;li')AU9""1111f't.t
f}W•~

s.an;:tl fotY~

Go

~·--etll~
MnWMstr•U...

4 1_.........,_..
Ells-... o-.... .. ~ .; e.v.-
t/ Ro ·-.. -.,~~ ..

.

CS2050 -Computer Architecture
Resource Persons
Lectwt« • Sdoc:hana ~N:hl
Lab Ccctdnatot • Sha-la• a R.,..,
lriiiNCIOfs · ~~~ SMtr,• P..._Mt

Practical SChedul& l2"" s., o..- ""'-·I
lUi'S l4 pm CSE 8
VH!d l-6 c-"1 CSE A
Thin J.4""' EE

Ub ells~ trw CS2056-C.....,....-~W• • • .._,a~-Arcl'we¥b.n t
0C.....""""'
0 P-. P...,. ~ 2'~tfnl ~ C1UU 1'0;
8 "-""C..U" y...,_...,._,_,

14 sepc:f!lllber -)() .:;,.pcr mbfor

._.,...,...'1

0

UlHtfitews

Mtan.•rope

12 .1on. ~)5
S.locNf>•s.o...-- ...
~::JII ... t IO ,.,. INtt

)t:c·c~o(t

Upconli"9l~t•

Thet• •·"'~ -· Octo:;"~
.... r.

·~~·~Mt:!.
At'-..;Soi'Ct\V (17

r-..yZOIO.OlSH\1
fA lf$U{ rl r.:• ¥..1Ni' ,..... __ ""'.,..,.

~ - ·- -· -. ·-·
Figure 4-1: A Moodie course page

25

The application demands users to authenticate themselves against the database after

which a session is maintained. Sessions can be maintained in Moodie by two means;

using cookies or cookieless sessions with PHP session IDs.

The dynamic content of the courses is queried from the moodle database by relevant PHP

scripts.

The function provided to the end user in terms of the learning experience by Moodie

includes: providing a course page with links to various learning materials, learning

activities such as assignment submission, wiki, quizzes, and forums.

4.2 Users

Users of the system are the students around l 000 in number from all the engineering

courses in the uni versity. Additionally, there are about 50 people playing the role of

teacher who develop content in the courses and manage the courses. But the future

demands may be even bigger classes with distant mode accesses.

The performance issue is mainly felt and caused by the student users. It was observed that

it takes long time even to login to a Moodie course page when around l 00 students ...
concurrently sit for quizzes. The database errors occurred at the final submission of

quizzes.

According to the survey mentioned under Methodology in Chapter 3, it was observed that

nearly half the users expect Moodie to have pAge load times less than 10 sec. Nearly, 50%

of them perceive that the system response is poor with respect to their expectation as

shown in Figure 4-2.

expected waiting time

o below 1 0 sec

•11 -30 sec

0 31-60 sec

Dabove 60 sec

perceived waiting
time

Figure 4-2: User perception on page load time

26

It was observed that the students submit the quizzes at the last moment in bulk. The usage

habit in this regard was also surveyed. It shows that approximately 70 % of the users do

last minute submission where they click Submit all and finish option in Moodie quizzes as

per Figure 4-3.

• Save without
submitting

0 Submtt all and fintsh

DGther

Figure 4-3: User behaviour - Quiz submission in Moodie

Another important behaviour is that nearly 70% of the users start interacting with the

system as soon as the desired portion of the page is loaded without waiting for the whole

page to load as shown in Figure 4-4.

...

• wait for whole page

D wait for desired portion

Figure 4-4: User behaviour- Waiting for interaction

The users ranked the following activities that they do with the LeamOrg-Moodle

according to the frequency of usage:

a. View pages

b. Post text in forum

c. Post text in wiki

27

d. Upload files

e. Online quiz

f. Open link to pdf file

g. Open link to web pages

h. Download files

1. Chat

A point-scheme was used in order to derive a common ranking of activities according to

how frequently the students used them. Rank 1 through 10, were allocated with points 10

through 1 so that the top ranking operations get the highest points, see Table 4-1.

Table 4-1: Ranking of acth'ities in MoodJe by how frequent!) those are used

Activity 1 2 3 4 5 6 7 8 9 10 Aggrega General
ted rank
Points

downloa 470 387 136 35 24 5 4 0 0 0 1061
d file
View 690 54 48 49 24 10 8 3 4 0 890
open pdf 190 288 216 84 42 10 8 0 2 0 840
upload 120 108 136 119 168 55 24 12 0 0 742
file
open 140 99 152 210 72 30 Q. 3 2 0 708
web
post to 20 90 104 77 120 100 36 9 0 0 556
forum
online 20 54 56 42 30 60 76 33 10 0 381
quiz
post to 0 27 32 28 6 40 60 66 10 1 270
wiki

Users were also asked to rank the operations done on the LeamOrg-Moodle according to

the time consumption.

Similar to the analysis described above regarding Table 4-1, il common ranking for the

operations were derived as shown in Table 4-2 according to time consumption.

Top most rank corresponds to the most time consuming operation.

According to Table 4-2, it is observed that file handling is the most important operation

and the users think that it is quite frequently used and the most time consuming operation.

This is a high level statement which is not conclusive enough without the type and sizes

28

1

2
3
4

5

6

7

8

of files that the users deal with. Hence next level of analysis of user behaviour was done

using system logs giving emphasis in file sizes and types they accessed which is

discussed in Chapter 5.

Table 4-2: Ranking of operation in Moodie by time consumption

Most time 1 2 3 4 5 6 7 8 Aggregated Gencrat l

consuming Points Rank

download 490 180 56 56 6 10 12 9 819 1
file
Login 200 144 152 112 36 35 20 18 717 2

upload file 190 324 88 21 60 0 8 6 697 3
-

load course 140 144 152 119 48 25 24 9 661 4

post to 40 45 96 98 84 70 8 6 447 5
forum
submit 80 45 128 14 60 50 8 3 388 6
online quiz

~

post to wiki 10 27 56 28 48 25 52 12 258 7

post in chat 0 36 16 63 24 20 24 45 228 8

The above results show that the user behaviour depends on the composition of the courses

in the LeamOrg-Moodle where this system is mainly used to keep lecture materials online

in pdf, ppt, doc, odt, formats. Only few courses are"'observed to have video materials.

Among interactive activities forums arc quite frequent in many courses. Chats are not at

all used as an activity under courses currently. Also the students rarely use chat for their

interaction since more sophisticated popular chat applications are available outside

Moodie.

4.3 Deployment

Mihindu-Moodle is installed as a LAMP system with the following hardware, OS and

Software specifications:

Specification of server machine:

CPU: 2 Dual, Intel(R) Xeon(TM) C PU 3.20GHz

2 MB Level 1 Cache per processor

RAM: 4GB

Swap: 8GB

29

Software:

Moodie 1.8+

Apache 2.0.52

PHP 4.3.9.

MySQL4.1.20

Redhat Enterprise Linux 4.1

Mihindu
Moodie Sta ff Switch

DNS

t ~; ~;;· ?~ Private§
External
Databse

~

Proxy

....

LeanOrg­
Moodle

Figure 4-5: System Implementation- Connectivity

The system implementation is given in Figure 4-5. The most common sequence of

operations that user does is

• Opening Moodie home page

• Login

• Entering to a course

• Log out

1n order to have an approximated estimation of the time consumption, this sequence of

operations was initiated by a client residing within the Staff LAN in FF and IE browsers

and packets were captured by performing it 10 times. Objective was to identify the

response times of each operations or events within operations.

30

When the packets were analyzed for above application level operations, system level

activities such as DNS lookup and TCP connection establishment were also considered

separately.

2
1.8
1.6

v;1.4
::::::-1 .2
; 1
~

~ 0.8 e o.6
'0::: 0.4

0.2
0

....-

,...--.
r-- ,........,

r---

A
-·:.-· I ,:_ h

(/) 0 "0 <I) c <1) ~
.....

..... (/)
::J

z 0) cvcg> .E 5 <{ 0
0 c ~ ro~ 0)

· - <1) ~ <1) c "0 0 eve; 0
u 2: <1! 0 -

'+= 0) ·- "="0
<1) <I) '€ ~ g C/) a; LL <1!
§ C/) <1! 0 <l)...c- ..._.. c a. 0 (.)0"0 c w
0 X <1! 0)

::>
CV.Q .Q

operation

Figure 4-6: Response time of common set of operations

Accordingly, the DNS lookup time as well as the time taken to establish the connection to

the Mihindu-Moodle server is comparably small as shown in Figure 4-6. These depend

almost all on the network. Hence the network is assuined not to be the bottleneck for the

time being. So the study concentrates on:

• Web server

Database server .
• Interactions of Moodie application with the resources

Moodie application is also assumed to be a black box so that only the interaction of the

application with the system resources is considered.

Since time consumption in file handling of the Mihindu-Moodle is a concern from the

users' point of view it was also studied using packet analysis. When uploading files of

type such as pdf, ppt, or doc they open up in the browser which need not be considered in

the response time. Hence archive file was selected. File sizes of 1.4 MB, 2.8 MB, 4.1 MB,

5.6 MB, and 6.9 MB were used and each was uploaded for times both in FF and IE and

the observations are given in Table 4-3.

31

Table 4-3: Sigle user tile uploads

Time taken to upload in Mihindu-Moodle (in sec)

Trial 1.4MB 2.8MB 4.1MB 5.6 MB 6.9MB

1 1.349416 1.206145 1.294106 1.795957 2.010419

2 1.002326 1.020135 1.145812 1.293164 1.447202

3 0.872929 1.001548 1.12827 1.293544 1 1.49106

4 0.939397 1.008756 1.162046 1.272042 1.43447

5 0.857115 1.010766 1.160584 1.254743 1.420931

6 1.182489 1.184056 1.354903 1.432675 1.967309

7 1.018446 1.218626 1.304202 1.544348 2.144001
--

8 0.950801 1.102283 1.413927 1.470495 1.900801

9 0.946849 1.124129 1.416137 1.52547 1.969046

10 1.184282 1.200273 1.639126 1.435222 1.704565
- 1-

Mean 1.030405 1.1076717 1.3019113 1.431766 1.7489804 -
Variance 0.025104013 0.008313026 0.026248564 0.027863075 0.078848469/~" •OF~

....

Since this coarse grain analysis is done using• only a single client machine it does not

capture the effect of concurrent users. Hence it is required to emulate the real users, and

this is investigated in detail in Chapter 5.

4.4 Process

Process captures the sequence of operations from the time a request comes from a client

over the network till the response gets back to the client.

• TCP connection establishes between server and the client

• Web server listens for HTIP requests

32

~~

I

• Translation of URI into filename, check the access privileges, validating user id in

the HTTP request, authorizing the user

• Determine the MIME type of the requested object

• Processing the requested object

• Send the data to the client

• Log the request

Processing of the object is done here in PHP scripts in the Moodie software. The dynamic

content is generated by querying the MySQL database. The queries can be logged at the

point of arrival at the server as well as after the query is committed.

Since both Apache web server and the MySQL database server are multi­

threaded/process applications they spawn more threads or processes as the number of

simultaneous requests increases.

There are caching mechanisms available at various stages of the process both

implemented by Apache and MySQL. Also Linux maintains caching and memory

management techniques as well as processor scheduling techniques.

The parameters that govern the resource and process management are found in
...

configuration files and those can take different values. Httpd directives in Apache

configuration file, PHP configurations, MySQL variables and Linux settings comprise the

system parameters. Considering all the parameters is impractical within the scope of this

project. Therefore the server parameters are k._ept constant and only the workload

parameters are changed.

4.5 Conclusion

Since the impact of the network was observed to be negligible, it was decided that the

network should be left out from the test bed. Hence the test bed was developed in such a

way that it consists of the server and one client machine directly connected to the server.

The connection was a 1 00 Mbps Ethernet so that its bandwidth was large enough

compared to actual system.

33

The study was purposely biased towards the client's view of the system so that the

monitoring happens at the client machine and it is done at the interaction of the client

with the server's front end: that is the Apache web server. Consequently, the database

interactions were considered to be transparent to the user.

The need for emulation of actual human users was emphasized in the above analysis in

order to answer very practical questions such as "how many quiz users can your Moodie

installation handle". The workload was determined in a manner that it enables to capture

the Moodie functionalities ranked above by the users. Hence more effort was put on

deriving a better mechanism to emulate real human users and generate workload in

controlled manner.

Tests were designed such that they capture the concurrency aspect of workload. The

single physical client machine in the test bed was configured to emulate multiple users.

Also the file handling was an aspect of the system that needs testing in general, apart

from the Moodie functions.

Accordingly the following test goals were decided:

• To find the maximum number of human users that will overload the system

• To find what Moodie activity causes the system to be overloaded most

• To find what user behaviours cause overloading

To address above cases it was needed to identify what observation shows the overloading

condition. The server resources and response ~ime the client experience were selected as

the factors to be monitored, so that overloading conditions and clients' view of the system

can be decided.

34

5 Workload

5.1 Workload Characterization

As mentioned in the above chapter it was observed that the loading according to Moodie

activities gives a realistic meaning to the workload from the users' point of view. This

makes it easy to map number of real users to the load on the system.

According to the conclusions derived in Chapter 4 the study considers only the front end

or the Apache web server as the point of applying workload. Hence, the loading happens

in terms of HTTP requests.

The workload of HTTP requests can have two forms: 1. Request oriented workload 2.

Session oriented workload.

In real world scenario the workload appears as web sessions, especially with regard to

applications such as Moodie. However, the workload applied on Moodie corresponds to

the following categories and at times request oriented workload will also be useful as

explained below:

l. View pages: many Moodie sessions con~ist of sequence of page views. The

pages are partly static and partly dynamic. The workloads should distinguish

between static page views and dynamic page views.

2. Post text in forum and in wiki

3. Uploading and downloading files: ·this can be tested as the file handling

capability of the server and that of the Moodie application separately. Other

than that the type of file and the size of file are important parameters in this

workload.

4. Online quiz: workload in this category may vary according to the type of

questions, whether the questions are shuffled or not, if the questions span

across multiple pages or not, how they are submitted

In this study a Moodie session is considered as the sequence of HTTP requests sent by a

single Moodie account from the time of login till the end of desired Moodie operation.

35

The HTTP requests are supposed to accompany with POST data and think time between

requests.

Concurrency of sessions is a special factor to be considered when applying session

oriented workload. Statistical properties of inter-session arrival time are important in

testing a site such as Moodie. Some number of sessions applied at once and the same

number applied with an inter-session arrival time may give different results and both

situations may be possible in real world. Arrival of sessions may also be at uniform rate

or bursty.

5.2 Tools and Techniques

There were two techniques in generating Moodie sessions.

(1) Extracting sessions from the past access traces

(2) Recording sample sessions

5.2.1 Extracting Sessions from Logs:

Several tools were tested for log analysis, namely; Webalizer, Xlogan, Awstat and Web

Log Filter. They extract information in bulk such as total number of hits made to a page

and file sizes of mostly requested pages. Existing tools give information such as daily,

hourly, monthly usages in terms of hits and file sizes. They do not go into user by user

analysis.
t

Hence it was required to develop my own script for the purpose of user session level data

analysis. Though users could be separated by lP address it does not represent users

realistically. It demands more web mining techniques to extract realistic sessions.

A Perl script was developed to extract the requests by IP address and then to plot the

timestamps against each request. An attempt was made to use a clustering technique for

identifying the sessions by considering the inter-request times. Since the method given in

next section is simpler and suffices for the scope of this project the web mining was not

performed any further.

36

5.2.2 Workload Characteristics from Logs

Data extracted using Awstat tool was important for identifying the types of files that were

requested from the operational e-learning environment and the percentage of requests in

which each type of file was requested. The results are given in Figure 5- l and Figure 5-2.

php

• g•f

D jpg

js

•odp

• css

•html

34 41% ~- pdf

' •png

•ppt

Figure 5-1: File types requested

6.36% ...

53.79%

~

15.58%

Figure S-2: Bandwidth usage by file types

wmv

D php

zip

ppt

• pdf

According to the analysis of traffic of the past 15 months, wmv account for 54% of the

total bandwidth, while the php files account for 15%, and zip fi les for 10%. ppt files and

pdftiles have occupied equally around 6% of bandwidth each.

37

When the numbers of requests are concerned php files are the most requested as they

account for around 40% of the requests. gif images account for about 35% andjpg images

are 7%. It was observed that due to large number of requests for odp files in few months

and without any requests in rest of the months still the averaged percentage of odp

became 3%. This shows that depending on the interest of the course creator the type of

files being requested can change immensely.

Though a large amount of bandwidth is consumed by ~-vmv files the number of requests

accounted for them is a small amount such as 0.1% of the total requests. This proves that

the video files are the largest ones that are requested from the system. Therefore the

synthetic workloads that represent large files are advisable to be of wmv type. Small files

should be giffiles.

When php files are concerned they are affected by database accesses. Parameters such as

the types of queries, and the size and the collation of tables may affect the database access

performance. Hence the types of php pages should be selected from Moodie site such that

a special consideration is given to SQL queries they incur. The query logs in MySQL

provides for monitoring the database interactions. However, in this research, MySQL

operations are considered transparent to the user and tbe point of interaction considered is

the front end web server only. Therefore, this part of the work was considered outside the

scope and was not addressed.

t

5.2.3 Recording and Replaying Sample Session

This approach provides sessions that reflect inter-requests dependencies far better than

the extractions of logs. The sessions can be recorded distinguishing them by the Moodie

application functions so that the workload characteristics discussed in section 5.1, arc

adhered to.

Hence it was decided to record the sample user sessions and to replay them in a controlled

manner to emulate Moodie users.

38

5.2.4 Tools for regenerating HTTP workloads

Tools must apply the transcripts of workload traces, and output the response times and

resource utilization. The commonly cited tools for replaying HITP traffic in industry are

Apache Benchmark, JMeter, HTIPerf, and Siege.

Apache Benchmark: In-built with Apache server coming with the RHEL CDs that were

used for the SUT. It's a command line tool. It supports POST data so that authentication

is testable. Limitation is that more than one URL cannot be applied at a time.

Siege: This is a command line tool. It supports sending cookies but does not receive

cookies.

JMeter: This can run custom scripts of HTIP sessions with cookies. Uses more resources

to run the tool than others

HITPerf: Works with cookies. It can act on a sequence of URLs at a time. HTTPerf was

found to be a light weight, open source tool for playing web sessions. ~t is a command

line tool, which was developed by Mosberger from HP company [22].

5.2.5 HTIPerf and Workload Recorder ..,

HTIPerf is one of the robust among the few tools that have session based measurement

capability. It has more flexibility to set parameters such as inter-session arrival times as

well as the inter-request arrival time within ses~ions. The ability of HITPerf to sustain

itself while executing a very larger number of sessions is another advantage compared to

the tools such as WebStone and SPECWeb. The developers of HTIPerf also have taken

into account the synchronization and concurrency in distributed systems such as web

based systems. Network 110 statistic from HITPerf helps v~rifying that network is not

saturated. Also the error statistics help determining validity of results and also they help

detecting the overloading conditions.

A sample httperf command used to play web sessions is given in Figure 5-3. Wsesslog is

the option that provides the facility to run web sessions that is stored in a text file. This

particular session file is of the format given in Figure 5-4.

39

llhttperf --server mihindu.uom.lk --port 80 --wscsslog 1, I ,session file --add-headers "application/x-www­

fomt-urlencoded" --print-reply> out tile

Figure S-3: A sample httperf command

According to Figure 5-4 the think parameter gives the inter-request time within a session.

For recording this session in the above format the Perl script given below was used. This

script is written using third party modules such as HTTP: :Proxy,

HITP::Recorder::Httperf obtained from the well known CPAN repository. This script

runs as a proxy and records the session between a web browser and the Moodie server.

/moodle18/logio/index.php method POST

contents "MoodleSession=2fa9e34da80f9527245f8db2df955c66&Moodle::>ession=2fa9e34da80f9527245f

8db2df955c66&username=moodleadmin&password xxxxx.x.x&testcookies=l" think= 102881

/moodle I 8/login/index.php?MoodleScssion , 2fa9e34da80f9527245ffldb2df955c66 method = GET

think=3

/mood! e 1 8/theme/ standard!st yles. php ?Mood! eSession= 2 fa9c34da80f9 5 27245 ffldb2d f9 5 Sc66

method~GET thinl .. .-=2

moodle 18/themelformal whitefstyles.php'!MoodleSessi~n=2 fa9e34da80f9 527245 f8db2d 195 5c66 - .
method=GET

'moodle 18,1ib-javascript-static.js?MoodleSession=2fa9e34da80f9527245f8db2df955c66

method=GET

/mood! e 18/lib~ avascript -mod .php ?Mood I cSession= 2 f a9c34da80 f9 5 2724 5 f8db2df95 5c66

method=GET

/moodle 18/lib/overlib.js?MoodleSession 2fa9c34da80 f9527245f8db2df9 55c66 method=GET

/moodle 18/li b/cookies.js'?MoodleSession 2 fa9c34da80f9 527245 f8db2df9S 5c66 method=GET

/moodlc18/lib/ufo.js?MoodleSession 2fa9e34da80f9527245f8db2df955c66 method=GET

/moodlel8/theme/formal_ white/logo_small.jpg method GET

Figure S-4: A sample session me

The proxy setting in the browser was made to the machine where the recorder script is

running and the port should be set to the value in the script.

40

~

#!fusrlbin!perl

use HTTP::Proxy;

use HTTP::Rccorder:: l lttpcrt;

my $proxy HTTP::Proxy->ncw();

#create a ncw·JITTP::Re.:ordcr::Httpcrf ObJCCl

my $agent= new HTTP::R~o.'Corder::Httpcrf;

set the log file (optional)

Sagent->file("/ tmp,.myfile");

#set HTTP::Rccorder a~ the agent for the proxy

Sproxy->agcnt(Sagent):

stan the proxy

Sproxy->port('J 12&'):

Sproxy->startO:

I;

Figure 5-S: Workload recording script

5.3 Conclusion

According to the survey results given in Chapter 4 and the log analysis given in section

5.2.2 ofthis chapter, the following types of sessions were selected as workload types:

1. Page view
...

a. Static text page

b. Moodie front page

c. Login and view a course page
t

2. Quiz session: a quiz with I 0 MCQ questions. The sequence of interactions is

given in Figure 5-6.

Moodie front rl Login }--. Open the
~

Open the quiz

page course page page

Submit all Save without Click answer
and finish submitting

-
....____

Figure S-6: Sequence of interactions in a quiz session

41

3. File upload/download request

Large file- a wmv file of size 53.5 MB of a 1-hour video lecture

Small file- a gif file of size 15.5 KB

The file handling within Moodie and outside Moodie was separately looked at.

It was decided that the Perl script mentioned above should record the sessions and these

sessions should be replayed using HTTPcrf.

...

42

6 Experimental Design

The question of interest in the experiments in this study are 'how does the number, inter

arrival time distributions and the type of sessions affect the resource utilization of the

server and the response time seen at the client'.

6.1 Outputs from the Experiments

Resource utilization of the SUT is an important output so that resource monitoring is

critical. SNMP MIBs of the test server given in Table 6-1 were polled remotely from a

directly connected machine.

Table 6-1: Resource monitor ing parameters and their meanings

M IB Descript ion (based on Units
/usr/shar c/snmp/mibs/UCD-SNMP-
MIB.txt)

mernA vailSwap The amount of swap space currently unused
or available kB

mernA vailReal The amount of reaVphysical ~emory
currently unused or available kB ·-

memTotalFree The total amount of memory free or available
for use on this host. This value typically
covers both real memory and swap space or
virtual memory. kB

memShared The total amount of real•or virtual memory
currently allocated for use as shared memory.
This object will not be implemented on hosts
where the underlying operating system does
not explicitly identify memory as specifically
reserved for this purpose. kB

mcmBuffer The total amount of real or virtual memory
currently allocated for use as memory
buffers.This object will not be implemented
on hosts where the underlying operating
system does not explicitly identify memory as
specifically reserved for this purpose. kB

43

memCached The total amount of real or virtual memory
currently allocated for use as cached memory.
This object will not be implemented on hosts
where the underlying operating system does
not explicitly identify memory as specifically
reserved for this purpose kB

ssSwapln The average amount of memory swapped in
from disk, calculated over the last minute

ssSwapOut The average amount of memory swapped out
to disk, calculated over the last minute

ssiOSent The average amount of data written to disk or
other block device, calculated over the last
minute. This object has been deprecated in
favour of'ssi0RawSent(57)', which can be
used to calculate the same metric, but over
any desired time period

ssiOReceive The average amount of data read from disk or
other block device, calculated over the last
minute. This object has been deprecated in
favour of 'ssiORawReceived(58)', which can
be used to calculate the same metric, but over
any desired time period kB

ssCpuUser The percentage of CPU time spent processing
user-level code, calculated over the last
minute. This object has been deprecated in
favour of'ssCpuRawUser(SO)';'>which can be
used to calculate the same metric, but over
any desired time period.

ssCpuSystem The percentage of CPU time spent processing
system-level code, calculated over the last
minute. This object has been deprecated in

c

favour of'ssCpuRawSystem(52)', which can
be used to calculate the same metric, but over
any desired time period.

ssCpuldle The percentage of processor time spent idle,
calculated over the last minute. This object
has been deprecated in favour of
'ssCpuRawldle(53)', which can be used to
calculate the same metric, but over any
desired time period

The major server resources in concern are CPU, Memory and 1/0. Due to the complexity

of monitoring all the possible parameters, it was decided that a set of parameters to be

selected such that major resources arc covered as listed in Table 6-1. ssSwapOut,

44

ssSwapln, ss!OSent, and ssiOReceived, represent 110 operations. ssCpuUser,

ssCpuSystem, and ssCpuldle represent CPU utilization. memTotalFree, memShared,

memCached, memBuffer, memAvai/Rea/ and memAvai!Swap are important as memory

related parameters. Hence these few parameters were selected to suffice the scope of this

research.

Monitored data was stored in a Round Robin Database. According to [28] a Round Robin

Database consists of a fixed number of data items and a pointer to the current element as

shown in Figure 6-1 .

Figure 6-1: Round Robin
Database structure

...
Round Robin Archives (RRA) carry variables that store different data items. For each

parameter being monitored a separate RRA was defined in the RRD. The number of

elements of the RRA should be large enough to store the number of readings taken for

each parameter. When all the elements of the rouhd are filled, the new data will replace

the initially inserted values. This way the database does not grow indefinitely so that no

additional maintenance is needed.

RRDTool is a command line tool working on Unix environments, for manipulating

RRDs. It provides facilities for creating, populating, and even calculating formula on data

in the RRDs. It also provides graphing facilities.

RRDTool allows the data item to be inserted into RRA, indexed by a timestamp. In

RRDtool's terminology, step is the time duration between two data elements when the

RRA is updated. Heartbeat is the timeout for receiving a data item.

45

Httperf output given below represents the client perceived performance parameters:

• Number of initiated TCP connections

• Number of requests sent

• Number of replies received

• Rate of initiating connections (as well as the initiation time per connection)

• Maximum number of connections initiated simultaneously

• Lifetime of the successful connections (time from the initiation till closing of

connections on which at least one request was completed successfully)

• Rate at which requests are issued

• Average size of the HTTP requests

• Response rate and the number of response rate samples collected at every 5 sec

intervals. For better statistics HTTPerf recommends to have at least 30 samples so

that tests are recommended to be run for more than 150 sec.

• Response time between sending of the last byte of the request till receiving the

first byte of response.

• Response size

• Number of replies having each HTTP status code range.

• Number of times a connection failed due to client timeout.

• Number of times a connection failed due to socket level timeout.

• Number of times connection attempt failed due to server refusing

• Number of times a connection failed due to server resetting
t

• Number of times HTTPerf went out of file descriptors (fd-unavail). This happens

when client is overloaded. Also number of times the client's file descriptor table

was full (ftab-full), Number of times the client run out of TCP port numbers

(addrunavail), also number of other unknown errors with error numbers (other)

Main client-perceived output is selected to be the reply time given as an output by

HTTPerf.

46

6.2 Workload Configuration

If the sources of variability are not properly controlled then the experimental bias may

occur. Therefore, sources of variability had to be identified to improve the precision of

results. Replication improves the confidence level of the results.

The prime cause of the variations of the utilization must be the workload being applied.

Hence the following control experiment was also conducted.

Too many factors with too many levels cause complex experimental design. Therefore the

configuration of the system is kept constant to figure out the effect of workload related

factors.

The default Apache configurations such as the followings were kept as they are;

• Timeout (maximum time that the server waits for a client's response)- 120 s

• KeepAlive (if persistent connections are supported) - On

• MaxKeepAliveRequest (maximum number of requests per connection)- 100

• KeepAliveTimeout (maximum allowable time between two requests over a

persistent connection) - 15 s

Input parameters of HTTPerf: "
• hog: to use as many TCP connections as needed without limiting to the ephemeral

ports that are 1024 through 5000.

• num-calls: total number or requests to be issued on each connection. For this value
•

to be greater than l the server must support persistent connections.

• num-conns: total number of connections to create

• rate: the fixed rate at which the connections are created. 0 results in creating

connections sequentially.

• period: inter arrival time of sessions, this can be set to deterministic/exponential

(Poisson)/ uniform distributions

• timeout: the amount of time HTTPerf is willing to wait for a response from the

server.

• wsesslog: the session file and the number of times it should be run are given in

this option

47

The following test cases were performed to identify the effect of workload parameters on

response time.

Case 1: A simple html file was requested. The system configurations were fixed and the

workload configurations were changed according to Table 6-2.

Table 6-2: wor kload configuration for case 1

l§f§ble . Factor Level -1 Pe' ----
100i

hog no

nom-calls~ -- . -
@=

rate 01 10001
lnum-conns - 10. 1000

All combinations of the above levels were tested and the 243 design with regression

model was used for the experiment.

The variation due to B is 81.4% and variation due to errors is 6.46%

Case 2: Effect of number of replication on the variati(?n of result

The same test mentioned in case 1 was run with I 0 replications.

Percentage variation due to errors was 5.5%

As far as Test 1 and Test 2 are concerned the reduction in effect of errors was not

justifiable enough to run 10 replications compared to the computation cost incurred by

that many replications. Therefore, three replications were decided to be enough for the an

experiment.

Case 3: This experiment was aimed at identifying a workload that gives stable outputs at

all the replications of a simple test.

Variances of the response times with respect to each test are as in Table 6-3. When the

rate and the number of connections are large the response times were varying enormously

among the 10 replications. Number of concurrent connections can be suspected to be

48

responsible for this huge variation. This is mainly due to the fact that the other parameters

do not contribute to this variation in a major proportion.

Table 6-3: Observations for case 3

r Variance of

hog
yes

Num-calls Rate Num-conn
variance of Concurrent
response time connections

yes

yes

!yes
yes

----~-

~ - ---
s

no

no
no

Jno - - 1--
no

no

no

no

100 1000

100

100

100

1

1

1

-
-
-

1000

0
0

1000

1000

0
--~-

1 _Q
100 1000

~

100 1000

100 0 ---
100 0

1 1000

1 1000

11 - 0

11 0

10 0.03 0

1000 30.37 46.54

10 0 0 ---

-- 6494~1
1000 0 -

10 0 - - - -
1000 838.11 - - -

10 0 0 -
1000 0 0

-· - -~

10 0.01 0 - - f-
1000 7.79 4

10 0 ol
1000 0 0

10 0 0
~

1000 693.33 10211 .8 -

10 0
o] 1000 0

...

Case 4: Concurrency of connections Vs response time

90
80

~70
111 60
E
'+= 50

. ~40
~ 30
2 20
0
U 10

0 --·-•• - ---·
0 100 200 300

.

400 500 600 700 800

Number of concurrent connections

Figure 6-2: Variation of the connection time with the number of connections with hog option.

900

49

9
8

~ 7
ell
E 6

~ 5
-~ 4
Gl

~ 3
8 2

1
0 ~

0 100 200 300 400 500 600 700 800 900 1000

Number of concurrent connections

1000
VI

0 900 r- - -

~ 800 - •
c: 700 0 ...
u 600
ell
c: 500 c:
0
u 400 -0
Qj 300
.0 200 E
::l 100 z

0 -·····.
0 200 400 600 ...

Number of concurrent connections

800 1000

Figure 6-3: Connection time and the number for connection errors with the number of
concurrent connections when the hog option is disabled

An HTTP request was applied on the web server emulating 1 000 simultaneous users over
•

1000 exclusive connections. This command was repeated l 00 times and the observations

showed that the number of concurrent connections varied in all the 100 attempts. The

connection times are shown in Figure 6-2 with the number of concurrent connections of

each attempt. Almost all the attempts resulted in a concurrency less than 200.

When the hog option was enabled there were no connection errors even for higher

concurrencies such as 800 users. After about 200 concurrent connections the connection

time keeps growing when the concurrency increases. This should be due to the buffering

of connections when a large number of connection requests, is coming in for the server.

Without hog option, the connections ended up in errors even when the concurrency was

less than 200.

50

The responses are reliable when hog option is used so that hereafter all tests are run with

hog option enabled. The number of concurrent connections varies in a large range when a

large number of connections are requested at a larger rate. When the concurrency of

connections changes, the connection times also change within the replications of the same

workload. Therefore, the connection rate and number of connections should be

maintained at a number lower than 200 in this case.

6.3 Conclusions

According to the above discussion hog option should be kept ON and three replications

are enough for each experiment to improve the confidence level of the readings.

Server configurations should be kept constant and only the type of workloads should be

varied. Common workload parameters should be kept at values that incur less error as

discussed above.

SNMP MlBs selected from the list in Table 6-1 are ssSwapOut, ssSwapln, ssiOSent,

ssiOReceived, ssCpuUser, ssCpuSystem, ssCpuldle, memTota!Free, mernShared,

mernCached, memBuffer, memAvai/Real and mern.Avai/Swap because they cover major

resources such as CPU, Memory and 10 utilizatioh sufficiently for the scope of this

research.

51

7 Performance Tests and Results

7.1 Case 1 - Background Processes and Load

Normal load was observed without starting the web server initially. The monitoring was

started from the moment the SNMP daemon was started by login into the SUT from a

remote \a\) tO\) soon after booting the SUT. The monitored parameters are ssSwapOut,

ssSt-1-'apln, ssiOSent, ssiOReceived, ssCpuUser, ssCpuSystem, ssCpuldle, memTotalFree,

memShared, memCached, memBuffer, memAvai/Real and memAvailSwap. The

interpretations of these terms are given in Table 6-1. Parameters related to swapping,

namely ssSwapOut, ssSwapln, and memAvailSwap as well as memShared did not show

any variation so that the graphs are not given here.

According to Figure 7 -I VO, CPU, Interrupts and Contexts vary in a transient manner for

a period of around 10 minutes.

After the time 09:50 the apache server was manually started and the change to the

resources can only be observed in the graphs related to Real Memory, namely

memCached, memBuffered and memAvai/Real. Hence"it can be concluded that Apache is

a memory-intensive process. Swap space is not used in this situation. 110 and CPU usage

are levelling to a constant value after the transient period, regardless of the event of

starting the Apache server.
t

52

2.5 11

2. 4 M

2.3 11

2.2 11

2. 1 11

2.0 11

l
12El k

110 k

100 k

lEI k

10 k I
10 k

9 k

9 k

.9 k .

380 k

360 k

340 k

320 k

09:45

09:45

•
• .

09 : 45

memTota lFree

09: 50

memCached

09:50

~ '·'""-"·~-·.._...__,_, ~-' <0. !,

memBuffer

~ ~ . ~

~f j
~ +

.... 09: 50

·- ··---- ---------- ---

memAvailReal

30Elk +---------~------------------------------~---+
09: 45 09: 50

Figure 7-l(b): Resource utilization at the background load

It was decided that the memory should be paid more attention in the next tests unless

there is a considerable variation in other resources considered above.

54

7.2 Case 2- Requesting a Static Page

Next level of readings was taken by requesting a simple static page from the web server.

As discussed in the above chapter the configurations were selected for this workload as:

num-conns = 10, num-calls = 100, rate = 1000 and hog = on. Hence, the index page

consisting of 85 bytes of text was requested from the SUT over 10 TCP connections, as

100 requests per connection simultaneously. This command was issued continuously for

about 2 minutes during the period 12:55 to 13:00. The variation in the resource utilization

is shown in Figure 7-2.

Swap space was not needed. memCached increases during the time of loading and

remains at the new value continuously whereas memBuffered does not change.

memAvailReal also changes comparable to memCached. Accordingly it can be concluded

that the requests for the same page are satisfied by allocating space from real memory to

cache that page.

memCached
200 k

~80 k

~60 k

l40k ...
uok

~00 k
~2 : 40 l.3 20 n ·. 4o ~3 · 00

--- .

memBuffer
20 k

].8 k

~6 k
Hk

l.2 k

~0 k
-t--
~2 : 40 l.3 : 00 l.3: 20 ~3: 40

memAvailReal
400 k

300 k

1240 13:00 13: 20 13: 40

Figure 7-2: Static page requested 1000 times simultaneously

55

7.3 Case 3- Requesting the Moodie Front Page

The same workload configuration as in case 2 above was applied except for the particular

page that was requested. This time the Moodie Front Page was requested. This resulted in

the session given in Figure 7-3 as recorded by the workload recorder script.

/moodle18 rnethod=GET think .. 21
/moodle18/ met:hod=GET

/moodle18/login/index . php?MoodleSession=aec6e553aa5b2bd3dOa55ldc
6524£005 method=GET

-~-

Figure 7-3: Recorded session for requesting the Moodie front page

memCached

l' ~ -
~ r-;-• 120 k

110 k

100 k
15:05 15:10 15:15 15: 20 15:25

·--""-·· ".·-·· .

memBuffer
k i- ,. - - r - - - ~ - -

•
18 k

16 k

14k

12 k

10 k

15:05 15:10 15:15 15:20 15:25

memAvailReal
400 k

300 k

200 k
15 OS 15:10 15:15 15: 20

Figure 7-4: Resource utilization at requesting the Moodie front page

56

SUT was restarted before applying the load to reset the resource utilizations after the

interactions between the remote laptop in session recording and other maintenance tasks.

The time taken to reach a steady state after the reboot shall be called resetting time

hereafter. However, it is needed to wait for the transient period before applying the load,

which is a lesser time duration compared to the resetting time. Transient and resetting arc

not much visible in mernA vailReal and this is the parameter in concern very often in the

following cases.

The swap space and the shared memory were not in use in this case also, so that the

relevant graphs are omitted in Figure 7-4. As shown in Figure 7-4 at time 15:08, the

Apache server was started after the transient period. At 15: 14 the front page was

requested repeatedly using -wsesslog option. Session was requested one after the other

and this resulted in no errors and gave proper response.

The session was then requested 1000 times simultaneously which resulted in the

following results.

The workload was applied at about 15:45. According to Figure 7-5 the graphs became

discontinuous because the SUT was overloaded such that it could not respond to even the

SNMP requests.

ssCpuidle
100 t

90 r---.,_____,___
80+--.

16:00 16:20 16:-40 17:00

memTotalFree

20Mh
\

1.0 H "---"'-
16. 00 16: 20 16: -40 17:00

Figure 7-S (a): Resource utilization at 1000 simultaneous users requesting Moodie front page

57

memcached

h r

~00 k

50 k

I
\ -1

+ ,./"'"'\... - ~

~6 . 00 ~6 : 20 ~6:'10

memBuffer

20 k l
,·:r_

" ~
~6:00 ~6 : 20 ~6 : '10

·-·

memAva~lReal

~ t
T . A

200 k

~00 k

0
.... ~6 ; "10

memAvailS\..Iap
+ ~

2.0 H ~
' ..
t c .

\

'·

1. o H I ~..._.
16• 00 16:20 16:40 17:00

Figure 7-5 (b): Resource utilization at 1000 simultaneous users requesting Moodie front page

mernA vailReal drops to zero and the swap apace is fully in use. However, the CPU is not

the bottleneck because still the CPU is idle over 80% times.

The SUT responded with over 800 socket-timeout-errors according to Figure 7-6. The

total workload kept on executing for more than an hour (4002 s) and this should be

because the SUT had to wait for socket timeouts. Therefore, it can be concluded that the

58

SUT is limited in performance due to the TCP/IP stack performance. This is visible to the

user in terms of web application performance issue wi th an average response time of over

I 0 minutes for such a simple request. Another important observation in Figure 7-6 is that

the network l/0 is almost 0%. Therefore the network is not a bottleneck in any way.

Maximum connect burst length : 25

~otal : connections 1222 requests 1294 replies 1017 test - duration
4002 . 069 s

Connection rate: 0 . 3 conn/s (3275 . 0 ms/conn, <=1000 concurrent
bonnections)
t onnection time (ms) : min 29 . 8 avg 1080468 . 9 max 4001509 . 9 median
0 . 0 stddev 1167031 . 3
Connection time [ms] : connect 107398 . 2
Connection length [replies/conn; : 1 . 811

Request rate : 0 . 3 req/s (3092 . 8 ms/r.eq)
Request size [B} : 125 . 0

Reply rate [replies/s] : min 0 . 0 avg 0 . 3 max 14 . 4 s tddev 0 . 8 (800
samples}
Reply time [ms} : response 874266 . 6 transfer 0 . 6

~

Reply size [BJ : header 275 . 0 content 993 . 0 footer 0 . 0 (total 1268 . 0)
Reply status : lxx=O 2xx=78 3xx=456 4xx~O 5xxc483

CPU time [sJ : user 80 . 97 system 3347 . 19 (user 2 . 0% system 83 . 6%
total 85 . 7%)
Net I/0 : 0 . 4 KB/s (0 . 0*10A~ bps)

~rrors : total 883 client-timo 0 socket- t~r.o 606 connrefused 0
connreset 277
~rrors : fd- unavail 0 addrunavail 0 ftab-full 0 other 0

Session rate {sess/s] : min 0.00 avg 0 . 08 max 7 . 20 stddev 0 . 34
(339/1000}
Session : avg 1 . 65 connections/session
Session lifetime (s] : 1788 . 0 •
~S~ssion fail time [s] : 200 . 6
~ession length histograw : 661 0 0 339

Figure 7-6: Httperf output for 1000 simultaneous sessions requesting for Moodie front page

The response time was measured by requesting the same session for 1 time, 10 times and

100 times as shown in Table 7-1 in addition to the afore mentioned experiment with 1000

sesswns.

Table 7-1: R - - '· b th ber of - - - ~ ~ ~ - -

Number of 1 10 100 l 00 (deterministic 1000

times arrival)
-- -

Response time 1291.3 2016.5 30505.0 23470.3 874266.6

1 (ms) (with errors)

59

memBuffer
20 k

10 k 1 ~ --n

or· 1 L- 1 • 1 (... 1 • •

500 k

400 k

300 k

200 k

10:20 10: 40 H:40

memAvailReal

100 k l_:_J!-J-1 Ll -t..:· ~:'-::-~I ·~J~~I· ~·· - +-tl..ullj-1 ~----;;:~·-· a I
11:20 11:40

'!!!!.'J!!!'!

2. 4 t1

2 . 2 t1

2.0 t1

1.8 t1

1.6H

100 k

50 k

o I I I
10:20

memAvai lS\./ap

11:00 11:20 11 40

Figure 7-7: Memory utilization with 100 sessions requesting Moodie front page

It can be noted that when the nwnber of concurrent sessions increases all the users

experience poor response time. This can be solved by having a control over the session

arrival pattern.

60

The fact that the session arrival pattern affects the response time, can be verified from the

following test case:

100 sessions were run within about 120 s duration in two modes of session arrival

namely,

Case a: All 1 00 sessions were applied once

Case b: 100 sessions were applied in a deterministic arrival with an interval of 0. 1 s.

Memory utilization in these two cases is highlighted in Figure 7-7. The resource

utilization is almost same in two cases. However, the response times are different as

shown in Table 7- 1.

/moodle18 roethod=GET think· 25
/rooodle18/ method, GET

/moodlel8/login/index . php?MoodleSession=3e74b89dcdc0aa64bdefbc80613d
9876 method=GET
/rooodle18/login/index . php mcthod=POST
contents="usernamccwingperff..pnsswordc:wingperf&testcookies=l "
think=ll
/moodle18/ method=GET think=4
/moodle18/theme/formal_white/logo . jpg method=GET think=3

/moodle18/pix/spaccr . gif method~GET
/moodle18/pix/i/course .gif method~GET
/moodlel8/pix/t./switch_minus . gif ru.r thod=GET
/moodlel8/mod/forum/icon .gif method=GET
/moodle18/calendar/overlib .cfg . php method=GET

/moodlel8/cocrse/view . php?id~42 method~GET think=3
/moodle18/pix/i/users . gif method=GET think=2

/moodle18/pix/help . gif r:1ethod=GET
/moodle18/mod/ass i gnment/icon . gif method=GET
/moodlel8/mod/choice/icon . gif method=GET
/moodlel8/mod/data/icon . gif method=GET
/moodle18/mod/resource/icon .gif method=GET
/moodle18/mod/wiki/ icon . g .i f method=GET
/moodle18/pix/i/grades .gif method=GET
/moodle18/pix/f/pdf . g .i £ method=GE'l'
/moodle18/pix/i/one . gif method~GET
/moodlel8/pix/f/excel . gif roethod=GET
/rooodlel8/pix/f/web . gif method=GET
/moodle18/pix/ f /zip.gi f method=GET
/moodle18/pix/f/imagc . gif method=GET
/moodle18/pix/f/word.gif method=GET

L._

Figure 7-8: Session to login and open the course page

61

7.4 Case 4- Session to Login and Open the Course

A session that login and opens a course page is as shown in Figure 7-8.

100 numbers of this session were applied simultaneously and it resulted in the memory

utilization shown in Figure 7-9. The duration of a single session is about 35 seconds when

all the think times in Figure 7-8 are added. However, a session has taken about 180 s on

average to complete, according to the !liT Perf output given in Figure 7-10. The

responses for each request will also take some time to arrive at the client, but that should

not cause this much of a difference between session duration. There are about 200

connection reset errors that shows the response is not so healthy.

2 . 0 H 1--:----!--~---..

l.OH

13: 20

200 k j~-~ -· .
100 k

memAvailSWap

''-

13:40 14: 00 ...

memAva1lReal

14: 20

Q I L M JI e t e e,e I '&A4....., 1\I'UJk.O.':H •

13: 20 13: 40 14: 00 14: 20

Figure 7-9: Memory utilization at 100 sessions that login and view a course page

Memory utilization in Figure 7-9 shows that the available memory has dropped to almost

zero as well as the swap space is used largely. Therefore the memory bottleneck in the

SUT can be suspected to cause a poor response time in this case also.

62

315 requests 1975 replies 1400 tes t-duration

rate : 0 . 1 conn/s (10390 . 0 ms/conn , <a137 concurrent
~onnectionsl

~
Connection time [ms) : min 31 . 9 avg 756500 . 4 max 3189726 . 6 median

1333 . 5 stddev 1069899 . 6
onnection time [ms) : connect 21 . 0

~onnection length [replies/conn) : 4 . 444

Request ra~e : 0 . 6 req/s (1657 . 1 ms/req)
Request size (B] : 209 . 0

Reply rate (replies/s] : min 0 . 0 avg 0 . 4 max 9. 4 stddev 0 . 9 (654
samples)
Reply time [ms} : response 181126 . 2 transfer 1803 . 0
Reply size [B] : header 317 . 0 content 12907 . 0 footer 0 . 0 (total
13224 . 0)
Reply s t a tus : l xx:O 2xx=1070 3xx=195 4xx=O 5xx=l35

CPU time [s] : user 122 . 10 system 2901 . 97 (user 3 . 7% system 88 . 7%
total 92 . 4%)
.Net I/0 : 5 . 6 KB/s (0 . 0*10"6 bps)

Errors : total 215 client-timo 0 socket-time 0 connrefused 0

fd- unavail 0 addrunavai: 0 ftab-full 0 other 0

[sess/s] : min 0 . 00 avg 0 . 03 max 3 . 00 stddev 0 . 14

Session : avg 3 . 15 connections/session
...

lifetime [s] : 2383 . 0
failtime [s] : 0 . 0
length his~ogram : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Figure 7-10: httperf output for 100 sessions that login and open a course page

7.5 Case 5- Quiz Session

Two levels of quiz were selected.

Level-l: answer all 10 questions, and submit all and finish at once

Level-2: answer 1 or 2 questions at a time and save, and finally submit all and finish.

As shown in Figure 7-1 1 the session becomes longer in terms of the number of files when

the user frequently saves the answers. This causes more interaction with the Moodie

server during the quiz.

63

Memory utilization in Figure 7-12 shows that Level-2 quiz session causes frequent

changes in the memory usage because of the frequent interactions with the server. In

Level-l session the server is in a steady state whi le the user is answering the quiz.

However, the final submission causes similar change in memory utilization in both

sessions. Therefore the fmal submission of the quiz acquires equal hold of server's

memory regardless of the fact that a user saves the answers frequently.

Level 1

/moodlel8 method=G£7 think=21
/moodle18/ method=GET

/moodlel8/login/index . php?MoodleSes
sion=x method:GET
/moodle18/theme/standard/styles . php
?MoodleSession=x method=GET
/moodlel8/theme/formal white/styles
.php?MoodleSession=x methoct~GET

/moodlel8/l i b/javascri pt­
static . js?MoodleSession=x
mcthod=GET

/moodl e18/lib/javascripl­
mod .php?MoodleSession=x method=GET
/moodlel8/lib/overlib . js?MoodleSess
ion=x method=GET
/moodlel8/lib/cookies . js?MoodleSess ,
ion=x method=GET
/moodlel8/lib/ufo . j s?I-1oodleSession=
x method=GET
/moodlel8/login/index . php
Method= POST
contents="l>1oocileSession=x&username=
wingperf&password=wingperf&testcook
ies=l " think=5
/moodlel8/?MoodleSession~x

method=GET think=4
/moodlel8/calendar/oveclib . cfg . php?
MoodleSession=x method=GET
/moodle18/course/view . php?id=45&Moo
dleSession==x method=GET · .hink=2
/moodle18/mod/quiz/view . php?id=366&
MoodleSession=x method,GET think=4
/moodl e18/mod/quiz/attempt . php?id=3
66&MoodleSession=x method=GET
think=S
/moodle18/mod/quiz/attempt . php?id""3
66 method=POST
contents="MoodleSession=x&quizpassw
o rd =vba123" think=S
/ moodlei.8/mod/quiz/timer . js?Mood.leS
e ss i on=x method=GET
/ moodle18hnod/quiz/attempt . php
me thod= POST
contents="MoodleSession• x&q=lOl&que
stionids=2533~2C2534%2C2527%2C2526%

Level 2

/moodlel8 method=GET think=21
/moodlel8/ method=GET

/moodle18/login/index . php?MoodleSes
sion=y method=GET
/mood l el8/theme/standard/styles . php
?MoodlcSession:y method=GET

/moodle18/ l ib/javascript­
static . js?MoodleSession=y
method<= GET
/moodlel8/theme/f ormal whit e/styles
. php?Moodl eSession=y method=GET

/mood lel8/lib/ j avascri pt­
mod. php?Moodlesession=y method=GET
/moodlel8/lib/overlib . js?MoodlcScss
ionc:y method=GET
/moodlel8/lib/cookies . js?Mood~eSess

ion=y method=GET
/moodle18/lib/ufo . js?MoodleSession~

y method=GET
/moodl~18/login/index . php

method=POST
contents="MoodleSession=y&username=
wingpcrf&password=wingperf&testcook
ies :=;l " think=6
/moodlel8/?MoodleSession=y
method~GET think=3
/moodle18/calendar/overlib . cfg . php?
MoodleSession=y method=GET
/moodlel8/course/view . php?id=45&Moo
dleSession=y methoct~GET think=2
/moodle18/mod/quiz/vie\v . php? id=366&
Mood leSession=y method=GET think=S
/mood lel8/mod/quiz/attempt . php?id=3
66&MoodleSession=y method=GET
thinkaS
/moodle18/mod/quiz /attempt . php?id=3
66 method=POST
contents="MoodleSession=y&quizpassw
ord=vba123" think=5
(moodle18/mod/quiz/timer . js?MoodleS
essior.=y method=GET
/noodle18/mod/quiz/attempt . php
method,.. POST
contents="MoodleSession=y&q=101&que
stionids~2530%2C2535%2C2527%2C2528%

64

2C2528%2C252$
/moodlelB/mod/quiz/review.php?aLLem
pt=6044&MoodleSession=x method~GET
think•3
/moodlel8/mod/quiz/view.php?qz1Ql&M
oodleSession=x method~GET

2C2529%2C253$
/moodle18/mod/quiz/attempt . php
method= POST
conlents="MoodleSession=y&q=lOl&que
stionids=2530%2C2535%2C2527%2C2528%
2C2529%2C253$
/moodlel8/mod/quiz/atlempt.php
method= POST
contents="MoodleSession=y&q=lOl&que
stionids=2530%2C2535%2C2527%2C2528
2C2529%2C253$
/moodle18/rnod/quiz/attempt .php
method=POST
contents="MoodleSession=y&q=lOl&que
stionids=2530~2C2535%2C2527%2C2528%
2C2529%2C253$
/moodle18/mod/quiz/attempt . php
mcthod=POST
contents="MoodleSession=y&q=lOl&que
stionids=2530%2C2535%2C2527%2C2528t
2C2529%2C253$
/moodle18/mod/quiz/attempl:.php
method= POST
contents="MoodleSession=y&q=lOl&que
stionids=2530%2C2535%2C2527%2C2528%
2C2529%2C253$
/moodle18/mod/quiz/attempt.php
method=POST
contents="MoodleSession=y&qelOl&que
stionids~2530%2C2535%2C2527~2C2528

2C2529%2C253$
/mooblel8/mod/quiz/review.php?attem
rt=6045&MoodleSession=y method'=GET
think=3
/moodlelB/mod/quiz/view .php?q=lOl&M
oodleSession=y method=GET
/:noodlel8/mod/quiz/review .php?attem
pt=6045&MoodleSession=y method=GET
/moodlel8/mod/quiz/view.php?q=l0l&M
oodleSession=v method=GET

Figure 7-11 : Two levels of quiz sessions

400 k

300 k

200 k +---------------------------
16: <45 16:50

Figure 7-12: memory utili£ation during quiz sessions

65

Level-2 quiz session was run as 5, I 0, 15, 20, 25, and 30 simultaneous users interleaved

by 5 minute intervals without resetting the SUT by any means.

According to Figure 7-13, the rea/MemAvai/ does not return to initial value after each

test. Though the tests are supposed to be independent, the memory utilization of previous

test has affected the consecutive tests. Therefore, when the number of users is 20 the SUT

starts swapping.

• 5 users
300 k

290 k

100 k

2.4 11

memAvailReal

2.0 11 I I I I I I I I,

13: 20

Figure 7-13: Memory utilization at quiz session run as 5, 10, 15, 20, 25, and 30 simultaneous users

memAvai/Real could be reset only by restarting the Apache service without rebooting the

SUT. That way the resetting time could be reduced to a fraction of a second. Then the

same series of tests was run with the action of resetting in between tests. The results arc

given in Figure 7-14. It is apparent from the graphs that the memAvai/Real and

memAvai/Swap return to the initial value after each test, when the Apache service is

restarted.

Figure 7-14 further shows that 25 simultaneous quiz sessions cause SUT to swap.

However, SUT recovers and finishes all sessions within the duration of the quiz. In

contrast, when the number of simultaneous quiz users is 30 the quiz cannot complete

within the allocated time. Although the SUT responds and technically it is operating, user

66

satisfaction and the desired user-task are not fulfilled. Therefore, this SUT cannot handle

over 30 simultaneous quiz users from the users' point of view.

500 k

.. oo k

300 k

200 k

25 users -------1
~ --- i ~ 30 users.

100 k • \ :'~-... l •• ~ I I I \ " •. 1 'o I } • I I · t I t I t I - ..!.J.1 --......: 1 J 1' ! f _ 1
I I I I I I ' I l I -.... 2~J

0 , I I 1 j I I 10,. , 00 1 1 :::"' 1_ 1~: VI '"

I " I I I I I I I I (......_ ·t ,.-.::.··..,._-,....,._,. 1.(3· 401 I I I I IT • I 1 ...::C 0 .:::-..._~~ I '

1---!-- ~ ! - "' : ~·~:-.._
:memAv~i l!:~wap : '·'<>:::, .. :· Restarting 1

: Apache 2.4 H

2.0 M . ·_· - • I I

13:40 14: 00

I
I
I

~·
14: 20 14: 40

Figure 7-14: Memory utilization when quiz session is applied as 5, 10, 15, 20,25 and 30 simultaneous
users with resetting

...
7.6 Case 6- File Upload/Download Capability

The large file was requested outside Moodie, (directly from web root) three times and the

response times are given below:

Table 7-2: R -- -··-- _ · - · .. - _..., _ .. - -··- - - -

Attempt 1 2 3

Response time 20 . 014 s 4 . 874 s 4 . 941 s

Response was over a single connection and as one request per connection.

According to Figure 7-15, mernAvaiReal decreases only at the first attempt of requesting

the file. memCached increases by an amount similar to this reduction. Next attempts,

namely attempt2 and attempt3 must have been satisfied from the cache. That should be

why the response times in attempt 2 and 3 are equal to each other and much less than that

in attempt 1 as shown in Table 7-2. Cache does not reset only by restarting the Apache

67

I

service. It resets by rebooting the SUT as shown in Figure 7-15. Hence, such page

requesting experiments should be followed by reboot of the SUT when these arc

replicated. This is to clear the memCached. Three replications of the test in case 6 were

executed with cache clearing. The resulted response times are given in Table 7-3.

400 k

300 k

200 k

180 k

160 k

140k

120 k

memAvailReal

ttemnt I R Attempt 3
- - - :r estart 1
I I 1

1 ;Apache 1

Atlcmpt t
I
I
I

11: 35

memCached

.---------------:
: Reboot SUT -i_ I

I
I

11: 40

,......-
I ' ' 100 k I I I I : I -'1 I I

I

20 k r:
18 k

16 k

14 k

12 k

11: 35

10 k !____ --- ; --------~·

11; 35 11: 40

Figure 7-15: Memory utilization when the large ftle was requested without resetting the cache

T f, file with h 3: R -- - ~ - . - - - --- -- -

Attempt 1 2 3

Response time 19 . 944 s 20 . 219 s 19 . 947 s

Net 1/0
2736 . 0 KB/s 2698 . 8 KB/s 2735 . 6 KB/s
(2 2 . 4 * 1 0 "6 bps) (22 .1*10"6 bps) (22 . 4*10"6 bps)

Response was over a single connection and as one request per connection.

The memory utilization shows similar variation in all the three attempts in Figure 7-16.

68

400 k

3oo k I· ~ ~

19:55

- . - - .

200 k

100 k

0
19: 55

memAvailReal

Attempt I Attempt 2

--, --,
i\RebootSUT ~ I I I I
I I I I
1 I 1 I
I I ,_._ ___
I I 20: 00 I I

I I
, _ J , ...;...;.....;. , . -· I-·

memCached
I '

20:00 20:05

Attempt 3

i\1_
--,

'

I
I

'

I

I
ll

I
I
I

I I
I I

20:10

Figure 7-16: Memory utilization in requesting the large ftle with cache clearing

It is worth to compare the response time when a large file is requested, with the response

time when a number of small files arc requested. The total amount of data transferred in

both cases should be equal for the comparison. ..,

If the same fi le is requested again and again without clearing the cache, it gives erroneous

results. However rebooting the SUT is not a practical solution for this issue. Therefore the

small file was copied at the SUT with different filenames and those files were requested
•

back to back. 3500 number of small fi les (16 KB * 3500 = 56 MB) were requested so that

the total amount of data is almost equal to the size of the large file. The test was

replicated three times. The response times are given in Table 7-4.

Table 7-4: Response time when 3500 small ftlcs were requested

Attempt l 2 3

Response time 30 . 628 s 31.788 s 30 . 883 s

Net 110
1805 . 3 KB/s 1739 . 5 KB/s 1790 . 4 KB/s
(14 . 8*10"6 bps) (14 . 2*10"6 bps) (14 . 7*10"6 bps)

69

.....

Same as in Table 7-3, files were requested outside Moodie (directly from web root). SUT

was restarted in between the three attempts.

memAva1lReal
400 k

A,.ttempt I Attempt 2 Reboot SUT Attempt 3

_j I I

300 k : Reboot SUT

:08: 25 08: 30 08:40

I .,. ! -::----:---::--::--~-:-,.--- ' -

18Q k

16(') k

14(') k

12(') k
:__..: i-

I

memCached

100 k +--- ----------
(')8:25 08; 30 08 : 35 08: 4(')

Figure 7-17: Memory utili7Jttion when 3500 small fdes were requested

The large file was uploaded through Moodie three t.i)nes. The file upload session consists

of the sequence of steps as in Figure 7-18.
a b c d

Moodie front Login
Open the Turn editing

page course page ON

h g f e

Click upload Browse
File upload Resource
window update

Figure 7-18: Sequence of interactions of a file uploading session

Steps (a) through (f) are performed only once. Steps (g) and (h) were repeated three

times. In between these three times the file was deleted at the SUT.

According to Figure 7-19, it has taken about 30 seconds for uploading the large file to

Moodie. This duration is closer to the time taken to download the same file outside the

Moodie. Therefore the Moodie application does not incur considerable overhead in

70

handling file transfers. The transfer time is determined by the action of processing the file

for transmission at the two ends.

File upload
A1U~ptl

400 k.

350 k

300 k

250k

200 k

l.5e k
+---'--t----L....!.

200 k

180 k

160 k

140 k

120 k

memAvailReal

I
I
I . _,

file upload
A,U~pt2

13: 45

100 k I ·---· ·--· .
13: 40 13:45

I
I

Figure 7-19: Memory utilization when the large file was uploaded to Moodie

The network bandwidth is not a bottleneck becau~e the network I/0 is less than 25% of

the total bandwidth, as shown in Table 7-3 and Table 7-4.

71

8 Analysis and Discussion

8.1 Analysis of the Methodology

A set of cohesive tools that facilitate all major aspects of a comprehensive performance

analysis was identified in order to achieve the research objectives.

The tools such as MRTG were found to be of poor granularity to capture variation of all

the resources of the servers within the time intervals less than 5 minutes. Top gives only a

text based output, which is difficult to analyze without further tedious processing.

RRDtool was found out to be a flexible and user-friendly tool for monitoring server

resources in a better granularity than MRTG because the resolution of RRDtool is in

seconds. The graphing facility of the RRDtool provides graphical output in contrast to the

tools such as top. The graphs were updated by running a shell script and it could easily be

automated using a cron job.

Underlying protocol of the resource monitoring was SNMP and it is often the default

choice in available resource monitoring tools including commercial tools. SNMP is a

powerful protocol and it provides wide variety o(information of the systems even at

process level. SNMP utilities such as net-snmp provide easy and quick ways to poll the

server and obtain the information related to server resources.

Performance testing of the system before deployment has not received sufficient
•

attention. Therefore, synthetic workload generation was not in concern. However, this

research introduced HTTPerf and several Perl modules available freely on the web, as a

very appropriate solution for this purpose. The biggest strength of this combination of

tools is the ability to record real interaction between the clients and a server, and replay

the interactions. Therefore the real environment is mimicked in the synthetic workload.

72

8.2 Analysis of the Test Results

The findings from the test results discussed in Chapter 7 can be summarized as follows:

For all the types of workloads such as Quiz sessions, Page views and especially when

these workloads are simultaneously applied on the SUT, memory became the bottleneck.

CPU and 1/0 were never a bottleneck.

It was the memory utilization that showed direct correlation to the clients' interaction.

Every communication between the client and the SUT was visible in the memory graphs.

The SUT never became unavailable even when it was hosting 1000 concurrent users as in

case 3 in Chapter 7. But the response time was in minutes (10 min) and that was an

unacceptable level of response. Unless the response time from the point of view of the

user was considered, this situation would not have been captured as a performance

problem. It was only the swap utilization that showed a possible performance issue.

However, as in case 4 (Figure 7-14), the swapping does not always imply an unacceptable

response time at the client side. Therefore it is quite important to measure the response

time at the client's end especially when multiple users are active on the server. This

should be performed at least before deploying these ~es of systems by simulating users

as in the process given in this study.

Other than the memory bottleneck, it was obvious from the case 3, when 1000 concurrent

users were active the TCP/IP stack of the server was also a bottleneck. Various timeouts

in TCP connections causes long delays when the requested number of connections could

not be handled by the server. This delay is experienced by the user as a performance issue

in the web application.

The network bandwidth provided between the client and the SUT was 100 Mbps and the

network utilization never reached this amount.

73

9 Conclusion
9.1 Research Outcomes

The objectives of the research as mentioned in Chapter l were to arrive at conclusions

about the performance of a web based system. Three research questions made the basis

for the research.

The first question was what the proper approach was to reach the aforementioned

objective. The systematic approach of a performance evaluation includes these major

steps: workload characterization, system identification, workload generation,

experimental design, resource and response monitoring, and data representation and

analysis. It was essential to monitor the responses of both the server and the cl ient ends,

and correlate the user activities with the variations of the server resources.

The second research question was what tools and techniques are appropriate for the above

approach. Workload characterization can be achieved by questionnaires given to the users

directly and by log analysis. Recording real user interactions gives the best synthetic

workloads. These recorded workloads had to be enriched with identified workload

characteristics. There are free open source tools a,;ailable for log analysis and workload

recording.

The third research question was what aspects affected the performance of the system

under study. Memory is the most critical resource for the LAMP based LeamOrg-Moodle .
in its current configuration in the test bed. It was observed that swapping at the server

could warn about a possible performance issue, but that had to be verified by observing

the response time at a client's end. Network or the CPU could not be regarded as

performance limitation factors.

74

9.2 Recommendations and Further Research

A service level agreement should be implemented between the system administrators and

the service receivers whether the system is small scale or large scale. It does not require

expensive commercial tools to benchmark the systems and to give an estimation of the

capability of the system. The open source tools freely available in the web can be

combined to carry out a systematic performance evaluation. Although there are

systematic approaches for a performance evaluation they are often limited to theory.

However these procedures should be applied in real for the smooth functionality of a

system.

Resource monitoring is a very critical stage of a performance evaluation task. Therefore,

proper tools should be selected so that the resources of the server can be monitored in

seconds because the human interactions occur generally in durations of seconds. User's

point of view of the system responses is quite important and the server resource

utilization alone cannot detect performance issues. Response time is a reasonable

candidate for capturing how fast the user gets the response from the server, but these

times must be measured simultaneously while a large number of users are accessing the

system. This is a very essential test to be condu~ed specially before deploying the

system. In such pre-deployment tests synthetic workload becomes an unavoidable choice.

If the system is benchmarked at a point of time that past records are available, then the

recorded workloads can be modified and randomized by including statistical properties of

the past records. •

The tools and techniques discussed in the previous chapters can be extended and

incorporated into a single framework as further improvements for the research outcomes.

This has already being implemented as a final year project at the Department of Computer

Science and Engineering.

Since the framework and systematic procedure are in place, various tests can now be

devised by changing the software and hardware configurations of web based systems and

also comparisons can be made between different web application platforms.

75

References

[1]. Moodie Community. ''Philosophy.'' Internet: http://docs.moodle.org/en/Philosophy.

May. 24, 2005 [Accessed: Mar. I 0, 2008]

[2]. Dave Gehrke and Efraim Turban. "Determinants of successful website design:

relative importance and recommendations for effectiveness," in Proc. 32nd Hawaii

International Conference on System Sciences, 1999, p. 5042.

[3]. Benedict G.C. Dellaert and Barbara E. Kahn. "How tolerable is delay? Consumers'

evaluations of internet web sites after waiting." Journal of Interactive Marketing, vol.

13, no. 1, pp. 41-54, 1999.

[4]. Samuel Kounev and Alejandro Buchmann. "Performance modelling of distributed e­

business applications using queueing petri nets," in Proc. 2003 IEEE International

Symposium on Performance Analysis of Systems and Software, 2003, pp 143-155.

[5).Raj Jain. Art of Computer Systems Performance Analysis Techniques for

Experimental Design Measurements Simulation and Modelling. NY: Wiley-

Interscience, 1991. '

[6]. Mauro Andreolini, Michele Colajanni, Riccardo Lancellotti, and Francesca Mazzoni.

'·Fine grain performance evaluation of c-commerce sites." ACM SIGMETRICS

Performance Evaluation Review, vol. 32, no. 3, pp 14-23, Dec. 2004 .
•

[?).Grady Booch. "The architecture of Web applications." Internet: http://www.ibm.com/

developerworks/ibm/library/it-booch web/, Jun. 2001 [Accessed: April2008]

[8). Robert Chartier. "Application Architecture: An N-Tier Approach - Part 1." Internet:

http://www.15seconds.com/issue/Ol1023.htm, Oct. 23,2001 [Accessed: April2008]

[9].Xue Liu, Jin Heo, and Lui Sha. "Modelling 3-tiered web applications," in Proc. the

13th IEEE International Symposium on Modelling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2005, pp 307-310.

76

[1 0]. UV Raman a. "Some experiments with the performance of LAMP architecture," in

Proc. The Fifth International Conference on Computer and Information

Technology, 2005, pp 916-921.

[11]. Daniel Lopez Ridruejo. "Apache Overview HOWfO." Internet:

http://tldp.org/HOWfO/Apache -Overview-HOWf0-2.html#ss2.l, Oct. 10, 2002

[Accessed: Jan. 20, 2008]

[12]. Gabriele Kotsis, and Lukas Tafemer. "Performance comparison of web-based

database access," in Proc. International Symposium on Distributed Computing

and Applications to Business, Engineering, and Science, 2002, pp 360-364.

[13]. Dragan Simic, Srecko Ristic, and Slobodan Obradovic, "Measurement of the

acrueved performance levels of the WEB applications with distributed relational

database." Facta universitatis -series: Electronics and Energetics, vol. 20, no. 1,

pp. 31-44, April2007.

[14]. G. Pallis, A. Vakali, L. Angelis, and M.S. Hacid. "A study on Workload

Characterization for a Web Proxy Server," in Proc. the 21st lASTED International

MultiConference on Applied Informatics, 2003, pp. 779-784 .
...

[15]. C. Amza, et al., ··Bottleneck characterization of dynamic web site benchmarks,''

Rice University, Houston, Texas, Tech. Rep. TR02-391 , 2002.

[16]. A. Bianco, G. Mardente, M. Mellia, M. Munafo, and L. Muscariello, ''Web User

Session Characterization via C1ustering€fcchniqucs.'' IEEEIACM Transactions on

Networking, vol. 17, no. 2, pp 405-416, April 2009.

[17]. Jordi Guitart, David Carrera, Vicenc Beltran, Jordi Torres and Eduard Ayguade.

"Session-Based Adaptive Overload Control for Secure Dynamic Web

Applications," in Proc. the 2005 International Conference on Parallel Processing,

2005, pp. 341-349.

[18]. Diwakar Krishnamurthy, Jerome A. Rolia and Shikharesh Majumdar. "A

Synthetic Workload Generation Technique for Stress Testing Session-Based

Systems.'' IEEE Transactions on Software Engineering, vol. 32 , no. 11, pp. 868-

882, Nov. 2006.

77

[19]. Magdalini Eirinaki, "Web Mining: A Road map," Department of Informatics,

Athens University of Economics and Business, Tech. Rep. IST/NEMIS, 2004.

[20]. Rani Jamjoom, Chang-Hao Tsai, Kang G. Shin and Sharad Singhal. "Eve: A

measurement-centric emulation environment for adaptive internet servers," in Proc.

the 2007 spring simulation multiconference, 2007, pp. 17-24.

[21]. Apache Software Foundation. "Apache HTTP Server Project.'' Internet:

http://httpd.apache.org/, Jan. 2004 [Accessed: Feb. 2008]

[22]. D. Mosberger and T. Jin. "HTTPerf: A Tool for Measuring Web Server

Performance." Performance Evaluation Review, vol. 26, no. 3, pp. 31-37, Dec.

1998.

[23]. David P. Olshefski, Jason Nieh, and Dakshi Agrawal, "lnferring client response

time at the web server." ACM SIGMETRICS Performance Evaluation Review, vol.

30, no. 1, pp. 160-171, June 2002.

[24]. John Heidemann. '·Performance Interactions between P-HTTP and TCP

Implementations." ACM SJGCOMM Computer Communication Review, vol. 27, no.

2, pp. 65-73, April 1997.

'
[25]. J. Case, M. Fedor, M. Schoffstall and J. Davin. ''RFC1157 - Simple Network

Management Protocol." Internet: http://www .ietf.org/rfclrfcl157 .txt, May 1990

[Accessed: Jan. 2009]

[26]. Tobi Oetiker. "Tobi Oetiker's MRTG- The Multi Router Traffic Grapher." Internet:

http://oss.oetiker.ch/mrtgl, Nov. 19, 2008 [Accessed: Mar. 2009]

[27]. Tobi Oetiker. "About RRDtool." Internet: http://oss.oetiker.ch/rrdtooll, April 2009

[Accessed: May 2009]

(28]. Fine Connection, "Accessing the RRD," Internet: http://www.fineconnection.nl

/files/manual/Help_Accessing_the_RRD.html, April 2007 [Accessed: May 2009]

78

Appendix

University of Moratuwa, Sri Lanka
Faculty of Engineering
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
MSc in Computer Science, 2007 Batch,

This questionnaire is part of a Research Project. Your effort to give correct and precise
information is highly appreciated. Please underline the correct choice whenever there are multiple

choices given.

Q 1. Current Academic Year and Semester:

Q2. Field of specialization:

Q3. How many hours per day you spend on web browsing on average?

Q4. What web sites you visit most often?

··
········· ···· ··· ····· ··· ························
············· ····· ···

Q5. How frequently do you use University LMS (LeamOrg-Moodle) ?

a. times a day
b. times a week ...

Q6. Durin :J Wllat Uffit:: Ul Ult; uclY UU YVu UO>~ Lt~t;.Q_lJIVfg-, .. ~.vvu.l\,, '·u·""'.~....~. la,,....., .. "' he slots)?

6-8 am
8-10 am
10-12 am
12-2 noon
2-4pm
4-6 pm
6-8 pm
8-10 pm
10-12 pm

Mon Tucs Wed Thur Fri Sat Sun

Q7. From where do you access LearnOrg-Moodle most often?
a. From ... (Levell, Level2, SMART, CSE,

CIT etc) lab of (CSE, ENTC, EE etc) Dept
b. From outside university via

i. Dial up over landline
1i. Dial up over CDMA
iii. ADSL
iv. Broadband wireless

79

v. Other (Please specify how you connect)

Please give connection speeds against the selected technologies above (if
possible)

Q8. What is the web browser you often use to work with LeamOrg-Moodle?

Q9. Rank following operations in LeamOrg-Moodle according to how frequently you use
them
Most frequent = rank l

a. View pages
b. Post text in forum
c. Post text in wiki
d. Upload file
e. Online quiz
f. Open link to pdf file
g. Open link to web pages
h. Download files
i. Chat

Other (please specify and give the rank too): .. .

QlO. Rank the followings giving rank 1 to the most time consuming operation you have

a.
b.
c.

Login
Load a course page
Post to a forum

d. Post to a wiki
e. Upload a file of size
f. Submit an online quiz
g. Download a file of size ... : ...
h. Post into a chat

Other (please specify and give the rank):

Q\\.

experienced in
LeamOrg-Moodle

Q12. What is the longest time duration you had to wait for a response ofLeamOrg-Moodle
(give rough value):
............................ mini sec

Q 13. Time to load LeamOrg-Moodle pages is very poor/ poor/ average/ good/ very good
compared to fastest web sites I have often browsed.

Q 14. I will wait to work till
a. whole page get loaded on my browser
b. only the desired part of the page starts appearing

80

Q 15. How many online tests have you faced on LeamOrg-Moodle?

Q 16. When doing online tests, how would you finish the test?
a. Click "submit all and finish" at last moment
b. Click "Save without submitting" each page while doing the test and let

automatically submit when time is over

Q 17. If a page goes non responsive when I click on a button/link
a. I would wait for some time(> 1 min) without doing anything
b. I would click the button/browser's refresh button again after few (> l 0) seconds
c. I would keep on clicking the button/browser's refresh button several times

d. I would close the browser

Q 18. How often you get error in loading LcarnOrg-Moodle pages

a. Very often
b. % of times I use it
c. Rarely
d. Never up to now

, . , ...
I' .• •
I"·.

, · .-# ,

• • # ..
I ' -- (

- t ~-.
'" '·

\·_.

...

c

t- ' \ I' · - , ,_!: •·u ""
I 0 • • ~· . ::.11 ~ • '- L. ".,) ~~

;~ ... ~·
· · ~ . .,.. ·: r---! . .. '· -. ... , ' ;_~,· , ..
,\"'-\ ;~~ \~ ~ ·, _A..('

., . - ~'
~ ~~~ r~' - · .

81

	96423_2.pdf
	96423_2
	2 CH ETHURU

	96423_7.pdf
	96423(7 ch 52-53)
	96423(7 ch 54-74)

	96423_7.pdf
	96423(7 ch 52-53)
	96423(7 ch 54-74)

