
 29

Chapter 6

Implementation

6.1 Introduction

The previous chapter described the design of the Multi Agent System to assist 3D

Game Environments Design. The proposed system has been decomposed in to 8

modules and the functionality of each module is described. This chapter discusses

about the implementation of each and every module identified in design chapter.

6.2 3D Environment Definition Agent

This agent acts as the main request agent of the system which makes the request to

start 3D environment generation. This module is developed with a graphical user

interface. The Java Swing technology is used for the creation of graphical user

interface. The main purpose of this module is to capture some user inputs about the

preferred 3D game environment and these input capturing methods are implemented

as specified in Table 6.1.

Input to Capture Implemented as

Height Map A file browser to load the image

file containing the height map

Size of the terrain Length and width can be selected

using drop down lists.

List of 3D models selected from

ontology with number of instances

required

A list of 3D models of a category

(E.g.: Tree category) can be

filtered by selecting the required

category from a drop down list.

From the filtered list of 3D

models the required 3D model can

be selected using a drop down list.

Number of instances required for

given 3D model can be specified

by selecting “Few”, “Many”, or

 30

“Average” from a drop down list.

However the values associated

with above terms are depending

on the size of terrain. In addition,

a text box is provided to specify

the exact amount of instances, if

required.

Size and number of towns/ villages/

industries

Size of the towns / villages/

industries can be specified by

selecting length and width using

drop down lists.

Number of towns/ villages/

industries required can be

specified by selecting “Few”,

“Many”, or “Average” from a

drop down list. However the

values associated with above

terms are depending on the size of

terrain. In addition, a text box is

provided to specify the exact

amount of towns/ villages/

industries, if required.

Water level A text field with default value 0

(lowest level of terrain). The

water level can be adjusted based

on the required water level on

terrain.

Table 6.1 : Inputs of 3D Environment Definition Agent

After the environment is defined this agent will publish a message with given

parameters in Common Message Space. Other agent will observe this message and

start creating the 3D game environment.

 31

6.3 3D Model Definition Module

This module also has a graphical user interface in order to introduce 3D models and

store them in ontology. And this graphical user interface is implemented using Java

Swing technology and it provides facilities to define attributes and behaviours of

agent. Through this module users can associate 3D modules with agent rule sets

which are defined in the ontology.

To define a 3D model, several inputs need to be captured and these input capturing

methods are implemented as specified in Table 6.2.

Input to Capture Implemented as

3D model name Text field

Location of 3D model A file browser to load the 3D

model binary file (E.g.: .obj .3ds)

Category of 3D model (tree, rock etc) Drop down list

Associated agent rule set (selected

from ontology)

Text field

Default scale Text field (by default this is 1.0.

However it is possible to modify

this in case a larger or smaller 3D

model required).

Table 6.2 : Inputs of 3D Model Definition Module

In addition, this module contains interface elements to Add/ Edit/ Delete 3D models

and 3D model categories.

Agent rule sets associated with 3D models are defined as Java classes. To add or

modify a rule set, it is required to add/modify the relevant Java class. For example

pseudo code for generic plant rule set is similar to Code Listing 6.1. In this example

either soil or water are suitable to place a generic plant, because some plants are

grown on water.

 32

If

given location is free AND
given location is soil OR water AND
given location is not on a road

Then

Location is good to place a Generic Plant

Table 6.2 : Inputs of 3D Model Definition Module

The Pseudo code written in Code Listing 6.1 can be implemented as a Java class as

listed in Code Listing 6.2.

package agents.rulesets.plants;

import agents.rulesets.GenericEntity;

public class GenericPlant extends GenericEntity{

 public boolean goodToPlaceAt(int x, int z) {
 if (goodForGenericPlant(x,z)) {
 return true;
 } else {
 return false;
 }
 }

 public boolean goodForGenericPlant(int x, int z) {
 if ((isFree(x, z)) // x, z on a free location

 &&

 (isOnSoil(x, z)|| isOnWater(x, z)) // x, z on soil or
 // water
 &&

 (!isOnRoad(x, z)) { // x, z is not on road

 return true;

 } else {
 return false;
 }
 }

}

Code Listing 6.2: Sample Java Code of Generic Plant Agent Rule Set Definition

 33

This inheritance of rule sets is shown in design chapter in Figure 5.3. Following

methods used in Code Listing 6.2 are inherited from “agents.rulesets.GenericEntity”

agent rule set Java class.

• isFree(x, z) - Returns true if x,z location is free (no other 3D models in x,z)

• isOnSoil(x, z - Returns true if x,z location is on soil

• isOnWater(x, z) - Returns true if x,z location is on water

• isOnRoad(x, z) - Returns true if x,z location is on a road

These methods provides the status of a given location by analyzing the status of

Common Game Map Space. In addition to above methods, the

“agents.rulesets.GenericEntity” agent rule set Java class contains following methods

by default.

• areNeighboursFlat(x, z, N) - Returns true if at least N number of neighbouring

cells of x,z location are flat

• areNeighboursSoil(x, z, N) - Returns true if at least N number of neighbouring

cells of x,z location are on soil

• areNeighboursWater(x, z, N) - Returns true if at least N number of

neighbouring cells of x,z location are on water

• areNeighboursBuildings(x, z, N) - Returns true if at least N number of

neighbouring cells of x,z location are buildings

• areNeighboursRoads(x, z) - Returns true if at least N number of neighbouring

cells of x,z location are roads

• areNeighboursPlants(x, z) - Returns true if at least N number of neighbouring

cells of x,z location are plants

• isNearRoadButNotVeryClose(x, z) - Returns true if x,z location is near a road,

but not very close to a road (neighbouring cells should not on roads)

• isOnACity(x, z) - Returns true if x,z location is on a city

Even though above methods are included in “agents.rulesets.GenericEntity” agent

rule set Java class by default, it is possible to extend this class by adding new methods

based on future requirements.

 34

The example shown in Code Listing 6.1 and Code Listing 6.2 contains only few

generic rules, because that rule set is for a generic plant. However if the rule set to be

defined for a Coconut Tree for example, the method goodToPlaceAt(x, z) should be

overridden at Coconut Tree Agent Rule Set to avoid placing Coconut trees on water

as shown in the sample Java code listed in Code Listing 6.3

package agents.rulesets.plants;

import agents.rulesets.plants.GenericPlant;

public class CoconutTree extends GenericPlant {

 public boolean goodToPlaceAt(int x, int z) {

 // Coconut tree should be on soil
 if (isOnSoil(x, z) && goodForGenericPlant(x,z)) {
 return true;
 } else {
 return false;
 }

 }
}

Code Listing 6.3: Sample Java Code of Coconut Tree Agent Rule Set Definition

In contrast, if the rule set to be defined for a Lotus Plant, the method

goodToPlaceAt(x, z) should be overridden at Lotus Plant Agent Rule Set to force

placing Lotus palnts on water as shown in the sample Java code listed in Code Listing

6.4.

package agents.rulesets.plants;

import agents.rulesets.plants.GenericPlant;

public class LotusPlant extends GenericPlant {

 public boolean goodToPlaceAt(int x, int z) {

 // Lotus plant should be on water
 if (isOnWater(x, z) && goodForGenericPlant(x,z)) {
 return true;
 } else {
 return false;
 }

 }
}

Code Listing 6.4: Sample Java Code of Lotus Plant Agent Rule Set Definition

 35

Ability to define agent rule sets as described above enables users of the system to

define their own agent rule sets and associate them with 3D models using 3D Model

Definition Module. Also this feature solves the problem of lack of customizable

frameworks for 3D game environment generation, which is identified as a major

problem of existing 3D environment generation techniques, by providing an

extendable framework.

6.4 Ontology

Since the ontology of this system contains agent rule sets and 3D model binaries, the

traditional XML based ontology definitions are not enough. Therefore it was decided

to use a combination of Java classes and an embedded lightweight database for

ontology. The H2 database is used as the embedded database, because it is a very light

weight database written in Java and the memory footprint of this database is less than

1 MB. Also it is very easy to deliver the database as a file with the system because of

the smaller file size.

The database contains one main table called MODEL table to store the 3D model

definitions and the structure of that table is as shown in Table 6.3.

MODEL

Name VARCHAR(100)

Model_Category VARCHAR(100)

Location VARCHAR(255)

Agent_Rule_Set_Class VARCHAR(500)

Default_Size FLOAT

Table 6.3 : The Structure of Model Table

The agent rule set definitions are kept as Java class files in the ontology. 3D model

binaries are stored as it is in the file system with a definition of file path in database

table MODEL. In addition .properties files are used to store scene graphs of 3D

environment and those files are also considered as a part of ontology.

 36

6.5 Common Message Space and Common Game Map Space

The Common Message Space is implemented as a Java ArrayList by at which is

publicly visible to all agents. Agents can publish messages by adding an element to

ArrayList. When a relevant agent observes a request message, the agent will respond

by adding another message to the Common Message Space to inform that there is an

agent working on the request. After catering the request the message can be removed

from the Common Message Space by calling the remove method of the ArrayList.

The Common Game Map Space also acts as a common message space. This map

space is used to represent the current state of the environment. The locations in

environment are represented using several 2D arrays as described in Table 6.4.

2D Array Name Purpose

terrainNatural Keeps information about type of natural terrain (E.g.: Soil,

Water, Rock)

terrainCultural Keeps information about type of cultural terrain (E.g.: City,

Industry, Estate)

terrainHeight Keeps information about height of the terrain

roads Keeps information about availability of road segments

Table 6.4 : 2D Arrays used in Common Game Map Space

To take decisions to place 3D models, agents sense the status of these 2D arrays and

determine the current status of game environment. Based on that, those agents act on

the environment by marking places for 3D models on 2D arrays. The arrays were

defined as integer arrays as much as possible to increase the processing speed. It is

sufficient to keep only the X and Z coordinates in 2D arrays, because the Y values are

interpolated by 3D display module based on the height of the terrain.

6.6 Agent Implementation

MASON: Multi Agent Simulation Toolkit is used to develop agents in this system.

Sean Luke and colleagues have presented this toolkit [13] for a wide range of multi-

agent simulation tasks from swarm robotics to machine learning to social complexity

environments. This toolkit has been designed with a special emphasis on swarm

simulations. However the flexibility is provided to use MASON in a wide rage of

 37

other multi-agent applications also. It provides facilities to visualize and manipulate

models in both 2D and 3D. Network intrusion and countermeasures, cooperative

target observation in unmanned aerial vehicles, ant foraging, anthrax propagation in

the human body and wetlands: a model of memory and primitive social behaviour are

some of the applications of MASON. This toolkit is licensed as BSD style free and

open source software and it is written in Java programming language. This is a very

light weight and scalable framework. It was decided use MASON for this project

considering above points.

This system contains mainly 3 agent types which are developed using MASON and

Java namely Terrain Explorer Agents, 3D Model Placing Agents and Road Network

Development Agent. All of these agents are developed by implementing the

“sim.engine.Steppable” interface of MASON framework. Following sections

describes the implementation of these agents.

6.6.1 Terrain Explorer Agents

Terrain Explorer Agents are created when there is a request 3D Environment

Definition Agent to explore for a terrain suitable for specific requirement such as

placing a city. These agents can have many specializations as described in analysis

and design chapter under Section 5.7 Terrain Explorer Agents. These agents read the

values of 2D arrays in Common Game Map Space and seek for suitable terrain based

on the specialization of agent. When a suitable terrain is located, it is marked as

reserved by updating the values of 2D arrays in Common Game Map Space. After

completing the exploring of suitable terrains, this agent publishes a message to

Common Message Space and get disposed.

6.6.2 3D Model Placing Agents

3D Model Placing Agents are created when there is a request 3D Environment

Definition Agent to mark locations to place 3D models. These agents can have many

specializations as described in analysis and design chapter under section 5.8 3D

Model Placing Agents. These agents read the values of 2D arrays in Common Game

Map Space and decide the suitability of terrain to place a 3D model, based on the

agent rule sets associated with 3D models. When a suitable place is located to place a

 38

3D model, it is marked by updating the values of 2D arrays in Common Game Map

Space. After completing the exploring of suitable terrains, this agent publishes a

message to Common Message Space and get disposed.

6.6.3 Road Network Development Agent

Road Network Development Agents are created when there is a request from 3D

Environment Definition Agent to generate roads. This agent read the values of 2D

arrays in Common Game Map Space and places to lay roads as described in design

section 5.9 Road Network Development Agent. This agent uses A* algorithm for path

finding and obstacle avoidance. Created roads are marked by updating the values of

“2D array for roads” in Common Game Map Space. Also the generated roads are

saved in a .PNG transparent image file to be used as a texture map of roads in game

engine. However due to the size of the cells in game world, the roads marked on

.PNG image file contains roads with rough edges. To solve that issue those roads on

the .PNG image file are smoothed by applying a blur filter before using in 3D

environment. Also the primary roads are marked thicker than secondary roads. After

completing the road generation, this agent publishes a message to Common Message

Space and get disposed.

6.7 3D Rendering Module

Since the Java programming language is used as the primary programming

technology of the project, the jMonkey Engine (jME) which is available at

http://www.jmonkeyengine.com/ has been selected as the game engine to demonstrate

the out put of the system. The jME is a high performance scene graph based graphics

API. It is completely open source under the BSD license. This engine was built to

fulfil the lack of full featured graphics engines written in Java. Using an abstraction

layer, it allows any rendering system to be plugged in. Currently, both LWJGL and

JOGL are supported.

A sample game with the ability to flythrough the game environment is created using

jME in order to display the output of the system. The terrain of the 3D game

environment is generated based on the height map provided to 3D Environment

Definition Module. Also a sky box is created based on the size of the terrain and

projected water is generated at the level requested by environment definition. In

 39

addition, road texture is placed on terrain as a “Splat Texture” (a texture with

transparency) based on the road network generated on transparent .PNG image file by

Road Network Development Agent.

To place 3D models, this module reads the ontology and retrieves the data

representation of a generated 3D environment written in a properties file. The content

of properties file is converted to a scene graph using the source code of the sample

game which is created using jME. At the same time the relevant 3D models are loaded

by reading the 3D model definitions from ontology and those 3D models are placed in

3D game environment by attaching to the scene graph. The final output is rendered on

a computer screen with the ability to flythrough the created 3D environment.

The prototype system was implemented by integrating the modules described in this

chapter. The Appendix A - Approach in Practice of this thesis shows the usage of

prototype implementation by going through a sample scenario to generate a simple 3D

game environment.

6.8 Summary

This chapter discussed about the implementation of the modules which are identified

in design chapter. A prototype was implemented using Java, jMonkeyEngine, H2

embedded database and MASON agent development tool. The next chapter reports

how the prototype and the proposed approach are evaluated.

 40

Chapter 7

Evaluation

7.1 Introduction

The system has been evaluated by creating a prototype to test the approach proposed

by this thesis. Following aspects of the system were considered during the evaluation

process.

1. Time taken to generate 3D environments

2. Customizability and Extendibility of the system

3. Adherence to industry standards

4. Portability

5. Cost Effectiveness

Following sections reports the evaluation of above specific aspects.

7.2 Time Taken to Generate 3D environments

Reducing the time taken to create a 3D game environment is one of the main

advantages of the approach proposed in this thesis.

To evaluate this it was decided to come up with 2 control experiments.

7.2.1 Control Experiments

It was decided to compare the prototype based on the approach proposed in this thesis

with following approaches.

1. Using a coding approach to design the 3D game environment

2. Using a world editor to manually design the 3D game environment

7.2.2 Selection of Participants

It was decided to select 3 users who have experiences with 3D game environments

and with programming background in Java programming language as shown in

Table 7.1.

