Multi Agent based Approach to Assist the Design of 3D Game Environments

Ramesh Maddegoda

08 / 10011

Faculty of Information Technology

University of Moratuwa

September 2010

Multi Agent based Approach to Assist the Design of 3D Game Environments

Ramesh Maddegoda

08 / 10011

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Degree of MSc in Artificial Intelligence

September 2010

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

Ramesh Maddegoda Name of Student

Signature of Student Date

Supervised by Prof. Asoka S. Karunananda Name of Supervisor(s)

Signature of Supervisor(s) Date

Dedication

This Thesis is Dedicated to My Parents, My Wife Hasanthi and Prof. Asoka S. Karunananda.

Acknowledgements

With great appreciation I wish to express my sincere gratitude to my project supervisor Prof. Asoka S. Karunananda who paved way for me to carry out this project, guidance, encouragement and courteous help given through out the period of the study.

My sincere gratitude goes to University of Moratuwa – Faculty of Information Technology for encouraging us for this kind of projects through M.Sc. in Artificial Intelligence programme.

Also I am grateful to development teams of jMonkeyEngine, MASON, H2 database, Java and Eclipse for the free distribution of software to use as development tools in this project.

My deepest sincere thanks is extended to authors of all the literature reviewed during the period of this project and individuals who helped to evaluate the prototype developed for this project.

I express my heartfelt thanks to my father, mother, wife Hasanthi, brother and all friends for the affectionate guidance and encouragement through life time and especially during my academic career.

Finally I wish to thanks all those not mentioned individually who have contributed directly or indirectly to this project.

Abstract

Designing complex and realistic 3D environments for modern video games is one of the time consuming challenges faced by current video game industry. Over the last 20 years many researches have been conducted to automate the 3D environment design. We have critically reviewed the major approaches used in existing techniques to automate the design of 3D environments. It was identified that current 3D environment generation techniques being specific to one type of environment and the lack of customizable frameworks which are common to many types of environments as the main issues to be addressed.

According to literature, surprisingly complex and interesting global behaviours can arise in multi agent systems as a result of simple rules that are followed by number of simple agents operate in an environment. We hypothesize that this emergent behaviour of multi agent systems can be used to design 3D game environments with emergence properties that were not visible in initial constituents. This hypothesis is inspired by the emergent behaviours of natural systems arising from simple rules that are followed by individuals.

The proposed solution provides an approach to develop a framework which is common to design many types of 3D game environments. Each 3D model in a 3D game environment is associated with an agent with simple rules. Primary users of the system would be designers of 3D video game projects and this system allows users to introduce new 3D models and associate them with agent types. Based on the simple rules of agents, the system arranges 3D objects in the most appropriate places in 3D world while sensing the state of the surrounding environment. The main input for the proposed system is a parameterized description of an imaginary 3D environment. The design of the system consists of a multi agent system with specific agents named 3D environment definition agent, terrain explorer agents, 3D model placing agents and road network development agent. These agents are operating on the 3D game environment based on simple rules and come up with a surprisingly complex outcome. Output of the system is a 3D game environment with self organized 3D models located and oriented in most suitable places. The final output is rendered on a computer screen using an open source 3D game engine. The proposed approach has been evaluated by implementing a prototype and comparing the proposed approach with traditional 3D environment design approaches.

Contents

Chapter 1 – Introduction	01
1.1 Introduction	01
1.2 Aim	02
1.3 Objectives	02
1.4 Resource Requirements	03
1.5 Summary	03

Chapter 2 – State of the Art in Automated Design of 3D Game

Environments	04
2.1 Introduction	04
2.2 Traditional Procedural Techniques for 3D Environment Generation	04
2.3 Using Multi Agent Systems for Problem Solving	09
2.4 Multi Agent System based Approaches for 3D Environment Design	11
2.5 Major Issues Identified	13
2.6 Summary	13

Chapter 3 – Emergent Behaviours through Multi Agent Systems

Technology	14
3.1 Introduction	14
3.2 Emergent Behaviours through Multi Agent Systems Technology	14
3.3 Summary	15

Chapter 4 – Multi Agent based Approach to Design of 3D Game

Environments	16
4.1 Introduction	16
4.2 Multi Agent based Approach to Assist the Design of 3D Game	
Environments	16
4.3 Summary	17

Design	18
5.1 Introduction	18
5.2 High Level Design of the System	18
5.3 3D Environment Definition Agent	19
5.4 3D Model Definition Module	20
5.5 Ontology	20
5.5.1 3D Model Binaries	21
5.5.2 3D Model Definitions	21
5.5.3 Agent Rule Set Definitions	21
5.6 Common Message Space and Common Game Map Space	22
5.7 Terrain Explorer Agents	22
5.8 3D Model Placing Agents	24
5.9 Road Network Development Agent	25
5.10 3D Rendering Module	26
5.11 Interaction between Modules	26
5.12 Summary	28
Chapter 6 – Implementation	29
6.1 Introduction	29
6.2 3D Environment Definition Agent	29
6.3 3D Model Definition Module	31
6.4 Ontology	35
6.5 Common Message Space and Common Game Map Space	36
6.6 Agent Implementation	36
6.6.1 Terrain Explorer Agents	37
6.6.2 3D Model Placing Agents	37
6.6.3 Road Network Development Agent	38
6.7 3D Rendering Module	38
6.8 Summary	39

Chapter 5 – Design of the Multi Agent System for 3D Game Environments De

Chapter 7 – Evaluation	40
7.1 Introduction	40
7.2 Time Taken to Generate 3D environments	40
7.2.1 Control Experiments	40
7.2.2 Selection of Participants	40
7.2.3 Preferred 3D Game Environment	41
7.2.4 Approach 1: Using a Coding Approach to Design the	
3D Game Environment	41
7.2.5 Approach 2: Using a World Editor to Manually Design	
the 3D Environment	42
7.2.6 Proposed Approach: Multi Agent based Approach to	
Assist Design of 3D Game Environments	43
7.3 Customizability and Extendibility of the System	44
7.4 Adherence to Industry Standards	44
7.5 Portability	44
7.6 Cost Effectiveness	45
7.7 Summary	45
Chapter 8 – Conclusion and Further Work	46
8.1 Introduction	46
8.2 Overall Conclusion	46
8.3 Achievements of Objectives	47
8.4 Problems Encountered	48
8.5 Further Work	48
8.6 Summary	49
References	50
Appendix A	52

Appendix A	
------------	--

List of Figures

	Page
Figure 5.1 - Top Level Architecture of the Multi Agent System	18
Figure 5.2 - A Sample Height Map	19
Figure 5.3 - Example of a Hierarchy of Agent Rule Sets	21
Figure 5.4 - Example of a Hierarchy of Terrain Explorer Agents	23
Figure 5.5 - Example of a Hierarchy of 3D Model Placing Agents	24
Figure 5.6 - AUML Collaboration Diagram to Show Interactions in Multi Agents	•
System	27
Figure A.1 - User Provided Height Map	52
Figure A.2 - Graphical User Interface of 3D Environment Definition Agent	
interface of 3D Environment Definition Agent	53
Figure A.3 - Introducing New a 3D Model	53
Figure A.4 - 2D View	54
Figure A.5 - 3D View 1	54
Figure A.6 - 3D View 2	55

List of Tables

	Page
Table 6.1 - Inputs of 3D Environment Definition Agent	30
Table 6.2 - Inputs of 3D Model Definition Module	31
Table 6.3 - The Structure of Model Table	35
Table 6.4 - 2D Arrays used in Common Game Map Space	36
Table 7.1 - Selection of Participants for Evaluation	41
Table 7.2 - Preferred 3D Environment	41
Table 7.3 - Results of Evaluation of Approach 1	42
Table 7.4 - Results of Evaluation of Approach 2	43
Table 7.5 - Results of Evaluation of Proposed Approach	44
Table 7.6 - Software Licences List	45

List of Code Segments

	Page
Code Listing 6.1 - Sample Pseudo Code of a Generic Plant Agent Rule Set	
Definition	32
Code Listing 6.2 - Sample Java Code of Generic Plant Agent Rule Set Definition	32
Code Listing 6.3 - Sample Java Code of Coconut Tree Agent Rule Set Definition	34
Code Listing 6.4 - Sample Java Code of Lotus Plant Agent Rule Set Definition	34