
Chapter 6

Implementation of Curriculum Design System

6.1 Introduction

Agents are considered one of the most important software disciplines that on the one

hand many improve on current methods for conceptualizing, designing and

implementing software systems, and on the other hand may be the solution in

implementing complex real world problems in information systems. When

considering on agent architectures those are the fundamental mechanisms underling

the autonomous component that support effective behavior in real world, dynamic and

open environments. In this implementation it is manly focus on a generic multi agent

based system for designing curriculums.

The previous chapter presented the design of the system including the top level

architecture with the main modules of the system. This chapter describes

implementation of each modules and technologies that use to implement each module

in the previous chapter.

6.2 Creating the curriculum design system

Curriculum design system mainly divided in to two sections which are user

interaction module and Multi Agent System module. User interaction module consists

of graphical user interface to interact with the user and MAS module takes the

decisions about the curriculum. These modules were described broadly in the previous

chapter.

Since this system is based on multi agent approach for the curriculum design, mainly

this has been implemented in JADE environment. There are few agents which are

involving to perform different kind of tasks which are integrated to achieve the goal

of the system. Also ontology has been used to provide required knowledge for the

agents.

6.3 Implementation of User Interaction Module

The main role of the UIM is present the graphical user interface to the user for

interact with MAS module to create and review curriculums. Therefore this module

has been implemented to as it can input required details about curriculum and the

view the final output. Here user can enter data such as module code, module title, pre-

requisites, number of credits, lab hours, lecture hours, aim and objective of a

particular module, learning outcome for that module and etc.

Java swing technology has been used to create this module. This module is mainly

connected with the request agent in the MAS module. The main class of UIM module

is called AgentGui which extend JFrame and implements the ActionListener

interface. Normally a GUI has already a built-in mechamism of handling event which

is implemented via the actionPerformed() method of every component that registered

with ActionListener object. Therefore UIM has been implements the ActionListener

interface and then register all the interactive component of the UIM with this

ActionListener via the method addActionListener(). An ActionEvent is generated

whenever call to the AgentGui() is made. This event is generated by the source

component, that invoke the actionPerformed() method. According to the code given

in the above method, UIM response by processing the event. This module post the

event to be handle by the request agent using the postGuiEvent(). The following code

shows how to post the GUI event by AgentGui frame.

GuiEvent ge=new GuiEvent(this, 0);
ge.addparameter(“parameter”);
reqAgent.postGuiEvent();

Following coding segment shows the basic structure of the AgentGui frame class

which is connected with the Request agent called reqAgent.
import jade.gui.GuiAgent;
import jade.gui.GuiEvent;
import ontology.*;

Public class AgentGui extends JFrame implements ActionListener,
CurriculumVocabulary{

private ReqAgent myAgent;

public AgentGui(ReqAgent a){

 myAgent=a;

 setTitle("Request Agent - " + myAgent.getLocalName());

//remaining frame generation code will goes here

}

....

public void actionPerformed(ActionEvent ae) {
....

 ge.addParameter(new String(sub));
 ge.addParameter(new Float(cred));
....
 myAgent.postGuiEvent(ge);
}

6.4 MAS Module

As describe in previous chapter this is the core module in this system. When user

input the data through the UIM, Request Agent start the sending messages through the

message space to the resource agents. According to this system design, java classes

for Request Agent and Resource Agents have been created on the JADE platform.

6.4.1 Implementation of Request Agent to interact with user interaction module

Request Agent is the main agent who interacts with the user. Therefore we have used

the special kind of abstract class in JADE called GuiAgent that extends the Agent

class to create the Request Agent. This class has two specific methods:

postGuiEvent() and onGuiEvent(). These two classes provide facilities to interact with

the UIM and the Request Agent. To post an event to the Request Agent, the UIM

module simply creates a GuiEvent object, add the required parameters and passes it in

argument to the method postGuiEvent() as described in section 6.3.Then the posted

event will be receive to the Request Agent through the onGuievent().when the agent

receives an event posted by the agent, it test the type of event by calling the method

getType() on the GuiEvent object and process the event by calling appropriate handler

When the agent extends GuiAgent it automatically added the specific behavior called

GuiHandlerBehaviour. This handles the incoming events from the UIM and

dispatches them to the appropriate handlers following exactly same mechanism as in

UIM. Next sections will describe the implantation of common feature of Agents.

6.4.2 Implementation of Agent classes.

Creating a JADE agent is as simple as defining a class that extends the jade.core.

Agent class and implementing the setup() method as exemplified in the code below.

The skeleton of a typical Resource Agent class is shown below. JADE Agents are

defined as subclasses of the predefined class Agent and their initial code must be

placed in a method called setup. Agent actions are normally specified through

Behaviour classes. More exactly, the actions are described in the "action" method of

these Behaviours. The setup method only serves to create instances of these

behaviours and linking them to the Agent object.

 import jade.core.Agent;
 import jade.core.behaviours.*;

 public class CreditAgent extends Agent
 {
 protected void setup()
 {
 addBehaviour(new myBehaviour(this));
 }

 class myBehaviour extends SimpleBehaviour
 {
 public myBehaviour(Agent a) {
 super(a);
 }

 public void action()
 {
 //...this is where the real programming
goes
 }

 private boolean finished = false;

 public boolean done() {
 return finished;
 }

6.4.3 Agent Communication

Communication among agent has been done by using jade.lang.acl.ACLMessage

class. ACL is stand for Agent Communication Language. There are several attributes

in an ACL message. Those are performative(message type), address , content,

conversation Id, Language, ontology and so on .There types of messages are

INFORM, REQUEST, REPLY, CONFIRM, PROPOSE and so on. First three types

of messages are most commonly used in this system. Also to keep the common

understanding of the structure of information among agents it has been used the

ontology which is describes later in this chapter. Following code shows the Credit

Agent inform available credit details to the Request Agent.

ACLMessage reply = request.createReply();
reply.setPerformative(ACLMessage.INFORM);
Result result = new Result((Action)content, obj);
getContentManager().fillContent(reply, result);
send(reply);

6.4.4 Add behaviors to the agents

The actual mission that agent has to perform is typically carried out within behaviors.

Behaviors represent a task that an agent can carryout and is implemented as an object

of a class that extends jade.core.behaviours.Behaviour. To make an agent execute the

task implemented by behavior object, behavior has been added to the agents by means

of addBehaviour() method of agent class. Behaviour can be added at any time when

the agent startup or from within other behaviours. Each class extending behavior must

implement two abstract methods called action() and done(). The action() method

defined the operations to be perform when the behavior is in execution. The done()

method returns a Boolean value to indicate whether or not a behavior has completed

and is to be removed from the pool of behaviours an agent is executing. Flow chart of

agent excecution will show in Figure 6.1. There is various kinds of behaviours such as

OneShotBehaviour, CyclicBehaviour, TickerBehaviour, SimpleBehaviour,

CompositeBehaviour and so on. Appropriate behaviours has been used for each agent.

Initialize Agent

YES

Figure 6.1: Agent Execution flow chart with behaviours

6.5 Implementation of Curriculum Ontology

According to the system design given in previous chapter, ontology consists of three

parts. Ontology has been developed based on Protégé Ontology development tool.

Even though we created ontology using protégé, JADE does not provide direct access

to protégé ontology as a shared knowledge for the agents. Therefore curriculum

ontology has been converted into JADE using Ontology Bean generator. Before

covert this to JADE, ontology has been modified as supportable for three interfaces

called Concept, Agent Action and Predicate based on the content reference model.

The actions which are suppose to do by agents have been included in the AgentAction

subclass and agent identifications are included in the AID subclass in the Concept

class. Remaining classes are included as subclass of concept class. Also relations

were defines in the predicate class. Finally the Curriculum Ontology has been

converted into JADE using Ontology Bean generator.

6.5.1 Defining an application specific ontology

An application specific ontology describes the elements that can be used as content of

agent messages. The curriculum ontology is composed of two parts, curriculum

vocabulary that describe the terminology of concepts used by agents in their space of

communication, and the taxonomy of the relationships between these concepts, and

that describe their semantic and structure. This ontology has been implemented to the

agents by extending the class ontology in JADE and by adding a set of element

schemas describing the structure of concepts, actions and predicates that are allow

composing the content of the agent messages. Now we will look at how agents do the

operation using ontology.

Using the ontology bean generator it has been created CurriculumVocabulary

interface, CurriculumOntology class and all the classes mentioned in the ontology

(see the Appendix B). In the CurriculumVocabulary interface defines the vocabulary

for the agent communication. For instance, below code fragment shows common

vocabulary for the concept of credit balancing.

public interface CurriculumVocabulary

 {

...
 public static final String CREDIT_BALANCE = "creditBalance";
 public static final String CREDIT_BALANCE_CURRICULUM =
"curriculum";
 public static final String CREDIT_BALANCE_LEVEL = "level";
 public static final String CREDIT_BALANCE_SUBCODE =
"subcode";
 public static final String CREDIT_BALANCE_LECTURE =
"lecture";
 public static final String CREDIT_BALANCE_LAB = "lab";
 public static final String CREDIT_BALANCE_CREDIT = "credit";

...
 }

In the CurriculumOntology it has been defines the schemas for the particular object.

The lines of codes that specify the schema of concept CreditBalance is given below.

public class CurriculumOntology extends Ontology implements
CurriculumVocabulary {

// ----------> The name identifying this ontology

// ----------> The singleton instance of this ontology

// ----------> Method to access the singleton ontology object

// Private constructor
private CurriculumOntology() {

super(ONTOLOGY_NAME, BasicOntology.getInstance());

try {

// ------- Add Concepts

// ------- Add AgentActions

// Agent Action - CreditBalance
 AgentActionSchema as;

add(as = new AgentActionSchema(CREDIT_BALANCE),
CreditBalance.class);
as.add(CREDIT_BALANCE_CURRICULUM, (PrimitiveSchema) getSchema
(BasicOntology.STRING), ObjectSchema.MANDATORY);
as.add(CREDIT_BALANCE_LEVEL, (PrimitiveSchema)
getSchema(BasicOntology.STRING), ObjectSchema.MANDATORY);
as.add(CREDIT_BALANCE_SUBCODE, (PrimitiveSchema)
getSchema(BasicOntology.STRING), ObjectSchema.MANDATORY);
as.add(CREDIT_BALANCE_LECTURE, (PrimitiveSchema)
getSchema(BasicOntology.FLOAT), ObjectSchema.MANDATORY);
as.add(CREDIT_BALANCE_LAB, (PrimitiveSchema)
getSchema(BasicOntology.FLOAT), ObjectSchema.MANDATORY);

as.add(CREDIT_BALANCE_CREDIT, (PrimitiveSchema)
getSchema(BasicOntology.FLOAT), ObjectSchema.MANDATORY);

...

}

After creating ontology classes for the system it should set the content of a message

using ontology. For that first ontology has been registered with agent’s content

manager, the curriculum ontology and the codec language that is use to coding and

decoding the content of message. The way codec and ontology has been registered

shown below. The entire agents have been registered with same language and same

ontology to share the common knowledge.

...

Private Codec codec=new SLCodec();

Private Ontology ontology=CurriculumOntology.getInstance();

//Register Language and Ontology

getContentManager().registerLanguage(codec);

getContentManager().registerOntology(ontology);

...

When composing the message, first set the attributes of java objects, and then specify

within the message instance, the language and ontology. It has been obtain

ContentManager object by calling the method getContentManager() of the Agent

class. Then use the fillContent() method to pass the two arguments message and

content.

6.5.2 Defining knowledge for the curriculum ontology

Agents need some knowledge to do their specific task. For this purpose it has been

created a Database and some XML files to keep the required knowledge about

curriculums. This XML file contains classes, attributes, proprieties and their instances.

Also different rules related to the design of curriculum have been included in that file.

XML parser has been used to read the knowledgebase. And Database consists of all

the data related to deferent curriculums.

6.6 Massage Space

In JADE message space is not visible to the users. But the communication among

agent should be visible to the user to show the agent negotiation to the user. Therefore

it has been developed as separate window as shown in Figure 6.2.

Figure 6.2: The Message Space

6.7 Processing a module in a curriculum

This system is designed and implemented to initialize and start the ReqAgent with

GUI as first step. The main GUI in this system is shown below in Figure 6.3. After

displaying the user interface select the curriculum from the list given in the combo

box. Then it displays the entire modules in that particular curriculum or summary of it

as user required. Then user can select existing module or enter a new module to the

system. When click on “REVISE” button request agent send message to other

through the message space. Then resource agents will start on their works. Credit

Agent checks the credit details with respect to lecture hours, lab hours and Level

Agents details. Then display the changes suggestions in message space. Level agent

checks the module code and the pre-requisites with respect to the level. Prerequisite

agent check whether it needs to add pre-requisite for that module and check whether

there is an equivalent modules in different curriculum. Module Agent mainly checks

the learning outcome of the module and check whether changes are needed. Design

agent finalizes the formatting of the design. All agents will display their specific task

and communicate with other agent using the message space. Finally request agent the

knowledgebase with finalized data and display the final result in the user interface.

Message space is also making as visible to the user.

Figure 6.3: Main GUI in Curriculum Design System

6.8 Summary

This system has been implemented by using JADE environment Protégé and XML.

This section describes the implementation of UIM and the MAS module. There are

some agents in MAS module to perform different kind of tasks which are integrated

to achieve the goal of the system. Those agents are created in JADE environment.

Agents are communicating with each other and they have behaviours which are

stands for the role of them. Protégé has been used to develop content ontology for the

agents and XML has been used for represent the knowledgebase other remarks

details. Next challenge is to evaluate the system.

