Co-word Analysis Based Automatic Web Search

Faculty of Information Technology

University of Moratuwa

August 2011

Declaration

I declare that this dissertation does not incorporate, without acknowledgement, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

B.A.N.M. Bambarasinghe Name of Student

Signature of Student

Date

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Prof. Asoka S. Karunananda Name of Supervisor(s)

Supervised by

Signature of Supervisor(s)

Date

Dedication

To all the scientists who cleared so many steps, so that we could clear one more

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgements

Our sincere gratitude is presented to professor A. S. Karunananda for his conceptual advices supported immensely to shape up the initial hypothesis, the feedback and various advices provided throughout the project which enhanced the quality of project and paper work. Prof. Priyan Dias is sincerely acknowledged for his clear teachings on philosophical background about knowledge and showing us the the light of connectionist approach for knowledge representation as the starting point of the project. Further more Dr. Shantha Jayalal is acknowledged for his invaluable knowledge sharing in the subject area of the project. All the members of Msc AI batch 2009 (university of Moratuwa) are acknowledged for strengthening the approach by raising questions and discussion points from different perspectives and support given throughout the conduct of the project.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

Automatic searching, knowledge acquisition and question answering are crying needs among the contemporary World Wide Web users. However conventional web is the major barriers for realizing above applications. This is because almost all important information in it is in natural languages and natural languages are very hard to be manipulated and understood by a computer. As a solution, more than a decade ago, semantic web was introduced, there was a lot of hope on machine understandability of the web. However the semantic web is still very far from realization due to the effort required for semantic tagging of available information.

In this project we try to build a solution for automatic searching in conventional web and similar information sources by mimicking the human natural language learning and knowledge representation process. Our approach is based on the hypothesis, which inspired by popular philosophy of science, that learning is matching known facts with new facts. In the context of conventional web, we employ statistical natural language processing technique co-word analysis for matching already available facts with new facts collected during automatic searching process.

As a proof of above hypothesis we have built a personalized automatic knowledge extraction application. That extracts knowledge from conventional web or similar information source regarding user queries and present synthesized documents related to the knowledge area of the query. Evaluation done by manual comparison of documents produced by the application and a document produced by a human user by web searching. Results showed automatic knowledge acquisition performs acceptable manner in most of the situations.

Contents

Chapter 1 Introduction	Page 1
1.1 Introduction	1
1.2 Background and Motivation	1
1.3 Proposed Solution	3
1.4 Aim and Objectives	4
1.5 Summary	5
Chapter 2 Status of Automatic Knowledge Extraction	6
2.1 Introduction	6
2.1 Automatic knowledge extraction tools	6
2.2 Summary	12
Chapter 3 Knowledge Manipulation Techniques	13
3.1 Introduction	13
3.2 Co-word Analysis and Knowledge Extraction	13
3.3 Semantic Link Networks and Knowledge Representation	16
3.4 Rule Based Reasoning of Moratuwa, Sri Lanka.	21
3.5 Summary Electronic Theses & Dissertations	23
Chapter 4 Approach for Automatic Knowledge Extraction	24
4.1 Introduction	24
4.2 Hypothesis	24
4.3 Personalized Knowledge Extraction System	25
4.4 Inputs and Outputs	25
4.5 Learning Process Using Co-word Analysis	27
4.5.1 Preprocessing of Source Documents	27
4.5.2 Co-word Analysis	27
4.5.3 Post Statistical Processing and Search Expansion	29
4.6 Synthesizing Documents Regarding User Queries	31
4.6.1. Identification of Sentences	31
4.6.2. Ranking of Sentences	32
4.6.3. Filtering Out Sentences	33
4.6.4. Reordering of Sentences	34
4.7 Useful Features	35
4.8 Summary	36

Chapter 5 Design of Automatic Knowledge Extractor	37
5.1 Introduction	37
5.2 Design of Knowledge Extractor	38
5.3 Design of Knowledge Base	39
5.4 Design of Inference Engine	41
5.5 Design of User Interface	41
5.6 Summary	42
Chapter 6 Implementation of Automatic Knowledge Extractor	43
6.1 Introduction	43
6.2 Software Development Platform and Core Technology	43
6.3 Implementation of Knowledge Extractor	44
6.3.1 Implementation of Knowledge Acquisition Sub System	44
6.3.2 Implementation of Knowledge Processing Sub System	45
6.4 Implementation of Knowledge Base	47
6.5 Implementation of Inference Engine	49
6.6 Implementation of User Interface	51
6.7 Summary Electronic Theses & Dissertations	52
Chapter 7 How System Works	54
7.1 Introduction	54
7.2 User Actions in Automatic Knowledge Extractor	54
7.3 Summary	54
Chapter 8 Evaluation	55
8.1 Introduction	55
8.2 Evaluation Parameters	55
8.3 Experimental Setup	56
8.4 Analysis of Results	57
8.5 Summary	58
Chapter 9 Conclusion and Further Work	59
9.1 Introduction	59
9.2 Discussion	59
9.3 Further Work	59
9.4 Summary	60
References	61
Appendix A Knowledge Extractor Software Design Details	64

List of Figures

	Page
Figure 1.1 - Proposed Automatic Knowledge Extraction System	4
Figure 4.1 - Inputs and Outputs of the System	27
Figure 4.2 - Knowledge Clusters	28
Figure 4.3 - Learning Process	31
Figure 4.4 - Example knowledge Cluster	32
Figure 4.5 - Synthesizing Process	35
Figure 5.1 - Top Level Architecture of Knowledge Extractor	37
Figure 5.2 - Knowledge Extractor Module	39
Figure 5.3 - Inference Engine Relationships	41
Figure 5.4 - User Interface Design	42
Figure 6.1 - Knowledge Base Database Schema	49
Figure 6.2 - Knowledge Extractor Search Interface	52
Figure 6.2 - Knowledge Extractor Explore Interface	53
Figure A.1 - Knowledge Extractor Class Diagram	63
University of Moratuwa, Sri Lanka.	
Electronic Theses & Dissertations	

www.lib.mrt.ac.lk

List of Tables

	Page
Table 8.1 – Evaluation Results	57
Table 8.2 – Presentation Accuracy	58

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk