STUDY ON EFFECT OF SCALE FORMATION IN EVAPORATORS OF SUGAR INDUSTRY USING EXPERIMENTAL AND MATHEMATICAL MODELING

A. B. G. C. J. De Silva

(07/8212)

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Sustainable Process Development

Department of Chemical & Process Engineering

University of Moratuwa Sri Lanka

November 2011

DECLARATION OF THE CANDIDATE AND SUPERVISOR

"I declare that this is own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or a diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text."

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or part in print, electronic or other medium. I retain the right to use this content in whole part or part in future works.

Signature Date

The above candidate has carried out research for the Master's thesis under my supervision.

Signature of the supervisor

Date

ABSTRACT

This study focuses sugar factory evaporators in Sri Lanka. Multiple effect evaporators are employed in concentrating the clarified cane juice in sugar factories in Sri Lanka. Scale formation on heat transfer surfaces in sugar factory evaporators has a highly deleterious effect on specific energy consumption and production capacity. This thesis introduces combined experimental and mathematical modeling approach to study the effect of rate of scale formation in evaporators. Prior to develop mathematical model the rate of scale formation was experimentally investigated by analyzing evaporator scale, clear juice and syrup in two sugar factories in Sri Lanka. The model was developed using MATLAB software. The built mathematical model consists of two fouling phenomenal namely, particulate fouling and chemical precipitation fouling. The model shows the development of scale in each evaporator and temperature variation in each evaporator. The model also indicates the effect of following a scale reduction technique by comparing temperature variation in each evaporator before and after using a scale reduction technique.

DEDICATION

Dedicated with gratitude

To my loving **PARENTS**

For being

The greatest pliers of my life.

ACKNOWLEDGEMENT

Completion of the MSc thesis was one of the biggest challenges I ever had in my life. Without the support, guidance and patience of the following people this would not have been success.

In the first place my heartfelt gratitude goes to my supervisor, Dr. P.G.Rathnasiri, Senior Lecturer in the department of Chemical and Process Engineering for the endeavor guidance giving towards me throughout my master's degree program in Sustainable Process Development. Thank you very much for screening me the right way to complete my research as well. I gratefully acknowledge Prof. Ajith De Alwis to turn my way to do a Master's degree by initiating the courage. I would like to thank Prof. Bernt Lie, Telemark University, Norway for giving me guidance to carry out my research in the initial stage of evaporator modeling.

My special thanks go to Dr.H.K.Sunil, former director, Sugarcane Research Institute for the helping hands given towards me to select a research title and Dr.N.C. Kumarasinghe, Director, Sugarcane Research Institute for giving me the necessary assistance to conduct my research in the institute premises.

Without the help of the Factory Manager, Pelwatte Sugar Industries Limited, Mr. Palitha Prematunga and Factory Manager, Sewanagala Sugar Industries limited, Mr. Kamal Silva, Laboratory Officer, Mr.H.Premarathne this research would not be success. Thank you very much for helping me to gain knowledge on sugar production process and providing necessary arrangements to obtain samples whenever it is necessarry. I would like to thank all the staff members of the laborato ries of Pelwatte Sugar Industries Limited and Sewanagala Sugar Industries Limited. My special thanks go to all the members in the Chemistry Division of Sugarcane Research Institute for supporting me to do chemical analysis of the samples.

The support given by Mr.Anushka Perera,to build up the mathematical model in matlab is highly admired. It is a pleasure for me to thank Mr.Suroj Maharajan and Mr.Udara Sampath to start working with me for modeling sugar industry evaporators and putting me into the background to model sugar industry

evaporators. Thank you Dr.Deshai Botheju for showing me the correct path to build up the mathematical model. I would like to thank Mr.Thilina for assisting me to do the modifications of the model.

My sincere gratitude goes to Director, Industrial Technology Institute, A.M. Mubarak, and Deputy Director Research and Development Dr.Shanthi Wilson Dr.Jaanaki Goonerathne, Head, Food Technology Section, for allocating time for me to complete my research thesis. Thank you Dr. Jaanaki, for releasing me to write my thesis during the working hours of Industrial Technology Institute.

My special thanks go to Ms.Sudeepama Walliwala and Mrs.Erandi Wijedeera for assisting me to complete the thesis in working time while managing the work in the section.

None of these would not have been possible without the patience of my family. I greatly appreciated the help given towards to my parents, my life partner and my son.

It is a pleasure for me to thank the director, Post Graduate Division, Mrs. Kumuduni and the staff members of the postgraduate institute, for providing me the necessary arrangements to extend the time for working with the MSc.

I believe that my research would make a small contribution to the vast ocean of scientific research conducted in the field of Sugar Technology.

A.B.G.C.J. De Silva

TABLE OF CONTENTS

DECLARATION OF THE CANDIDATE AND SUPERVISOR	ii
ABSTRACT	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vii
LIST OF FIGURES	x
LIST OF TABLES	xii
NOMENCLATURE	xiii
1.INTRODUCTION	
1.1.Background	1
1.2.Introduction to research problem	
1.3.Research objectives	
1.4.Research strategy	
1.5.Outline of the research	
1.6.Summary of the thesis	
2.LITREATURE REVIEW	
2.1 Cane sugar manufacturing in Sri Lanka	
2.1.1 Cane preparation	6
2.1.2 Juice extraction	7
2.1.3 Juice Clarification	7
2.1.4 Juice Concentration in Evaporators	8
2.1.5 Pan boiling of the syrup	8
2.1.6 Separation of Sugar Crystals	9
2.1.7 Drying of Sugar	9
2.2 Function of the multiple effect evaporators in sugar factories	9
2.3 Formation of scale inside calandria tubes	11
2.5 Stages of scale formation	13
2.5.1 Initiation	13
2.5.2 Transportation of species to the surface	14
2.5.3 Attachment	14

	2.5.4	Detachment of species from the surface	14
	2.5.5	Aging of species	14
2.6	Types	of scale formation/fouling	14
	2.6.1	Crystallization fouling	14
	2.6.2	Particulate fouling	15
	2.6.3	Chemical reaction fouling	15
	2.6.4	Corrosion fouling	15
	2.6.5	Biological fouling	15
2.7	How s	cale affects the function of evaporators	15
2.8	Facto	rs affecting the rate of scale formation	16
	2.8.1	Operating Parameters of the evaporators	17
	2.8.2	Quality and the dosage of ingredients	17
	2.8.3	Efficiency of clarification	17
	2.8.4	Heat Exchanger design parameters	18
	2.8.5	Juice Quality and Process water quality	18
2.9	Loss	of heat transfer and resulting heat losses in evaporators	20
2.10	Scal	e reduction techniques	21
	2.10.1	Use of anti-scalant products	22
	2.10.2	2 Use high purity ingredients	22
	2.10.3	3 Conditioning of clear juice	23
	2.10.4	Use of electromagnetic apparatus	24
2.11	Matl	nematical modeling of evaporators and scale formation	25
	2.11.1	Energy Balance Equation	26
	2.11.2	2 Specie Balance Equation	26
	2.11.3	Modeling of scale formations	26
2.12	Sum	mary of the literature Review	29
3. M	IATER	RIALS AND METHODS	30
3.0	Introd	luction to materials and methods	30
3.1 1	Experi	mental Methods	30
	3.1.1.	Sampling Procedure-Clear Juice and Syrup	30
	3.1.2.	Sampling Procedure-Evaporator Scale	30

3	3.1.3.	Calcium concentration in clear juice and syrup	30
3	3.1.4.	Calcium in evaporator scale	31
3	3.1.5.	Determination of silica level in evaporator scale	31
3	8.1.6.	Determination of phosphate level in evaporator scale	31
3	3.1.7.	pH of clear juice	32
3	3.1.8.	Brix% of clear juice and syrup	32
3	3.1.9.	Purity% of clear juice and syrup	32
3.2.M	athematic	cal Modeling	32
3	3.2.1.	Energy Balance Equation	34
3	3.2.2.	Scale deposition mechanism	38
3	3.2.3.	Vapour flow rates	39
3	3.2.4.	Summary of the modeling equations for First Evaporator	39
3	3.2.5.	Summary of the modeling equations for Second Evaporator	40
3	3.2.6.	Summary of the modeling equations for Third Evaporator	41
3	3.2.7.	Summary of the modeling equations for Forth Evaporator	42
	3.2.8.	Electro Magnetic Apparatus	
4.RES	SULTS A	ND DISCUSSION eses & Dissertations	44
4.1. R	esults fro	m experimental studies – Composition of evaporator scale	44
3.3.	Re	sults from experimental studies-factory 01	46
3.4.	Re	sults of the experimental studies-factory 02	50
4.2.	Re	sults of the mathematical model developed in Matlab software	52
5. CO	NCLUSI	ON AND SUGGESTIONS	60
6.REF	FERENCI	ES	61
7.ANI	NEXURE		66

LIST OF FIGURES

Figure 1-1: Research Strategy	3
Figure 1-2: Conceptual Diagram of the research	4
Figure 2-1: Components of a single short tube evaporator	10
Figure 2-2: Industrial Multiple Effect Evaporator	11
Figure 2-3: Calandria tubes of the evaporator with scale formation	11
Figure 2-4: Percent components of Quintuple Effect Evaporators	12
Figure 3-1: Model of quadruple effect evaporator	33
Figure 3-2: Model of a single evaporator with scale formation	34
Figure 4-1: Composition of Evaporator Scale – Factory 01	44
Figure 4-2: Composition of Evaporator Scale – Factory 02	45
Figure 4-3: Juice quality variation – Factory 01.	46
Figure 4-4: Syrup quality variation – Factory 01	47
Figure 4-5: Calcium concentration variation in clear juice – Factory 01	48
Figure 4-6: Calcium concentration variation in syrup – Factory 01	49
Figure 4-7: Juice quality variation – Factory 02	50
Figure 4-8: Syrup Quality variation – Factory 02	51
Figure 4-9: Calcium concentration variation in clear juice – Factory 02	51
Figure 4-10: Calcium concentration variation in syrup– Factory 02	52
Figure 4-11: Scale thickness growth – Particulate Fouling	53
Figure 4-12: Scale thickness growth-chemical precipitation	54
Figure 4-13: Temperature variation-first evaporator	55
Figure 4-14: Temperature variation-second evaporator	56
Figure 4-15: Temperature variation-third evaporator	57

Figure 4-16: Temperature variation-forth evaporator5	8
Figure 4-17: Variation of vapour flow rate with scale growth5	8

LIST OF TABLES

Table 2-1: Composition of Sugarcane Juice	19
Table 2-2: Mineral Composition of Sugarcane Juice	20
Table 2-3: Thermal conductivity of different materials	21
Table 2-4: Components of Carbide Sludge	23
Table 2-5: Summary of mathematical models developed for scale formation	
	26

NOMENCLATURE

F Inlet juice flow rate(Tonnes/hr) L_i Out let juice flow rate (i=1 to 4)(Tonnes/hr) V_i Steam/vapor flow rate(i=0 to 4)(Tonnes/hr) Brix% in juice (i=0 to 4) x_i Mass inside the vessel.(Tonnes) m_i Boiling point temperature of juice. (i=0 to 4) (°C) T_i Temperature of juice at feed. (°C) T_f T_{s} Temperature of steam. (°C) U_i Internal energy. (kJ) Н Enthalpy. (kJ) Heat capacity of juice. (kJ/kg K) oratuwa, Sri Lanka. C_{p} Enthalpy of feed flow per unit mass.(kJ/kg) entations \widehat{H}_f \widehat{H}_{L} Enthalpy of out flow per unit mass.(kJ/kg) V_i Vapor flow rate from evaporator.(i=0 to 4)(kg/hr) λ_i Latent heat of steam/vapor.(i=0 to 4) (kJ/kg) Q_i Heat produce in evaporator.(kJ) W_{ai} Mechanical work done. (i=1 to 4)(kJ) Density of juice inside evaporator 1.(kg/m3) ρ_i U_i Overall heat transfer coefficient Radius of calandria tubes (i=1 to 4) r_i Thickness of scale on calandria tube (i=1 to 4) t_i Number of tubes in evaporator (i=1 to 4) n_i

 h_{steam} Convective heat transfer coefficient in steam side

- h_{juice} Convective heat transfer coefficient in juice side
- R_{wall} Resistance to heat transfer from the wall
- R_{scale} Resistance to heat transfer in scale
- k_{wall} Thermal conductivity of calandria tube wall (kW/K)
- k_{scale} Thermal conductivity of evaporator scale (kW/K)
- A_i Heat flow area in calandria(i=1 to 4) (m²)
- A'_i Cross section area of tube inside calandria (m²)
- T Temperature (${}^{0}C$)
- *p* Purity (%)
- μ Magnetic field strength
- E Induces Electric field vector
- B Magnetic field strength vector
- ω Angular velocity of the current wave (rads⁻¹) Sri Lanka.
- s Line vector along the circumferential direction
- r Distance from the circumferential direction (m)
- a Acceleration to the particle
- k_d Deposition rate coefficient(hr⁻¹)
- k_{con} Consolidation Rate coefficient (hr⁻¹)
- C Concentration of particles in solution (kg/m³)
- k_{rem} Removal Rate coefficient (hr⁻¹)
- C_b Concentration of the substrate in the bulk fluid (kg/m³)
- C_e Equilibrium concentration of the substance at the conditions of the interface
- k_d Kinetic rate constant (hr⁻¹)
- *n* Order of reaction

γ Evaporation rate (kg/hr.m²)

