
COMPARING THE PERFORMANCE OF

CONCURRENCY MODELS OF LOAD BALANCER

ARCHITECTURES

Ragavan Thiruchittampalam

189341P

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2021

COMPARING THE PERFORMANCE OF

CONCURRENCY MODELS OF LOAD BALANCER

ARCHITECTURES

Ragavan Thiruchittampalam

189341P

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2021

ii

DECLARATION

I declare that this is my own work and this thesis does not incorporate without ac-

knowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another per-

son except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature : Date :

The above candidate has carried out research for the Masters thesis under my

supervision.

Name of the supervisor:

Signature of the supervisor : Date :

iii

ABSTRACT

The performance of load balancers is increasingly essential to distribute application traffic
across multiple instances efficiently while maintaining a large number of concurrent users
and application reliability. There is a myriad of factors that influence the performance of a
load balancer, and in this study, the impact of the concurrency model of server architectures
in performance is investigated in detail. In this research, how different server architectures
- thread-per-connection, reactor and disruptor - can be used to build load balancers was
studied and the strength and weaknesses of their concurrency model under a heavy concurrent
workload was analysed. Two different reference implementations for thread-per-connection,
with and without thread pool, were created to understand the impact of a thread pool. The
reactor architecture was implemented utilizing the HTTPCore-NIO library and the disruptor
architecture was developed using Netty transport and LMAX java library.

Besides, each implementation was extensively tuned and the performance of the best per-
forming load balancer in each server architecture was compared. Each chosen architecture of
load balancer has a distinct set of properties that control the performance, therefore, tuning
each implementation was treated as a separate effort. Through the benchmarking tool, JMeter,
extensive experiments will be conducted, and response time, throughput, CPU and memory
usage were measured to analyse the impact of server architecture on performance. This
study produced a comprehensive survey on several concurrency models of load balancer
architectures, an experimental illustration and a detailed analysis of load balancers, in terms
of performance, under high concurrent load. The results show with proper tuning, the peak
throughput of each load balancer is increased by more than 15% compared to its baseline
configuration.

Reactor based architecture with the configuration, 4 threads per reactor and 512 worker threads
produce the peak throughput of 4362 requests per second which is the highest throughput
produced in the experiments. In terms of throughout, the peak throughput produced by reactor-
based architecture is 19% better than the maximum throughput generated by disruptor based
architecture. The average response time increases exponentially for all load balancer architec-
tures but at different rates. Reactor based architecture produces the best response time for all
concurrent connections used in the experiments. A long-tail problem is completely visible in
thread-per-connection architecture under high concurrency, where it has a long and thick tail
in the response time distribution. The key factors affecting the performance of these architec-
tures are the non-blocking nature of I/O operations, CPU usage, handling contention for shared
resources, memory footprint and supporting a high number of concurrent connections.

Keywords: Load Balancer, Performance, Architecture, Concurrency

iv

ACKNOWLEDGEMENT

It is my pleasure to thank everyone who has supported to do this research successfully.

I especially wish to thank my research supervisor, Dr Indika Perera, for his valuable

advice, support and guidance throughout this research.

My sincere thanks to the entire panel of lecturers of the Master’s Program. Without

their guidance, I would not have gained this vast knowledge. It is important to mention

here that their guidance from the first day brought me to continue my studies.

Finally, I extend my thanks to my family for encouraging and supporting me to follow

this program.

v

Contents

Declaration ii

Abstract iii

Acknowledgement iv

Table of Contents vi

List of Figures ix

List of Tables x

1 CHAPTER 1 - INTRODUCTION 1

1.1 Background and Context . 2

1.1.1 Load Balancer Types . 4

1.1.2 Load Balancer Features . 5

1.1.3 Load Balancing Strategies 6

1.2 Problem Statement . 7

1.3 Research Objectives . 8

1.4 Scope and Limitation . 9

1.5 Document Outline . 9

2 CHAPTER 2 - LITERATURE REVIEW 11

2.1 Concurrency Models . 12

2.1.1 Bounded Thread Pool . 13

2.1.2 Actor Model . 14

2.1.3 Disruptor . 15

2.2 Server Architectures . 17

2.2.1 Thread Based Server Architecture 17

2.2.2 Event Driven Server Architecture 19

2.2.2.1 Single Process Event-Driven Architecture 21

vi

2.2.2.2 SYmmetric Multi-Process Event-Driven Architecture 21

2.2.2.3 Asymmetric Multi-Process Event-Driven Architecture 22

2.2.3 Combined Server Architectures 22

2.2.3.1 Staged Event Driven Architecture 22

2.3 Previous Benchmarks . 23

3 CHAPTER 3 - METHODOLOGY 26

3.1 Research Methodology . 26

3.2 Proposed High-Level Architecture 29

3.3 Benchmark Setup . 30

3.4 Workload . 30

3.5 Tuning . 31

3.6 Verification . 31

3.7 Measuring Metrics . 32

4 CHAPTER 4 - ARCHITECTURE IMPLEMENTATION 33

4.1 Thread Per-Connection Architecture 33

4.2 Reactor Based Event Driven Architecture 37

4.3 Disrupter Based Event Driven Architecture 43

5 CHAPTER 5 - IMPLEMENTATION TUNING 46

5.1 General Tuning Steps . 46

5.1.1 OS and Network . 46

5.1.2 Keep Alive Connections . 47

5.2 Common Configuration . 48

5.3 Per-Connection Thread Based Architecture 49

5.4 Reactor Based Event Driven Architecture 52

5.5 Disrupter Based Event Driven Architecture 54

6 CHAPTER 6 - RESULTS AND DISCUSSION 57

6.1 Throughput . 57

6.2 Response Time . 59

vii

7 CHAPTER 7 - CONCLUSION 62

7.1 Research Contribution . 63

7.2 Limitation . 64

7.3 Future Work . 64

viii

List of Figures

2.1 Thread Pool . 13

2.2 Disruptor Model . 16

2.3 Threaded Server Design . 18

2.4 Event Driven Server Design . 19

2.5 SEDA Stage . 23

3.1 Research Methodology . 26

3.2 Load Balancer Architecture . 29

3.3 Experiment System Architecture . 30

4.1 Blocking I/O Model . 34

4.2 Reference Implementation - A new thread for each connection 35

4.3 Reference Implementation - A thread in the thread pool handles con-

nection . 36

4.4 Class Diagram of Transport Listener of Reactor Architecture 38

4.5 I/O Multiplexing . 40

4.6 Reactor Architecture Based Implementation 41

4.7 Disruptor Based Reference Implementation Transport Listener 43

4.8 Reference Implementation of Disruptor Based Event Driven Architecture 45

5.1 Throughput of Different Configurations of Thread-Per-Connection

Load Balancer . 50

5.2 Throughput of Different Configurations of Thread Pool Load Balancer 51

5.3 Throughput of Different Configurations of Reactor Based Implemen-

tation . 53

5.4 Throughput of Different Configurations of Disruptor Based Reference

Implementation . 55

6.1 Throughput of Different Architecture Implementations 58

6.2 Average Response Time of Different Load Balancer Architectures . . 59

6.3 Probability Density Function of Different Architectures 60

ix

List of Tables

2.1 I/O Models . 12

3.1 Factors and Levels . 27

x

