
CLUSTER AUTOSCALER FOR UNMANAGED

KUBERNETES CLUSTER DEPLOYMENT ON CLOUD

S. A. Chathura Madhushanka Siriwardhana

199366F

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

August 2020

ii

CLUSTER AUTOSCALER FOR UNMANAGED

KUBERNETES CLUSTER DEPLOYMENT ON CLOUD

S. A. Chathura Madhushanka Siriwardhana

199366F

Project report submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science Specialising in Cloud Computing

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

August 2020

iii

DECLARATION

I declare that this is my own work and this project report does not incorporate without

acknowledgment any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text. Also, I hereby grant to

the University of Moratuwa the non-exclusive right to reproduce and distribute my

thesis, in whole or in part in print, electronic, or other medium. I retain the right to use

this content in whole or part in future works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters Project report under my

supervision.

Name of the supervisor: Prof. Gihan Dias

Signature of the supervisor: Date:

iv

ABSTRACT

This project report comprises details of the research "Cluster Autoscaler for Unmanaged

Kubernetes Cluster Deployment on Cloud". Underutilization of server resources is a huge

issue in enterprise data centers. When it comes to Kubernetes, underutilization and

overutilization issue exists as is. In Kubernetes main course of having this issue is the use of

fixed number of Kubernetes worker nodes. The Kubernetes community provides a cluster

autoscaler solution to reduce underutilization and overutilization on Kubernetes clusters. This

solution is only supported by a few major cloud providers like Google, AWS, DigitalOcean,

and few others. Also, this solution is tightly bound to the auto scale group concept in those

clouds. Hence this solution provided by the Kubernetes community cannot be used elsewhere.

Therefore, there is a necessity for a general auto scaling approach that can be used on a wide

range of cloud platforms and hardware virtualization platform. This research is to design and

develop a Kubernetes Cluster Autoscaler which can be used on any cloud platform. This is

achieved by removing the tightly bound auto scale group in the solution proposed by this

research. Proposed solution use API and SDK provided by cloud provider and using libvirt

which is a general purpose API library to manage KVM, Xen, VMWare ESXi and QEMU.

v

ACKNOWLEDGMENT

Firstly, I would like to express my sincere gratitude to Professor Gihan Dias at the

University of Moratuwa for his valuable support and contribution in my research and

the dedicated guidance provided to me throughout the research in terms of motivation,

and immense knowledge.

My sincere thanks goes to the Cloud Native Computing Foundation, Google Inc. and

Docker for developing Kubernetes and container standards, and introducing it to the

opensource community.

Last but not the least, I would like to thank my family and fellow colleagues for the

precious support given to me throughout this period in order to successfully complete

the research work.

vi

Table of Contents

CLUSTER AUTOSCALER FOR UNMANAGED KUBERNETES CLUSTER

DEPLOYMENT ON CLOUD i

CLUSTER AUTOSCALER FOR UNMANAGED KUBERNETES CLUSTER

DEPLOYMENT ON CLOUD ii

DECLARATION iii

ABSTRACT iv

ACKNOWLEDGMENT v

Table of Contents vi

List of Figures viii

List of Tables x

List of Abbreviations xi

1. INTRODUCTION 1

1.1 Background 1

1.2 What is Autoscaling? 2

1.2.1 Schedule-based Autoscaling 2

1.2.2 Predictive Autoscaling 2

1.3 Kubernetes Cluster Autoscaler 3

1.4 Limitations in managed Kubernetes clusters 3

1.5 Problem Definition 3

1.6 Motivation 4

1.7 Objective 4

2. LITERATURE REVIEW 5

2.1 Container and containerization 5

2.2 Hardware Virtualization vs. containerization 6

2.3 Container orchestration 7

2.4 Kubernetes Container Orchestration Platform 7

2.5 SaltStack Container Orchestration 9

2.6 Helios Docker orchestration platform 9

2.7 Docker Swarm 9

2.8 Why Kubernetes over other container orchestration platforms 11

2.9 Functionality of Virtual Machine Auto Scaling 12

2.10 How does Kubernetes Scheduler work? 13

vii

2.11 Why VM auto scaler can’t use to scaler the Kubernetes Clusters directly 14

2.12 Managed vs. Unmanaged Kubernetes cluster on the cloud 14

2.13 Predictive Autoscaling vs. Rule-based Autoscaling 15

2.14 Kubernetes cluster autoscaler for OpenStack with Magnum 15

2.15 Kubernetes Cluster Architecture 16

2.16 How official Kubernetes Cluster Autoscaler Works 20

2.17 Summary 21

3. ARCHITECTURAL DESIGN 22

3.2 Kubernetes worker node removing module workflow 24

3.3 Kubernetes cluster balance module 25

3.3.1 hostPath and local volume types 26

3.3.2 Node Affinity and Node Selectors 28

3.4 Architectural Design Summary 28

4. IMPLEMENTATION 30

4.1 How to run the Kubernetes Cluster Autoscaler? 35

4.2 Add support to other cloud providers and virtualization platforms 37

4.3 Results 37

4.3.1 Testing Environment 38

4.3.2 Saturation in terms of Kubernetes 38

4.3.3 Manual Test Scenarios 40

4.3.4 Manual Testing Result 41

4.3.6 Automated Testing Results 42

5. CONCLUSION 44

6. REFERENCES 45

viii

List of Figures

 Pages

Figure 1 The architecture of virtualization and containerization 6

Figure 2 Illustration of Kubernetes Architecture 8

Figure 3 Predictive autoscaling 15

Figure 4 Kubernetes Cluster Autoscaler workflow 17

Figure 5 Kubernetes Cluster Autoscaler node removal workflow 18

Figure 6 Autoscaler implementation on the Google Cloud Platform 19

Figure 7 High Level Architecture Diagram 22

Figure 8 Proposed Kubernetes worker node adding workflow 23

Figure 9 Proposed Kubernetes worker node removal workflow 24

Figure 10 Kubernetes cluster before and after running this module 26

Figure 11 hostPath pod definition 27

Figure 12 Persistent volume definition with the local volume type 27

Figure 13 Source Code Directory Structure 31

Figure 14 Main Program Code Snippet 32

Figure 15 Kube config searching and loading 33

Figure 16 Modified and Deleted events filter 34

Figure 17 Sample Configmap Resources 35

Figure 18 Minimum permissions requirement 36

Figure 19 Kubernetes Deployment Resource Configuration 36

ix

Figure 20 Log Output of worker node adding process 37

Figure 21 Worker Node List 38

Figure 22 Log Output of Worker Node Deleting Process 38

Figure 23 Kubernetes Deployment resource YAML 39

Figure 24 Cluster autoscaler scale down graph node count vs. time 41

Figure 25 Pending pod against time in fix worker node cluster 42

Figure 26 Pending pod against time with cluster autoscaler 43

x

List of Tables

 Pages

Table 1 The architecture of virtualization and containerization 10

Table 2 Test Scenario result (Iteration vs. Time) 41

xi

List of Abbreviations

LXC Linux containers

OCI Open Container Initiative

CNCF Cloud Native Computing Foundation

HPA Horizontal Pod Autoscaler

CI/CD Continuous Integration / Continuous Delivery

GCE Google Compute Engine

GKE Google Container Engine

ASG AutoScaleGroups

AWS Amazon Web Services

EKS Elastic Kubernetes Service

API Application Program Interface

AKS Azure Kubernetes Service

