

UNIVERSITY OF MORATUWA

BEAMFORMING TECHNIQUES FOR THE DOWNLINK OF SPACE-FREQUENCY CODED DECODE-AND-FORWARD MIMO-OFDM RELAY

Electronic SYSTEMS Sertations www.lib.mrt.ac.lk

By

Navod Devinda Suraweera

This thesis is submitted to the Department of Electronic & Telecommunication Engineering of the University of Moratuwa in partial fulfillment of the requirements for the degree of Master of Philosophy in Full Time Research.

University of Moratuwa, Sri Lanka February, 2012

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university. Furthermore, this does not contain any material previously published or written or orally communicated by another person except where due reference is made in the text or in the figure captions or in the table captions.

Navod D. Suraweera

To the best of our knowledge the above particulars are true and accurate.

Dr. K.C.B. Wavegedara Research Supervisor, Senior Lecturer, Department of Electronic and Telecommunication Engineering University of Moratuwa Prof. E. M. N. Ekanayake Senior Professor, Department of Electrical and Electronic Engineering University of Peradeniya

Abstract

Multiple-input multiple-output (MIMO) techniques can be used to achieve diversity gain, multiplexing gain and/or array gain. Particularly, diversity coding techniques (e.g. Space-Time (ST), Space-Frequency (SF) coding) have received tremendous attention as effective means of achieving spatial diversity gain in MIMO systems. However, in the presence of spatial correlations the diversity gain of ST/SF coding diminishes. Beamforming techniques can be used to achieve array gains in MIMO systems. Hence, in correlated channels beamforming techniques can be combined with ST/SF coding to further improve the performance.

In this thesis, we develop beamforming techniques relying on statistical channel state information at the transmitter (CSIT) for space-time (ST) / space-frequency (SF) coded MIMO systems to minimize the pair-wise error probability. We propose beamforming techniques for SF coded MIMO-OFDM systems in correlated frequency-selective Rician fading channels. We propose two novel beamforming techniques for this channel model.

Furthermore, distributed beamforming techniques are developed for correlated Rayleigh flat-fading channels, relying on full-instantaneous CSIT as well as statistical CSIT. Moreover, we extend these techniques for SF coded MIMO-OFDM relay networks in correlated Rician fading channels and propose optimal beamforming techniques relying on full-instantaneous CSIT. Also, suboptimal beamforming techniques relying on statistical CSIT are developed. The variation of error performance is thoroughly investigated and the simulation results confirm that all the proposed beamforming techniques achieve significant performance advantages over MIMO systems using ST or SF coding only.

To my dear Mother, Father, Brother, Sarangi and Romeo www.lib.mrt.ac.lk

Acknowledgment

I would like to extend my sincere thanks to my supervisor, Dr. Chandika Wavegedara, for his support and supervision. His continuous advice, guidance and encouragement have been instrumental in making this work a success and shaping up my carrier as a researcher.

I also wish to thank the members of my M.Phil progress review committee, Prof.(Mrs) Dileeka Dias, Eng. Kithsiri Samarasinghe and Dr. Ajith Pasqual, for their valuable comments and advice in improving the outcome of my research. Also I wish to convey my thanks to the Head of the Department of Electronic and Telecommunication Engineering, Dr. Chulantha Kulasekere and Prof. (Mrs) Indra Dayawansa for their advice, encouragement and valuable feedback.

Many thanks to Mr. Jayantha Perera, the chief technical officer of the post-graduate laboratory and all the non-academic staff members in the Department of Electronic and Telecommunications Engineering for their immense support and understanding. Furthermore, I would like to convey my sincere thanks for the staff of the Postgraduate Studies Division and the Department of Examinations for their valuable guidance and assistance.

I wish to thank all my colleagues in University of Moratuwa for making the period of my research studies a memorable one through their great friendship and care. It would have been extremely difficult to pass these two years without a good company.

At last but not least, my sincere appreciation and gratitude go to my family for their great love, support, encouragement and understanding shown throughout my research studies.

Contents

List of	Figures	vii
List of	Tables	ix
Acron	yms	X
Nomei	nclature	xi
СНАР	TER 1 Introduction of Moratuwa, Sri Lanka.	1
1.1	Introduction MIMO Communications ISSC Lations	1
1.2	Techniques Used in a MIMO Transmitter	3
	1.2.1 ST/SF Coding (Diversity Coding)	3
	1.2.2 Beamforming	3
1.3	Cooperative Relay Networks	6
1.4	Motivation	7
1.5	5 Objectives	
1.6	Contributions	9
1.7		
СНАР	TER 2 Literature Review	12
2.1	Beamforming Techniques designed for the ST/SF Coded MIMO	
	Downlink	12
	2.1.1 For MIMO systems in Frequency Flat Fading channels	12
	2.1.2 For MIMO-OFDM systems in Frequency Selective Fading	
	channels	15

	2.1.3 Limitations in Existing Schemes and Future Research Di-	
	rections	18
2.2	Beamforming Techniques designed for the DST/DSF Coded Coop-	
	erative relay networks	19
	2.2.1 Designed for Narrow-Band Frequency Flat Fading channels .	19
	2.2.2 Designed for Broadband Frequency Selective Fading channels	22
	2.2.3 Limitations in Existing Schemes and Future Research Di-	
	rections	23
СНАР	TER 3 Transmit Beamforming techniques for MIMO-OFDM	
\mathbf{Sys}	tems in a Correlated Rician Fading Channel	24
3.1 Introduction		24
		25
3.3	Derivation of the Beamforming techniques	27
	3.3.1 Simplification of the optimization problem	28
3.4	3.3.1 Simplification of the optimization problem	31
3.5	Simulation Results and Discussion	
	3.5.1 Confidence Interval of BER Simulations	38
3.6	Summary	40
CHAP	TER 4 Distributed Beamforming Techniques for DF Relays	
in I	Frequency-Flat Rayleigh Fading Channels	42
4.1	Introduction	42
4.2	System and Channel Model	44
4.3	Development of Beamforming Techniques for Instantaneous CSIT .	46
	4.3.1 Beamforming at the Relay Node	48
	4.3.2 Beamforming at the Source Node	48
4.4	Development of Beamforming Techniques for Statistical CSIT	49
	4.4.1 Beamforming at the Relay Node	50
	4.4.2 Beamforming at the Source Node	50
4.5	Simulation Results and Discussion	51
4.6 Summary		53

CHAP	PTER 5 Beamforming Techniques for DF Relays in Frequency-	
Sele	ective Fading Channels	55
5.1 Introduction		
5.2 System and Channel Model		
5.3	5.3 Development of Beamforming Techniques for Full-Instantaneous CSIT	
	5.3.1 Beamforming Matrix for the Source Node in Protocol 1	61
	5.3.2 Beamforming Matrix for the Relay Node in Protocol 1 $$	64
	5.3.3 Development of Beamforming Techniques for Protocol 2 $$	65
	5.3.4 Simulation Results and Discussion	65
5.4	Development of Beamforming Techniques for Statistical CSIT	66
	$5.4.1$ Channel Covariance Matrix for MIMO-OFDM systems $\ . \ . \ .$	66
	5.4.2 Beamforming Matrix for Relay Node in Protocol 1	68
	5.4.3 Beamforming Matrix for Source Node in Protocol 1	69
	5.4.4 Beamforming Matrix for the Source Node in Protocol $2\ldots$	70
5.4.5 Beamforming Matrix for the Relay Node in Protoco		71
	5.4.6 Simulation Results and Discussion	71
5.5 Summary www.lib.mrt.ac.lk		
CHAP	PTER 6 Conclusions	78
6.1	Future Research Directions	81
CHAP	PTER 7 Publications	83
7.1	Journal Papers	83
7.2	Conference Papers	83
7.3	ENTC Research Seminar Papers	84
Refere	ences	85

List of Figures

1.1	The functional block diagram of a typical MIMO transmitter	
1.2	Structure of the beamformer in a MIMO transmitter $[1]$	4
1.3	An amplify-and-forward cooperative relay network	7
1.4	A decode-and-forward cooperative relay network	8
3.1	BER Performance of beamforming techniques for Channel 1	32
3.2	BER Performance of beamforming techniques for Channel 2 $$	33
3.3	BER Performance of beamforming techniques for Channel 3	34
3.4	BER Performance of beamforming techniques for Channel With K factor of 10	35
3.5	Variation of BER Performance with the Correlation factor for $K=0.5$	36
3.6	Variation of BER Performance with the Correlation factor for $K=10$	37
3.7	Variation of BER Performance with the Rician K factor for a correlated channel	
	for $E_b/N_0 = 6 \text{ dB}$	38
3.8	Variation of BER Performance with the Rician K factor for a correlated channel	
	for $E_b/N_0 = 16 \text{ dB}$	39
4.1	Phase 1 of the Cooperative Protocol	45
4.2	Phase 2 of the Cooperative Protocol	45
4.3	BER Performance of the proposed sbeamforming techniques for a channel with	
	high correlations	52
4.4	BER Performance of the proposed sbeamforming techniques for a channel with	
	moderate correlations	53
4.5	BER Performance of SCSIT BFT with the variation of correlation factor for	
	E_b/N_0 value of 8 dB $$	54

5.1	Phase 1 of Protocol 1	57
5.2	Phase 2 of Protocol 1	57
5.3	Phase 1 of Protocol 2	58
5.4	Phase 2 of Protocol 2	58
5.5	BER Performance of beamforming technique for the 3GPP SCM Channel model	66
5.6	BER Performance of the proposed beamforming technique when all the links	
	experience Rayleigh fading for Protocol 1	72
5.7	BER Performance of the proposed beamforming technique when the S-R link	
	is stronger for Protocol 1	73
5.8	BER Performance of beamforming technique when the R-D link is stronger for	
	Protocol 1	74
5.9	BER Performance of proposed beamforming techniques for cooperative Proto-	
	col 1 and Protocol 2	75
5.10	Comparison of the BER performance obtained with and without cooperation	
	when the relay-destination link is stronger	76
5.11	Parameter Programme	
	when the source-relay link is stronger	76
5.12	BER Performance of the beamforming technique for protocol 1 with Rician K	
	factor of the relay-destination link	77

List of Tables

2.1	1 Summary of beamforming techniques for STBC coded co-located	
	schemes	13
2.2	Summary of beamforming techniques for STBC coded co-located	
	frequency selective fading channels	16
2.3	Summary of beamforming techniques for DSTC coded cooperative	
	relay environment	19
2.4	Summary of beamforming techniques for cooperative relay environ-	
	ment .) Electronic Theses & Dissertations	20
3.1	99% Confidence interval for the average BER figures for different	
	E_b/N_0 values	40
6.1	Summary of beamforming techniques developed in the thesis	80

Acronyms

Following abbreviations or acronyms have been used in this thesis.

Abbreviations/acronyms	Meaning
MIMO	Multiple-Input Multiple-Output
SISO	Single-Input Single-Output
OFDM	Orthogonal Frequency Division Multiplexing
STC	Space-Time Coding
OSTBC	Orthogonal Space-Time Block Coding
SFC	Space-Frequency Coding
DSTC IIniversit	Distributed Space-Time Coding
DSFC	Distributed Space-Time Coding Distributed Space-Frequency Coding
CSIT	Channel State Information at the Transmitter
CSIR www.lib	Channel State Information at the Receiver
QPSK	Quadrature Phase Shift Keying
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation
ML	Maximum Likelihood
ISI	Inter-Symbol Interference
PEP	Pair-wise Error Probability
SER	Symbol Error Rate
BER	Bit Error Rate
SNR	Signal-To-Noise Ratio
MRC	Maximum-Ratio Combining
AWGN	Additive white Gaussian Noise
FIR	Finite Impulse Response
DF	Decode and Forward
AF	Amplify and Forward
LTE	Long Term Evolution
3GPP	Third Generation Partnership Project
SCM	Spatial Channel Model
WiMAX	Worldwide Interoperability for Microwave Access
LOS	Line Of Site

Nomenclature

Following symbols or notations have been used in this thesis.

Notation	Meaning
$\overline{\left(\mathbf{X} ight)^{H}}$	Conjugate transpose of matrix X
$(\mathbf{X})^*$	Complex conjugate of matrix X
$(\mathbf{X})^T$	Transpose of matrix \mathbf{X}
$\mathrm{tr}(\mathbf{X})$	Trace of matrix \mathbf{X}
$\ \mathbf{X}\ _F$	Frobenius norm of matrix \mathbf{X}
$\det(\mathbf{X})$	Determinant of matrix X
$\lambda_i(\mathbf{X})$ Unive	i-th Eigenvalue of matrix \mathbf{X}_{anka}
$r(\mathbf{X})$ Flectr	Rank of matrix X X is positive semidefinite matrix
$X \ge 0$	X is positive semidefinite matrix
⊗ WWW.	Kronecker product
$ \begin{array}{c} P(A) \\ \sum \\ \Pi \end{array} $	Probability of event A
\sum	Summation
Π	Product
I	Identity matrix
E_b/N_0	Bit energy to noise power spectral density ratio
$\mathrm{E}(Y)$	Statistical expectation of random variable Y
$\operatorname{vec}(\mathbf{X})$	vectorization operator
\exp	Exponential
diag	Diagonalization
j	Square root of -1
Boldface uppercase letter	Matrix
Boldface lowercase letter	Vector
$[x]^+$	$= \begin{cases} x & \text{if } x \ge 0 x \in \mathbb{R} \\ 0 & \text{if } x < 0 x \in \mathbb{R} \end{cases}$