CAPSULE NETWORK BASED SUPER RESOLUTION METHOD FOR MEDICAL IMAGE ENHANCEMENT

Shashika Chamod Munasingha 189388N

Thesis submitted in partial fulfilment of the requirements for the

Degree of Masters of Science in Artificial Intelligence

Department of Computational Mathematics
Faculty of Information Technology

University of Moratuwa Sri Lanka

October 2020

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

Name of the student: Shashika Chamod Mun	asingha
Signature:	Date:
The above candidate has carried out resea Dissertation under my supervision.	rch for the Masters/MPhil/PhD thesis
Name of the supervisor: Subha Fernando (Ph	nD)
Signature of the supervisor:	Date:

Abstract

Medical imaging has been one of the most attentive research and development areas since the 1950s, particularly due to the contribution to disease diagnosis. Despite the fact that imaging technologies have been advanced in multiple ways, yet resolution limitations can be observed. To overcome the resolution limitations, various image enhancement techniques have been used. Image Super-Resolution (SR) is the latest technique in the list to achieve higher resolution with much lower resolution images. Earlier, frequency based and interpolation based SR techniques were used for SR. The afterward achievements in SR techniques are obtained via Convolution Neural Network (SRCNN) based methods and have several flaws.

Capsule net (Caps Net) is the state of the art alternative methodology for the problems which were previously solved by CNN. One recent attempt was made to assess the Caps Net for SR task. This new area has a lot to be explored. Especially the time inefficiencies of this approach should be addressed along with accuracy improvements.

In this research several capsule network routing mechanisms have been investigated for Super Resolution pipeline with a medical image dataset. Standard Dynamic Routing and Expectation Maximization Routing methods are re-configured to improve the accuracy. Above all, a novel integration of state of the art routing mechanism, Inverted Dot Product based Attention Routing mechanism is introduced for Super Resolution task.

With 300,000 medical image training pairs and 2,500 evaluation pairs, every model was evaluated. Along with different image quality indexes, it was shown that the Dynamic Routing based method outperformed all methods and the newest Attention Routing based approach has shown similar image quality performance to that of the state of the art method FSRCNN and less time complexity to that of the existing Caps Net based approaches. This implies that clinicians can use this system effectively in a clinical setting.

Dedication

I dedicate this thesis to my parents, my grandmother and my wife who are always withstand in my successes and failures.

Acknowledgment

Throughout the completion of this dissertation I have received great deal of helping hand from many people around me.

I would first like to thank my supervisor, Dr. Subha Fernando for her effort, patient, commitment and guidance for the success of this project. Her expertise was invaluable in formulating the research question and the methodology. Your exceptional support and feedback always helped me to bring my work to a higher level.

I also would like to thank Prof. Asoka Karunananda for the guidance he has given to prepare the thesis materials and showing the correct path of conducting the research.

In addition to that, I would like to acknowledge Dr.Sagara Sumathipala for his immense support in the background to conduct the project in timely manner. My sincere gratitude goes to all the other lecturers and non- academic staff members who helped me to make this project a success.

My fellow colleagues, I would like to thank you for your support in completion of this project.

Finally, I would like to thank my parents, wife and my family members for their wise counsel and for keeping up with me. You are always there for me and without your encouragement this project would not end up in great success.

Table of Content

Declarat	ion	ii
Abstract	:i	ii
Dedicati	on	iV
Acknow	ledgment	V
List Of 1	Figures	X
List Of	Γables	хi
List Of A	Abbreviationsx	ii
List Of A	Appendicesxi	11
Chapter	1 Introduction	1
1.1	Prolegomena	1
1.2	Background and Motivation	1
1.3 Ai	m and Objectives	2
1.4	Problem in Brief	3
1.5	Proposed Solution	3
1.6	Resource Requirements	3
1.7	Outline	4
1.8	Summary	4
Chapter	2 Super Resolution – Past, Present & Future	5
2.1 In	troduction	5
2.2 Ea	arly Approaches to Super Resolution	5
2.2.	1 Frequency Domain Approaches	6
2.2.	2 Spatial Domain Approaches	7
2.3 St	ate of the art Techniques for SR	9
2.4 Cl	nallenges in CNN based SR Techniques	9
2.5 Li	terature in Brief1	0
2.6 Pr	oblem Definition	. 1
2.7 Su	ımmary	2
Chapter	3 Capsule Nets – Next Giant	.3
3.1 In	troduction	3
3.2 Co	onvolution Neural Networks	3
3.3 Ca	npsule Network	5
3.3.	1 Inverse Graphics – Backstage of Caps-Net	5

3.3.2 Capsules	15
3.3.3 Training in Caps-Net	16
3.4 Deconvolution (2D)	23
3.5 Summary	23
Chapter 4 Caps-Net based Approach for SR	24
4.1 Introduction	24
4.2 Input	24
4.3 Output	24
4.4 Process	25
4.5 Users	25
4.6 Features	25
4.7 Summary	25
Chapter 5 Design of Caps-Net SR	26
5.1 Introduction	26
5.2 Data Generator Module	26
5.2.1 Image Preprocessing Module	26
5.2.2 Image cropper	26
5.3 Caps-Net SR Module	27
5.3.1 Input Image	27
5.3.2 Convolution Module	27
5.3.3 Capsule Module	27
5.3.4 Reconstruction Module	28
5.3.5. Output Image	28
5.3.6 Evaluation Module	28
5.3.7. High Resolution Image	28
5.4 Evaluation Module	28
5.5 Summary	29
Chapter 6 Implementation	30
6.1 Introduction	30
6.2 Data Generator Implementation	30
6.2.1 Dataset	30
6.2.2 Data Generator	30
6.3 Overall implementation	32
6.4 Re-usable Layers	33
6.4.1 Initial Convolution Lavers	33

6.4.2 Reconstruction Layers	33
6.5 Dynamic Routing	34
6.6 Expectation Maximization	35
6.7. Attention based Routing	36
6.8 Training	37
6.9 Summary	38
Chapter 7 Evaluation	39
7.1 Introduction	39
7.2 Evaluation Strategy	39
7.2.1 Evaluation at Training	39
7.2.2 Overall Evaluation	39
7.2.3 PSNR	40
7.2.4 SSIM	41
7.2.5 MSSSIM	42
7.2.6 UIQ	42
7.3 Experimental Setup	42
7.4 SR Techniques Comparison	43
7.5 Summary	47
Chapter 8 Conclusion & Further Work	48
8.1 Introduction	48
8.2 Conclusion	48
8.2.1 Achievement of Project Objectives	48
8.2.2 Overall Conclusion	49
8.3 Limitations and Further Works	50
8.4 Summary	50
References	51
Appendix	55
Appendix I: Inverted Dot Product Based Attentio	n Routing55
Appendix II: Data Generator	55
Appendix III – Dynamic Routing	57
Appendix IV – EM Routing	59
Appendix V - Attention Routing	62
Appendix VI: PSNR Implementation	65
Appendix VII – Sample 100x100 (HR) and 50x50	, ,
	66

Appendix VIII - Image Zooming	66
Appendix IX – Image Evaluator	67
Appendix X – Attached (SR _Result_Verification.pdf)	68

LIST OF FIGURES

	Page
Figure 2.1 Overview of SR Techniques	5
Figure 3.1 Super Resolution Pipeline	13
Figure 3.2 CNN Architecture for Image Classification	14
Figure 3.3 Capsule Input, Output	17
Figure 3.4 Concurrent Routing	22
Figure 4.1 Approach	24
Figure 5.1 Data Generator Module Components	27
Figure 5.2 Capsule Net Components	28
Figure 5.3 Image Quality Evaluation Model	30
Figure 6.1 Data Generator – Flow Chart	32
Figure 6.2 FSRCNN Architecture	33
Figure 6.3. DR based Caps-Net Architecture	35
Figure 6.4. EM Routing based Caps Net Architecture	36
Figure 6.5. Inverted Dot Product based Routing Caps Net Architecture	38
Figure 7.1 Experimental Setup for Evaluation	44
Figure 7.2 Image Comparison 1	45
Figure 7.3 Image Comparison 2	46
Figure 7.4 PSNR Variation over Epochs	47

LIST OF TABLES

	Page
Table 2.1 Summary of literature review	10
Table 7.1 Quantitative Comparison of Results	44
Table 7.2 Training Performance of SR Techniques	46

LIST OF ABBREVIATIONS

Abbreviation Description

SR Super Resolution

SFSR Single Frame Super Resolution

DR Dynamic Routing

EM Expectation Maximization

Convolution

Net Network
Caps Capsule

GPU Graphical Processing Unit

FSRCNN Fast Super Resolution using Convolutional Neural Network

SRCNN Super Resolution using Convolutional Neural Network

GAN Generative Adversarial Network

(A)NN (Artificial)Neural Network

GUI Graphical User Interface

PSNR Peak Signal to Noise Ratio

LR Low Resolution

HR High Resolution

SSIM Structural Similarity Index

MSSSIM Multi Scale Structural Similarity Index

MRI Magnetic Resonance Imaging

CT Computed Topography

LIST OF APPENDICES

Appendix	Description	Page
Appendix I	Inverted Dot Product Based Attention Routing	55
Appendix II	Data Generator	55
Appendix III	Dynamic Routing	57
Appendix IV	EM Routing	59
Appendix V	Attention Routing	62
Appendix VI	PSNR Implementation	65
Appendix VII	Sample 100x100 (HR) and 50x50 (LR) Image Pairs For	66
	Evaluation	
Appendix VIII	Image Zooming	66
Appendix IX	Image Evaluator	67
Appendix X	SR _Result_Verification.pdf	68