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Abstract 

The process of assigning most appropriate resources to workstations or agents at the right time 

is termed as Scheduling. The word is applied separately to tasks and resources in task 

scheduling and resource allocation accordingly. Scheduling is a universal theme being 

conferred in technological areas like computing and strategic areas like operational 

management. The core idea behind scheduling is the distribution of shared resources across 

time for competitive tasks. Optimization, efficiency, productivity and performance are the 

major metrics evaluated in scheduling. Effective scheduling under uncertainty is tricky and 

unpredictable and it’s an interesting area to study. Environmental uncertainty is a challenging 

extent that effect scheduling based decision making in work environments where environment 

dynamics subject to numerous fluctuations frequently. 

Reinforcement Learning is an emerging field extensively research on environmental modelling 

under uncertainty. Optimization in dynamic scheduling can be effectively handled using 

Reinforcement learning. This research is about a research study that focused on Reinforcement 

Learning techniques that have been used for dynamic task scheduling. This thesis addresses 

the results of the study by means of the state-of-the-art on Reinforcement learning techniques 

used in dynamic task scheduling and a comparative review of those techniques. This thesis 

reports on our research on a Hybrid Approach for Dynamic Task Scheduling in Unforeseen 

Environments using the techniques; Multi Agent Reinforcement Learning and Enhanced Q-

Learning. 

The proposed solution follows online and offline reinforcement learning approaches which 

works on real time inputs of heuristics like, Number of agents involved, current state of the 

environment and backlog of tasks and sub-tasks, Rewarding criteria etc. The outputs are the 

set of scheduled tasks for the work environment. The solution comes with an approach for 

priority based dynamic task scheduling using Multi Agent Reinforcement Learning & 

Enhanced Q-Learning. Enhanced Q-Learning includes developed algorithm approaches; Q-

Learning, Dyna Q+ Learning and Deep Dyna-Q+ Learning which is proposed as an effective 

methodology for scheduling problem.  

The novelty of the solutions resides on implementation of model-based reinforcement learning 

and integration with the model-free reinforcement learning algorithmic approach by means of 

Dyna-Q+ Learning and Deep Dyna-Q+ Learning for dynamic task scheduling in an unforeseen 

environment. The research project also concentrates on how the dynamic task scheduling is 

managed within a constantly updating environment which the Deep Dyna-Q+ has provided a 

ground solution to cater this requirement. The end solution has comparatively evaluated the 

product using evaluation metrics in each of the three Q-Learning variations developed. As per 

the evaluation results it was revealed Deep Dyna-Q+ implementation would cater well the 

problem of dynamic task scheduling in an unforeseen environment. 
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          Chapter  01 
Introduction 

1.1 Prolegomena 

Task allocation means that the correct resources have been committed to implement and work 

item/task successfully for a particular result at the right time. It ensures that the demand for 

process implementation facilities is balanced against the availability of these services. 

Scheduling is a popular norm that is crucially being applied for numerous real-world 

applications like, industrial workforce management, web-server management, 

multiprogramming/ multitasking, grid computing, public transportation, traffic planning and 

network routing. Some other practical use cases of scheduling may include scenarios like 

waiting in a queue, waiting on hold for technical support, prioritizing a list of chaos, selecting 

jobs from a printer queue, balancing transmission of multiple signals over limited bandwidth 

etc. 

The component called scheduler performs scheduling in a computer system, which mainly 

concerns throughput, latency and response time. Throughput refers to how easily a certain 

number of tasks per unit of time can be performed from beginning to end. In comparison, 

latency, which involves the waiting time before it can be served, is the processing time or the 

time it takes to complete the job from the time of request or submission until the end. Response 

time is the time taken to serve the procedure or order, in short, the waiting time. 

Job-Shop Scheduling Problem (JSSP), Open-Shop Scheduling Problem and Flow-Shop 

Scheduling Problem [1],[2],[3],[4] are widespread conversed optimization problems in 

computer science, where ideal jobs are assigned to resources at particular times. A Job Shop 

is a work location in which several general-purpose workstations exist and are used to perform 

a variety of jobs. The simplest version of JSSP is that the n jobs J1, J2..., Jn of different 

processing times are provided, which need to be scheduled on m machines with different 

processing power while minimizing the potential makespan. The makespan is the cumulative 

duration of the schedule (that is, when production has been completed for all jobs) [3],[4]. 

Each task consists of a series of tasks that must be carried out in a specified order, and each 

task must be processed on a workstation or a machine. 

With various scheduling algorithms that elegantly decide on the order of optimal resource 

allocation in multi-processing and multi-tasking systems, Computer Science based 

optimization has been well enriched. Among the most widely debated are First Come First 

Served (FCFS), Shortest-Job-First (SJF), Priority Scheduling, Round Robin (RR), Multilevel 

Queue Scheduling and Multilevel Input Queue Scheduling. Computer based scheduling 

solutions can be long term, short term or either medium term. 

Scheduling solutions can be separated into two major groups as Static and Dynamic Scheduling 

[5],[6]. Decisions are made at compile time in Static Scheduling, while in Dynamic Scheduling 

(or adaptive job sharing), computational state data is used during execution to make decisions 

[5]. Static scheduling involves full advanced knowledge of task-set features that are difficult 
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to achieve in an unpredictable setting. Dynamic scheduling is more appealing than static 

scheduling since, at compile time, it can manage situations where dependencies are uncertain. 

It is more computationally challenging and facilitates multiple methods of parallelization, and 

requires dynamic load balancing [5]. Dynamic schedulers are also versatile and respond to a 

changing uncertain scenarios [6], which is suitable for implementation in an unpredictable 

environment settings. In this research, the researcher focuses on dynamic scheduling. 

Enormous efforts have been made to resolve the question of complex scheduling of tasks. 

Among them, intelligent strategies such as machine learning, logic and resource planning from 

expertise, making rational decisions to continuously maximize resource planning in various 

process contexts are important [7]. At present, many Artificial Intelligence techniques have 

been used for dynamic task scheduling. The most popular techniques are Genetic algorithms, 

Artificial neural networks, Fuzzy logic are the most prominent [2],[8]. Reinforcement Learning 

is a new technology and a persuasive paradigm that has been tested to address the challenge of 

optimal complex activity preparation. It can be researched that the reasons behind 

reinforcement Learning to become a promising dynamic scheduling technology are its ability 

to deal with environmental instability/uncertainty in a dynamic environment, its ability to self-

learn the environment, its computationally effective and highly adaptive. Reinforcement 

Learning with well-trained networks has been used in real-time scheduling [9]. By learning 

scheduling law, it can perform entirely different tasks. The ability to model multiple priority 

tasks at once is one of the major benefits of experience replay[10]. Reinforcement Learning 

encourages the feasibility of addressing the dilemma of complex task scheduling 

1.2 Background and Motivation 

Presently, as a result of falling computational resource prices, the availability of data and 

improved algorithms, Artificial Intelligence has reached the latest AI 2.0 growth period. In the 

AI 2.0 family, Deep Learning (DL), reinforcement learning (RL) and their combination-deep 

reinforcement learning (DRL) are representative strategies and comparatively advanced 

techniques [1]. DL is a subset of machine learning that initially resulted from a multi-layer 

Artificial Neural Network (ANN). The different structures of DL are Boltzmann Machine (BM), 

Deep Belief Networks(DBN), Feedforward Deep Networks(FDN), Convolutional Neural 

Networks(CNN), Recurrent Neural Networks(RNN), Long-Short Term Memory(LSTM) 

Networks and Generative Adversarial Networks(GAN) [1]. Among them are the most popular 

constructs of machine learning, CNN and RNN. CNN is widely used for dealing with spatial 

distribution data, whereas RNN is suited for managing time-series data [1]. A special variant of 

RNN that can study long-term dependencies is LSTM. GAN is a neural network branch that is 

used for generative modeling [11]. 

The field of machine learning that takes effective steps to optimize incentives/rewards in real 

situations is well known as Reinforcement Learning. Reinforcement Learning's aim is to 

optimize an agent's reward by considering operations in a complex environment. Under 

uncertainty, reinforcement learning can help sequential decision making [1],[7]. With only 

limited knowledge of the scenario and limited input on the accuracy of choices, the Simple 
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Reinforcement Learning algorithm works. Like the human brain, it is praised with good 

decisions and penalized for poor choices. Actor/Agent, environment, reward/incentive and 

actions are the four fundamental components of Reinforcement Learning. A player going 

through roles is an agent. An environment is a location the agent exists in. A reward is what the 

agent acquires after acting. The agent maintains a state in which the agent currently be. The 

ultimate goal of the agent is gaining as many rewards as possible. Popular RL algorithms are Q-

learning, SARSA(State–Action–Reward–State–Action), DQN(Deep Q- Network), DDPG 

(Deep Deterministic Policy Gradients), NAF(Normalized Advantage Functions), A3C 

(Asynchronous Advantage Actor-Critic)[1],[11],[12]. In several real-world implementations, 

RL is implemented, including in robotics, UAV, multi-agent and smart traffic [12]. Best RL 

algorithms have gained high proficiency in domains, including board games (Go, Chess) and 

Atari games, with established and simple rules [11]. Using deep network architecture to forecast 

over 100 phases of potential frames effectively in the sense of Atari games [11]. It is 

acknowledged that reinforcement learning in robot handling has a bright future ahead of it. [11]. 

In Reinforcement Learning, study hotspots found include partial vision, Hierarchical RL, 

conjunction with other AI technologies and game theory. [12]. The integration of RL and other 

techniques such as genetic algorithms and neural networks is also a subject of this analysis. 

The perception of Deep Learning and the decision making of Reinforcement Learning is been 

combined to a single segment through DRL [1]. DRL will also execute a number of tasks that 

include both precious interpretations of high-dimensional raw inputs and policy control. 

[1],[13]. AlphaGO, which beat Sedol Lee, the world Go champion, is a software developed by 

Google DeepMind following the DRL strategy. In research on DRL, there are several recent 

trends. Google Brain is one application that teaches robotic arms to unlock doors and pick things 

up on their own. Uber is now attempting to train Grand Theft Auto to manage real vehicles on 

real roads using DRL. A community of researchers has developed a Multi-Task Deep 

Reinforcement Learning Method for Scalable Parallel Task Scheduling (MDTS) in one of recent 

research [13]. But, when dealing with dynamic parallel computing environments and 

employment with various properties, DRL faces the curse of dimensionality dilemma for 

decision-making [13]. 

1.3 Problem in Brief 

Optimized scheduling of tasks and resources has been a difficult and a challenging problem in 

uncertain and unforeseen settings. It has deficiencies in modeling the dynamics and uncertainty 

in the environments. Dynamic scheduling has been a crucial problem in industrial workforce 

management where the environment is uncertain. Ineffective scheduling leads to 

system/organization inefficiency, inaccurate decision making and analysis, resource wastage 

and high cost, thus degrade the overall organizational productivity. Therefore, there is a need 

of a precise solution which can handle above mentioned problematic situations. 
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1.4 Aim 

Design and implement Dynamic Task Scheduling application for an unforeseen environment 

using Multi Agent Reinforcement Learning and Enhanced Q-Learning. 

1.5 Objectives 

In order to reach the aim, following objectives are identified. 

i. Comprehensively review the literature review on Dynamic Task Scheduling, Multi 

Agent Reinforcement Learning, Deep Q-Learning and Dyna Q+-Learning. 

ii. Design and develop hybrid approach by integrating Multi Agent Reinforcement 

Learning, Dyna Q+ Learning and Deep Dyna Q+-Learning for dynamic task 

scheduling. 

iii. Implement the dynamic task scheduling using the proposed approach. 

iv. Evaluation of the developed system. 

1.6 Hypothesis  

The hypothesis of the research is Multi agent reinforcement learning and Enhanced Q-Learning 

can be adopted to address the dynamic task scheduling problem in an unforeseen environment. 

Inspiration behind this hypothesis is coming from how the tasks are been allocated in a 

honeybee or an ant colony and how they maintain continuous workflow and balance in day to 

day schedules. 

1.7 Solution 

This research project aims to develop an optimized algorithm for dynamic task scheduling in 

an unforeseen environment. Multi agent reinforcement learning and Enhanced Q-Learning is 

used in order to achieve the outcome. The inputs for this process are environmental conditions 

and backlog of tasks. The outputs would be set of scheduled tasks and it results the optimal 

scheduled state of the environment. 

1.8 Structure of Thesis 

The research dissertation has been structured as follows. 

An overall introduction to the research project has been given in Chapter 1. The prolegomena, 

context and motivation, research issues, purpose, aim, objectives, solution proposed are briefly 

explained here. 

Chapter 2 aims to report the literature survey done on dynamic task scheduling with a 

comparative review of the current built algorithms and their merits and demerits. 
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Chapter 3 describes in depth the technologies which were implemented to establish the 

solution. 

In Chapter 4 the approach taken to solve the identified problems is presented through 

expounding the hypothesis, inputs, outputs, process followed, users, system requirements and 

the features of system. 

With the system design, system architecture, modular architecture and simulation design 

premeditated, Chapter 5 deals with the design of the proposed algorithm. 

Chapter 6 is about how the established application was implemented by the researcher. 

The evaluation performed on the established system is referred to in Chapter 7. 

Chapter 8 will be continued with the future opportunities and enhancements identified and the 

thesis ends by presenting the conclusion and further work. 

1.9 Summary 

This chapter describes the complete picture of the whole project, showing the issue of research, 

aim, objectives, hypothesis and the novel solution. The next chapter will be on the literature 

review of the dynamic scheduling of tasks using Reinforcement learning and complications to 

describe the problem of study. 
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          Chapter 02 

Evolution and State-of-the-art of Reinforcement Learning 

in Dynamic Task Scheduling  

2.1 Introduction 

In chapter 01, we introduced the overall project. This chapter provides our critical analysis of 

studies using reinforcement learning methods on advances in dynamic task scheduling. We 

have structured this chapter under several headings, namely, Breakthroughs in Reinforcement 

scheduling, Research Findings, Challenges in Reinforcement scheduling and Problem 

definition. 

2.2 Breakthroughs in Reinforcement scheduling 

This section includes the previous research on dynamic task scheduling using reinforcement 

learning strategies. Firstly, for dynamic task scheduling, it discusses the most used 

reinforcement learning methods and then explains the standard reinforcement learning systems 

and frameworks developed so far. 

Reinforcement Learning methods used for dynamic task scheduling are usually either one of 

the two primary categories; Model-Free or Model-Based. Model-Free Methods are two types 

of Value-Iteration Methods and Policy-Iteration Methods. As Value-Iteration Approaches, 

earlier researchers used Q-Learning, Deep Q-Network (DQN), Greedy Distributed Allocation 

Protocol (GDAP) and Monte Carlo Algorithm (MCA). As Policy-Iteration Techniques, Policy 

Gradient (DPG) Algorithms and Actor-Critic Methods have been commonly used. Another big 

group, Model-Based Approaches, can be split into two groups, Learn Model and Model Given. 

There is also the latest major category emerging today, the convergence between Model-Free 

and Model-Based Approaches. The Dyna-Q algorithm has its position in this group. The 

strategies described can be classified into the traditional grouping of improving learning as 

seen in Fig 1. These strategies have been defined as detailed below.  

In the related literature, the dynamic task scheduling problem has been modeled as the Markov 

decision process (MDP). Markov decision-making is a mathematical model that explains the 

decision dilemma for an agent in the Markov property environment. Markov's property clearly 

says that, provided the present, potential acts are irrespective of the past [3],[10],[11],[14]. In 

the form of reinforcement, dynamic task/resource utilization decisions and maximizing long-

term behavior based on delayed environmental incentives have been modeled as Markov 

decision processes. 
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Figure 2.1 : Classification of Reinforcement Learning Techniques used in Dynamic Task 

Scheduling. 

Source: Author 

2.3   Model-Free RL 

A Model-Free algorithm is an algorithm that calculates the optimal strategy without using or 

evaluating the dynamics (transition and reward functions) of the environment [11]. Model-Free 

algorithms function in the actual world in learning. In Model-free learning, the agent depends 

on trial-and-error practice to establish an optimal strategy. Value-iteration methods and policy-

iteration methods are two primary techniques for representing agents with model-free 

reinforcement learning [11],[15]. 

2.3.1  Value-Iteration Methods.   

Value-iteration methods upgrade the value function of the optimal policy on the basis of an 

formula (particularly Bellman equation) [11],[14]. These algorithms try to estimate the action-

value function Q (s, a|θ) for the optimal Q∗ (s, a). The optimum policy is retrieved by   

a = arg maxa Q(s, a) [11]  

where ‘a’ represent the actions and s represent the states and ‘Q(s,a)’ is the  Q value function 

of the  state-action pair (s, a) 

Value-iteration approaches are also carried out off-policy, meaning that the approach used to 

produce training data actions might be unrelated to the policy that is tested and enhanced, called 

the estimation policy [11],[12]. Popular value-iteration methods used in dynamic task 

scheduling are Q-Learning [7],[9],[10],[15],[16],[17] and Deep Q-Network (DQN) 

[3],[8],[18],[19],[20]. Apart from these two, Greedy methods [19], Monte Carlo Methods[21] 
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and Temporal Difference (TD) Learning [22],[23]  also have been used. These methods have 

been listed in detail below. 

2.3.1.1 Q-Learning  

A Reinforcement Learning Based Dynamic Resource Allocation System (RLRAM) for 

Business Process Management(BPM) was proposed by Huang et al.[7] in their research. In this 

sense, Markov Decision Processes have been modelled on making decisions on the optimum 

distribution of resources and choosing which tasks need to be done depending on the incentive 

mechanism, Markov Decision Processes (MDPs). The proposed algorithm uses Q-learning to 

make allocation decisions in real time. In this article, the complex resource distribution 

optimization topic in BPM has been presented. Based on experiences with the environment, 

RLRAM can perform dynamic resource allocation. The optimum resource distribution problem 

in the implementation of a business process has been viewed as a sequential decision-making 

problem in this analysis. The proposed algorithm integrates with the context of the agent and 

discovers the best business process execution policies that will maximize the allocation of 

resources. The findings of the assessment show that the suggested solution responds well to 

established heuristics and techniques and can strengthen the existing state of business process 

management [7]. 

Xiao et al. [9] have proposed a distributed and self-adaptable scheduling algorithm focused on 

Q-learning for multiple work flows in real-time dynamic task allocation. This algorithm is not 

limited to adapting itself to the work arrival process (single task flow), but also takes full account 

of the influence of other agents on task flows (multiple task flows) [9]. To accomplish adaptive 

task allocation and node distribution, reinforcement learning is used here. This algorithm can 

increase the efficiency of the task and reduce the total per-task execution time. Arel et al. [16] 

used a Q-Learning algorithm using a feedforward neural network for value function 

approximation in their multi-agent and RL-based system for scheduling and achieving effective 

traffic signal management policy/traffic signals [16]. 

The research group Tian et el, in order to solve the hierarchical distributed task allocation 

problem of multi-robot systems in a complex dynamic environment, proposed a reinforcement 

learning approach based on the Q learning and Roulette process [15]. Multi-Robot Systems 

(MRS) have been used in their development to perform tasks that are difficult for an individual 

robot to perform, especially in the face of environmental and work-based uncertainties, remote 

control, missing knowledge and asynchronous computation. Two architecture aspects were 

taken up by the researchers; non-cooperation and cooperation, when designing the learning 

algorithm. In complex task allocation for self-adaptive fire disaster response, this suggested 

algorithm has functioned well. In a disaster response, the reward mechanism was initiated by 

considering the features of a Multi robot. In this way, three variables are correlated with the 

incentive function: the distance between the robot and the fire catastrophe, the intensity of the 

fire and the overall time. The simulation experiments were carried out on MulBotSim, which is 

a simulation framework for swarm robots built by Jilin University Control Theory and 

Intelligent Systems Laboratory [15]. In a fire emergency response, the suggested solution has 

accomplished successful multi-robot hierarchical mission allocation, because the fires have 

been eliminated in a timely manner.  
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A Fast Task Allocation (FTA) algorithm developed using Q-learning has been proposed by 

Zhao et al. [10]. Approximation of neural networks and prioritization of knowledge replay is 

used in the task allocation scheme. The mission allocation dilemma was modeled as an MDP 

by unpredictable transfer probabilities in order to provide a solution to the environmental 

ambiguity. In a study conducted by Wang and Usher [17]  on manufacturing systems where 

reinforcement learning has been conducted on the topic of single machine dispatching rule 

collection, one more use of Q-learning is evident. 

2.3.1.2 Deep Q-Network (DQN) / Deep Q-Learning (DQL) 

To approximate the Q-value function, the Deep Q-Network (DQN) or Deep Q-Learning (DQL) 

leverages a Neural Network. In order to fix the curse of dimensionality in the regular Q-learning 

algorithm [3],[19], the Deep Q-Network idea was first introduced by Mnih et al. (2013). By 

explicitly taking the raw data (state features) as input and the Q function value of each state-

action pair as output, DQN can handle complex decision making with broad and continuous 

state space [3]. 

Kumar et al. [8] implemented SchedQRM, which predicts a signature-based burst time of jobs 

and uses the Deep Q-Network algorithm to find an optimum solution for any arbitrary set of 

jobs. With custom states, behavior and incentives, the researchers created a full and complex 

work scheduling environment. With the help of two neural networks and a replay memory using 

the DQN algorithm, the machine agent investigates the context and learns an optimal strategy. 

Researchers use C++ object files for four programs to produce job signatures, namely: Matrix 

multiplication, Quicksort, Fibonacci sequence generator, and a random number generator, to 

create the data set for burst time estimation [8]. Finally, for all cluster load values, the group 

tested the proposed work against state-of-the-art Packer, Tetris, DeepRM and SJF (Shortest Job 

First), and concluded that SchedQRM performs superior or equal to the current heuristics. 

The research done by Sun and Tan [18] focuses on the mobile crowdsourcing systems' trust-

aware task allocation (TTA) optimization problem. This paper explores realistic and critical 

problems, including complex distribution of confidence-conscious assignments, which helps to 

increase the confidence score and minimize the cost of travel distance in uncertain and 

unpredictable crowdsourcing environments. Here, the topic of TTA optimization, which aims 

at optimizing the confidence score and reducing the expense of travel time, is formulated as 

Markov Decision Process Mobile Crowdsourcing (MCMDP). As an improvement over faith 

coordination optimization modeling in unpredictable crowdsourcing schemes, an enhanced 

Deep Q-Learning-based Trust Aware Task Allocation (Improved DQL-TTA) algorithm is 

proposed. The suggested DQL-TTA algorithm incorporates both optimization of confidence-

aware task allocation and deep Q-Learning techniques. A theoretical analysis was done by the 

researchers to prove the applicability of the Improved DQL-TTA. The Deep Q-Network-based 

task allocation mechanism developed by the researchers is seen below. 
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Figure 2.2 : Deep Q-Learning Driven Framework for Task Allocation. [18] 

 

A dynamic task allocation mechanism for a dynamic context using cooperative Deep Q-

Learning (TAP CDQL) has been suggested by Ben Noureddine et al. [19] to boost system 

efficiency using previous task allocation experiences. The new approach incorporates the 

strengths of unified/centralized and distributed approaches to learning. They have identified 

learning agents in their research that can teach each other how to assign tasks, making the 

allocation of tasks more relaxed and less difficult. In particular, if agents share their previous 

task allocation (exploitation) experiences to become a valuable understanding that can be used 

for future task allocation (exploration) processes, the overall system performance can be 

increased [19]. Agent contact or communication has been used intensively in their research. 

When an agent perceives a task, it follows a message protocol with its neighbors to perform the 

job it can probably perform. Deep Q-Networks (DQN) was used to allow agents to jointly 

coordinate their actions and automatically discover this protocol. Employing that, it was 

investigated by Ben Noureddine and others to enhance the efficiency and consistency of the 

decentralized allocation using insights from centralized approaches. As TAP CDQL, TAP and 

GDAP in JAVA have experimentally shown that the mechanism can handle the problem of task 

allocation in a dynamic real-time environment, the new method was implemented. The ability 

to handle heterogeneous agent types has not been completely exploited by researchers. In 

addition, their methodology also had some shortcomings due to the features of decentralization 

and reallocation, which were listed as future work in the study. 

In Task Offloading for Mobile Edge Computing (MEC) applications, Deep Q-Networks also 

studied along with reinforcement learning. The role of unloading in a heterogeneous vehicle 

network consisting of several MEC servers, base stations, mobile vehicles and roadside units is 

investigated in [20]. In order to increase offloading reliability, the authors used Deep Q-learning 

technique for MEC server collection and transmission mode determination [20]. In a related 

study, DQN is suggested to resolve the issue of complex, flexible workshop scheduling 

primarily referred to as dynamic flexible job shop scheduling problem (DFJSP) [3]. Here, DQN 

advises the collection of suitable dispatching rules to reduce the overall wait in a complex, 

customizable workshop with new job inserts. The DQN is trained with two strategies reinforced 

by Deep Reinforcement Learning (DRL); double DQN and soft target weight upgrade [3]. 

2.3.1.3 Greedy Methods 

Greedy approaches operate under the basic principle of preserving averages of action values, so 

that at every moment there is at least one action with the highest calculated value. In one of the 

study studies [19], Ben Noureddine et al suggested the Greedy Distributed Allocation Protocol 

(GDAP) which was used to resolve the complex issue of assigning of tasks in social networks 
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agents [19]. The key downside of the GDAP they found is that it depends exclusively on 

neighbor agents, which can trigger several unallocated tasks due to insufficient resources. The 

solution suggested in the same research [19] was: Task Allocation Method using Cooperative 

Deep Q-learning (TAP CDQL) [19], a new approach that seeks to solve this problem. 

2.3.1.4 Monte Carlo Algorithm (MCA) 

This approach involves a class of value-added learning methods that measure the value of a state 

by running a series of tests starting at that state and then combine the cumulative incentives 

obtained from the tests. Chantaravarapan et al. [21] have provided a complex scheduling method 

based on the Monte Carlo simulation. This approach confronts environmental uncertainties and 

is a cost-effective and easily scalable platform that can be used in the standard Excel spreadsheet 

environment [21]. 

2.3.1.5 Temporal Difference (TD) Learning 

Temporal Difference (TD) learning is a reinforcement learning technique focused on a sequence 

of state transformations. In TD, this sequence is typically arranged in a set of trials, and each 

trial begins at some point and generally finishes in an absorbing state [23]. Temporal-Difference 

(TD) is a combination of the Monte Carlo (MC) method and the Dynamic Programming (DP) 

method. In a dissertation, Wei Zhang [23] explains how to implement reinforcement learning 

algorithms to discover strong domain-specific heuristics automatically for job-shop scheduling. 

Their research focuses on the topic of NASA space shuttle payload processing. The dilemma 

entails arranging a collection of tasks to fulfill a set of time and resource constraints, while at 

the same time minimizing the cumulative period of the schedule [22]. The TD (Temporal 

Difference) learning algorithm is used to train a neural network to learn a heuristic assessment 

function to select repair behavior over timeframes [22],[23]. This studied assessment function 

is used by a one-step search process to identify solutions to new scheduling problems. 

2.3.2  Policy Optimization or Policy-Iteration Methods.  

Policy-Iteration Methods or Policy-Based Methods estimate the utility function of a greedy 

policy arising from the most recent policy improvement. Policy-based approaches are also 

policy-based, which means that they estimate the importance of the regulation when using it for 

control [11],[14]. Policy-based methods parameterize the policy as; 

π (s, a|θ),  

where ‘a’ represent the actions and ‘s’ represent the states and ‘π (s,a)’ is the policy function 

of the  state-action pair ‘(s, a)’, and their target is to optimize θ either through gradient descent 

on an objective function J(π) or by maximizing local approximations of J [11] . The common 

policy-iteration methods used for dynamic task scheduling are Policy Gradient (DPG) 

Algorithms [24] and Actor-Critic Methods [24],[25]. These methods have been listed in detail 

below. 
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2.3.2.1 Policy Gradient (DPG) Algorithms 

Policy gradient methods are another common choice for a variety of RL tasks. Policy gradient 

algorithms are classified into two groups of algorithms. There are Deterministic and Non-

Deterministic Policy Gradient (DPG) algorithms. Lowe et al. [24] Deep deterministic policy 

gradients have been used in their studies on the application of a communication scheme of 

agents in Mixed Cooperative-Competitive Settings (DDPG). The analysis was generalized from 

a single agent to a Multi-Agent Deep Deterministic Policy Gradient Algorithm. Wei et al. [25] 

have developed a policy-based actor-critical algorithm approach to solve the problem of 

continuous-valued state and action variables in Consumer Scheduling and Resource Distribution 

in HetNets of Hybrid Energy Supply. 

2.3.2.2 Actor-Critic Methods 

In Actor-critical approaches, the actor is used to modify the parameters 𝜽, where 𝜽 indicates the 

model parameters for the policy function are used to determine the best response for a given 

state. A critic is used to test the actor's approximate policy function based on a temporal 

difference (TD) error. Lowe et al. [24] have suggested a multi-agent strategy gradient algorithm 

in which agents learn a centralized critic based on the findings and behavior of all agents. In one 

of the research studies, Wei et al. [25] used an actor-critical reinforcement approach to complex 

consumer planning and resource utilization in heterogeneous networks (HetNets). The solution 

was powered by hybrid technology and was planned to optimize the energy efficiency of the 

cellular networks. Liu et al. [26] is another research group that has been active in applying the 

Actor-Critic Deep Reinforcement Learning Application for the Solving Work Shop Scheduling 

Problem (JSSP). Their proposed model consists of an actor network and a vital network. Actor 

Network knows how to behave in diverse settings and work-based situations, while a vital 

network lets agents determine the meaning of the claims and then return the output to the actor 

network [26]. 

2.4   Model-Based RL 

A Model-Based Algorithm is an algorithm that uses the transition / transformation function (and 

reward function) to approximate the optimum strategy. Model-based algorithms use a reduced 

number of real-world experiences during the learning process. The goal is to create a model 

based on the initial encounters, and then use this model to replicate more episodes, not in the 

actual world, but by adding them to a built model and returning the effects to that model. There 

are two types of Model-based RL in the literature; Learn Model and Model Given [11].  

Marco Wiering [27] mentioned in his research multi-agent training algorithms to teach traffic 

light controllers to reduce the average waiting time of vehicles (cars) in urban cities. They also 

planned activities for each agent (vehicle) by treating the whole complex ecosystem as a multi-

agent-based framework. The group has developed a series of multi-agent model RL traffic light 

control systems that can be used to refine driving policies for cars [27]. Compared to researchers 

working on complex task scheduling using Model-Free RL, fewer analysis attempts have been 

made using Model-Based RL. 
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2.5   Integration of Model-Free and Model-Based RL 

Model-based reinforcement learning uses a reduced number of real-world experiences to learn. 

The issue with these methods, though, is that the model should be sharp and reliable to reflect 

the complex existence of the environment, which is difficult to do due to environmental 

variability. The convergence of Model-free and Model-based approaches is a recent research 

direction in Improving Learning that can solve complexity concerns. These strategies have the 

bonus of speeding up learning. Dyna-Q Learning algorithm is the most used integration 

technique in literature. 

2.5.1  Dyna-Q Algorithm 

Dyna Q Algorithm is an extension of the Q learning algorithm. Dyna –Q algorithm can 

integrate model-free learning and model-based planning capabilities. This algorithm was 

introduced by Richard S. Sutton in 1990 [14],[28]. Dyna architectures combine trial-and-error 

(reinforcement) learning and execution-time planning into a single mechanism that works 

alternately in the environment and on a learned model of the world [28]. Dyna-Q has been less 

studied earlier on complex job scheduling. Peng et al. [29]] have established Deep Dyna-Q as 

a research basis for Incorporating Mission Planning-Completion Dialog Policy Learning. In 

their design, an environment model, referred to as the world model, has been integrated into 

the dialog agent for the purpose of mimicking real user response and creating simulated 

experience. During the policy learning dialog process, the built world model is continually 

updated with actual user experience to approach real user behavior and, in turn, the dialog agent 

is configured using both real experience and virtual experience [29]. Su et al. [30]  is another 

organization that has published studies focused on policy learning dialogues. They proposed a 

Discriminative Deep Dyna-Q (D3Q) approach to enhancing the reliability and robustness of 

Deep Dyna-Q (DDQ), a new paradigm inspired by the Generative Adversarial Network (GAN) 

that integrates a discriminator in the planning process [30]. 

2.6   Standard Dynamic Task/Resource Allocation Frameworks 

Major literature on dynamic task scheduling has provided mechanisms for the distribution of 

services, which are specifically concerned with the control of the total dispersed tasks in the 

system scenario. The structures that have been built below. 

2.6.1 MARL (Multi-Agent Reinforcement Learning) 

Generally, task or resource distribution is done in a distributed environment where 

tasks/resources must be assigned to various machines/systems accordingly. Multi-Agent 

Reinforcement Learning (MARL) is the deep reinforcement learning discipline that focuses on 

the above-mentioned criterion. It involves models designed for multiple agents that learn by 

communicating dynamically with their surroundings. Whereas in single-agent reinforcement 

learning simulations the status of the environment varies exclusively as a function of the 
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behavior of the agent, in MARL, environmental issues are subject to the behaviors of all agents 

[16],[27],[31],[32],[33],[34]. 

Cui et al. [31] is a group of researchers who have developed a complex dynamic resource 

distribution system for a multi-UAV network through collaborative multi-agent and enhanced 

learning. The Multi-Agent Reinforcement Learning (MARL) based Autonomous Learner 

known as Independent Learner (ILs) algorithm was developed to address the overhead of 

knowledge sharing in multi-UAV networks. The goal of the Markov Decision Process (MDP) 

is to find an optimal maximum reward strategy. In order to understand the distribution of 

resources between UAVs, an agent-independent approach is proposed, for which all UAV 

agents independently perform decision algorithms but share a standard Q-Learning-based 

framework. Each UAV uses a typical Q-learning algorithm, which learns the optimum Q-value 

and agrees on an optimal MDP strategy at the same time. 

 

Figure 2.3 : Illustration of multi-UAV communication networks [31]. 

The simulation results have shown that the proposed MARL resource allocation algorithm for 

multi-UAV networks can achieve a trade-off between overhead information sharing and system 

efficiency. Another promising future path for study is mentioned by the researchers. This would 

include refining the operation and trajectory of UAVs in multi-UAV networks and would be 

able to further increase the energy efficiency of multi-UAV systems. 

Arel et al. also implemented a multi-agent scheme and an RL-based mechanism for scheduling 

and obtaining an efficient traffic signal management strategy for intersection networks [16]. It 

also helps to minimize congestion and the possibility of cross-blocking intersections. SCOOT, 

SCATS, OPAC and RHODES are some of the available adaptive signal control systems [16]. 

This traditional deterministic traffic control schemes do not hold up to the scheduling of large 

signal networks in metropolitan environments, primarily due to the lack of a long-term incentive 

strategy. Five-intersection traffic network has been studied in this study, in which each 

intersection is controlled by an autonomous intelligent agent. Here, two types of agents have 

been hired, the central agent and the outbound agent. Outbound agents schedule traffic signals 

by following the Longest-Queue-First (LQF) formula, which has been shown to ensure 

reliability and fairness, as well as to work with the central agent by supplying local traffic 
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statistics. Researchers conducted simulations in the Matlab environment using a discreet case 

environment. Experimental results demonstrate the advantages of multi-agent RL-based control 

over remote LQF-controlled single-intersection control, thereby showing the way for effective 

distributed traffic signal control in complex settings. 

Marco Wiering [27]  also mentioned, in his study, multi-agent Reinforcement Learning (RL) 

algorithms in their traffic light control method where task scheduling has been done in the agent 

environment. Gabel and Reidmiller [34]  have developed Adaptive Reactive Workshop 

Scheduling Approach with Enhancing Learning Agents for Output Scheduling Problems by 

modeling them as multi-agent Enhancing Learning Problems. By combining data-efficient 

batch-mode enhancement learning, neural network-based value function approximation, and 

using an optimistic inter-agent coordination approach, a multi-agent learning algorithm was 

developed in their research [34]. 

MAgent, a forum to promote research and the advancement of multi-agent preparation, has been 

launched by Zheng et al. [32]. MAgent focuses on supporting activities and systems involving, 

ideally, multi-agents, hundreds to millions of agents where previous testing platforms centered 

on single-agent reinforcement learning. It enables the study of learning algorithms for the 

optimal policies of agents in their development, in the interactions between the population of 

agents and, more significantly, in the observation and comprehension of the activities and social 

phenomena of individual agents emerging from AI society, including communication 

languages, leadership, altruism. MAgent is a highly scalable solution that can house up to one 

million agents on a single GPU server. The researchers developed three environments for live 

and immersive simulation, such as Chase, Gathering and Battle [32], which are versatile and 

can be personalized and used by AI researchers. Pursuit, Gathering, Battle shows the rise of 

local cooperation, collaboration in a scarce capital world and a hybrid of cooperation and 

competition. This study talks about Artificial Collective Intelligence (ACI) [32], where multiple 

AI agents work together, artificially generating their own collective intelligence. The goal of 

the proposed MAgent project is to develop a multi-agent reinforcement learning network for 

ACI science. 

SchedNet is another multi-agent in-depth reinforcement learning system developed by Kim et 

al. [33]. There, agents learn how to plan assignments themselves, how to encrypt messages, and 

how to choose acts based on messages received. SchedNet can determine which agents may 

have the right to send encoded messages by knowing the value of the partly observed knowledge 

of each agent. SchedNet consists of three major sections; Actor, Scheduler and Critic. 
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Figure 2.4 : The Architecture of SchedNet [33] 
 

The SchedNet assessment based on several baselines for two separate programs, namely mutual 

contact and navigation and predator-prey [33]. Researchers also implemented three key 

components as scheduling, encoding and intervention where each block is a completely 

interconnected neural network. The distributed execution of SchedNet requires a WSA (Weight-

Based Scheduler) where k agents are scheduled. These scheduled agents broadcast messages to 

all agents, and then behavior based on observation and received messages is chosen. The 

findings reveal a non-negligible efficiency difference between SchedNet and other processes 

such as vanilla scheduling approaches, such as round-robin, varying from 32% to 43% [33]. The 

solution is also capable of sophisticated scheduling, including smart scheduling and import-

based scheduling. 

2.6.2 OSL (Ordinal Sharing Learning) 

Wu et al. [35] have suggested a novel multi-agent reinforcement learning system, the Ordinal 

Sharing Learning (OSL) method for work scheduling problems, specifically for the application 

of load balancing in grids. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 : The Schematic Diagram of the OSL Method for Job Scheduling [35] 
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The efficiency of the OSL algorithm applied is evaluated and compared to other algorithms, 

such as MARL. In order to solve the 'curse of dimensionality' problem in MARL, the researchers 

suggested this OSL algorithm, along with reduced computational complexity and improved 

coordination mechanism [35]. The researchers identified two facets of creativity as a 

simplification of decision-making in the scheduling of jobs and avoiding the issue of scalability 

and teamwork. By using a widely distributed learning technique, the approach eliminates the 

dilemma of scalability and requires multi-agent cooperation based on the information-sharing 

mechanism by limited communication [35]. The findings of the simulation show that the OSL 

solution can successfully achieve the load balancing goal and that its performance is also equal 

to other clustered scheduling algorithms [35]. The convergence property and the versatility of 

the proposed model are also illustrated. The future work of this analysis could include refining 

and using the suggested solution in real grid environments. 

2.6.3 Gossip-Based Reinforcement Learning (GRL) 

Gossip-based Reinforcement Learning (GRL) is another MARL-based scheduling system 

suggested by Wu and Xu [36] for clustered grid scheduling. A distributed scheduling framework 

based on multi-agent reinforcement learning is presented in the GRL method to enhance work 

scheduling and flexibility. The gossip system is designed to consider the autonomous 

organization of decentralized schedulers. The simulation results demonstrate that the proposed 

GRL-based schedulers can effectively complete the grid job scheduling mission and effectively 

accomplish load balancing with average contact costs.  

GRL has two developments relative to other MARL-based scheduling schemes. First, each 

scheduler adopts a clustered, bandit-like GRL reinforcement learning algorithm. [35],[36]. In 

order to determine the current performance and load of services, a utility table is learned only 

on a scale with a resource number and a decentralized scheduling strategy can be derived 

directly from the utility table. So, the GRL is effective in computing. Second, through a gossip 

mechanism, proper coordination is accomplished [35],[36]. The gossip function helps each 

scheduler to communicate randomly with its neighbors. As compared to Ordinal Sharing 

Learning (OSL) [35] and Condor Flock P2P [36] Schedulers, GRL-based Schedulers can then 

operate without relying on special Schedulers. Likewise, the GRL is relaxed and robust in 

unison. 

2.6.4 Centralized Learning Distributed Scheduling (CLDS) 

Moradi [37] has introduced a multi-agent system for job scheduling in Grids, called Centralized 

Learning Distributed Scheduling (CLDS), with the use of reinforcement learning systems. This 

is a model-free approach that uses work information and completion time to approximate 

resource efficiency. There is a learner agent and several scheduler agents in this method that 

perform the task of learning and scheduling work using a coordination strategy that keeps the 

cost of communication at a low level. The researchers measured the reliability of the CLDS 

method by modeling and performing a series of tests on a virtual grid structure under various 

system sizes and loads. The findings demonstrate that even in large and massive loaded grids, 
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CLDS can efficiently balance the load of the system while preserving its adaptive performance 

and scalability.  

2.7 Research Findings 

This section provides a comparative study of the Reinforcement Learning approaches used for 

complex dynamic task scheduling in early studies. In the following table, the advantages and 

demerits of the methods mentioned have been discussed in terms of the complex task plan. 

Table 2.1 :  Comparison of Reinforcement Learning Techniques used for Dynamic Task 

Scheduling. 

Technique Merits Demerits 

Q-learning[7],[9], 

[10],[15],[16],[17] 

-A powerful algorithm. 

-Have attained significant positive results. 

- Simple to configure & fine-tune the 

parameters. 

 

- Q-learning is confronted by the intrinsic 

non-stationary nature of the environment. 

[24]. 

-Lack of generalizability. 

-Q-learning agents solely does not have the 

ability to approximate values and decision 

making for unseen states. 

- Defining a Q-table will be a very 

complicated, time-consuming and 

demanding process, particularly when state 

space is very large. 

Deep Q-Learning 

[3],[8],[18]–[20] 

- A great success has been achieved in the 

high dimensional problem. 

-Discrete action space. 

Greedy Methods 

[19] 

-Adaptive in many situations. -Especially in reference on neighbor agents, 

which can create several tasks unallocated 

due to insufficient resources. 

Monte Carlo 

Method [21] 

 

-Have the ability of reducing the 

makespan of jobs by applying probability-

based distribution approach [21]. 

-Possible limits in Dynamic scheduling. 

- Generally, may leads to noisy gradients 

and high variance [21]. 

Temporal 

Difference (TD 

Learning)[22],[23]  

- Faster learning [22] - TD learning is usually less stable and can 

lead to inaccurate solutions. 

Policy Gradient 

Algorithms [24] 

- Have stronger properties for 

convergence. 

- Particularly efficient in high-

dimensional space. 

- A stochastic strategy can be learned, 

while value functions (Q learning) cannot. 

-Policy gradient struggles from a variance 

that rises as the number of agents increases  

[24]. 

-Slow convergence, since this takes a lot of 

time to train. 

Actor-critic [24], 

[25] 

  

 

 

-Consider the intervention/action policies 

of other agents so that they can effectively 

learn policies that involve complex multi-

agent teamwork.  
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Model-based RL 

Algorithms [11], 

[27] 

-Reusability of the models. 

-Speed up the agent learning process. 

- Have more hypotheses and approximations 

regarding a task but could be confined only 

to certain unique types of tasks. 

-The model must be realistic enough to pose 

a challenge in the real world. If the model is 

wrong, there is a high chance of discovering 

something different from reality. 

Dyna-Q 

Algorithm 

[14],[28],[29], 

[30] 

 

-Speeding up the learning 

-Can showcase positive remarks to solve 

environment uncertainty. 

-Limitations in solving environment 

uncertainty when action-space and 

observation space becomes larger. 

 

The implemented dynamic task scheduling frameworks can be evaluated as below table. 

 

Table 2.2: Comparison of Reinforcement Learning Based Task Scheduling Frameworks 

Framework Merits Demerits 

MARL[16],[27], 

[31],[32], 

[33],[34]. 

 

 

 

 

 

 

- Able to resolve the overhead of the 

sharing of information and computing 

[31]. 

- Able to achieve a trade-off between 

overhead information sharing and device 

efficiency [31]. 

- Allow the sharing of tasks where agents 

may seek assistance from cooperating 

neighbors. 

 

 

 

-‘Curse of dimensionality’ problem [35] 

-Training or organizing training through a 

variety of agents is challenging. 

-Ambiguity-The MARL models are very 

sensitive to agent ambiguity scenarios. 

-May be reluctant to interact with 

heterogeneous agents.  

-Computational shortcomings surrounding 

the features of decentralization and 

reallocation. 

-Experiments mostly on small spaces in state-

action. 

 

OSL [35] 

 

 

 

 

 

 

-Reduced computing complexity. 

-Improving the teamwork process and 

coordination among agents involving. 

-Better decision-making in the planning 

of jobs. 

-Avoidance of scalability and 

coordination issues. 

– Strong Convergence. 

-Adaptiveness. 

-Good approach to avoid the dilemma of 

scalability [35]. 

 

-Dependence on specialized schedulers. 

-Has not yet been tested in the real-world 

environment settings. 

GRL [35],[36] 

 

 

-Can successfully complete the mission of 

grid scheduling and achieve effective load 

balancing. 

 

- Still not tested for real grid problems. 
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-The gossip system allows each scheduler 

to interact arbitrarily with its neighbors. 

So, strong coordination has been 

accomplished. 

-Effective in computing. 

-Agents are robust in collaboration with 

other agents. 

-May obtain timely model knowledge and 

enhance efficiency through autonomous 

coordination. 

- Adaptive, robust scheduling. 

- Could cope with the variety of 

applications and diverse grid 

environments [36]. 

- Further Works-Testing the robustness of the 

algorithm in evolving network conditions 

[36]. 

CLDS [37] - Performs well in load balancing and 

converges, in some situations, to a sub-

optimal policy or even to a near-optimal 

policy [37]. 

-Have restrictions in scalability and 

computational performance. 

2.8 Challenges in Reinforcement scheduling 

Over the years, a broad variety of research has been performed on complex work management. 

Reinforcement Learning has, above all, been able to provide effective testing guidance through 

perfect task scheduling. The optimized and complex scheduling of tasks in unpredictable 

conditions is yet to be a difficult problem. The technologies introduced retain low efficiency in 

the execution of activities owing to environmental uncertainties. Dynamic task scheduling in an 

unpredictable and ever-changing environment, where many agents are interactively involved, 

has been less investigated by early work. There are many generalization problems encountered 

by a variety of study organizations. The inappropriate time of computing for real-time execution 

and the difficulty of algorithms is also a matter of concern. Owing to the complexity, most 

algorithms have not been able to solve real-world problems. Adaptive task scheduling in 

complex and unpredictable settings remains a research problem. 

2.9 Problem Definition 

Having considered the summary of issues identified in dynamic task scheduling using 

Reinforcement Learning, we have noticed that little research has been conducted to improve 

optimization of task scheduling in an unforeseen environment using model-based approach. 

We also notice many researchers have used only single approach across the domains and they 

have many generalization issues.  Based on our critical review, we define our research problem 

as how to schedule dynamic tasks efficiently in an unforeseen complicated environment. 

It was able to gather ample evidence on the applicability and limitations of the domain since 

the state-of-the-art advances in task scheduling using Reinforcement Learning. In the same 
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way, some inspiring clues that can be employed to overcome the identified drawbacks of 

scheduling using Reinforcement learning also could be gathered.  

2.10 Summary 

In this chapter we have given a critical review of reinforcement learning by highlighting 

applications of dynamic task scheduling and the limitations / issues in the reinforcement 

learning techniques. We have also identified various technologies used for dynamic task 

scheduling. More importantly we have defined our research problem as how to schedule tasks 

efficiently in an unforeseen environment. In the literature review we have also identified multi 

agent reinforcement learning and Deep Q learning technologies as potential technologies for 

dynamic task scheduling. In chapter 03 we discuss our methodology for use of multi agent 

reinforcement learning and Deep Q learning for dynamic task scheduling. 
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           Chapter 03 

Technology 

3.1 Introduction 

In chapter 02, a critical review of literature review of the use of reinforcement learning in 

dynamic task scheduling has been presented. The literature review identified the research 

problem and potential technology for solving the research problem. As such, this chapter 

presents the technology adopted in our solution to dynamic task scheduling in an unforeseen 

environment using multi agent reinforcement learning and enhanced Q-learning.  

3.2 Reinforcement Learning 

One of the three major sub-areas of Machine Learning is reinforcement learning. 

Reinforcement Learning is the science of using experience to make optimal decisions. As 

humans, we are most familiar with the nature of learning. We interact with our environment, 

perform some actions, get feedback from the environment. The feedback is accompanying with 

a reward or a penalty, meaning that we are appreciating for each positive action we are doing 

and penalized for every negative action, both of them giving a glimpse of what has to be done 

and not to be done in log run. Somehow, we learn from mistakes and makes thoughts by 

determining not to perform faults again. It does not have an explicit instructor when a child 

plays, waves his arms, or looks around, but it has a direct sensorimotor connection to its 

environment. In order to maximize a numerical reward signal, reinforcement learning problems 

involve learning what to do and how to map situations to actions. [14]. 

Reinforcement Learning process includes the following simple steps: 

• Environment observation 

• Using some tactic, determining how to act. 

• Behaving accordingly 

• Achieving a reward or penalty 

• Learning from experiences and refinement of our tactic/approach 

• Iterate until it considers an optimal plan 

3.3 Elements of Reinforcement Learning 

3.3.1 Agents 

The agents include the learner and the decision maker. Based on the rewards and punishments, 

agent takes the future decisions. 
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3.3.2 Actions  

Actions includes series of activities which can be performed by the agent. 

3.3.3 States  

The condition of the agent in the environment. 

3.3.4 Environment  

The environment is the venue where the agent discovers and determines which actions to 

perform. 

As discussed in Sutton and Barto, Reinforcement Learning: An Introduction [14] , beyond the 

above 4 components, other four main sub elements of a reinforcement learning system can be 

identified: a policy, a reward signal , a value function, and optionally, a model of the 

environment. 

3.3.5 Policy 

A policy determines the way of behaving of the learning agent at a given time [14]. Simplest 

terms, a strategy is a mapping of the behavior to be taken in certain states from perceived 

environmental states. In the sense that it alone is necessary to evaluate behavior, the policy is 

the cornerstone of a reinforcement learning agent. Policies can be stochastic in general. 

3.3.6 Reward Signal 

In a reinforcement learning problem, a reward signal determines the target. In each step, the 

environment sends a single number, a reward, to the reinforcement learning agent. The sole 

aim of the agent is to optimize over the long run the cumulative reward it earns. The reward 

signal thus decides what the good/positive and bad/negative occurrences of the agent in that 

specific environment are. 

3.3.7 Value Function 

In the long run, the value function determines what is fine. Mainly, the value of a state is, 

starting from that state, the cumulative amount of reward an agent can expect to accumulate 

over the future. 

3.3.8 Environment Model 

The model of the environment imitates the real environment's actions. It allows inferences to 

be made about how the setting would behave. For planning, models are used [14]; by which 

we mean some way to decide on a course of action by imagining potential future scenarios 

before they are actually encountered. 
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3.4 Markov Decision Processes 

The problem of complex task scheduling can be generally modeled as a Markov Decision 

Process (MDP). A mathematical model to explain the decision problem for an agent in an 

environment with the Markov property is the Markov decision mechanism. The Markov 

property simply states that, given the present [3],[10],[11],[14], the future acts are independent 

of the past. A mathematical basis for defining an environment in reinforcement learning is the 

Markov Decision Process (MDP). 

3.5 Model-Free RL & Model-Based RL 

The methods of reinforcement learning used for dynamic task scheduling mainly belong to any 

either of the two main categories: model-free or model-based. Value-Iteration Methods and 

Policy-Iteration Methods are two types of model-free methods. The former researchers used Q-

Learning, Deep Q-Network (DQN), Greedy Distributed Allocation Protocol (GDAP) and Monte 

Carlo Algorithm (MCA) as Value-Iteration Methods. Policy Gradient (DPG) Algorithms and 

Actor-Critic approaches have been commonly used for Policy-Iteration Methods. Model-Based 

approaches can be split into two groups, such as Learn Model and Model Given, another major 

category. Integration of Model-Free and Model-Based Approaches is also the third big category 

that is emerging today. The algorithm for Dyna-Q has its position in this group. Following 

section leads layout to describe technical aspect of each of these techniques. 

3.6 Model-Free RL 

A Model-Free algorithm is an algorithm which estimates the optimal policy without the 

dynamics (transition and reward functions) of the environment being used or evaluated [11]. In 

order to understand, model-Free algorithms function in the real world. In model-free learning, 

to set up the optimal strategy, the agent relies on trial-and-error experience. Value-iteration 

methods and policy-iteration methods are two key approaches for representing agents with 

model-free reinforcement learning [11],[15]. RL approaches based on value iteration have been 

used in the solution; these are Q-learning and Deep Q-learning. 

3.6.1 Q-Learning 

Being a model-free reinforcement learning algorithm, Q-learning is a commonly used 

algorithm that is based on values. Value based algorithms, based on an equation, update the 

value function (particularly Bellman equation). Q-learning is an off-policy learner. It implies 

that the value of the optimal strategy is discovered independently of the behavior of the agent. 

The 'Q' stands for quality or the consistency in Q-learning. Quality is the utility of a given 

action in achieving a potential reward. 
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Q-learning Algorithm Definition: 

i. Q*(s,a) is the estimated/expected value of doing an action 'a' in state 's' (cumulative 

discounted reward) and then implementing the optimal strategy. 

ii. To estimate the value of Q*(s,a), Q-learning uses Temporal Differences (TD). An agent 

learning from an environment through episodes without previous experience of the 

environment is known as Temporary Difference. 

iii. A table of Q [S, A] is maintained by the agent, where S is the set of states and A is the 

set of actions. 

iv. Q [s, a] reflects the estimate of the latest/current Q*(s,a) calculation. 

 

Qπ (st, a
t) = E [R t+1 + γ R t+2 + γ2 R t+3 + … | st, at] 

 

Q-values for the state             Expected discounted  Given the state and action 

given a particular state             cumulative reward 

Bellman Equation  

 

        Learning rate Discount rate 

        Maximum expected future reward 

 

New Q(s,a)=Q(s,a) +α[R(s,a) + γ maxQ’(s’,a’) – Q(s,a)] 

 

New Q value for the  Reward for taking an action in Current 

state and action Current  a state   Q values 

   Q values       

Bellman Equation Explanation for the episodes 

 

When there is a relatively simple and comparatively straightforward environment to solve, Q-

learning performs better, but when the number of states and actions we can take becomes more 

complicated, it is important to incorporate deep learning as a function approximation. 
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3.6.2 Deep Q-Learning 

Deep Q-Learning is the art of incorporating artificial neural networks into the Q-learning 

algorithm, and a network that uses the neural network to approximate Q-functions is known as 

a Deep Q-Network (or DQN). The algorithm for DQN was developed in 2015 by DeepMind. 

The algorithm was first created by enhancing standard Q-Learning with deep neural networks 

and replay of experience (experience replay). 

Firstly, in a DQN, the interactions of a single agent in an environment are preserved by the 

agent in memory. Once a certain limit or simply a threshold is reached by the agent, then we 

tell the agent to learn and improve from it. So, from a batch of interactions, the agent can now 

learn and understand. The agent randomly selects a uniformly distributed sample from this 

batch from these interactions and learns from that. Each experience is defined by the state in 

which it was, the action taken, the state in which it ended, and the reward it collected. This 

technique suitable for applications that have larger state space [3],[19]. The state is provided 

as the input, and as the output, the Q-value of all possible actions is generated. The main 

algorithmic difference between Q learning vs Deep Q learning can be shown as in Figure 3.1. 

 

 1 

Figure 3.1: Main Algorithmic Difference between Q learning vs Deep Q learning 

 

 

1 https://www.mlq.ai/content/images/2019/07/deep-q-learning.png 

https://www.mlq.ai/content/images/2019/07/deep-q-learning.png
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In DQN, the target values are calculated from the right hand part of the Bellman Equation 

Q*(s,a) = E [R t + 1 + γmax a′q∗(s′,a′). Then, the outputs of the model are compared to the 

target values and loss is determined. Then, the neural network is updated, and its values are 

obtained using a backpropagation algorithm and stochastic gradient descent to minimize the 

error. In most DQN implementations have used two Q networks, which is not compulsory, but 

having two networks optimize the performance and solves the problem of moving target. 

Moving target is a problem that occur when agent estimates Q values and target value using 

the same neural network. Hence, to avoid moving target problem, generally another Q network 

(target network) with fixed parameters is used and the target network is updated periodically. 

3.7 Model-Based RL 

A model of the environment's behavior is established in Model-Based RL to reflect the real 

environment. A smaller number of connections with the real world are used by model based 

RL applications. The aim is to create a model based on initial interactions in the environment 

and then to simulate more episodes using this model. In Model-based RL, the model may be 

known or learned (Learn model vs Model Given). In order to resume learning, there is no need 

to wait for the environment to react or reset the environment to some state, and thus, model 

based RL has the benefit of speeding up learning. 

3.8 Integration of Model-free RL & Model-based RL 

3.8.1 Dyna –Q Algorithm 

Dyna Q is a powerful algorithm merging Q-learning and Q-planning where, while collaborating 

with the environment, planning is done online. Models are used here to produce a policy and 

enhance it. To approximate the standard optimal control method known as Dynamic 

Programming (DP), Dyna architectures use machine learning algorithms [14],[28]. Trial-and-

error reinforcement learning and execution-time planning are combined by Dyna architectures 

into a single mechanism that operates alternately on the environment and on a learned world 

model. Real or simulated experience improves both the model via model learning and value 

function/policy via direct RL. Model contains state, action, next state and reward tuples. Thus, 

the model can be both improved and queried to get to the next state in planning part [38]. In 

Figure 3.2, the possible ties between knowledge/experience, model, values, and policy are 

summarized. The overall architecture of Dyna Q algorithm which is described in the reference 

book, “Reinforcement Learning: An Introduction” by Richard S. Sutton and Andrew G. Barto 

[14], is shown in Figure 3.3. 
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Figure 3.2: Relationship Among Learning, Planning and Acting [14] 

 

 

Figure 3.3: The General Dyna Architecture [14] 

3.8.2 Dyna – Q+ Algorithm 

The Dyna Q+ algorithm is an upgrade to the Dyna Q algorithm, allowing the agent to be able 

to explore new states in order to adapt to the evolving environment. The algorithm is 

completely the same as Dyna-Q, apart from the action of Dyna-Q, it keeps track of the amount 

of time a state was visited and gives reward to a state that has not been visited for a long time. 

Dyna-Q+ is more likely to detect the changing environment by offering additional rewards to 

the un-explored states. 
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3.9 Action Selection Mechanisms  

Action Selection Mechanisms are being utilized in Reinforcement learning modelling in order 

to cater with 1exploration vs. exploitation dilemma. These algorithmic processes allow 

decision-making agents to make a tradeoff between taking advantage of what they already 

know about the world or exploring further. As explained well in the reference book “Grokking 

Deep Reinforcement Learning” by Miguel Morales [39] and the 1Reinforcement Learning 

Coursera Specialization the strategies can be summarized as below. 

Greedy- In this sort of choice of action, the action with the highest estimated value is always 

chosen as the next action. Generally, it’s not considered as a smart strategy, since we would 

quickly get stuck in a local maximum. 

e-epsilon- In the beginning of reinforcement learning, an exploration rate is defined as 

“epsilon,” which is normally set to 1. 

Epsilon-Greedy- Select the action with the highest importance/value almost always. This is 

considered as one of the simplest ways of balancing exploration and exploitation. It is done 

greedily most of the time and explore, every so often, by acting randomly. Here, a uniform 

random number is taken (delta), and if delta is less than a small constant value, (epsilon), then 

an action is picked randomly from the set of all available actions for a given state.  

e-epsilon decay- The basic idea is, first maximize exploration, then maximize exploitation.  

Here the epsilon is being reduced while the agent learns. Here, it produces a random number. 

Exploration and exploitation are performed based on the criteria specified.  If this 

random number is greater than the epsilon, exploitation is performed (this means we use what 

we already know to select the best action at each step). If the random number is less than 

epsilon, exploration is done. The idea is that we must have a significant epsilon at the beginning 

of the Q-function learning. Then, gradually reduce it as the agent becomes more confident 

estimating Q-values. The procedure is well explained graphically in figure 3.4.  

Softmax – Here, as a graded function of expected value, the action probabilities are decided. 

The most popular softmax approach uses a distribution of Gibbs, or Boltzmann. The selection 

of Softmax action stops the exploration automatically after some time. 

 

 

 

 

 

 

1https://www.coursera.org/specializations/reinforcement-learning 

 

https://www.coursera.org/specializations/reinforcement-learning
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1 

Figure 3.4: Exploration and Exploitation behavior in e-epsilon-decay 

3.10 Multi Agent Systems 

An agent is something that perceives the environment through sensors and acts on the 

environment through actuators, according to Russell & Norvig. The multi-agent system (MAS) 

is a series of many autonomous/intelligent agents, each acting towards its goals while all 

interacting in a common world, being able to communicate and possibly organize their actions.  

Multi agent system is a model of how teamwork can produce smart solutions for real world 

problems. Technically, MAS is loosely coupled network where the connections are not 

permanent. MAS consider the intelligence as an emergent feature. When designing agents in 

developing a MAS, the environment can be either; fully observable or partially observable, 

deterministic vs stochastic, episodic vs sequential, dynamic vs static, discrete vs continuous 

and single agent vs multi agent. There are three essential features that every multi agent system 

should have; known as communication, coordination and negotiation.  

 

 

 

 

 

1 https://cdn-media-1.freecodecamp.org/images/1*9StLEbor62FUDSoRwxyJrg.png 

https://cdn-media-1.freecodecamp.org/images/1*9StLEbor62FUDSoRwxyJrg.png
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3.11 Single Agent Reinforcement Learning and Multi Agent Reinforcement Learning 

The state of the world changes only because of an agent's behavior in single-agent 

reinforcement learning scenarios. It can be shown in figure 3.5. 

  

Figure 3.5: Single Agent RL [14] 

The world is exposed to the behavior of all agents in MARL scenarios. So, with the number of 

agents in the environment, the complexity of MARL scenarios increases. It can be shown in 

figure 3.6. 

 

Figure 3.6: Multi Agent RL [14] 
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3.12 Types of Agents in a MARL System 

According to the behavior of agents, the agents in a MARL system can be categorized in to 

three types as Co-operative, Competitive and Mixed [16],[23],[32],[33],[35],[38],[40].  

• Cooperative: The same reward is earned by all agents and all agents work together to 

get the reward. This is essentially perceived to be a team incentive. 

• Competitive:   In order to get a reward, each agent (or group of agents) competes. The 

incentive cannot be shared between agents or agent communities. 

• Mixture of both (Mixed): This kind of agent is a hybrid of both; it can be competitive 

as well as cooperative. In a game like basketball, for instance, where play is cooperative 

between teammates and competitive between two teams. 

3.14 Summary 

This chapter offers an in-depth overview of the technological background and scientific 

implications of both reinforcement learning and multi-agent schemes. Next chapter explains 

the Approach of the research with key components of the approach. 
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           Chapter 04 

Approach 

4.1 Introduction 

In chapter 03, the technology adopted in the solution to dynamic task scheduling in an 

unforeseen environment using multi agent reinforcement learning and enhanced Q-learning 

was discussed. This chapter presents the approach engaged by the researcher in driving towards 

a solution. 

4.2 Hypothesis 

The hypothesis of the research is that Multi Agent Reinforcement Learning and Enhanced Q 

learning can be adopted to solve the problem of dynamic task scheduling in an unforeseen 

environment. Behind this hypothesis, inspiration comes from how tasks in a honeybee or ant 

colony are assigned and how they are ensuring effective consistency and balance in day-to-day 

routines. 

4.3 Input 

The Inputs for the system would be the input heuristics in terms of environmental conditions 

like number of agents involved, current state of the environment and backlog of tasks and 

priority. 

4.4 Output 

The output would be set of scheduled tasks for the dynamic work environment. 

4.5 Process 

The process followed or the technology adopted would be Multi Agent Reinforcement 

Learning and Enhanced Q-Learning. 

First, the environmental conditions like number of agents involved, current state of the 

environment and backlog tasks will be inputted to the scheduler. From the enhanced Q learning 

algorithm embedded in the Scheduler, the value function or the policy function will be 

outputted. It will be presented to the environment, and environment will decide the amount of 

reward to be gain by the agent at each time. In each training episode it will try to maximize the 

reward it gets from the environment. Agents will communicate, negotiate and coordinate the 
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tasks themselves by the Multi agent reinforcement learning (MARL) component. Thereby, the 

backlog tasks will be scheduled for each of the agents. The state that results the maximum 

rewards would be chosen as the optimal scheduled state of the environment. Instead of reacting 

with the real environment continuously, a simulated model-based environment would be 

generated initially and it would react with real environment only after certain number of 

episodes in the simulation run. The process flow can be illustrated as in below flowchart in 

Figure 4.1. 

 

 

Figure 4.1: Proposed System Flowchart 
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4.6 Features 

The overall features of the system include the following. 

• Model-free and model-based RL integration  

• Standalone simulation application  

• Optimized dynamic scheduling of tasks 

• Priority based task scheduling 

• Usability and can be customized 

• Accessibility and easy to use 

• Uncertain environment modelling (Can be modified/customized and adapt to the 

entirely new environments) 

• Support for major agent behaviors  

4.7 Users 

The end users of this system would be researchers of reinforcement learning, project managers, 

system planners, project planners etc. 

4.8 Summary 

The hypothesis, input, output, features, users and process of the proposed solution were 

discussed in this section. The researcher clarified the input processing relevant to the proposed 

Reinforcement learning model. The method proposed and the procedures used to convert inputs 

to outputs have been defined. At the end of the approach chapter, the overall features of the 

new system were also addressed. The next chapter will introduce the concepts of the suggested 

solution. 
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           Chapter 05 

Design 

5.1 Introduction 

By designing the overall system design, system model, system architecture, software 

architecture, modular architecture, and simulation design, the design section explains the 

design of the system created. Using diagrams, the modules of the system and their relations 

have been developed. And what each module does in the framework has been addressed here. 

5.2 System Design 

The inputs for the system involve the Number of agents involved, current state of the 

environment and backlog of tasks and sub-tasks, Rewarding criteria and Number of steps of 

each episode. The outputs are a set of scheduled tasks for the work environment. The process 

going to follow in converting the inputs to outputs are Multi Agent Reinforcement Learning 

and Enhanced Q-Learning. Enhanced Q-Learning includes Deep Dyna-Q+ algorithm which is 

proposed for the purpose of dynamic task scheduling in an uncertain environment [41].  

5.3 System Model 

The system model with the agents, product backlog and tasks, rewards, time, environment, 

actions and state are designed as follows. 

5.3.1  Agents  

Agents are the individual machines which are responsible for performing the tasks. The 

individual machines have different capabilities and can act as agents that perform specialized 

tasks. The agents collectively work to complete the set of tasks in the backlog. They 

communicate with other agents to coordinate and negotiate the tasks. Some of the special tasks 

can be taken as direct subtasks toward the respected machine agents by the agents and handling 

as well as coordinating tasks when the machines are busy. 

5.3.2  Product Backlog and Tasks 

Product backlog includes the tasks that must be scheduled for the respective agent within the 

given simulation time through utilizing the allocated resources. This consists of the tasks, 

subtasks, their task priority and a measure of the number of targets achieved by the scheduler in 

the respective time period.   
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5.3.3  Rewards 

The scheduler gets rewards for completion of tasks.  In this kind of scenarios, Rewards can be 

gained in 2 different methods. One method is accumulating rewards once completion of sub-

tasks. Second method is achieving rewards in completion of all sub-tasks and thereby 

completing a full major task. In this development, the second option is used and rewards has 

been taken once all the subtasks have been finished. Thus, the system state that incurs the 

maximum cumulative reward should be chosen by the scheduler as the optimal scheduled state 

of the environment. 

5.3.4  Time 

The total time is the time taken by a task to complete the whole process by achieving all the sub 

tasks. Apart from total time factor, the difference between current timestamp and previous 

timestamp before ‘n’ episodes are also taken into consideration in the proposed method.  

5.3.5  Environment 

The environment includes tasks and agents. In development, a simulated environment is 

generated to represent different tasks and agents. The scheduler interacts with the actual real 

environment and also with the generated simulated environment. 

5.3.6  Actions 

Actions in the Reinforcement learning model refers to the tasks that should be completed by the 

agents. The number of actions is as same as the number of goals the agents need to achieve 

within the simulation.  

5.3.7  State 

The environment state is subjected to change once the tasks are performing by the agents. The 

state should reach optimal scheduled state once all the tasks are achieved. 
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5.4 System Architecture 

 

 

 

Figure 5.1: System Architecture. 

 

The proposed solution includes 3 major components interconnected as shown in the Figure 5.1. 

The major components consist MARL module, Scheduler and the Environment. Each of the 

components interact with other major components as shown in above Figure 5.1. 

5.5 Modular Architecture 

The proposed solution is viewed as a modular design as proposed in below figure. It consists 

of major three tiers as Presentation Layer, Application Layer and Database Layer. The 

researcher identified major five modules that operate within these layers as, Data acquisition 

module, MARL module, Scheduler module, Environment module and Result logging module. 

The five major modules include five sub modules as categorized in the Figure 5.2. The design 

of the modules is being discussed in the next sub sections. 
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Figure 5.2: Modular Architecture 

 

5.5.1 Data Acquisition Module 

In Data Acquisition Module, the metadata on number of agents involved, current state of the 

environment, backlog of tasks and sub-tasks, rewarding criteria, priority of tasks, number of 

steps and the scheduling behavior would be determined. The proposed hybrid approach would 

follow online reinforcement learning and thus would accept real time data inputted by the user.  

5.5.2 MARL Module 

MARL module includes the machine agents involved with the scheduler. Multi Agent 

Reinforcement Learning concept is used in designing MARL module. Here the machine agents 

work together, and they are responsible in handling three major agent based functions. 

i. Agent communication 

ii. Agent negotiation 

iii. Agent coordination 

When the agents complete the tasks, they get rewards in return. Here the agents are designed 

as co-operative agents, that means the cumulative rewards gained by all agents is summed up. 

Both agents share the same reward earned and all agents collaborate to get the reward. This is 
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essentially called a team award won by all the agents of the participating system. MARL 

module interacts with both Scheduler and Environment modules. 

 

5.5.3 Scheduler Module 

Scheduler Module will determine the best planning schedule adhering to the priority queue, for 

the agents based upon the scheduling behavior specified in the Data acquisition module. The 

scheduling behaviors developed are of major two types. Q-learning is developed as a model-

free approach and Dyna-Q+ learning and Deep Dyna-Q+ learning which has been proposed as 

the novel model-based approach. The model-free approach acts with the real environment 

specified by the user and deals with direct experience at each time step to learn. The model-

based approach focuses on explicitly analyzing the value functions from environmental 

interaction. 

i. Deep Dyna – Q+ Scheduler 

In Deep Dyna Q+ learning, the Q-value function is calculated using a Deep Q Network (DQN). 

DQN takes state characteristics as raw data and outputs the value of the next state-action pair's 

Q function value [3, 33]. The loss function of the neural network is expected to achieve as 

designed in (1). The action values output by the DQN is inputted for the Dyna Q+ model 

developed. 

[(r+γmaxa’ Q (s’, a; Ɵ1-)-Q (s,a; Ɵ1))
2]  (1) 

where, (r+γmaxa’ Q (s’, a; Ɵ1-) is the output of the Target network and Q (s,a; Ɵ1))
2 is the 

output of the Prediction network. 

ii. Dyna – Q+ Scheduler 

A reduced number of experiences with the real world is used by the structured model-based 

approach. The goal we have tried to achieve through a model-based approach is to create a 

model based on initial encounters with the environment and then use the expected environment 

resulting from previous modules to simulate future episodes. Dyna Q+ implementation, which 

is initially proposed by Sutton and Barto [14] has been developed in the simulation in order to 

cater the requirement of responding to unforeseen states. Two potential tricks were designed 

to keep the agents capable of exploring new states to suit the evolving world so that it pushes 

the agent to explore and offer reward. Via Dyna-Q+ implementation, one is proposed. The 

principle is completely the same as Dyna-Q, except that it keeps track of the amount of times 

a state has been visited and rewards a state that has not been visited for a long time. (since the 

state could have possibly changed as time goes on). The reward function is modified as in (2), 

where r is the modelled reward for a transition, and the transition has not been tried in τ time 

steps for some small κ. Dyna-Q+ development is more likely to detect the changing 

environment and respond positively by giving additional rewards to un-explored states. 

Another trick is to only adjust the Q table if the state condition in the previous setting does not 

exist. 
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r+ = r + κ*sqrt(τ)   (2) 

 

iii. QL Scheduler 

QL Scheduler includes the model-free design. The bellman equation defined in the 

methodology to find the next best action and its explanation is defined as in (3). 

   New Q(s,a)=Q(s,a) +α[R(s,a) + γ maxQ’(s’,a’) – Q(s,a)] (3) 

where, New Q(s,a) is the new Q value for the state and action, Q(s,a) is the current Q value, 

R(s,a) is the reward for taking an action in a state, maxQ’(s’,a’) is the maximum expected future 

reward, α is the learning rate and γ being the discount rate. 

5.5.4 Environment Module 

The environment was setup as two sub-modules covering real environment and simulated 

environment. The simulated environment is generated based upon the initial environment and 

agent-environment-actions interactions within the episodes. The simulated environment 

interacts with the real environment only once in specified number of episodes defined, here we 

took it as once in 50 episodes. The environment is subjected to change dynamically which 

means it is unpredictable and uncertain. The machine agents dynamically interact with the real 

and simulated environments while the simulation is run. 

5.5.5 Result Logging Module 

In this module, the optimized optimal task schedule would be retrieved and saved in a suitable 

manner that enables reloading when necessary.  

5.6 Simulation Design 

In the simulation design sub-section, the modules designed in the System Design phase are 

integrated in an identified manner that is revisited in simulation implementation. The 

environment module consists of the global environment and the agents’ local environments. 

The global environment represents MARL Module that includes the agents, their local 

environments and scheduler module. Apart from that global environment also include tasks, 

subtasks, priority of tasks, rewards and global state. The agents themselves have their agent 

state, local environment and the scheduler in each of them. The scheduler component each of 

the agents have supports agent learning and schedule tasks themselves. The summary of 

simulation design can be illustrated through Figure 5.3. 
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Figure 5.3: Simulation Design 

 

5.7 Summary 

The design process of the proposed system has been presented in this chapter. The overall 

system design, system model, system architecture, software architecture, modular architecture 

and simulation design were discussed here in the first place. Then, along with diagrams, all the 

defined modules with their interconnections and functions were created. In the next chapter we 

discuss about the System Implementation. 
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           Chapter 06 

Implementation 

6.1 Introduction 

The architectural design of the proposed framework was discussed in chapter 05. The 

implementation of the framework is presented in Chapter 06. Firstly, this chapter presents 

details on how development of the simulation was done and how each of the module were 

developed. Then, it is followed by the tools and technologies adopted in the implementation. 

6.2 Implementation of Modules 

6.2.1 Data Acquisition Module 

In the data acquisition module, the metadata with respect to below parameters are obtained 

from the user. 

• Number of Agents Involved 

• Current State of the Environment 

• Backlog of Tasks and Sub-Tasks 

• Rewarding Criteria  

• Number of Steps 

• Priority of tasks 

 

The scheduling behavior is also needed to be chosen by the user. The behaviors can be of 

major 2 forms that have 4 categories as below. 

 

1) Model-Free Behavior- Random Learning Scheduler and Q-Learning Scheduler 

 

2) Model-Free and Model-Based Behavior Integration- Dyna-Q+ Scheduler and Deep 

Dyna Q+ Scheduler 

Online reinforcement learning concept is used in data acquisition; hence the real time input 

data is collected from the user from the Data Acquisition Window implemented shown in 

Figure 6.1. 
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Figure 6.1: Data Acquisition Window 

6.2.2 Environment Module  

In this module, the environment is generated based on the criteria specified by user. The 

environment was setup as two sub-modules covering real environment and simulated 

environment. The local environment is generated based on the criteria specified by a user. The 

heuristics in terms of the number of machine agents, tasks, subtasks, priority, rewards, initial 

state and number of targets constitute the task backlog.  Figure 6.2 shows a real sample 

environment generated and Figure 6.3 shows the task backlog that's developed. 

 

 

 

 

 

Figure 6.2: Sample Environment Generated (for 3 tasks, 2 agents) 
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Figure 6.3: Sample Task Backlog 

6.2.3 Scheduler Module 

Scheduler Module determines the best planning schedule adhering to the priority-based queue, 

for the agents based upon the scheduling behavior specified in the Data Acquisition Module. 

This involves three sub modules; QL Module, Dyna-Q+ Module and Deep Dyna-Q+ Module. 

As defined in this section, each of the modules will be implemented. As introduced, the reward 

function is suggested and enforced as follows. 

6.2.3.1 Reward Function 

The reward function explains how the rewards are being generated in the scheduler component. 

The cumulative reward is generated by reward obtained by the task completion and Dyna-Q+ 

reward. Reward from task completion is achieved by completing all the sub-tasks and thereby 

completing the respective main tasks by the involvement of several agents cooperatively. 

Dyna-Q+ reward is calculated at each episode for the unforeseen environment states by the 

equation κ*sqrt(τ), where r is the modelled reward for a transition, and the transition has not 

been tried in τ time steps for some small κ. Dyna-Q+ development is more likely to detect the 

changing environment and react positively by offering additional rewards to un-explored states. 

Potential reward shaping technique is done in order to shape the reward accumulation and it 

empowered smooth convergence. The implemented reward function is as in Figure 6.4. 

 

Figure 6.4: Reward Function Implemented 

 

Task Sub 

Tasks 

Rewards Target Priority 

Task 1 (T1) 5 3 1 10 

Task 2 (T2) 4 10 2 9 

Task 3 (T3) 3 5 3 1 

 Total 

Sub 

Tasks-

12 

Total 

Reward-

18 

Total 

goals 

achieve

d-3 

 



46 
 

6.2.3.2 QL Module 

Following pseudo code is proposed in this scheduling behavior. Figure 6.5 is a simple 

illustration on the Q-learning process adopted. 

Pseudo-code for QL Module 

1. Initializing the local environment. 

2. Start the learning process. 

3. Select actions. 

4. Update the environment and states. 

5. Reinforcement learning by the scheduler. 

6. Save the simulated RL model. 

 

 

 

 

 

 

 

Figure 6.5: RL Q-Learning Process 

 

6.2.3.3 Dyna Q+ Module 

Following pseudo code is proposed in the implementation of the scheduling behavior. The 

maximum expected future reward is calculated using (4), where self.timeWeight corresponds 

to κ in (3) and the timestamp difference between current and previous timestamp of ‘n’ episodes 

defined by user.  

Pseudo-code for Dyna-Q+ Module 

1. Initializing the local environment. 

2. Start the learning process. 

3. Select actions as per task priority. 

4. Update the environment and states. 

5. Reinforcement learning using Dyna-Q+ learning by the scheduler 

6. Save simulated RL model. 

7. Simulate the environment and run n times  

for the RL to learn. 

8. Capture the optimal scheduled state.  
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max_reward+= self.timeWeight * np.sqrt(self.time - _time)   (4) 

 

6.2.3.4 Deep Dyna-Q+ Module  

Following pseudo code is proposed in this scheduling behavior. The sub section is followed by 

presenting the structure of Deep Dyna-Q+ learning model developed. 

Pseudo-code for Deep Dyna-Q+ Module 

1. Initializing the local environment. 

2. Start the learning process. 

3. States are the input to the Target Network. 

4. Store all the past experience in the replay memory  

5. Function approximation by the scheduler. The next action is determined 

by the maximum output  of the Q-network (Evaluation Network) 

6. Calculate the loss function. It is the mean squared error of the predicted. 

Used RMSProp optimizer here. Q-value and the target Q-value – Q*. 

(Bellman equation)  

7. Dyna Q+ learning and save simulated RL model. 

8. Simulate the environment and run n times for the RL to learn. 

9. Capture the optimal scheduled state.  

 

Figure 6.6: Structure of Deep Dyna-Q+ Learning Model Developed 

Figure 6.6 presents the structure of Deep Dyna-Q+ learning model developed. Here, the 

Environment module is the major module that includes global environment and agent 

environment. The two sub modules of Environment module, simulated environment and real 

environment connects with both the global and agent environment as shown. Inside the 

Environment module, MARL module was developed. Scheduler module is implemented within 
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the MARL Module. The implementation setup is co-related with the simulation design 

introduced by Figure 5.3 in the Design chapter. The DQN implementation resides in the 

scheduler module. There, the environment states are inputted to the DQN and most appropriate 

actions are outputted through function approximation. The actions and planning update with 

simulated experience are inputted to the Dyna-Q+ module that resides in both the MARL 

module, Scheduler module and Environment module. The direct RL update is happening in 

between the Scheduler and real environment once in 50 episodes. Model training is done in 

Dyna-Q+ module and the simulated experience is rendered back to the Environment module in 

return as shown in the figure. 

Designing and Training Deep Q-Network 

The Deep Q-Network is implemented as Function Approximation of the action-value function 

q (s, a) of Dyna Q+ simulation. It includes several optimization techniques that are listed below. 

Replay Memory: Since the machine agents acts in the real environment and explore the world, 

the neural network is not trained on the go. Here, the experiences of the agents were stored 

inside a buffer space and the model was trained by sampling out the batches of experiences 

using prioritized experiences.  

Target Network and Evaluation Network: Here, DQN is implemented using two Q networks 

as Target network and Evaluation (Local) network each comprised of 2 layers as shown in 

Figure 6.8. The input of the DQN is the environmental states and the output is the estimated q-

values of the state-action pairs as shown in Figure 6.7. The final aim of DQN is minimizing 

the loss function by gradient descent mechanism. 

 

 

Figure 6.7: DQN Function Approximation 

 



49 
 

 

Figure 6.8: Structure of DQN Developed 

 

As such, Deep Dyna-Q+ is able to handle realistic situations of observation space being too 

high-dimensional and large to be stored in Q table. Figure 6.9 shows the final scheduled 

environment that is expected to have generated from successful simulation run. 

 

 

 

 

 

 

 

Figure 6.9: Final Scheduled environment 

6.2.4 MARL Module  

Cooperate machine agents were utilized in the proposed framework. The individual machine 

agents can communicate using a simple messaging mechanism at each state when the 

simulation runs. The agents can coordinate the tasks between themselves and negotiate with 

other agents involved in the operation. The MARL concept is developed in the agent-based 

simulation. The simulation is premeditated such that the model reacts with the real environment 

once only 50 running episodes that dynamically adapts the learning based on the changing 

environment. The MARL setup embedded with the Dyna-Q+ and Deep Dyna-Q+ algorithm 

has been visualized in Figure 6.10. 
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Figure 6.10: Agent Communication, Tasks Co-ordination 

 

6.2.5 Result Logging Module 

Save the schedule. Here, the simulation, Q table and logs in Deep Dyna-Q+ are saved locally. 

The final schedule is saved as a .jpg image. 

6.3 Action Selection Mechanisms Developed  

E-epsilon decay action selection mechanism is used in selecting the next best action in the 

simulation run. Here the epsilon is reduced, since we need less and less exploration and more 

exploitation while the agents interact with the environment. The exploration rate is defined by 

epsilon and the exponential decay rate for the exploration probability is defined by the 

decay_rate. Two constants max_epsilon and min_epsilon is used to define the boundary of 

exploration. The code logic implemented is as in (5). 

self.epsilon = self.min_epsilon + (self.max_epsilon - self.min_epsilon) * np.exp(-

self.decay_rate  * episode) (5) 

E-epsilon decay action selection mechanism is much more suitable if the initial environment is 

pre-defined and is discrete throughout the simulation. But if the environment is continuous 

throughout the simulation, it was observed that E-epsilon greedy would not incur best results. 

Instead, Epsilon-greedy would perform considerable good results. In epsilon-greedy, always the 

action with the highest value is picked always. Here, a uniform random number is taken (delta), 

and if delta is less than a small constant value, (epsilon), then an action is picked randomly from 

the set of all available actions for a given state. The code logic implemented is as in (6). 
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 self.epsilon = 0 if e_greedy_increment is not None else self.max_epsilon 

self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < 

self.max_epsilon else self.max_epsilon  (6) 

6.4 Generalization to Unseen Environments 

One of the main aim this research is focused is generalization to unseen environments. As a 

solution, the scheduling solution was implemented such that it dynamically responds to unseen 

environment conditions. It was implemented in two levels as System level and User level. 

6.4.1 System Level 

In System level, the generalizability is catered in three mechanisms. Two mechanisms are 

implemented through the Dyna-Q+ implementation. Here, the first principle is completely the 

same as Dyna-Q, except that it keeps track of the amount of time a state has been visited and 

rewards a state that has not been visited for a long period of time. (since the state could have 

possibly changed as time goes on). The reward function is updated as in (7), where r is the 

model reward for a transformation, and for some small κ, the transition was not attempted in 

τ time steps. Dyna-Q+ development is more likely to detect the changing environment and react 

positively by offering additional rewards to un-explored states. 

r+ = r + κ*sqrt(τ)   (7) 

It is coded as below in (8), a constant self.timeweight is used for κ and time difference is 

calculated for difference between 100 episodes where _time is the timestamp of previous 100th 

episode and self.time is current episode. In this way the simulation can capture environment 

changes within a period of 100 episodes. 

max_reward+= self.timeWeight * np.sqrt(self.time - _time) (8) 

The second mechanism of generalization is, updating the Q table only if state is not existing in 

the previously visited environment. 

The third mechanism is achieved through DQN part of Deep Dyna-Q+ implementation. In the 

DQN, the replay memory can store the transitions and that memory can be utilized in later 

times. By sampling transitions from the replay memory, the network can increase its ability to 

generalize. 

6.4.2 User Level 

In User level, the user can make a change in the environment by modifying tasks, subtasks, 

rewards, priority or add/remove them and thereby continue with the scheduling. Here, at each 

episode the Dyna-Q+ scheduling agent reacts with the real environment, an application delay 

is introduced in the execution of the program and enables space to make any changes. 
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6.5 Tools and Technologies 

6.5.1 Integrated Development Environments (IDEs) Used  

6.5.1.1 JetBrains-PyCharm (IDE) 

PyCharm, specifically for the Python language, is an Integrated Development Environment 

(IDE) used in computer programming. PyCharm is a cross-platform framework that operates 

with versions of Windows, MacOS, and Linux. Some of the major features PyCharm that 

supported in this development are; Coding Assistance and analysis, Project and code 

navigation, Integrated python debugger, Python refactoring and Version control integration etc. 

6.5.1.2 QtDesigner 

Qt Designer was used to develop the system's User Interfaces. The installer of PyQt comes 

with the Qt Designer GUI builder tool. Without having to write the code, a GUI interface can 

be easily developed using its easy drag and drop interface. Qt Designer is not a Visual Studio-

like IDE. Therefore, the facility to debug and develop the application is not available for Qt 

Designer. The designed layout is saved as main_window.ui in this tooling environment. The ui 

file includes an XML view of widgets and their design properties. By using the command line 

utility pyuic5, this design is converted into a Python equivalent. This utility is an uic module 

wrapper. The usage of pyuic5 is as follows – 

pyuic5 -o main.py main_window.ui 

 

OutFile_ui.py      InFile.ui 

 

Widgets and forms generated with Qt Designer are seamlessly incorporated with programmed 

code, which enables programmers to easily allocate actions to graphical elements using Qt's 

signals and slots mechanism. Within the code, all properties set in Qt Designer can be 

dynamically modified. 

6.5.2 Languages Used 

Python 3.5 is used as the main programming language for the application. 

6.5.3 Libraries Used   

6.5.3.1 Tensorflow 

TensorFlow is an end-to-end open source platform initially developed by Google for advanced 

machine learning developments. TensorFlow is popular in its applications and usage in develop 

and train machine learning models. In our application, Tensorflow 2.0.0 is used in developing 

and training the Deep Q Network.  
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6.5.3.2 Tabulate 

Tabulate is a library and a command-line utility used in representing the tabular data in the 

simulation. 

6.5.3.3 OpenAIgym 

OpenAigym or best known as Gym, is a toolkit for the implementation and comparison of 

reinforcement learning algorithms. The utils package of OpenAIGym 0.17.1 was used in 

developing the custom simulation environment. 

6.5.3.4 Matplotlib 

Matplotlib is the general Python programming language plotting library and is used in the 

proposed solution for visualizing purposes.             

6.5.3.5 Plotly 

Plotly is an interactive graphing library which was used in generating the task schedule and 

animating the schedule in visual form. Plotly.express edition was used in here. Some of 

interesting features of plotly such as; pan, box select, lasso select, zoom-in, zoom-out, auto 

scale, reset, download plot as png, toggle spike lines, show and compare data on hover 

increased the quality and visual capability of the final task schedule designed. 

6.5.3.6 PYQt5  

In developing the system's key user interface, PyQt was used. PyQt is a Qt application system 

collection of Python bindings and runs on all Qt enabled platforms, including Windows, OS X, 

Linux, iOS, and Android. PyQt is available in two variants, such as PyQt4 and PyQt5. Qt 

version 5 is provided by PyQt5. PyQt4 supports version 4 of Qt and will compile against 

version 5 of Qt. 

6.5.4 Hardware Used 

6.5.4.1 Graphics Processing Unit (GPU)   

Intel® UHD Graphics 620 GPU is used as resource requirement. 

6.6 Summary 

This chapter presented the implementation process of the developed system. Here, the details 

on implementation of the modules and the tools and technologies adopted have been presented 

in detailed. The modular designs identified in the Design chapter were implemented by means 

of introducing software architectures and this chapter presented the implementation details in 

detailed. Next chapter will concentrate on the Evaluation of the developed system. 
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           Chapter 07 

Evaluation          

7.1 Introduction 

This chapter contains the Evaluation process which is used to evaluate and test the 

Reinforcement Learning framework which is discussed during this documentation. The 

evaluation process has been subdivided to several sections.  The first section focus in testing 

the experimental design developed. The second section presents evaluation outcomes 

performed on the analysis of results based on the simulation.  

7.2 Experimental Design 

The experimental design for the evaluation purpose was premediated using selected scheduling 

scenario instances designed. The instances were setup considering following evaluation criteria.  

 

➢ Varying agents performing tasks. 

➢ Varying number of tasks, sub-tasks from less complex to high complex. 

➢ Compare performance in Random Learning, Q-Learning, Dyna-Q+ and Deep Dyna-Q+ 

simulations. 

➢ Varying rewarding criteria from less complex to high complex. 

➢ Leveraging less prioritized and high prioritized tasks. 

➢ Investigate performance between action selection mechanisms deployed. 

 

 

Evaluation scenarios setup here focus to evaluate the models’ performance with respect to above 

identified criteria. The instances will be elaborated in detailed in the next section. The simulation 

run results of Dyna Q+ Learning, Deep Dyna-Q+ Learning and the visualization of the task 

schedule in general, have been presented in this section.  
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7.2.1 Dyna Q+ Learning Simulation Results 

The snapshots of the Dyna-Q+ simulation run has been provided under this section. Figure 7.1 

presents the maze view of the representation of job completions. Figure 7.2 presents the state 

representation along with the job completions in the simulation run. Figure 7.3 illustrates the 

agent interaction, states and actions in an instance of the simulation run. Figure 7.4 is a sample 

Q-Table saved as a .csv file. 

          Main Tasks 

           

 

 

 

Figure 7.1: Representation of Job Completions  

(Maze view)  

 

 

 

 

 

 

 

 

 

Environment     Reward Agent Interaction 

State  
 

Figure 7.3: Agent Interaction, States and 

Actions 

Figure 7.2: Representation of Job 

Completions  

 

Figure 7.4: Saved Q-Table  
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7.2.2 Deep Dyna-Q+ Network Learning Simulation Results 

The snapshots of the Deep Dyna-Q+ simulation run has been provided under this section. In 

the simulation run, the main tasks, current environment state, next predicted state, subtasks, 

agents, agent message passing, agent interactions and job completions are shown as in below 

Figure 7.5.  

 

-Main tasks 

-Current environment  

state  

-Next predicted  

environment state   

-Subtasks 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Agent Message Passing, States Representation and Job Completions in Deep Dyna-

Q+ 

7.2.3 Visualization of Task Schedule  

At the end of the simulation, the created task schedule is showed and saved as a plot as in 

Figure 7.6. The plot was developed from Python Plotly library. Some of interesting features of 

plotly including pan, box select, lasso select, zoom-in, zoom-out, auto scale, reset, download 

plot as .png, toggle spike lines, show and compare data on hover increased the quality and 

visual capability of the final task schedule designed. Some of the interactive options have been 

depicted in Figure 7.7 and Figure 7.8. 
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Figure 7.6: Sample Task Schedule Resulted from Deep Dyna-Q+ Simulation 

 

Figure 7.7: Isolating Traces (such that flow of only needed tasks can be viewed)  
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Figure 7.8: Lasso Select and Compare Data on Hover 

 

 

7.3 Analysis of Results 

Selected evaluation metrics are being used in order to validate the developed model-based and 

model-free simulation approaches. The metrics deal are as follows. 

➢ Fine tuning the parameters. 

➢ Performance metrics like makespan, throughput, response time. 

➢ Selection of parameters. 

➢ Hyper parameter tuning in Deep Q network. 

➢ Variation of output with number of agents. 

 

This section explains the evaluation of the proposed system in relation to the evaluation metrics 

using the scheduling scenario instances designed. 

7.3.1 Reward Analysis 

Here, the accumulation of rewards in each of the simulation run is analyzed. The evaluation 

results of one instance taken is shown below. Table 7.1 presents the sample task backlog 

defined and Figure 7.9 presents the reward plot results of random learning, QL simulation, 

Dyna-Q+ simulation and Deep Dyna-Q+ simulation respectively. As per the evaluation results, 

it was able to see that Deep Dyna-Q+ simulation can reach the maximum rewards accurately 

by completing all the tasks and subtasks. In Dyna-Q+ simulation, firstly it showed some 

improvement, but when tasks increase the reward was not converged and showed drastic 

variance. Both QL simulation and random learning simulation was not able to complete the 

tasks in this simulation instance.  
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Table 7.1: Task Backlog -Evaluation I 

 

 

Figure 7.9: Plot of Reward Analysis I 

7.3.2 Evaluation of the Throughput in Deep Dyna-Q+ learning. 

Here, the variation in Throughput in Deep Dyna-Q+ simulation was tested against the Number 

of tasks and reward. Simulation was run by different real time random instances taken. The 

time was measured in timestamps. Results are as in Table 7.2. 

 

Table 7.2: Results-Evaluation II 

Task Number of 

Agents 

Sub Tasks Rewards Target Priority 

Task 1 (T1) 3 7 5 1 2 

Task 2 (T2) 3 8 10 2 3 

Task 3 (T3) 3 5 5 3 1 

  Total Sub 

Tasks-20 

Total 

Reward-

20 

Total 

goals 

achieved-

3 

 

Expected 

Max_Reward  

Actual 

Max_Reward 

Throughput-Time 

(Timestamp) 

Max_Reward 

Episode 

28 27 103.963085 900 

32 32 120.78 950 

38 38 160.234 1010 

43 42 221.3769 840 

50 51 303.169 1120 
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7.3.3 Evaluation of Variation of output with number of agents in Deep Dyna-Q+ learning 

Here, the reward variation in Deep Dyna-Q+ simulation was tested against the number of 

machine agents. Tasks, subtasks, priority were kept as constant. The task backlog considered 

is as Table 7.3. 

Number of episodes run -2000 

 

Table 7.3: Task Backlog -Evaluation III 

 

 

 

 

 

 

 

 

 

The observed results as per the maximum reward reached and the episode where the maximum 

reward is gained against the number of agents is as in Table 7.4. In this experiment, it was seen 

that the Deep Dyna-Q+ simulation achieves best results (that is closer reward to the maximum 

expected reward) when four machine of agents are used. 

 

Table 7.4: Results-Evaluation III 

 

 

 

Task Sub 

Tasks 

Rewards Target Priority 

Task 1 (T1) 7 12 1 10 

Task 2 (T2) 3 9 2 3 

Task 3 (T3) 4 8 3 9 

Task 4 (T4) 5 10 4 2 

Task 5 (T5) 6 3 5 1 

 Total 

Sub 

Tasks-

25 

Total 

Reward-

42 

Total 

goals 

achieved-

5 

 

Number of Agents Max_Reward Max_Reward Episode 

2 47.28 840 

3 47.27 840 

4 43 850 

5 29.6 1500 

6 29.64 1500 

1 29.64 1500 
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7.3.4 Evaluation of Variation of output with performance between Random learning, 

Reinforcement learning, DQ learning and Dyna-Q+ learning 

The reward variation in between the four approaches; Random learning, QL learning, Dyna-

Q+ learning and Deep Dyna-Q+ learning simulation was tested against the number of machine 

agents. Tasks, subtasks, priority were kept as constant. The task backlog considered is as Table 

7.3. As per the evaluation results, it was seen that Deep Dyna-Q+ simulation was able to 

achieve maximum reward while completing all the tasks in a lesser number of episodes. 

Number of episodes run -2000 

Number of agents taken - 3 

 

Table 7.5: Task Backlog -Evaluation IV 

 

 

 

 

 

 

 

 

Table 7.6: Results- Evaluation IV 

Learning Mechanism Max_Reward Max_Reward Episode 

Random learning 6 1100 

Reinforcement learning 20 2850 

Dyna-Q+ learning 29.6 1500 

Deep Dyna-Q+ learning 43 850 

 

7.3.5  Cost Analysis 

In cost analysis, the cost incurred in the learning process is estimated via number of episodes. 

Cost was analyzed for Dyna-Q+ and Deep Dyna-Q+ simulations. Once running the Dyna-Q+ 

simulation, the cost seemed gradually decreasing when the agents are simulated in the 

environment. Figure 7.11 presents the sample cost deviation result of an instance tested via 

Dyna-Q+ simulation. 

Task Sub 

Tasks 

Rewards Target Priority 

Task 1 (T1) 7 12 1 10 

Task 2 (T2) 3 9 2 3 

Task 3 (T3) 4 8 3 9 

Task 4 (T4) 5 10 4 2 

Task 5 (T5) 6 3 5 1 

 Total 

Sub 

Tasks-

25 

Total 

Reward-

42 

Total 

goals 

achieved-

5 
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Figure 7.11: Cost Analysis of an instance in Dyna-Q+ Simulation 

 

When running the same in Deep Dyna-Q+ simulation, the cost seemed gradually increase on 

RL learning and after the environment enter the scheduled state (state with maximum reward), 

the cost gradually decreased. Figure 7.12 presents the sample cost deviation result of an 

instance tested via Dyna-Q+ simulation. 

 

Figure 7.12: Cost Analysis of an instance in Deep Dyna-Q+ Simulation 

 

7.4 Summary 

This chapter discuss about the evaluation process which is used to evaluate the developed 

system. It also presents the results to analyze the performance in different scenarios. As per the 

evaluation results it was verified that the proposed Deep Dyna-Q+ approach incur best results 

than Dyna-Q+ and QL simulations for dynamic task scheduling in an uncertain environment. 
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           Chapter 08 

Conclusion & Further Work 

8.1 Introduction 

The evaluation process carried out on the established system was addressed in the previous 

chapter. This chapter gives an overall conclusion to the entire research project. Project results 

overview in terms of the targeted objectives, limitations encountered, and further research 

opportunities identified are also consideration under this chapter. 

8.2 Conclusion 

In the beginning of the research project, it was hypothesized that Multi Agent Reinforcement 

Learning and Enhanced Q Learning can be adopted to solve the problem of dynamic task 

scheduling in an unforeseen environment. In order to prove the hypothesis, the hybrid 

application was grounded up using the pre-identified technology reinforcement learning. 

Firstly, the literature on the area was comparatively reviewed and the limitations in dynamic 

task scheduling and opportunities and research focus of reinforcement learning was identified. 

Considerable amount of time and effort was undertaken to understand the concept of 

reinforcement learning and filling the knowledge gap by reviewing research papers, reference 

books and knowledge obtained from e-learning courses. The design of the modules and 

interactions with each module began with the development phase. For the specified modules, 

implementation was completed. The implementation went in as several stages, firstly 

implementing model-free approach, secondly the model-based approach and then to the 

integration of model-free and model-based reinforcement learning approaches.  

Finally, in Chapter 7, the evaluation process and findings were discussed. Evaluation process 

was undertaken using several evaluation criteria setups by the researcher in order to access the 

performance of the proposed approach. Based on the results of the evaluation, development 

enhances the target process, so the aims and objectives has been archived.  

Significant objectives were also established at the initial stage of the process in order to achieve 

the target. The achievement of the objectives with respect to the project results have been 

summarized in the next sub section.   
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8.3 Project Results Overview 

This session emphasizes the status and the sections related for the project outcomes against the 

project objectives. 

Table 8.1: Project Results Overview  

Objectives Status Sections Related 

 

1. Comprehensively review 

the literature review on 

Dynamic Task 

Scheduling, Multi Agent 

Reinforcement Learning, 

Deep Q-Learning and 

Dyna Q+-Learning. 

Completed Chapter 02 

2. Design and develop 

hybrid approach by 

integrating Multi Agent 

Reinforcement Learning 

and Dyna Q+ Learning 

and Deep Dyna Q+-

Learning for dynamic 

task scheduling. 

Completed Chapter 04, Chapter 05 

3. Implement the dynamic 

task scheduling using the 

proposed approach. 

 

Completed Chapter 03, Chapter 06 

4. Evaluation of the 

developed system. 

 

Completed Chapter 07 

 

Thus, all the above objectives were executed in the research as anticipated, as a concluding 

note overall system development and evaluation process was succeeded. 

8.4 Limitations and Further Work 

In the GUI based simulation, there is a system delay occurring when overloaded with multiple 

machine agents and many tasks. The system should be further optimized by doing further 

research on Reinforcement learning and optimization related applications. Furthermore, this 

application is mainly based on online reinforcement learning, where learning is happening in 

real time with the real data inputted by the user. It would be promising to further research and 

study on the effect of offline reinforcement learning incorporation for the solution and evaluate 

whether if it produces better simulation experience and results in scheduling unforeseen 

environments.  
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In way to produce the system more useful and powerful, few other items were also recognized 

as potential further works. One is setup the machine agents to have different performance 

capabilities. Other is setup the simulation on different workstations. 

 

8.5 Summary 

The conclusion, limitations and future work of the established hybrid application are outlined 

in this chapter. The constraints were identified, and possible solutions were also discussed. In 

order to make the application more useful and powerful, few addition works were defined as 

further works. 
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          Appendix 01: 

Sample Codes   

This appendix includes some of the important code snippets developed. 

 

1. Data Acquisition Window 

from PyQt5 import QtCore, QtGui, QtWidgets 
 
 
class Ui_MainWindow(object): 
    def setupUi(self, MainWindow): 
        MainWindow.setObjectName("MainWindow") 
        MainWindow.resize(1029, 729) 
        MainWindow.setAutoFillBackground(False) 
        MainWindow.setStyleSheet("background-color:rgb(255, 252, 217)") 
        self.centralwidget = QtWidgets.QWidget(MainWindow) 
        self.centralwidget.setObjectName("centralwidget") 
        self.textEdit_2_no_steps = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_2_no_steps.setGeometry(QtCore.QRect(440, 190, 41, 31)) 
        self.textEdit_2_no_steps.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.textEdit_2_no_steps.setObjectName("textEdit_2_no_steps") 
        self.rlPushButton = QtWidgets.QPushButton(self.centralwidget) 
        self.rlPushButton.setGeometry(QtCore.QRect(160, 580, 111, 41)) 
        font = QtGui.QFont() 
        font.setPointSize(10) 
        font.setBold(True) 
        font.setWeight(75) 
        self.rlPushButton.setFont(font) 
        self.rlPushButton.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.rlPushButton.setObjectName("rlPushButton") 
        self.dynaqPushButton = QtWidgets.QPushButton(self.centralwidget) 
        self.dynaqPushButton.setGeometry(QtCore.QRect(420, 580, 111, 41)) 
        font = QtGui.QFont() 
        font.setPointSize(10) 
        font.setBold(True) 
        font.setItalic(False) 
        font.setWeight(75) 
        font.setStrikeOut(False) 
        self.dynaqPushButton.setFont(font) 
        self.dynaqPushButton.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.dynaqPushButton.setObjectName("dynaqPushButton") 
        self.label_3 = QtWidgets.QLabel(self.centralwidget) 
        self.label_3.setGeometry(QtCore.QRect(120, 250, 201, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.label_3.setFont(font) 
        self.label_3.setObjectName("label_3") 
        self.label = QtWidgets.QLabel(self.centralwidget) 
        self.label.setGeometry(QtCore.QRect(120, 80, 161, 31)) 
        font = QtGui.QFont() 
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        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.label.setFont(font) 
        self.label.setObjectName("label") 
        self.label_2 = QtWidgets.QLabel(self.centralwidget) 
        self.label_2.setGeometry(QtCore.QRect(120, 190, 201, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.label_2.setFont(font) 
        self.label_2.setObjectName("label_2") 
        self.deepdynaqPushButton = QtWidgets.QPushButton(self.centralwidget) 
        self.deepdynaqPushButton.setGeometry(QtCore.QRect(640, 580, 111, 41)) 
        font = QtGui.QFont() 
        font.setPointSize(10) 
        font.setBold(True) 
        font.setItalic(False) 
        font.setWeight(75) 
        self.deepdynaqPushButton.setFont(font) 
    self.deepdynaqPushButton.setStyleSheet("backgroundcolor:rgb(255,255,255)") 
        self.deepdynaqPushButton.setObjectName("deepdynaqPushButton") 
        self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) 
        self.lineEdit.setGeometry(QtCore.QRect(350, 510, 261, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(11) 
        font.setBold(True) 
        font.setWeight(75) 
        self.lineEdit.setFont(font) 
        self.lineEdit.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.lineEdit.setObjectName("lineEdit") 
        self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) 
        self.lineEdit_2.setGeometry(QtCore.QRect(340, 10, 271, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(11) 
        font.setBold(True) 
        font.setWeight(75) 
        self.lineEdit_2.setFont(font) 
        self.lineEdit_2.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.lineEdit_2.setObjectName("lineEdit_2") 
        self.cancel_pushButton = QtWidgets.QPushButton(self.centralwidget) 
        self.cancel_pushButton.setGeometry(QtCore.QRect(810, 650, 91, 31)) 
        font = QtGui.QFont() 
        font.setBold(True) 
        font.setWeight(75) 
        self.cancel_pushButton.setFont(font) 
        self.cancel_pushButton.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.cancel_pushButton.setObjectName("cancel_pushButton") 
        self.plainTextEdit_no_goals = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_no_goals.setGeometry(QtCore.QRect(420, 70, 61, 41)) 
        self.plainTextEdit_no_goals.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_no_goals.setObjectName("plainTextEdit_no_goals") 
        self.label_4 = QtWidgets.QLabel(self.centralwidget) 
        self.label_4.setGeometry(QtCore.QRect(360, 250, 81, 21)) 
        font = QtGui.QFont() 
        font.setPointSize(10) 
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        self.label_4.setFont(font) 
        self.label_4.setObjectName("label_4") 
        self.label_5 = QtWidgets.QLabel(self.centralwidget) 
        self.label_5.setGeometry(QtCore.QRect(470, 250, 51, 21)) 
        font = QtGui.QFont() 
        font.setPointSize(10) 
        self.label_5.setFont(font) 
        self.label_5.setObjectName("label_5") 
        self.label_6 = QtWidgets.QLabel(self.centralwidget) 
        self.label_6.setGeometry(QtCore.QRect(120, 140, 161, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.label_6.setFont(font) 
        self.label_6.setObjectName("label_6") 
        self.plainTextEdit_2_no_agents = 
QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_2_no_agents.setGeometry(QtCore.QRect(420, 130, 61, 41)) 
        self.plainTextEdit_2_no_agents.setStyleSheet("background-color:rgb(255, 
255, 255)") 
    self.plainTextEdit_2_no_agents.setObjectName("plainTextEdit_2_no_agents") 
        self.pushButton = QtWidgets.QPushButton(self.centralwidget) 
        self.pushButton.setGeometry(QtCore.QRect(630, 450, 31, 21)) 
        self.pushButton.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.pushButton.setObjectName("pushButton") 
        self.label_7 = QtWidgets.QLabel(self.centralwidget) 
        self.label_7.setGeometry(QtCore.QRect(690, 240, 291, 281)) 
        self.label_7.setText("") 
   self.label_7.setPixmap(QtGui.QPixmap("E:/MSC/FinalProject/images/new.jpg")) 
        self.label_7.setScaledContents(True) 
        self.label_7.setObjectName("label_7") 
        self.label_8 = QtWidgets.QLabel(self.centralwidget) 
        self.label_8.setGeometry(QtCore.QRect(600, 80, 91, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.label_8.setFont(font) 
        self.label_8.setObjectName("label_8") 
        self.plainTextEdit_action1 = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_action1.setGeometry(QtCore.QRect(680, 70, 51, 41)) 
        self.plainTextEdit_action1.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_action1.setObjectName("plainTextEdit_action1") 
        self.plainTextEdit_action2 = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_action2.setGeometry(QtCore.QRect(750, 70, 51, 41)) 
        self.plainTextEdit_action2.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_action2.setObjectName("plainTextEdit_action2") 
        self.plainTextEdit_action3 = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_action3.setGeometry(QtCore.QRect(820, 70, 51, 41)) 
        self.plainTextEdit_action3.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_action3.setObjectName("plainTextEdit_action3") 
        self.plainTextEdit_action4 = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_action4.setGeometry(QtCore.QRect(890, 70, 51, 41)) 
        self.plainTextEdit_action4.setStyleSheet("background-color:rgb(255, 255, 
255)") 
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        self.plainTextEdit_action4.setObjectName("plainTextEdit_action4") 
        self.label_9 = QtWidgets.QLabel(self.centralwidget) 
        self.label_9.setGeometry(QtCore.QRect(600, 150, 91, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.label_9.setFont(font) 
        self.label_9.setObjectName("label_9") 
        self.plainTextEdit_agent2 = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_agent2.setGeometry(QtCore.QRect(750, 140, 51, 41)) 
        self.plainTextEdit_agent2.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_agent2.setObjectName("plainTextEdit_agent2") 
        self.plainTextEdit_agent3 = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_agent3.setGeometry(QtCore.QRect(820, 140, 51, 41)) 
        self.plainTextEdit_agent3.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_agent3.setObjectName("plainTextEdit_agent3") 
        self.plainTextEdit_action4_2 = 
QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_action4_2.setGeometry(QtCore.QRect(890, 140, 51, 41)) 
        self.plainTextEdit_action4_2.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_action4_2.setObjectName("plainTextEdit_action4_2") 
        self.plainTextEdit_agent1 = QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_agent1.setGeometry(QtCore.QRect(680, 140, 51, 41)) 
        self.plainTextEdit_agent1.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_agent1.setObjectName("plainTextEdit_agent1") 
        self.textEdit_st1 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_st1.setGeometry(QtCore.QRect(390, 280, 41, 31)) 
        self.textEdit_st1.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_st1.setObjectName("textEdit_st1") 
        self.textEdit_st2 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_st2.setGeometry(QtCore.QRect(390, 320, 41, 31)) 
        self.textEdit_st2.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_st2.setObjectName("textEdit_st2") 
        self.textEdit_st3 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_st3.setGeometry(QtCore.QRect(390, 360, 41, 31)) 
        self.textEdit_st3.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_st3.setObjectName("textEdit_st3") 
        self.textEdit_rw1 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_rw1.setGeometry(QtCore.QRect(470, 280, 41, 31)) 
        self.textEdit_rw1.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_rw1.setObjectName("textEdit_rw1") 
        self.textEdit_rw2 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_rw2.setGeometry(QtCore.QRect(470, 320, 41, 31)) 
        self.textEdit_rw2.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_rw2.setObjectName("textEdit_rw2") 
        self.textEdit_rw3 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_rw3.setGeometry(QtCore.QRect(470, 360, 41, 31)) 
        self.textEdit_rw3.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_rw3.setObjectName("textEdit_rw3") 
        self.textEdit_st4 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_st4.setGeometry(QtCore.QRect(390, 400, 41, 31)) 
        self.textEdit_st4.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_st4.setObjectName("textEdit_st4") 
        self.textEdit_rw4 = QtWidgets.QTextEdit(self.centralwidget) 
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        self.textEdit_rw4.setGeometry(QtCore.QRect(470, 400, 41, 31)) 
        self.textEdit_rw4.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_rw4.setObjectName("textEdit_rw4") 
        self.textEdit_st5 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_st5.setGeometry(QtCore.QRect(390, 440, 41, 31)) 
        self.textEdit_st5.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_st5.setObjectName("textEdit_st5") 
        self.textEdit_rw5 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_rw5.setGeometry(QtCore.QRect(470, 440, 41, 31)) 
        self.textEdit_rw5.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_rw5.setObjectName("textEdit_rw5") 
        self.label_10 = QtWidgets.QLabel(self.centralwidget) 
        self.label_10.setGeometry(QtCore.QRect(540, 250, 51, 21)) 
        font = QtGui.QFont() 
        font.setPointSize(10) 
        self.label_10.setFont(font) 
        self.label_10.setObjectName("label_10") 
        self.textEdit_pr1 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_pr1.setGeometry(QtCore.QRect(540, 280, 41, 31)) 
        self.textEdit_pr1.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_pr1.setObjectName("textEdit_pr1") 
        self.textEdit_pr2 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_pr2.setGeometry(QtCore.QRect(540, 320, 41, 31)) 
        self.textEdit_pr2.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_pr2.setObjectName("textEdit_pr2") 
        self.textEdit_pr3 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_pr3.setGeometry(QtCore.QRect(540, 360, 41, 31)) 
        self.textEdit_pr3.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_pr3.setObjectName("textEdit_pr3") 
        self.textEdit_pr4 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_pr4.setGeometry(QtCore.QRect(540, 400, 41, 31)) 
        self.textEdit_pr4.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_pr4.setObjectName("textEdit_pr4") 
        self.textEdit_pr2_4 = QtWidgets.QTextEdit(self.centralwidget) 
        self.textEdit_pr2_4.setGeometry(QtCore.QRect(540, 440, 41, 31)) 
        self.textEdit_pr2_4.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.textEdit_pr2_4.setObjectName("textEdit_pr2_4") 
        self.pause_pushButton = QtWidgets.QPushButton(self.centralwidget) 
        self.pause_pushButton.setGeometry(QtCore.QRect(840, 540, 91, 31)) 
        font = QtGui.QFont() 
        font.setBold(True) 
        font.setWeight(75) 
        self.pause_pushButton.setFont(font) 
        self.pause_pushButton.setStyleSheet("background-color:rgb(255, 255, 255)") 
        self.pause_pushButton.setObjectName("pause_pushButton") 
        self.plainTextEdit_action4_3 = 
QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_action4_3.setGeometry(QtCore.QRect(960, 70, 51, 41)) 
        self.plainTextEdit_action4_3.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_action4_3.setObjectName("plainTextEdit_action4_3") 
        self.plainTextEdit_action4_4 = 
QtWidgets.QPlainTextEdit(self.centralwidget) 
        self.plainTextEdit_action4_4.setGeometry(QtCore.QRect(960, 140, 51, 41)) 
        self.plainTextEdit_action4_4.setStyleSheet("background-color:rgb(255, 255, 
255)") 
        self.plainTextEdit_action4_4.setObjectName("plainTextEdit_action4_4") 
        MainWindow.setCentralWidget(self.centralwidget) 
        self.menubar = QtWidgets.QMenuBar(MainWindow) 
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        self.menubar.setGeometry(QtCore.QRect(0, 0, 1029, 21)) 
        self.menubar.setObjectName("menubar") 
        MainWindow.setMenuBar(self.menubar) 
        self.statusbar = QtWidgets.QStatusBar(MainWindow) 
        self.statusbar.setObjectName("statusbar") 
        MainWindow.setStatusBar(self.statusbar) 
 
        self.retranslateUi(MainWindow) 
        QtCore.QMetaObject.connectSlotsByName(MainWindow) 
 
    def retranslateUi(self, MainWindow): 
        _translate = QtCore.QCoreApplication.translate 
        MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) 
        self.rlPushButton.setText(_translate("MainWindow", "RL-Q ")) 
        self.dynaqPushButton.setText(_translate("MainWindow", "DYNA-Q")) 
        self.label_3.setText(_translate("MainWindow", "Rewarding Criteria")) 
        self.label.setText(_translate("MainWindow", "Number of Goals")) 
        self.label_2.setText(_translate("MainWindow", "Number of Steps (max)")) 
        self.deepdynaqPushButton.setText(_translate("MainWindow", "Deep Dyna Q+")) 
        self.lineEdit.setText(_translate("MainWindow", "**Select Scheduling 
Algorithm**")) 
        self.lineEdit_2.setText(_translate("MainWindow", "**Select Scheduling 
Parameters**")) 
        self.cancel_pushButton.setText(_translate("MainWindow", "Cancel")) 
        self.label_4.setText(_translate("MainWindow", "No. Sub-tasks")) 
        self.label_5.setText(_translate("MainWindow", "Reward")) 
        self.label_6.setText(_translate("MainWindow", "Number of Agents")) 
        self.pushButton.setText(_translate("MainWindow", "+")) 
        self.label_8.setText(_translate("MainWindow", "Actions")) 
        self.label_9.setText(_translate("MainWindow", "Agents")) 
        self.label_10.setText(_translate("MainWindow", "Priority")) 
        self.pause_pushButton.setText(_translate("MainWindow", "Pause")) 

 

class Ui(QtWidgets.QMainWindow): 
    def __init__(self): 
        super(Ui, self).__init__() 
        uic.loadUi('main_window.ui', self) 
      self.dyna_button = self.findChild(QtWidgets.QPushButton, 'dynaqPushButton')   
        self.dyna_button.clicked.connect(self.dyna_buttonPressed)   
        self.rl_button = self.findChild(QtWidgets.QPushButton, 'rlPushButton') 
        self.rl_button.clicked.connect(self.rl_buttonPressed) 
self.cl_button = self.findChild(QtWidgets.QPushButton, 'cancel_pushButton') 
       self.cl_button.clicked.connect(self.cancel_buttonPressed) 
self.data_text1 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_no_goals') 
        self.data_text2 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_2_no_agents') 
        self.action1 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_action1') 
        self.action2 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_action2') 
        self.action3 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_action3') 
        self.action4 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_action4') 
        self.agent1 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_agent1') 
        self.agent2 = self.findChild(QtWidgets.QPlainTextEdit, 
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'plainTextEdit_agent2') 
        self.agent3 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_agent3') 
        self.agent4 = self.findChild(QtWidgets.QPlainTextEdit, 
'plainTextEdit_agent4') 

 

2. Agents and Tasks Initialization 

class Agent: 
    def __init__(self, count, status): 
        self.count = count 
        self.status = status 

 

def __init__(self, tot_actions=ACTIONS, agents=AGENTS, 
init_position=current_goal_pos): 
    super(EnvMaze, self).__init__() 
    self.action_space = tot_actions 
    self.n_actions = len(self.action_space) 
    self.n_agents = agents 
    self.n_agents = len(self.n_agents) 

 

3. Environment Initialization with reset 

def env_reset(self): 
    for xy in range(goals_count): 
        self.agent_position[xy] = 0 
    self.number_position = 0 
    self.gain_reward = 0 

 

4. Task Backlog Creation 

def updateEnv(): 
    counter = 0 
    sum = 0 
 
    # Obtained list for Episodes via Steps plotting 
    steps = [] 
    # Adding the costs for each episodes in resulted list 
    sum_costs = [] 
 
    for epi in range(4000): 
 
        env.env_reset() 
        print("episode=" + str(episode)) 
        with open('logfile.txt', 'a') as fp: 
            fp.writelines("\n" + "-----------------------------" + "\n") 
            fp.writelines(" episode= " + str(episode) + "\n") 
 
        position = [0, 0, 0] 
 
        # Next update the count of Steps in each Episode 
        i = 0 
        # Next update the cost for each episode 
        cost = 0 
 
        while True: 
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            # RL chooses action based on environment observation 
            n_action = RL.select_next_action(str(position), episode) 
 
            # RL takes an action and get the next observation and reward 
            next_position, reward, done, comp_results = env.step(n_action) 
            # RL learns from this transition and calculating the cost 
            cost += RL.learn(str(position), n_action, reward, str(next_position), 
done) 
            RL.learn(str(position), n_action, reward, str(next_position), done) 
            env_model.store_transition(str(position), n_action, reward, 
next_position) 
 
            # for Random_agent & Dyna-Q agent-range(10) 
            # for RL_agent use range(1) 
            for n in range(10):  # learn 10 more times using the EnvModel in 
model_RL.py 
                ms_1, ma_1 = env_model.sample_s_a()  # ms here is a string 
                mr_1, ms_11 = env_model.get_r_s_(ms_1, ma_1)  
  #state transition 
  #ms-current state, ma-current action, mr-current reward gained 
  #ms_ - next possible state 
                RL.learn(ms_1, ma_1, mr_1, str(ms_11), done) 
 
            position = next_position.copy() 
 
            # Calculating number of Steps in the current Episode 
            i += 1 
 
            if done: 
                sum = sum + reward 
  #dyna simulation-visiting real env.once in 50 episodes 
                if epi % 50 == 0: 
                    time.sleep(10) 
                    data_out.append(sum / 50) 
                    sum = 0 
                    indexes.append(episode) 
                    counter = counter + 1 
                    env_model.get_env() 
         env_model.get_agent_env() 
                steps += [i] 
                sum_costs += [cost] 
                break 
 
            env_model.showMaze(ms_1, ma_1) 
            state1 = eval(ms_1[1:-4]) 
            state2 = eval(ms_1[4:-1]) 
            state_a.append(state1) 
            state_b.append(state2) 
 

 

 

5. RL Learning 

 

I. Deep Dyna-Q+ Learning Agent Learning 

class DeepQNetwork: 
    def __init__( 
            self, 
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            tot_actions, tot_features, n_agents, learning_rate=0.1, 
            reward_decay=0.9, replace_target_iterations =500, 
     e_greedy=0.9, batch_size=64,             
            memory_size=500, output_graph=True, 
            e_greedy_increment=None,  
    ): 
        self.tot_actions = tot_actions 
        self.tot_features = tot_features         
        self.gamma = reward_decay # discount factor 
 self.lr = learning_rate 
        self.max_epsilon = e_greedy  
        self.replace_target_iterations = replace_target_iterations 
 self.epsilon = 0 if e_greedy_increment is not None else self.max_epsilon 
        self.memory_size = memory_size   # replay buffer size 
        self._epsilon_increment = e_greedy_increment 
        self.batch_size = batch_size  # minibatch size 
        self.n_agents = n_agents 

 

def build_dqn(self): 
    # ------------------ building evaluate_net ------------------ 
    self.s = tf.compat.v1.placeholder(tf.float32, [None, self.tot_features], 
name='s')  # input for the dqn-states 
    self.q_target = tf.compat.v1.placeholder(tf.float32, [None, self.tot_actions], 
                               name='Q_target')  # for calculating loss 
    with tf.compat.v1.variable_scope('eval_net'): 
        # c_names(collections_names) are the collections to store variables 
        c_names, n_l1, w_initializer, b_initializer = \ 
            ['eval_net_params', tf.compat.v1.GraphKeys.GLOBAL_VARIABLES], 10, \ 
            tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)  # 
config of layers 
 
        # this is the first layer. Here collections are used later when assign 
them to target net 
        with tf.compat.v1.variable_scope('l1'): 
            w1 = tf.compat.v1.get_variable('w1', [self.tot_features, n_l1], 
initializer=w_initializer, collections=c_names) 
            b1 = tf.compat.v1.get_variable('b1', [1, n_l1], 
initializer=b_initializer, collections=c_names) 
            # tf.matmul - multiply 2 matrixes 
            l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1) 
 
        # this is the second layer. Here collections are used later when assign 
them to target net 
        # take output of first layer - l1 as input 
        with tf.compat.v1.variable_scope('l2'): 
            w2 = tf.compat.v1.get_variable('w2', [n_l1, self.tot_actions], 
initializer=w_initializer, collections=c_names) 
            b2 = tf.compat.v1.get_variable('b2', [1, self.tot_actions], 
initializer=b_initializer, collections=c_names) 
            self.q_eval = tf.matmul(l1, w2) + b2 
 
    # calculating the loss function 
    with tf.compat.v1.variable_scope('loss'): 
        # loss=squared difference between q value and q target 
        self.loss = tf.reduce_mean(tf.math.squared_difference(self.q_target, 
self.q_eval)) 
        print("loss", self.loss) 
    # define training operation. It is a form of gradient decent. we use 
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RMSPropOptimizer here. 
    with tf.compat.v1.variable_scope('train'): 
        self.train_operation = 
tf.compat.v1.train.RMSPropOptimizer(self.lr).minimize( 
            self.loss)  # here we need to minimize the loss function 
        print("train_operation", self.train_operation) 
 
    # ------------------ building target_net ------------------ 
    self.s_ = tf.compat.v1.placeholder(tf.float32, [None, self.tot_features], 
name='s_')  # input 
    with tf.compat.v1.variable_scope('target_net'): 
        # c_names(collections_names) are the collections to store variables 
        # GraphKeys.GLOBAL_VARIABLES-tell tf to keep track of all the variables 
        c_names = ['target_net_params', tf.compat.v1.GraphKeys.GLOBAL_VARIABLES] 
 
        # this is the first layer. Here collections are used later when assign to 
target net 
        with tf.compat.v1.variable_scope('l1'): 
            w1 = tf.compat.v1.get_variable('w1', [self.tot_features, n_l1], 
initializer=w_initializer, collections=c_names) 
            b1 = tf.compat.v1.get_variable('b1', [1, n_l1], 
initializer=b_initializer, collections=c_names) 
            l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1) 
            print("c_names1", c_names) 
 
        # this is the second layer. Here collections are used later when assign 
them to target net 
        with tf.compat.v1.variable_scope('l2'): 
            w2 = tf.compat.v1.get_variable('w2', [n_l1, self.tot_actions], 
initializer=w_initializer, collections=c_names) 
            b2 = tf.compat.v1.get_variable('b2', [1, self.tot_actions], 
initializer=b_initializer, collections=c_names) 
            self.q_next = tf.matmul(l1, w2) + b2 
            print("c_names2", c_names) 

 

 

# defining the learing step size in each epoch/episode 
self.step_size = 0 
 
# initializing zero memory [state, action, reward, next_state] 
self.memory = np.zeros((self.memory_size, tot_features * 2 + 2)) 
 
def agents_learn(self): 
    #timeweight to k initialization 
    self.timeWeight = 1e-1 
    # checking to replace target parameters 
    if self.step_size % self.replace_target_iter == 0: 
        self.sess.run(self.replace_target_op) 
         
    # sampling batch memory from all memory 
    if self.memory_counter > self.memory_size: 
        sample_index = np.random.choice(self.memory_size, size=self.batch_size) 
    else: 
        sample_index = np.random.choice(self.memory_counter, size=self.batch_size) 
    batch_memory = self.memory[sample_index, :] 
 
    q_next, q_eval = self.sess.run( 
        [self.q_next, self.q_eval], 
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        feed_dict={ 
            self.s_: batch_memory[:, -self.tot_features:],  # fixed parameters 
            self.s: batch_memory[:, :self.tot_features],  # newest parameters 
        }) 
 
    # change q_target w.r.t q_evaluation action 
    q_target = q_eval.copy()  # copy the network, bcs we want the loss of all the 
non-optimal actions to be zero 
 
    batch_index = np.arange(self.batch_size, dtype=np.int32) 
    eval_act_index = batch_memory[:, self.tot_features].astype(int) 
    reward = batch_memory[:, self.tot_features + 1] 
    q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, 
axis=1) 
 
#Dyna Q+ implementation goes here. Addition of extra reward for unseen environment 
states. 
    q_target += self.timeWeight * np.sqrt(time.time() - (time.time() - 100)) 
 
    # train evaluation network 
    _, self.cost = self.sess.run([self.train_operation, self.loss], 
     feed_dict={self.s: batch_memory[:, :self.tot_features],self.q_target: 
q_target}) 
    self.cost_his.append(self.cost) 
 
    # increasing epsilon 
    self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < 
self.max_epsilon else self.max_epsilon 
    self.step_size += 1 

 

II. Dyna-Q+ Agent Learning 

 

def select_next_action(self, observation, episode): 
    self.if_state_exist(observation) 
    # act_s selection based on observation 
    if self.agent == "RANDOM_LEARNING_AGENT": 
        act_s = np.random.choice(self.n_actions) 
        return act_s 
    if np.random.uniform() < self.epsilon: 
        # Exploitation starts 
        # choose best action - taking the biggest Q value for this state 
        state_action = self.q_table.ix[observation, :] 
        state_action = 
state_action.reindex(np.random.permutation(state_action.index)) 
        print("state_action", state_action, "\n") 
        max_value = 0 
        for act in list(self.q_table.columns.values): 
            if self.q_table.ix[observation, act_s] >= max_value: 
                max_action = act 
                max_value = self.q_table.ix[observation, act_s] 
        act_s = max_action 
    else: 
        # Exploration starts 
        # agents choose random action 
        act_s = np.random.choice(self.n_actions) 
 
    # reduce epsilon because we need less and less exploration –used e-epsilon 
greedy action selection mechanism 
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    self.epsilon = self.min_epsilon + (self.max_epsilon - self.min_epsilon) * 
np.exp(-self.decay_rate * episode) 
    episode += 1 
    # logging results 
    print("Episode: ", episode, " ", "Epsilon: ", self.epsilon) 

 

 

6. Priority Based Task Allocation 

import heapq 
 
for a in subtasks_and_rewards : 
    heapq.heappush(q, ( 
        subtasks_and_rewards [x][2], subtasks_and_rewards [x])) 
    x = x + 1 
 
subtasks_and_rewards= [] 
while q: 
    next_item = heapq.heappop(q) 
    subtasks_and_rewards+= (next_item[1],) 

 

def step_priority(self, action_id): 
    for agent in range(self.agents.size): 
 #keep track of task completions 
        task_compl= 0 
        self.position[action_id] = self.position[action_id] + 1 
        self.position_no = self.position_no + 1 
        done = False 
        if self.position_no >= No_of_steps: 
            done = True 
            task_compl = 0 
            for g in range(Number_of_goals): 
                if self.is_completed_priority(g) and self.agent_state_empty(): 
                    self.reward_gain = self.reward_gain + subtasks_and_rewards 
[g][1] 
                    task_compl = task_compl + 1 
                    self.step(action_id) 
        action_id 

 

 

7. Agent Message Passing 

def store_transitions(self,state,action,reward,next_state, agent_state): 
    if not hasattr(self, 'memory_counter'): 
        self.memory_counter = 0  # keeps tract of the no.of memories we store 
 
    transition = np.hstack( 
        (state,[action,reward],next_state))  # numpy.hstack() function is used to 
stack the sequence of input arrays horizontally 
    
    # replacing old memory with new memory 
    # the agent has some fixed memory size and we want to fill up to that memory 
and when we exceed the memory, we want to go to beginning and start up again 
overridden it 
    index = self.memory_counter % self.memory_size 
 
    self.memory[index, :] = transition 
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    self.memory_counter += 1 
 
    print("transition", transition) 
    print("Current database", (state, [action, reward],next_state)) 
    print(utils.colorize(tabulate((state,next_state), headers='keys', 
tablefmt='psql'), "blue", highlight=True)) 
    transition2 = [state,next_state] 
    # agent_state = agent_state[1] 
    agent = [state,next_state], "Agent: ", (find_agent(state,t), 
np.random.get_free_agent(0, self.n_agents)) 
    print(agent) 
    with open('agent.txt', 'a') as fp: 
        fp.write(str(agent) + '\n') 

 

def find_agent(self, arr, time): 
    n = len(arr) 
 
    # Keeping track of free machine agents 
    agent = [False] * time 
 
    # Storing agent (Sequence of tasks/jobs) 
    job = ['-1'] * time 
 
    # Iterating through all inserted tasks/jobs 
    for i in range(len(arr)): 
 
        # to find a free machine agent for this task/job 
   # here we start from the # last possible agent 
        for j in range(n_agents): 
 
            # Free agent found 
            if agent[j] is False: 
                agent[j] = True 
                job[j] = arr[0] 
                break 

 

8. Printing Maze View 

def showMaze(self, state, action): 
    print('-------------------------------------') 
    out = '| ' 
    for j in self.database: 
        if j == 0: 
            token = '0' 
        if j == 1: 
            token = '1' 
        if j == 2: 
            token = '2' 
        out += token + ' | ' 
        if j == 3: 
            token = '3' 
        out += token + ' | ' 
        # iterate over episodes for all agents 
        print(out) 
 
    print('-------------------------------------') 
    return out 



82 
 

9. Generating the Schedule 

 

import plotly.express as sc_plx 
import pandas as pd 
import os 
 
def draw_schedule(self): 
    df = pd.read_csv(‘allocated_tasks.csv') 
 
    sc_fig = sc_plx.timeline(df, x_start="Start", x_end="Finish", y="Resource", 
color="Task") 
 
    sc_fig.update_layout(xaxis=dict( 
        title='Timestamp', 
        tickformat='%H:%M:%S', 
    )) 
    if not os.path.exists("images"): 
        os.mkdir("images") 
    sc_fig.write_image("images/schedule.png") 
    sc_fig.show() 
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          Appendix 02: 

Class Diagram   

I. Class Diagram for Dyna Q+ Learning 

 

 

Appendix 02.A: Class Diagram for Dyna Q+ Learning  
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II. Class Diagram for Deep Dyna Q+ Learning 

 

Appendix 02.B: Class Diagram for Deep Dyna Q+ Learning  
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          Appendix 03: 

Publications   

I. Review Paper Published in SN Computer Science-Springer Nature 

Link: https://link.springer.com/article/10.1007/s42979-020-00326-5 

Appendix 03.A: First Page of the Review Paper 

 

https://link.springer.com/article/10.1007/s42979-020-00326-5
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II. Research Paper Presented at ICICT 2021 Conference 

Link: http://icicts.com/2021/ 

 

 

 

 

Appendix 03.B: First Page of the Research Paper 

 

http://icicts.com/2021/

