STUDY ON THE PERFORMANCE OF CFRP STRENGTHENED CORRODED STEEL MEMBERS

U.N.D.Perera

168045 K

Degree of Master of Philosophy

Department of Civil Engineering

University of Moratuwa Sri Lanka

May 2020

STUDY ON THE PERFORMANCE OF CFRP STRENGTHENED CORRODED STEEL MEMBERS

Ushettige Nirosha Dilrangi Perera

168045K

Thesis submitted in partial fulfilment of the requirements for the degree Master of Philosophy

Department of Civil Engineering

University of Moratuwa Sri Lanka

May 2020

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature Date: 05.27.2020

The above candidate has carried out research for the MPhil thesis under my supervision.

Signature of the supervisor:

Date: 05.27.2020

ACKNOWLEDGEMENT

Throughout my years of study, I had many opportunities to explore knowledge and gather skills in research. Many parties contributed to the success of this project in many ways. I hereby acknowledge all of them and extend my heartfelt gratitude.

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. J.C.P.H. Gamage, Senior Lecturer at the Department of Civil Engineering, the University of Moratuwa for her valuable guidance, instructions and patience to make this project a reality. As a woman in the Civil Engineering industry, her expertise in balancing professional life with family life has influenced me throughout and beyond.

My special thanks go to the Senate Research Grant of the University of Moratuwa (Grant no: SRC/LT/2016/19) for creating this opportunity for me by providing financial support during this research study.

I would like to convey my sincere gratitude to Prof. S.M.A. Nanayakkara and Prof. J.M.S. Bandara, former Heads of the Department, Department of Civil Engineering and Prof. S.A.S Kulathilake, Head of the Department, Department of Civil Engineering, University of Moratuwa.

I would like to thank Professor Ranjith Dissanayake, Senior Lecturer at the Department of Civil Engineering, University of Peradeniya, for the guidance provided to me as the chairperson of the progress review committee. I am grateful to Dr. Lesly Ekanayake, Senior Lecturer at the Department of Civil Engineering, University of Moratuwa, Mr. V. Sivahar, Professor of Materials Science and Engineering for the advice and support given. I am also thankful to Prof. A.A.D.A.J Perera and Prof. R.U. Halwatura, former research coordinators of Department of Civil Engineering, University of Moratuwa, for their support throughout the period.

Professional assistance was also provided by a variety of academic staff at the Department of Civil Engineering and was essential in refining our research on numerous occasions during the progress of this study. Hence my heartfelt gratitude is conveyed unto them for their sustained interest and wilful advice.

The laboratory staff of the Departments of Civil Engineering, Mechanical Engineering and Materials Science Engineering, University of Moratuwa, is also acknowledged. Specially, Ms. C.T. Amila Perera, H.P.U. Madushan and D.M.N.L. Dissanayake are acknowledged for their kind and selfless assistance in my academic work.

I am extremely thankful for all my fellow research students, namely, Kanishka Chandrathilaka and Indunil Erandi who gave me huge support during the specimen casting and testing. Also, my fellow bachelor colleagues Erandi Ariyachandra and Manasi Wijerathne are heartfully thanked for their friendly assistance.

Airow Solutions (Pvt) Ltd is greatly appreciated for providing CFRP materials and importing the adhesive materials on time. Mr. François Petiteau, the Sales Engineer at Digital Surf, is also acknowledged for his guidance given on using MountainsMap software.

Finally, I would like to thank my husband, Hareendra Herath, for his understanding, unfailing support and the encouragement throughout. Also, my mother, father and sister who always stood by the side with me and my friends for their kind assistance, blessings and encouragement when it was most required.

ABSTRACT

Most of the metallic structures such as offshore platforms and railway bridges are now in the need of retrofitting due to corrosion. One of the efficient ways of strengthening these structures is by using (Carbon Fibre Reinforced Polymer) CFRP materials. Since the weakest link in this system is the bond between the adherends, the effect of pre-corrosion level of the steel elements on the bond characteristics and durability performance of the strengthened units should be properly evaluated. Even though there are many research studies on bond durability none of them has used corroded steel plates for bond strength evaluation and considered the inherent surface characteristics of the corroded steel surfaces. Therefore, this study aimed at investigating the bond performance of CFRP bonded corroded steel plates which are subjected to different ageing conditions and surface roughness characteristics.

A total of one hundred and twenty-eight conditioned and non-conditioned double strap joint specimens were tested. Both corroded and non-corroded steel plates and two different surface preparation methods were used to witness the importance of the surface texture properties. Scanning Electronic Microscopic (SEM) analysis was carried out to determine the surface characteristic properties of the corroded/non-corroded steel plates. The short-term bond performance was evaluated along with different bonding configurations. In the long-term analysis, six different environmental exposures; seawater, wet/dry cycles, open tropical environment, and distilled water at three different temperature levels, 25 °C -30 °C, 40 °C and 3 °C were considered for conditioning. Residual bond strengths of the conditioned test specimens were evaluated after 6- and 12-month exposure periods at ambient temperature. A numerical model was developed to estimate the stress-strain variation of CFRP/steel specimens along the bond line. Bond-slip curves were evaluated to estimate the interfacial fracture energy of CFRP/steel composites. Moreover, experimental results were compared with the analytical results obtained from Hart-Smith model and a theoretical relationship between the failure modes was derived.

Test results indicated a major influence of surface roughness on the long-term performance of CFRP/steel joints. CFRP strengthened corroded steel joints showed a residual bond capacity of about 90% in seawater immersion and 111% in tropical environmental condition suggesting its suitability to adopt CFRP technique in these exposures. After 12 months of exposure duration, a similar bond degradation was observed of about 31% in distilled water immersed specimens at ambient temperature and about 60% in dry/wet cyclic condition irrespective of the pre-corrosion level. During an exposure period of 12 months, the rate of bond degradation was found to be less than 20% for cold water immersed specimens with non-corroded steel plates. The interfacial fracture energy of CFRP/steel composites exposed to hot humid environments indicated a significant reduction of 78% compared to control test specimens.

Keywords: *CFRP/Steel*, *Double strap joints*, *Corroded steel*, *Bond performance*, *Environmental durability*

TABLE OF CONTENTS

				Page	
D	ECL	ARAT	ION	i	
A	CKN	IOWLE	EDGEMENT	ii	
A	BST	RACT		iv	
T.	ABL	E OF C	CONTENTS	v	
L	IST (OF FIG	URES	х	
L	IST (OF TAI	BLES	XV	
L	LIST OF ABBREVIATIONS				
1	IN	TROD	UCTION	1	
	1.1	Backg	ground	1	
	1.2	The ai	m and objectives	3	
	1.3	Layou	t of the Thesis	4	
2	LI	ΓERAΊ	TURE REVIEW	7	
	2.1	Gener	al	7	
	2.2	Streng	thening steel structures using CFRP	7	
		2.2.1	Material Characteristics	8	
		2.2.2	Available Codes and Guidelines	11	
		2.2.3	Real World Applications	11	
		2.2.4	Bonding Techniques	14	
		2.2.5	Limitations in CFRP application in steel structures	16	
	2.3	Streng	thening steel elements subjected to corrosion using CFRP	16	
		2.3.1	Introduction to corrosion	16	
		2.3.2	Galvanic Corrosion	17	
		2.3.3	Application of CFRP in corroded steel elements	18	
	2.4	Bond	Performance of Steel/CFRP Joints	21	
		2.4.1	Force Transfer between the metal substrate, CFRP and adhesiv	e 21	
		2.4.2	Failure Modes	21	
		2.4.3	Durability of the Bond	23	
		2.4.4	Evaluation of Bond Strength	29	
		2.4.5	Bond Testing Methods	33	

	2.5	Resear	ch Gap and Summary	35
3	MA	ATERIA	AL PROPERTIES	37
	3.1	Introdu	action	37
	3.2	CFRP	Wrap	38
		3.2.1	General	38
		3.2.2	Manufacturer Specified Properties	38
		3.2.3	Measured Properties	38
	3.3	Adhesi	ve	42
		3.3.1	General	42
		3.3.2	Manufacturer Specified Properties	42
		3.3.3	Measured Properties	43
	3.4	Steel		45
		3.4.1	General	45
		3.4.2	Measured Properties	45
	3.5	Summ	ary	48
4	SE	M ANA	LYSIS ON THE SURFACE MORPHOLOGY OF CORRODED	
	ST	EEL SU	JRFACES	49
	4.1	Introdu	iction	49
	4.2	Surface	e Morphology	51
		4.2.1	SEM stereo – imaging	51
		4.2.2	Acquisition of the roughness parameters using 3D reconstruction	52
		4.2.2.1	Evaluating the surface roughness parameters	52
		4.2.2.2	Evaluating the profile roughness parameters	57
	4.3	Surface	e Metrology	58
		4.3.1	General	58
		4.3.2	Profile and aerial field parameters	58
	4.4	Summ	ary	60
5	EX	PERIM	IENTAL PROGRAMME	61
	5.1	Introdu	iction	61
	5.2	Specin	nen Preparation and Instrumentation	61
		5.2.1	General	62
		5.2.2	Surface Preparation	63

		5.2.3	Preparation of Double Strap Joints	63
	5.3	Prelim	inary Investigation	65
		5.3.1	Effective Bond Length	65
	5.4	Detaile	ed Investigation	67
	5.5	Summ	ary	68
6	SH	IORT T	ERM BOND PERFORMANCE OF CFRP STRENGTHENED	
	CC	ORROD	ED STEEL PLATES	69
	6.1	Introdu	action	69
	6.2	Materi	als, experimental programme and test set up	69
		6.2.1	Materials	69
		6.2.2	Specimen preparation, instrumentation and testing	70
		6.2.3	Profile roughness parameters	70
	6.3	Test R	esults	71
		6.3.1	Ultimate bond strength	71
		6.3.2	The effect of surface roughness properties	73
		6.3.3	Stain variation along the CFRP bonded length	76
		6.3.4	Failure modes	77
	6.4	Summ	ary	78
7	EF	FECTS	OF BONDING TECHNIQUES OF CFRP STRENGTHENED	
	CC	ORROD	ED STEEL PLATES ON SHORT TERM PERFORMANCE	80
	7.1	Introdu	action	80
	7.2	Materi	als, experimental programme and test set up	81
		7.2.1	Materials	81
		7.2.2	Specimen preparation	81
		7.2.3	Bonding configurations	83
	7.3	Test re	esults	84
		7.3.1	Ultimate bond strength	84
		7.3.2	Strain variation along the CFRP bonded length	86
		7.3.3	The effect of surface roughness parameters	86
		7.3.4	Failure modes	87
	7.4	Summa	ıry	88

8	LO	NG TE	RM BOND PERFORMANCE OF CFRP STRENGTHENED	
	CC	RROD	ED STEEL PLATES	90
	8.1	Introdu	action	90
	8.2	Materi	als	90
	8.3	Experi	mental Programme and test set up	91
		8.3.1	Specimen Preparation	91
		8.3.2	Environmental Conditioning	91
	8.4	Test R	esults	95
		8.4.1	Behaviour in sea water	95
		8.4.2	Behaviour in distilled water under different temperatures	98
		8.4.3	Behaviour in tropical environmental exposure	100
		8.4.4	Behaviour in dry/wet conditions	101
		8.4.5	Failure modes	102
		8.4.6	The effect of surface roughness parameters	105
		8.4.7	Comparison to existing guidelines and literature	107
	8.5	Summ	ary	109
9	TH	EORE	ΓICAL/NUMERICAL MODELLING	111
	9.1	Introdu	action	111
	9.2	Theore	etical modelling	111
		9.2.1	Short-term bond performance – Joint strength degradation	111
		9.2.2	Long-term bond performance - seawater and distilled water imm	ersed
			conditions at ambient temperature	114
		9.2.2.1	Material degradation	114
		9.2.2.2	The time-dependent effective bond length	116
		9.2.2.3	The joint strength degradation	118
	9.3	Numer	rical analysis	121
		9.3.1	Validation of the model	123
		9.3.2	Bond slip relationships	123
		9.3.3	Interfacial fracture energy	127
	9.4	Summ	ary	128
10	CC	NCLU	SIONS AND RECOMMENDATIONS	129
	10.1	l Resea	arch Summary	129

10.2 Conclusions and recommendations	129
10.3 Limitations	133
10.4 Future research	133
REFERENCES	134
APPENDIX A – LIST OF PUBLICATIONS	144

LIST OF FIGURES

	Page
Figure 1.1: Layout of the thesis	04
Figure 2.1: Different forms of CFRP (a) Fabric (b) Rods (c) Strip	08
Figure 2.2: Mechanical Properties of different materials (a) Elastic Modulu	ıs (b)
Stress-strain behaviour	09
Figure 2.3: Typical location of corrosion on a steel girder bridge	19
Figure 2.4: Failure modes of an FRP strengthened steel member	22
Figure 2.5: types of debonding in FRP strengthened steel members	23
Figure 2.6: Geometric discontinuities causing stress concentrations	29
Figure 2.7: Bond Slip Relationship by Xia and Teng	32
Figure 2.8: Bond Slip Model by Dehgani et al (2012)	32
Figure 2.9: Four-Point Bending Testing Arrangement	33
Figure 2.10: (a) Single lap joint (b) Double lap joint	34
Figure 2.11: Double Strap Joint (a) Side view (b) Plan view	34
Figure 2.12: (a) Butt – Joint test specimen and (b) Pull – off test specimen	34
Figure 3.1: The general procedure of the material testing programme	37
Figure 3.2: Schematic diagram of a CFRP coupon test specimen (a) Plan v	iew (b)
side view	39
Figure 3.3: Test setup of a CFRP test coupon specimen	39
Figure 3.4: Failure mode (Edge Delamination in the Middle Gauge area) of	f CFRP
coupon test specimens	40
Figure 3.5: Stress – strain curves of CFRP test samples	41

Figure 3.6: Araldite 420A/B (resin/hardener) adhesive	42
Figure 3.7: Dimensions of an adhesive coupon specimen	43
Figure 3.8 (a): Adhesive test sample with attached strain gauges	44
Figure 3.8 (b): Test setup of an adhesive coupon	44
Figure 3.9: The failure mode of an adhesive coupon	45
Figure 3.10: Scanning Electron Microscopic (SEM) Images of Rust Levels (i) (ii) B (iii) C and (iv) D	A 46
Figure 3.11: (a) A Steel Coupon (Schematic diagram, not in scale) (b) A prepa steel coupon with strain gauges attached in the middle	ared 46
Figure 3.12: Failure mode of steel coupons	47
Figure 3.13: Stress – Strain curves obtained from steel samples of Corrosion le A, B, C and D	evel 47
Figure 4.1: sampling wavelength (a) Profile roughness parameters (b) Area roughness parameters	50
Figure 4.2: Scanning Electronic Microscope	52
Figure 4.3: The scale operator	53
Figure 4.4: 3D stereoscopic reconstruction	54
Figure 4.5: A 3D reconstructed image (a) Pseudo-colour view (b) 3D view	54
Figure 4.6: Levelling the surface using the Least Square Method	55
Figure 4.7: Form removal	55
Figure 4.8: Using the standard filter (Gaussian filter, cut-off length = 0.8 mm)	56
Figure 4.9: Extracted profile curve obtained for a corroded steel plate (Corrosi level (B)) before surface preparation	ion 57
Figure 4.10: Variation of Sa with respect to the level of corrosion	58

Figure 4.11: Variation of Sa with respect to the level of corrosion	59
Figure 4.12: The effect of surface preparation by M-01 method (a) Non – corroded steel (b) Corroded steel	60
Figure 5.1: Summary of the experimental programme	61
Figure 5.2: Visual images of Rust Levels (i) A (ii) B (iii) C and (iv) D	62
Figure 5.3: Scanning Electron Microscopic (SEM) Images of Rust Levels (i) (ii) B (iii) C and (iv) D	A 62
Figure 5.4: Corrosion level (C) samples after the surface preparation (a) M – (b) $M - 02$	- 01 63
Figure 5.5: X – Wrap Primer (X – Calibur Structural Systems) (i) Base (ii) Hardener	64
Figure 5.6: Schematic diagram of a double strap joint	64
Figure 5.7: Prepared test specimen of a double strap joint	64
Figure 5.8: Universal Testing Machine	65
Figure 5.9: Double strap joints with unequal bond lengths	66
Figure 5.10: Average load at failure Vs. CFRP bond length	67
Figure 5.11: Flowchart of the programme for the detail investigation	67
Figure 6.1: Variation of joint strength with the level of corrosion	73
Figure 6.2: Variation of surface roughness measures with respect to the correlevel	osion 74
Fig 6.3: Variation of Joint strength with the Ra	75
Fig 6.4: Variation of Joint strength with the Sa	75
Figure 6.5: Schematic view of a double strap joint and the locations of the st	rain
gauges	76

Figure 6.6: Strain variation in CFRP/Steel joint a)35 mm b)90 mm away from	the
joint	77
Figure 6.7: Failure modes observed for the specimens	78
Figure 7.1: Schematic diagram of a double strap joint and the location of strain gauges	n 82
Figure 7.2: (a & b) corroded plate before and after surface preparation, (c & d) relevant SEM images, respectively) 82
Figure 7.3: Bonding Configurations	83
Figure 7.4: Samples prepared with (a) "P" type, (b) "PC" type, (c) "G" type ar (d) "GC" type bonding configurations	nd 84
Figure 7.5: Stain variation of double strap joints	86
Figure 7.6: Failure modes observed for bonding configurations; (a1,2) "P" typ (b) "C" type, (c) "PC" type, (d) "G" type, (e) "GC" type and (f) "GCG" type	e, 88
Figure 8.1: Specimens immersed in simulated sea water condition	92
Figure 8.2: Samples immersed in distilled water at room temperature (25 $^{\circ}$ C - $^{\circ}$ C)	30 93
Figure 8.3: Samples immersed in distilled water at 40 °C	93
Figure 8.4: Samples immersed in distilled water at 3 °C	93
Figure 8.5: Samples exposed to tropical environmental condition	94
Figure 8.6: Samples subjected to dry/wet condition – in a 5% NaCl solution (V condition)	Vet 94
Figure 8.7: Variation of average joint strength with the exposure condition	96
Figure 8.8: Normalized joint strength of DW samples	99
Figure 8.9: Normalized joint strength of DW - CW samples	99

Figure 8.10: Joint strength variation of conditioned samples immersed in dis-	tilled
water after 6 months	100
Figure 8.11 Failed specimens of all exposure conditions after 6 months	105
Figure 8.12: Joint strength variation with the quality of substrate (6 months)	106
Figure 9.1: Comparison of the experimental and the theoretical model results	3114
Fig. 9.2 Normalized degradation behaviour of mechanical properties of adhe	sive
in sea water and distilled water at ambient temperature (a) Tensile Strength (ft,a)
(b) Elastic modulus (Ea)	115
Figure 9.3 Variation of effective bond length over time in DW and SW cond	itions
	117
Figure 9.4 Comparison of experimental and model predicted joint strength	
degradation over time (a) DW condition (b) SW condition	120
Figure 9.5: (a) Boundary conditions and (b) FE mesh used in the numerical	
analysis	121
Figure 9.6: The behavioural variation in adhesive properties with respect to t	he
type of conditioning and the exposure duration	122
Figure 9.7 Comparison of numerical and experimental failure loads	123
Figure 9.8. Bi-linear bond-slip curve	124
Fig. 9.9 Bond-slip curves of specimens with steel (a) NDM1 (b) NDM2 (c) I	OM1
(d) DM2	126
Fig. 9.10. (a) Determination of fracture energy using bond-slip curves (b)	
Estimated fracture energies of the test specimens	127

LIST OF TABLES

	Page
Table 2.1: Moduli of Elasticity of CFRP (Perera & Gamage, 2016)	09
Table 2.2: Advantages/Disadvantages of CFRP	10
Table 2.3: Typical values of measured material properties of adhesives in ter	nsion
(XL. Zhao, 2013)	10
Table 2.4 : Available codes/guidelines/state-of-the-art-reviews	12
Table 3.1: Laboratory test data provided by the manufacturer (X-Calibur	
Construction Chemistry Inc.)	38
Table 3.2: Measured material properties of CFRP coupons	41
Table 3.3: Manufacturer (Huntsman Advanced Materials) specified material	
properties	43
Table 3.4: Mechanical properties of steel samples	48
Table 4.1: Parameters table obtained according to ISO 25178	56
Table 4.2: Parameters table obtained according to ISO 4287 `	57
Table 4.3: Profile Parameters (ISO 4287)	58
Table 4.4: Areal Field Parameters (ISO 25178)	59
Table 5.1: Test results obtained for effective bond length investigation	66
Table 6.1: Test configuration of the experimental programme	71
Table 6.2: Short term bond testing results	72
Table 7.1: Material Properties	81
Table 7.2: Bond strength results	85
Table 8.1: Water quality properties of distilled water	92

Table 8.2: Weather summary in Colombo (data taken from timeanddate.com	95
Table 8.3: Long term test results	97
Table 8.4: Failure modes of samples exposed for 6 months duration	102
Table 8.5: Proposed Environmental durability design factors (based on the strength results obtained after 12 months exposure duration)	109
Table 9.1: Table of Data 112	
Table 9.2: Layer thicknesses in the CFRP / Steel joint	113

LIST OF ABBREVIATIONS

Abbreviation	Description
ACI	American Concrete Institute
ASTM	American Society for Testing and Materials
CFRP	Carbon Fibre Reinforced Polymer
CL(A)	Corrosion Level (A)
CL(B)	Corrosion Level (A)
CL(C)	Corrosion Level (A)
CL(D)	Corrosion Level (A)
DM1	Deteriorated steel surface prepared with M-01
DM2	Deteriorated steel surface prepared with M-02
DW	Distilled water immersion at ambient temperature
DW-CW	Distilled water immersion at cold weather
DW-HW	Distilled water immersion at hot weather
FE	Finite Element
FEA	Finite Element Analysis
FEM	Finite Element Modelling
FRP	Fibre Reinforced Polymer
GFRP	Glass Fibre Reinforced Polymer
HDT	Heat Distortion Temperature
HM	High Modulus
LEFM	Linear Elastic Fracture Mechanics
LM	Low Modulus
LVDT	Linear Variable Differential Transformers
NDM1	Non-deteriorated steel surface prepared with M-01
NDM2	Non-deteriorated steel surface prepared with M-01
NM	Normal Modulus
UHM	Ultra-High Modulus
SEM	Scanning Electronic Microscope
SERR	Strain Energy Release Rate
SET	Surface Exposure Time